
This paper is also published in: J.W. de Bakker, W.-P. de Roever, G. Rozenberg (eds.):
A Decade of Concurrency, Lecture Notes in Computer Science vol. 803, Springer-Verlag 1994,
230-272.

An Introduction to the Theoretical
Aspects of Coloured Petri Nets

Kurt Jensen
Computer Science Department, Aarhus University

Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

Phone: +45 89 42 32 34
Telefax: +45 89 42 32 55

E-mail: kjensen@daimi.aau.dk

Abstract: This paper presents the basic theoretical aspects of Coloured Petri
Nets (CP-nets or CPN). CP-nets have been developed, from being a promising
theoretical model, to being a full-fledged language for the design, specification,
simulation, validation and implementation of large software systems (and other
systems in which human beings and/or computers communicate by means of
some more or less formal rules). The paper contains the formal definition of
CP-nets and their basic concepts (e.g., the different dynamic properties such as
liveness and fairness). The paper also contains a short introduction to the analysis
methods, in particular occurrence graphs and place invariants.

The development of CP-nets has been driven by the desire to develop a
modelling language – at the same time theoretically well-founded and versatile
enough to be used in practice for systems of the size and complexity that we find
in typical industrial projects. To achieve this, we have combined the strength of
Petri nets with the strength of programming languages. Petri nets provide the
primitives for the description of the synchronisation of concurrent processes,
while programming languages provide the primitives for the definition of data
types and the manipulation of their data values.

The paper does not assume that the reader has any prior knowledge of Petri
nets – although such knowledge will, of course, be a help.

Keywords:  Petri Nets, High-level Petri Nets, Coloured Petri Nets.

Table of Contents

1  Informal Introduction to CP-nets.......................................................   2
2  Why use CP-nets? .............................................................................   10
3  Formal Definition of CP-nets ............................................................   13
4  Dynamic Properties of CP-nets..........................................................   18
5  Simulation .........................................................................................   21
6  Occurrence Graphs............................................................................   22
7  Place Invariants.................................................................................   30
8  Historical Remarks ............................................................................   37
9  Conclusion.........................................................................................   39
References ..............................................................................................   40



2

1  Informal Introduction to CP-nets  
This sections contains an informal introduction to CP-nets. This is done by means
of an example that models a small distributed data base system, cf. Fig. 1. The
example is far too small to illustrate the typical practical use of CP-nets, but it is
large enough to illustrate the theoretical definition of CP-nets, their basic con-
cepts and their analysis methods. We shall use the data base system throughout
this paper. As a curiosity, it can be mentioned that the annual International Petri
Net Conference uses the net structure of the data base system as its logo.

The data base system has n different geographical sites (n ≥ 3). Each site con-
tains a copy of the entire data base and this copy is handled by a local data base
manager. When a manager di makes an update to his own copy of the data base,
he must send a message to all the other managers – to ensure consistency between
the n copies of the data base. We are not interested in the content of the message,
but only in the header information. Hence, we represent each message as a pair
(s,r) where s identifies the sender and r identifies the receiver. This means that
the data base manager di sends the following messages:

Mes(di) = {(di,d1), (di,d2), …, (di,di-1), (di,di+1), …, (di,dn-1), (di,dn)}.

In contrast to most specification languages, Petri nets are state and action ori-
ented at the same time – providing an explicit description of both the states and
the actions. This means that the modeller can determine freely whether – at a
given moment of time – he wants to concentrate on states or on actions.

The states of a CP-net are represented by means of places (which are drawn
as ellipses). In the data base system there are nine different places. Three of the
places represent the three possible states of the data base managers: Inactive,
Waiting and Performing. Four of the places represent the possible states of the
messages: Unused, Sent, Received and Acknowledged. The two remaining places
indicate whether an update is going on or not: Active and Passive. By convention
we write the names of the places inside the ellipses. The names have no formal
meaning – but they have large practical importance for the readability of a
CP-net (just like the use of mnemonic names in traditional programming). A
similar remark applies to the graphical appearance of the places, i.e., the line
thickness, size, colour, font, position, etc. A good graphical representation corre-
sponds to a good indentation strategy in a program – it has an immense impor-
tance for the readability of the net. A set of guidelines for the graphical repre-
sentation of CP-nets can be found in Sect. 1.6 of [27].

Each place has an associated data type determining the kind of data which the
place may contain (by convention the type information is written in italics, next
to the place). The box at the top of Fig. 1 contains declarations. The first six
lines specify the possible values of four different types: DBM, PR, MES and E.
The declarations also, implicitly, specify the operations which can be performed
on the values of the types. In Fig. 1, we specify the types by means of a language
based on Standard ML, see [34], [35] and [37]. In this paper, we give only an in-
formal explanation of the declarations. For more details, see Sects. 1.3 and 1.4 of
[27].



