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Background

The concept of biological information and its translation 
into cellular effects is commonly seen as solely embodied 
by the genetic code. Complementarity between base pairs 
of nucleotides is the molecular basis for accurately copy-
ing templates and hereby starting the flow of biological 
information (Fig. 1, top). ‘Code words’ established by ‘let-
ters’ of the two alphabets of life, i.e., nucleotides and amino 
acids, are set in direct relation by the genetic code, and the 
sequence of the building blocks of each type of oligo- or 
polymer, i.e., nucleic acids and proteins, completely defines 
the ‘message.’ As can be deduced from Fig. 2a, b, there are 
recurring molecular mechanisms for letting the chain of 
these biopolymers grow, either by phosphodiesters or by 
peptide bonds.

The situation for coding on the cell surface is different 
and by considering its inherent requirements gives reason 
to why Fig. 1 must be extended and the right part of Fig. 2 
will look different. In relation to genetic coding, the den-
sity of the presented information must reach a high level 
for signals on the cell surface, because the available space 
for the multitude of different messages in communication 
is limited. To accomplish this feat, a different class of bio-
molecule is required. It must be endowed with the capac-
ity to allow the synthesis of many more isomers (‘words’) 
from its structural units (the third alphabet of life) than 
nucleotides or amino acids permit. As highlighted in 
Fig. 2, monosaccharides are ideal for this task, a funda-
mental insight that opened the door "to one of the last great 
frontiers of biochemistry" (Hart 1992; Cook 1995). The 
presence of chemically equivalent hydroxyl groups facili-
tates formation of the glycosidic bond via various linkages 
that then will bridge monosaccharides from the anomeric 
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center of one unit to the hydroxyl groups at C1, C2, C3, 
C4 or C6 of the next furanose(f)/pyranose(p) (Fig. 2c). 
Although the linkage chemistry is the same, a large set 
of isomers of dimers (disaccharides) can be generated, in 
contrast to only one dimer as is the case for nucleic acids 
and peptides. Additional diversity by branching can occur, 
yielding "compact units with explicit informational prop-
erties" (Winterburn and Phelps 1972). Hence, monosac-
charides surpass nucleotides or amino acids in coding 

capacity and, as a consequence, the glycome is very com-
plex (Laine 1997; Rüdiger and Gabius 2009). Accordingly, 
the paradigm of the flow of biological information needed 
to be amended by adding glycosylation/glycans (Fig. 1, 
bottom): DNA codes for the proteins (such as glycosyl-
transferases) that build the glycans from the letters of the 
third alphabet of life, i.e. monosaccharides. Glycans are 
present ubiquitously on proteins and sphingolipids. With 
the contributions to the first part of this special issue, prin-
ciples of protein and lipid glycosylation are depicted and 
illustrated by instructive examples of how glycan synthesis 
shapes distinct aspects of cellular (re)activity (Reuter and 
Gabius 1999; Kopitz 2009; Zuber and Roth 2009; Corfield 
and Berry 2015; Gabius 2015; Hennet and Cabalzar 2015; 
Ledeen and Wu 2015).

Glycans in information coding

Since a substantial part of the genome is represented by 
genes that code for proteins involved in carbohydrate 
synthesis, activation and transport as well as glycan 
assembly, modification, remodeling and degradation, it 
is tempting to assume a physiological significance of the 
oligosaccharides. By analyzing the deviations from the 
normal status in diseases, ample support for this notion 
has been and is being gained (Gahmberg and Tolvanen 
1996; Haltiwanger and Lowe 2004; Vogt et al. 2007; 
Honke and Taniguchi 2009; Moremen et al. 2012; Hen-
net and Cabalzar 2015). It is thus imperative to look into 
the details of the assembly lines for glycans present on 
both proteins and lipids (Corfield 2017; Kopitz 2017). 
Product analysis benefits from the enormous technical 
progress in glycan separation and structural characteriza-
tion (Lee 2009; Nishimura 2011; Clerc et al. 2016; Song 
et al. 2016). When covalently linked to their scaffold, the 
glycans are not hidden but rather accessible. For instance, 
glycans can reach away for about 3 nm from the core 
linkage on the protein. On the level of cells, the glycans 
are thus major components and determinants for contact 

Fig. 1  Concept of the flow of biological information was initially 
confined to the realm of the genetic code (top). The growing realiza-
tion of the functional significance of glycans as platform for the sugar 
code accounts for adding carbohydrate-based coding to the scheme 
(bottom); (from Kaltner and Gabius 2012, with permission)