3

For CP-nets, we use the terms: type, value, operation, expression, variable,
binding and evaluation in exactly the same way as these concepts are used in
functional programming languages. It is possible to specify the types in many
other ways, e.g., by means of the kind of specifications which are used in ab-
stract data types. In Sect. 3 we discuss the requirements demanded for the lan-
guage in which declarations and arc expressions are written.

A state of a CP-net is called a marking. It consists of a number of tokens
positioned on the individual places. Each token carries a data value which be-
longs to the type of the corresponding place. Inactive, Performing and Waiting
have the type:

DBM = {d1, d2, …, dn}.

Receive all
Acknowledg-

ments

Update
and

Send Messages

Send an
Acknowledg-

ment

Receive
a

Message

Performing

DBM

Inactive
DBM

DBM

Waiting

DBM

Unused

MES

MES

Sent

MES

Received
MES

Acknowledged

MES

Active

E

Passive
E

E

val n = 5;
color DBM = index d with 1..n  declare ms;
color PR = product DBM * DBM  declare mult;
fun diff(x,y) = (x<>y);
color MES = subset PR by diff  declare ms;
color E = with e;
fun Mes(s) = mult'PR(1`s,DBM-1`s);
var s, r : DBM;

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

Fig. 1.  CP-net describing a distributed data base

Intuitively, this means that each token (on one of these places) represents a data
base manager. In the initial marking all data base managers are inactive, hence
we have n tokens on Inactive while Performing and Waiting have none. In gen-
eral, a place may contain two or more tokens with the same data value. This
means that we have multi-sets of tokens, and not just sets. A marking of a CP-net



4

is a function which maps each place into a multi-set of tokens of the correct type.
The initial marking M0 is specified by means of the initialisation expressions
(which by convention are written with an underline, next to the place). A missing
initialisation expression implies that the initial marking of the corresponding
place is empty, i.e., contains no tokens. For the places of type DBM we have the
following initial marking:

M0(Inactive) = DBM

M0(Performing) = M0(Waiting) = Ø

where Ø denotes the empty multi-set. By convention, we use DBM to denote the
type, but we also use it to denote the set which contains all data values from the
type and the multi-set which contains exactly one appearance of each data value
from the type. Hence we have:

M0(Inactive) = 1`d1 + 1`d2 + … + 1`dn

where the integer coefficients (in front of `) indicate that Inactive has one token
for each data value di in the type DBM.

Unused, Sent, Received and Acknowledged have the type MES which is a
subtype of the cartesian product DBM × DBM. Intuitively, this means that each
token on one of these places represents a message (s,r). In the initial marking all
messages are unused. Hence we have:

M0(Unused) = MES = {(s,r) ∈ DBM × DBM   s ≠ r}

M0(Sent) = M0(Received) = M0(Acknowledged) = Ø

where the requirement s ≠ r indicates that we do not have messages in which the
sender and receiver are identical. The declaration of MES is a bit complex and
specific to the declaration language which we have chosen. An explanation can be
found in Sect. 1.3 of [27].

Active and Passive have the type E = {e} which has only one possible value.
The initial marking looks as follows:

M0(Passive) = E = 1`e

M0(Active) = Ø.

For historical reasons we often refer to the token values as token colours and
we also refer to the data types as colour sets. This is a metaphoric picture
where we consider the tokens of a CP-net to be distinguishable from each other
and hence “coloured” – in contrast to ordinary low-level Petri nets (PT-nets)
which have “black” indistinguishable tokens. The types of a CP-net can be arbi-
trarily complex, e.g., a record where one field is a real, another a text string and
a third a list of integers. Hence, it is much more adequate to imagine a continuum
of colours (like in physics) instead of a few discrete colour values (like red,
green and blue). Intuitively, we consider tokens of type E to be black tokens, like
in PT-nets, and hence without any data. However, mathematically these tokens
carry a data value, e, like all the other tokens of a CP-net.

The actions of a CP-net are represented by means of transitions (which are
drawn as rectangles). In the data base system there are four different transitions.



5

An incoming arc indicates that the transition may remove tokens from the corre-
sponding place while an outgoing arc indicates that the transition may add tokens.
The exact number of tokens and their data values are determined by the arc ex-
pressions (which are positioned next to the arcs). The transition Update and
Send Messages (SM) has six arcs with three different arc expressions: e, s and
Mes(s). The first of these is a constant. The two other expressions contain the
free variable s of type DBM, declared in the last line of the declarations. To talk
about an occurrence of the transition SM we need to bind s to a value from
DBM. Otherwise, we cannot evaluate the expressions s and Mes(s). As explained
at the beginning of the section, the function Mes(s) maps each data base manager
s into the messages which s sends. The declaration of Mes(s) is a bit complex and
specific to the declaration language which we have chosen. An explanation can be
found in Sect. 1.3 of [27].

Now let us assume that we bind the variable s (of the transition SM) to the
value d2. This gives us a binding <s = d2> for SM. Together with SM the binding
forms a pair which we refer to as a binding element:

(SM, <s = d2>).

For this binding element we evaluate the arc expressions as follows (in the rest of
this section we assume that there are n = 5 data base managers):

e → e
s → d2

Mes(s) → 1`(d2,d1) + 1`(d2,d3) + 1`(d2,d4)  + 1`(d2,d5).

This tells us that an occurrence of the transition SM with the binding <s = d2>
will remove a token with value e from Passive and add a token with value e to
Active. The occurrence will also remove a token with value d2 from Inactive and
add a token with this value to Waiting. Finally, it will remove four tokens from
Unused (with the values specified by the evaluation of Mes(s)) and add four to-
kens with these values to Sent. Intuitively, this means that the manager d2 changes
from being inactive to being waiting, and simultaneously sends a message to each
of the other managers.

The occurrence of the binding element (SM, <s = d2>) is possible, if the six to-
kens to be removed exist, i.e., if Passive has an e token, Inactive a d2 token and
Unused have the four tokens specified by Mes(d2). In the initial marking M0 this
is the case, and hence we say that the binding element (SM, <s = d2>) is enabled
in M0. It is easy to verify that all the five possible bindings for SM yield binding
elements which are enabled in the initial marking.

If the binding element (SM, <s = d2>) occurs, it removes tokens from its input
places and adds tokens to its output places. When we interpret a net we often
think of the tokens as being moved from one place to another, possibly with
some change of their data values. However, in the mathematical formulation of a
CP-net model there is no connection between particular input tokens and particu-
lar output tokens. The number of output tokens may differ from the number of
input tokens and they may have data values which are of different types.



6

The other three transitions work in a similar way. The two transitions to the
right use two different variables, s and r. Each of these must be bound to a value
in DBM. It is easy to verify that all the possible bindings for the transitions
Receive a Message (RM), Send an Acknowledgement (SA) and Receive all
Acknowledgements (RA) are disabled in the initial marking. For RM there is
no token on Sent. For SA and RA there is no token on any of the input places.
Hence, we conclude that the only thing that can happen in the initial marking is
an occurrence of one of the five binding elements of SM. Each of these is en-
abled and the choice between them is non-deterministic. As soon as one of the
binding elements has occurred, the others become disabled – because there is no
longer a token on Passive. Hence we say that the binding elements are in con-
flict with each other.

Let us assume that (SM, <s = d2>) occurs. We then reach a marking M1 with
the following tokens (we only list those places which have a non-empty mark-
ing):

M1(Inactive) = DBM – 1`d2 = 1`d1 + 1`d3 + 1`d4 + 1`d5

M1(Waiting) = 1`d2

M1(Sent) = Mes(d2) = 1`(d2,d1) + 1`(d2,d3) + 1`(d2,d4) + 1`(d2,d5)

M1(Unused) = MES – Mes(d2)

M1(Active) = 1`e.

In the marking M1 the transition RM is enabled – for all the four bindings in
which s is bound to d2 while r is bound to a value that differs from d2.
Intuitively, this means that all the other managers are ready to receive the mes-
sage which d2 has sent to them. The binding element (RM, <s = d2, r = d3>) moves
a token with value (d2, d3) from Sent to Received and it moves a token with value
d3 from Inactive to Performing. Intuitively, this means that the manager d3

changes from being inactive to being performing. Simultaneously the message
(d2, d3) changes from being sent to being received. Analogously, the binding el-
ement (RM, <s = d2, r = d4>) moves a token with value (d2, d4) from Sent to
Received and it moves a token with value d4 from Inactive to Performing. The
two binding elements deal with different tokens and hence they do not influence
each other. This means that they can occur concurrently with each other, i.e.,
in the same step. It is easy to verify that all the four enabled binding elements
are concurrent with each other. This means that the next step may contain all of
them or any non-empty subset of them. The choice is again non-deterministic.

The conflict and concurrency relations (between binding elements) are mark-
ing dependent. If we add tokens, a conflict situation may be turned into a concur-
rency situation. As an example, we could change the initial marking of Passive to
3`e. Then we can have steps where up to three of the binding elements of SM oc-
cur concurrently. It is also allowed that a binding element may be concurrent
with itself, one or more times. This means that, in general, a step is a multi-set of
binding elements (which is demanded to be finite and non-empty). Let us assume
that the step:



7

1`(RM, <s = d2, r = d3>) + 1`(RM, <s = d2, r = d4>)

occurs in the marking M1. We then reach a marking M2 with the following to-
kens:

M2(Inactive) = M1(Inactive) – (1`d3 + 1`d4) = 1`d1 + 1`d5

M2(Waiting) = 1`d2

M2(Performing) = 1`d3 + 1`d4

M2(Sent) = M1(Sent) – (1`(d2,d3) + 1`(d2,d4)) = 1`(d2,d1) + 1`(d2,d5)

M2(Received) = 1`(d2,d3) + 1`(d2,d4)

M2(Unused) = MES – Mes(d2)

M2(Active) = 1`e.