Fig. 2  Illustration of the linkage points of oligomer formation of 
nucleic acids (a), proteins (b) and glycans (c). In contrast to the let-
ters of the first and second alphabets of life, each carbohydrate unit 

can engage any hydroxyl group for letting a chain grow or introduce 
branches, and the configuration at the anomeric center can vary (from 
Rüdiger and Gabius 2009, with permission)
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building, and they contribute markedly to the composition 
of the extracellular matrix. It thus comes as no surprise 
that infections can start by exploiting glycans as dock-
ing sites for bacteria and viruses (Holgersson et al. 2009; 
van Breedam et al. 2014; Tan et al. 2015). That individual 
sugar moieties count enormously as surface determinants 
is illustrated by histo-blood group typing or by disclosing 
glycan-dependent routes of cell–cell adhesion and com-
munication with the environment (Watkins 1999; Gabius 
et al. 2011, 2015). The respective work has spurred enor-
mous progress and opened the door to discovering intri-
cate regulation of expression and functional meaning of 
glycan epitopes, whose presence was initially viewed as a 
purely phenomenological feature with rather random (or 
complex) profile. The contributions to the first part of this 
special issue will introduce principles of glycosylation 
(Corfield 2017; Kopitz 2017) followed by a close exam-
ination of sialylation of N-glycans to illustrate the fine-
tuning of their synthesis and the functional importance 
of seemingly subtle changes (Bhide and Colley 2017). 
Through the study of these aspects, it will become clear 
how intriguingly programmable and inherently dynamic 
the glycome composition is, like a fingerprint characteris-
tic for a certain cell.

As is the case for glycoproteins, sialic acids on glycans 
of gangliosides exert much more than merely a structural 
role (Schnaar et al. 2014; Ledeen and Wu 2015; Schen-
grund 2015; Kopitz 2017). Their involvement in binding 
of bacterial toxins has already become textbook knowl-
edge. Dynamic remodeling of these glycans by enzymatic 
removal of a sialic acid, similarly operative for glycopro-
teins, is a functionally powerful means to alter the display 
of glycan-based signals without need for neosynthesis 
(Gabius et al. 2016). A formerly cryptic recognition marker 
is hereby made accessible as response to a distinct signal 
and ‘read’ by a tissue receptor, e.g., cell activation in the 
communication between regulatory and effector T cells [as 
reviewed in Kaltner et al. (2017)].

The precision of this selection process had already been 
noticed in the classical work on blood group specificity. 
The obvious capacity of phytohaemagglutinins of selecting 
(‘reading’) distinct (sugar) epitopes on the erythrocyte sur-
face led W. C. Boyd to propose "the word lectin from Latin 
lectus, the past principle of legere meaning to pick, choose 
or select" for such proteins, different in structure from 
sugar-specific antibodies (Boyd 1954). The contributions to 
the second part of this special issue will first introduce the 
reader to principles of lectin structure and applications of 
lectins in cyto- and histochemistry. Special emphasis will 
then be given to informative case studies of distinct fami-
lies with general significance and on the functional pairing 
of mammalian lectins with glycans (counterreceptors). An 
original article will finally describe a histochemical assay 
for evaluating inhibitory capacity of synthetic glycoclusters 
on binding of human lectins to tissue sections, a structural 
context displaying the glycome complexity of the physi-
ological situation. This contribution shows how lectin his-
tochemistry and synthetic carbohydrate chemistry team up 
to trace spatial characteristics of lectin binding.

Lectins in information decoding

Plant and animal lectins are a class of carbohydrate-bind-
ing proteins distinct from antibodies, enzymes and trans-
port proteins for free mono-, di- and oligosaccharides (for 
details on definition and applications, see Manning et al. 
2017). On the grounds of the concept of the sugar code, a 
large number of lectins is predicted. The existence of more 
than a dozen folds for proteins falling into this category 
attests that diversity of glycans is matched on the level of 
lectins [see Galleries of Lectins for animal and human lec-
tins in Solís et al. (2015) and for plant and fungal lectins 
in Manning et al. (2017)]. An example for protein folding 
and the accommodation of the ligand for a human lectin 
is given in Fig. 3, with a scheme depicting its capacity to 

Fig. 3  Illustration of homodimeric galectin-1 as scheme and β-sandwich protein as well as the binding profile of the disaccharide ligand lactose 
(from Gabius 2015, with permission)
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cross-link counterreceptors. Effectively, cross-linking gly-
coprotein targets such as the α5β1-integrin (fibronectin 
receptor) can initiate signaling, for instance resulting in 
the caspase-8-dependent induction of anoikis in carcinoma 
cells (Amano et al. 2012). Looking at ligand binding, func-
tional pairing with a glycan can be taken to the level to 
reach specificity among the complexity of cellular glyco-
conjugates, assigning a family member to a particular mis-
sion. As summarized in Table 1, structural and topological 
factors on both sides cooperate toward this end. Of note in 
this context, a certain glycan can well be the target of lec-
tins from different families (Gabius et al. 2016). As a gen-
eral theme for the functional pairing, not a single protein 
but homologous members of a family are present to ‘read’ 
signals. Starting from an ancestral gene, which gives rise to 
a distinct fold that is the platform for the contact site of gly-
cans, gene duplication and sequence diversification account 
for group building (Gready and Zelensky 2009).