In M2 there are four enabled binding elements:

(RM, <s = d2, r = d1>)

(RM, <s = d2, r = d5>)

(SA, <s = d2, r = d3>)

(SA, <s = d2, r = d4>).

The four binding elements are concurrent with each other – because they use dif-
ferent tokens. Let us assume that the first three of them occur, i.e., that we have
a step which looks as follows:

1`(RM, <s = d2, r = d1>) + 1`(RM, <s = d2, r = d5>) + 1`(SA, <s = d2, r = d3>).

We then reach a marking M3 with the following tokens:

M3(Inactive) = (M2(Inactive) – (1`d1 + 1`d5)) + 1`d3 = 1`d3

M3(Waiting) = 1`d2

M3(Performing) = (M2(Performing) – 1`d3) + (1`d1 + 1`d5)

= 1`d1 + 1`d4 + 1`d5

M3(Sent) = M2(Sent) – (1`(d2,d1) + 1`(d2,d5)) = Ø

M3(Received) = (M2(Received) – 1`(d2,d3)) + (1`(d2,d1) + 1`(d2,d5))

= 1`(d2,d1) + 1`(d2,d4) + 1`(d2,d5)

M3(Acknowledged) = 1`(d2,d3)

M3(Unused) = MES – Mes(d2)

M3(Active) = 1`e.

In M3 there are three enabled binding elements:

(SA, <s = d2, r = d1>)

(SA, <s = d2, r = d4>)

(SA, <s = d2, r = d5>).



8

A concurrent occurrence of the three binding elements leads to a marking M4

with the following tokens:

M4(Inactive) = 1`d1 + 1`d3 + 1`d4 + 1`d5

M4(Waiting) = 1`d2

M4(Performing) = M4(Sent) = M4(Received) = Ø

M4(Acknowledged) = 1`(d2,d1) + 1`(d2,d3) + 1`(d2,d4) + 1`(d2,d5) = Mes(d2)

M4(Unused) = MES – Mes(d2)

M4(Active) = 1`e.

In M4 there is only one enabled binding element:

(RA, <s = d2>).

An occurrence of this binding element leads to the initial marking M0. The
markings and steps considered above form an occurrence sequence:

M0 [Y0› M1 [Y1› M2 [Y2› M3 [Y3› M4 [Y4› M0.

The occurrence sequence which we have considered is only one out of infinitely
many. Our occurrence sequence happens to be cyclic, i.e., it starts and ends in
the same marking.

To ensure consistency between the different copies of the data base, this sim-
ple model only allows one update at a time. When a manager has initiated an up-
date, this has to be performed by all the managers before another update can be
initiated. The mutual exclusion is guaranteed by the place Passive. Our descrip-
tion of the data base system is very high-level (and unrealistic) – in the sense that
the mutual exclusion is described by means of a global mechanism (the place
Passive). To implement the data base system on distributed hardware, the mutual
exclusion must be handled by means of a “distributed mechanism”. Such an im-
plementation could be described by a more detailed CP-net – which could also
model how to handle “loss of messages” and “disabled sites”.

The CP-net for the data base system has several redundant places – which
could be omitted without changing the behaviour (i.e., the possible occurrence
sequences). As an example, we can omit Unused. Then there will only be an ex-
plicit representation of those messages which currently are in use (i.e., in one of
the states Sent, Received or Acknowledged). We can also omit Active and
Performing. It is very common to have redundant places in a CP-net, and this
often makes the description easier to understand – because it gives a more de-
tailed and more comprehensive description of the different states of the system.

Attaching a data value to each token allows us to use much fewer places than
would be needed in a PT-net. For the data base system, a typical PT-net would
have n places for each of the states Inactive, Waiting and Performing – because
this is the only way in which a PT-net can distinguish between the n different
managers. Analogously, there would be  MES  = n2 – n different places for the
message states Unused, Sent, Received and Acknowledged. With 5 managers the
PT-net would have 97 places while the CP-net only has 9. An even more dra-
matic reduction is obtained when we use more complex types.



9

The use of variables in arc expressions means that each CP-net transition can
occur in many slightly different ways – in a similar way as a procedure can be
executed with different input parameters. Hence, we can use a single transition to
describe a class of related activities, while in a PT-net we need a transition for
each instance of such an activity. In the data base system there is only one SM
transition and one RA transition. In a typical PT-net there would be one for each
manager. Analogously, there would be an RM and SA transition for each element
of MES. With 5 managers the PT-net would have 50 transitions while the CP-net
only has 4.

In this paper we only consider the data base system, which has rather simple
arc expressions. However, it is possible to use much more complex arc expres-
sions such as:

case x of p=>1`(x,i) | q=>empty.

When x is bound to p the arc expression evaluates to a multi-set with one token.
When x is bound to q the arc expression evaluates to the empty multi-set. This
example also illustrates the fact that different bindings for the same transition
may remove and add a different number of tokens. For more details about the
syntax and semantics of arc expressions, see Sect. 1.4 of [27].

In addition to the arc expressions, it is possible to attach a boolean expression
(with variables) to each transition. The boolean expression is called a guard. It
specifies that we only accept binding elements for which the boolean expression
evaluates to true. In the data base system we could add the guard:

[s ≠ d3]

to the transition SM (by convention guards are written in square brackets, next to
the transition). Such a guard would mean that we exclude (SM, <s = d3>) from
the set of binding elements, and hence it would no longer be possible for the data
base manager d3 to initiate an update.

The above informal explanation of the enabling and occurrence rules tells us
how to understand the behaviour of a CP-net, and it explains the intuition on
which CP-nets build. However, it is very difficult (probably impossible) to make
an informal explanation which is complete and unambiguous, and thus it is ex-
tremely important that the intuition is complemented by a more formal definition
(which we shall present in Sect. 3). The formal definition forms the foundation
for the analysis methods presented in Sects. 5–7.

It can be shown that each CP-net can be translated into a PT-net and vice
versa – if the CP-net has infinite types, such as the integers, text strings or reals,
the equivalent PT-net may become infinite. Since the expressive power of the
two formalisms are the same, there is no theoretical gain by using CP-nets.
However, in practice, CP-nets constitute a more compact, and much more con-
venient, modelling language than PT-nets – in a similar way as high-level pro-
gramming languages are much more adequate for practical programming than
assembly code and Turing machines.

CP-nets form a language in its own right, and this means that systems are
modelled and analysed directly in terms of CP-nets – without thinking of PT-nets
and without translating them into PT-nets. The benefits which we achieve by us-



10

ing CP-nets, instead of PT-nets, are very much the same as those achieved by
using high-level programming languages instead of assembly languages:

• Description and analysis become more compact and manageable (because the
complexity is divided between the net structure, the declarations and the net in-
scriptions).

• It becomes possible to describe data manipulations in a much more direct way
(by using the arc expressions instead of a complex set of places, transitions and
arcs).

• It becomes easier to see the similarities and differences between similar system
parts (because they are represented by the same place, transition or subnet).

• The description is more redundant and this means that there will be less errors
(because errors can be found by noticing inconsistencies, e.g., between the type
of an arc expression and the type of the corresponding place). This is useful, in
particular when we have a computer tool to perform the consistency checks.

• It is possible to create hierarchical descriptions, i.e., structure a large descrip-
tion as a set of smaller CP-nets with well-defined interfaces and relationships
to each other. This is similar to the use of modules in a programming lan-
guage. In this paper, we only deal with non-hierarchical CP-nets. An intro-
duction and formal definition of hierarchical CP-nets can be found in Chap. 3
of [27]. It is easy to modify all the concepts and results, presented in the pre-
sent paper, so that they work for hierarchical nets also. All the details can be
found in [27] and [28].

2  Why use CP-nets?  
There are three different – but closely related – reasons to make CPN models
(and other kinds of behavioural models). First of all, a CPN model is a descrip-
tion of the modelled system, and it can be used as a specification (of a system
which we want to build) or as a presentation (of a system which we want to ex-
plain to other people, or ourselves). By creating a model we can investigate a
new system before we construct it. This is an obvious advantage, in particular
for systems where design errors may jeopardise security or be expensive to cor-
rect. Secondly, the behaviour of a CPN model can be analysed, either by means
of simulation (which is equivalent to program execution and program debug-
ging) or by means of more formal analysis methods (to be presented in Sects.
6 and 7). Finally, the process of creating the description and performing the
analysis usually gives the modeller a dramatically improved understanding of the
modelled system – and it is often the case that this is more valid than the descrip-
tion and the analysis results themselves.

There exist so many different modelling languages that it would be very diffi-
cult and time consuming to make an explicit comparison with all of them (or
even the most important of them). Instead we shall, in this section, make an im-
plicit comparison, by listing some of those properties which make CP-nets a
valuable language for the design, specification and analysis of many different



11

types of systems. It should be understood that many of the other modelling lan-
guages also fulfil some of the properties listed below, and it should also be un-
derstood that some of these languages have nice properties which are not found
in CP-nets. We do not claim that CP-nets are superior to all the other languages.
Such claims are, in our opinion, made far too often – and they nearly always
turn out to be ridiculous. However, we do think that for some purposes CP-nets
are extremely useful, and that, together with some of the other languages, they
should be a standard part of the repertoire of advanced system designers and
system analysts.