The contributions to the second part of this special issue 
will first introduce the principles of lectin structure and 
applications of lectins in cyto- and histochemistry (Manning 
et al. 2017). Special emphasis will then be given to informa-
tive case studies on two lectin families, i.e., C-type lectins 
(Mayer et al. 2017) and galectins (Kaltner et al. 2017) in 
animals and man, to exemplify the resulting acquisition of 
related but distinct properties on the structural and func-
tional levels and on the functional pairing of mammalian 
lectins with glycans (counterreceptors). The intricate rela-
tion between sugar coding and quality control/intracellular 
routing of glycoproteins will be described next (Roth and 
Zuber 2017). Mutual lectin/glycoconjugate recognition is 
also the basis for the specificity of (ga)lectin-mediated deliv-
ery of distinct glycoproteins to axonal segments as shown in 
Fig. 4 (Velasco et al. 2013), one of the cases of functionality 
of the sugar code in neuroscience (Higuero et al. 2017).

In general, the ability of lectins to home in on certain 
glycans and even distinct glycoconjugates makes them val-
uable tools for their detection. Using labeled lectins, a gly-
coprofiling of cells and tissues is thus feasible (Roth 1978, 
2011), as documented in Manning et al. (2017). Within this 
recognition process, topological factors play a role in deter-
mining the avidity and selectivity of lectin binding, on the 

level of glycoconjugates and their arrangement in clusters 
(microdomains). Synthetic glycoclusters are potent tools 
to delineate such structure–activity relationships (Mur-
phy et al. 2013; Roy et al. 2016). Testing their inhibitory 
potency on lectin binding in tissue sections can provide 
information on the natural susceptibility of lectin binding 
in a context of glycan presentation, with potential for guid-
ing the design of inhibitors, as recently tested for plant lec-
tins (André et al. 2016) and for mammalian galectins (Roy 
et al. 2017).

Conclusion

Mechanisms of cellular communication must necessar-
ily use biochemical signals of high coding capacity. As 
consequence, cells must be equipped with the respective 
enzymatic machinery, which must be spatially organized 
to guarantee ordered glycan assembly with the possibility 
for dynamic switches between glycan structures, a com-
plex process assigned to the cisternal organization of the 
Golgi apparatus (Roth and Berger 1982; Tartakoff and 
Vassalli 1983; Roth et al. 1985, 1986; Roth 1987; Velasco 
et al. 1993; Rabouille et al. 1995; Berger and Roth 1997; 
Colley 1997; Pavelka 1997; Roth 2002; Shorter and War-
ren 2002). The implementation of context-dependent vari-
ability of products will fulfill the prerequisite to respond 
to changes in gene expression or of the microenvironment 
appropriately and swiftly. The special chemical features 
of monosaccharides to generate unsurpassed structural 
diversity and the ubiquitous presence of glycans are obvi-
ous hints that complex carbohydrates are active players in 
biocommunication. However, to prove that their "functions 
pervade biology at all levels" (Hart 2013) was not possible 
without major advances in glycan analysis and synthesis 
as well as the realization that lectins are much more than 
plant-derived tools for cell typing. Strategically combined 
work on the structurally most complex ‘signals’ (glycans), 
the ‘translators’ of glycan-encoded information (lectins) 
and their interplay has now reached the level of cracking 
the sugar code. Intriguingly, approaches of supramolecu-
lar chemistry to program the glycan display of surfaces of 

Table 1  Structural and spatial properties for regulating affinity and selectivity of glycan/glycoconjugate binding to lectins

Glycan/glycoconjugate Lectin

Sequence and shape of the reactive epitope (mono- to oligosaccharide 
incl. branching and substitutions)

Architecture of the contact site for the cognate glycan(s) in the carbohy-
drate recognition domain (CRD)

Cluster effect of multivalent glycan by N-/O-glycan branching or local 
density variations of neighboring glycans in a glycoprotein such as 
a mucin

Modular organization of CRDs in (monomeric) bi- to oligovalent lectins

Cluster effect by non-covalent aggregation of glycoconjugates in 
microdomains

Non-covalent association of a monomeric lectin into di- to oligomeric 
aggregates
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self-assembled vesicles (Percec et al. 2013; Zhang et al. 
2015a; Xiao et al. 2016) or of protein engineering to ration-
ally alter the structure of lectins (Swanson et al. 2015; 
Zhang et al. 2015b) make the production of test compounds 
possible for in-depth structure–activity investigations. 
Functionally oriented perusal of the glycome culminating 
in the identification of active counterreceptors for tissue 
lectins is thus the aim of functional glycomics.
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