1. CP-nets have a graphical representation. The graphical form is intuitively
very appealing. It is extremely easy to understand and grasp – even for people
who are not very familiar with the details of CP-nets. This is due to the fact that
CPN diagrams resemble many of the informal drawings which designers and
engineers make while they construct and analyse a system. Just think about how
often you have illustrated an algorithm or a communication protocol by drawing
a directed graph, where the nodes represent states and actions, while the arcs de-
scribe how to go from one state to another, by executing some of the actions.
The notions of states, actions and flow are basic to many kinds of system and
these concepts are – in a very vivid and straightforward way – represented by
the places, transitions and arcs of CP-nets.

2. CP-nets have a well-defined semantics which unambiguously defines the
behaviour of each CP-net. It is the presence of the semantics which makes it pos-
sible to implement simulators for CP-nets, and it is also the semantics which
forms the foundation for the formal analysis methods described in Sects. 6 and 7.

3. CP-nets are very general and can be used to describe a large variety of dif-
ferent systems. The applications of CP-nets range from informal systems (such as
the description of work processes) to formal systems (such as communication
protocols). They also range from software systems (such as distributed algo-
rithms) to hardware systems (such as VLSI chips). Finally, they range from sys-
tems with a lot of concurrent processes (such as flexible manufacturing) to sys-
tems with no concurrency (such as sequential algorithms).

4. CP-nets have very few, but powerful, primitives. The definition of CP-nets
is rather short and it builds upon standard concepts which many system mod-
ellers already know from mathematics and programming languages. This means
that it is relatively easy to learn to use CP-nets. However, the small number of
primitives also means that it is much easier to develop strong analysis methods.

5. CP-nets have an explicit description of both states and actions. This is in
contrast to most system description languages which describe either the states or
the actions – but not both. Using CP-nets, the reader may easily change the point
of focus during the work. At some instances of time it may be convenient to con-
centrate on the states (and almost forget about the actions) while at other in-
stances it may be more convenient to concentrate on the actions (and almost for-
get about the states).

6. CP-nets have a semantics which builds upon true concurrency, instead of
interleaving. This means that the notions of conflict and concurrency can be de-
fined in a very natural and straightforward way (as we have seen in Sect. 1). In



12

an interleaving semantics it is impossible to have two actions in the same step,
and thus concurrency only means that the actions can occur after each other, in
any order. In our opinion, a true-concurrency semantics is easier to work with –
because it is closer to the way human beings usually think about concurrent ac-
tions.

7. CP-nets offer hierarchical descriptions. This means that we can construct a
large CP-net by relating smaller CP-nets to each other, in a well-defined way.
The hierarchy constructs of CP-nets play a role similar to that of subroutines,
procedures and modules of programming languages. The existence of hierarchi-
cal CP-nets makes it possible to model very large systems in a manageable and
modular way.

8. CP-nets integrate the description of control and synchronisation with the
description of data manipulation. This means that on a single sheet of paper it can
be seen what the environment, enabling conditions and effects of an action are.
Many other graphical description languages work with graphs which only de-
scribe the environment of an action – while the detailed behaviour is specified
separately (often by means of unstructured prose).

9. CP-nets can be extended with a time concept. This means that it is possible
to use the same modelling language for the specification/validation of functional/
logical properties (such as absence of deadlocks) and performance properties
(such as average waiting times). The basic idea behind the time extension is to
introduce a global clock and to allow each token to carry a time stamp – in addi-
tion to the data value which it already has. Intuitively, the time stamp specifies
the time at which the token is ready to be used, i.e., consumed by a transition.
For more details about timed CP-nets, see [27], [28] and [29].

10. CP-nets are stable towards minor changes of the modelled system. This is
proved by many practical experiences and it means that small modifications of
the modelled system do not completely change the structure of the CP-net. In
particular, it should be observed that this is also true when a number of subnets
describing different sequential processes are combined into a larger CP-net. In
many other description languages, e.g., finite automata, such a combination often
yields a description which is difficult to relate to the original sub-descriptions.

11. CP-nets offer interactive simulations where the results are presented di-
rectly on the CPN diagram. The simulation makes it possible to debug a large
model while it is being constructed – analogously to a good programmer debug-
ging the individual parts of a program as he finishes them. The data values of the
moving tokens can be inspected.

12. CP-nets have a large number of formal analysis methods by which prop-
erties of CP-nets can be proved. There are four basic classes of formal analysis
methods: construction of occurrence graphs (representing all reachable mark-
ings), calculation and interpretation of system invariants (called place and transi-
tion invariants), reductions (which shrink the net without changing a certain se-
lected set of properties) and checking of structural properties (which guarantee
certain behavioural properties). In this paper we only deal with the first two
classes of formal analysis methods.



13

13. CP-nets have computer tools supporting their drawing, simulation and
formal analysis. This makes it possible to handle even large nets without drown-
ing in details and without making trivial calculation errors. The existence of such
computer tools is extremely important for the practical use of CP-nets.

In this section we have listed a number of advantages of CP-nets. Many of
these are also valid for other kinds of high-level nets, PT-nets, and other kinds of
modelling languages. Once more, we want to stress that we do not view CP-nets
as “the superior” system description language. In contrast, we consider the world
of computer science to be far too complicated and versatile to be handled by a
single language. Thus we think CP-nets must be used together with many other
kinds of modelling languages. It is often valuable to use different languages to
describe different aspects of the system. The resulting set of descriptions should
be consider as complementary, not as alternatives.

3  Formal Definition of CP-nets  
This chapter contains the formal definition of (non-hierarchical) CP-nets and
their behaviour. A CP-net is defined as a many-tuple. However, it should be un-
derstood that the only purpose of this is to give a mathematically sound and un-
ambiguous definition of CP-nets and their semantics. Any concrete net, created
by a modeller, will always be specified in terms of a CPN diagram (i.e., a dia-
gram similar to Fig. 1). It is in principle (but not in practice) easy to translate a
CPN diagram into a CP-net tuple, and vice versa. The tuple form is adequate
when we want to formulate general definitions and prove theorems which apply
to all (or a large class) of CP-nets. The graph form is adequate when we want to
construct a particular CP-net modelling a specific system.

First we define multi-sets. N denotes the set of all non-negative integers and
iff means “if and only if”.

Definition  3.1:  A multi-set m, over a non-empty set S, is a function
m ∈ [S → N] which we represent as a formal sum:

∑
s ∈ S

 m(s)`s. 

By SMS we denote the set of all multi-sets over S. The non-negative integers
{m(s)   s ∈ S} are the coefficients of the multi-set. s ∈ m iff m(s) ≠ 0.

We use Ø to denote the empty multi-set (there is an empty multi-set for each el-
ement set S; we ignore this and speak about the empty multi-set – in a similar
way that we speak about the empty set).

There is a one-to-one correspondence between sets over S and those multi-sets
for which all coefficients are zero or one. Thus we shall, without any further
comments, use a set A ⊆  S to denote the multi-set which consists of one appear-
ance of each element in A. Analogously, we use an element s ∈ S to denote the
multi-set 1`s.



14

For multi-sets we have a number of standard operations (with the exception
of  m  all of them are derived from standard operations for functions).

Definition   3.2:   Addition , scalar  multiplication , comparison , and
size of multi-sets are defined in the following way, for all m, m1, m2 ∈ SMS and
all n ∈ N:

(i) m1 + m2 =  ∑
s ∈ S

 (m1(s) + m2(s)) ` s   (addition).

(ii) n * m =  ∑
s ∈ S

 (n * m(s))  `  s   (scalar multiplication).  

(iii) m1 ≠ m2 =  ∃ s ∈ S: m1(s) ≠ m2(s) (comparison; ≥ and = are
m1 ≤ m2 =  ∀ s ∈ S: m1(s) ≤ m2(s)  defined analogously to ≤).

(iv)  m =  ∑
s ∈ S

 m(s)   (size).

When  m   = ∞ we say that m is infinite. Otherwise m is finite. When
m1 ≤ m2 we also define subtraction:

(v) m2 – m1 =  ∑
s ∈ S

 (m2(s) – m1(s)) ` s   (subtraction).

The multi-set operations have a large number of the standard algebraic proper-
ties. As an example (SMS, +) is a commutative monoid. More details can be
found in Sect. 2.1 of [27]. 

To give the abstract definition of CP-nets it is not necessary to fix the con-
crete syntax in which the modeller specifies the net expressions, and thus we shall
only assume that such a syntax exists together with a well-defined semantics –
making it possible in an unambiguous way to talk about:

• The elements of a type, T. The set of all elements in T is denoted by the type
name T itself.

• The type of a variable, v – denoted by Type(v).
• The type of an expression, expr – denoted by Type(expr).
• The set of variables in an expression, expr – denoted by Var(expr).
• A binding of a set of variables, V – associating with each variable v ∈ V an el-

ement b(v) ∈ Type(v).
• The value obtained by evaluating an expression, expr, in a binding, b – de-

noted by expr<b>. Var(expr) is required to be a subset of the variables of b,
and the evaluation is performed by substituting for each variable v ∈ Var(expr)
the value b(v) ∈ Type(v) determined by the binding.

An expression without variables is said to be a closed expression. It can be eval-
uated in all bindings, and all evaluations give the same value – which we often
shall denote by the expression itself. This means that we simply write “expr” in-
stead of the more pedantic “expr<b>”.

We use B to denote the boolean type (containing the elements {false, true}
and having the standard operations). Moreover, we extend the notation Type(v)



15

to Type(A) = {Type(v)   v ∈ A} where A is a set of variables. In the rest of this
paper, we shall make such extensions without explicit notice.

Now we are ready to define CP-nets. Some motivations and explanations of
the individual parts of the definition are given immediately below the definition,
and it is recommended that these are read in parallel with the definition. More
comments can be found in Sect. 2.2 of [27].

Definition 3.3:  A CP-net  is a tuple CPN = (Σ , P, T, A, N, C, G, E, I)
where:

(i) Σ is a finite set of non-empty types, also called colour sets.
(ii) P is a finite set of places.
(iii) T is a finite set of transitions.
(iv) A is a finite set of arcs such that:

• P  ∩  T = P ∩  A = T ∩  A = Ø.
(v) N is a node function. It is defined from A into P × T ∪ T × P.
(vi) C is a colour function. It is defined from P into Σ.
(vii) G is a guard function. It is defined from T into expressions such that:

• ∀ t ∈ T: [Type(G(t)) = B  ∧   Type(Var(G(t))) ⊆  Σ].
(viii) E is an arc expression function. It is defined from A into expressions

such that:
• ∀ a ∈ A: [Type(E(a)) = C(p)MS  ∧   Type(Var(E(a))) ⊆  Σ]
where p is the place of N(a).

(ix) I is an initialisation function. It is defined from P into closed expres-
sions such that:
• ∀ p ∈ P: [Type(I(p)) = C(p)MS].

(i) The set of types determines the data values and the operations and func-
tions that can be used in the net expressions (i.e., arc expressions, guards and
initialisation expressions). If desired, the types (and the corresponding operations
and functions) can be defined by means of a many-sorted sigma algebra (as in the
theory of abstract data types). We assume that each type has at least one element.

(ii) + (iii) + (iv) The places, transitions and arcs are described by three
sets P, T and A which are required to be finite and pairwise disjoint. By requir-
ing the sets of places, transitions and arcs to be finite, we avoid a number of
technical problems such as the possibility of having an infinite number of arcs
between two nodes.

(v) The node function maps each arc into a pair where the first element is the
source node and the second the destination node. The two nodes have to be of
different kind (i.e., one must be a place while the other is a transition). We allow
a CP-net to have several arcs between the same ordered pair of nodes (and thus
we define A as a separate set and not as a subset of P × T ∪ T × P). Multiple arcs is
a modelling convenience. For theory, they do not add or change anything.

(vi) The colour function C maps each place, p, to a type C(p). Intuitively,
this means that each token on p must have a data value that belongs to C(p).



16

(vii) The guard function G maps each transition, t, into a boolean expression
where all variables have types that belong to Σ. When we draw a CP-net we omit
guard expressions which always evaluate to true.

(viii) The arc expression function E maps each arc, a, into an expression of
type C(p)MS. This means that each arc expression must evaluate to multi-sets
over the type of the adjacent place, p. We allow a CPN diagram to have an arc
expression expr of type C(p), and consider this to be a shorthand for 1`(expr).

(ix) The initialisation function I maps each place, p, into a closed expres-
sion which must be of type C(p)MS. When we draw a CP-net we omit initialisa-
tion expressions which evaluate to Ø.

The “modern version” of CP-nets (presented in this paper) uses the expression
representation (defined above) not only when a system is being described, but
also when it is being analysed. It is only during invariant analysis that it may be
adequate/necessary to translate the expression representation into a function rep-
resentation.

Having defined the structure of CP-nets, we are now ready to consider their
behaviour – but first we introduce the following notation for all t ∈ T and for all
pairs of nodes (x1,x2) ∈ (P × T ∪ T × P):

• A(t) = {a ∈ A   N(a) ∈ P × {t} ∪ {t} × P}.

• Var(t) = {v   v ∈ Var(G(t)) ∨  ∃ a ∈ A(t): v ∈ Var(E(a))}.

• A(x1,x2) = {a ∈ A   N(a) = (x1,x2)}.

• E(x1,x2) = ∑
a ∈ A(x1,x2)

 E(a).

The summation indicates addition of expressions (and it is well-defined because
all the participating expressions have a common multi-set type). From the argu-
ment(s) it will always be clear whether we deal with the function E ∈ [A → Expr]
or the function E ∈ [(P × T ∪ T × P) →  Expr]. A similar remark applies to A, A(t)
and A(x1,x2). Notice that A(x1,x2) = Ø implies that E(x1,x2) = Ø (where the
latter Ø denotes the closed expression which evaluates to the empty multi-set).

Next we define bindings. It should be noted that (ii) implies that all bindings
satisfy the corresponding guard. As defined below Def. 3.2, G(t)<b> denotes the
evaluation of the guard expression G(t) in the binding b:

Definition 3.4:  A binding  of a transition t is a function b defined on
Var(t), such that:

(i) ∀ v ∈ Var(t): b(v) ∈ Type(v).
(ii) G(t)<b>.

By B(t) we denote the set of all bindings for t.

As shown in Sect. 1 we often write bindings in the form <v1=c1,v2=c2,…,vn=cn>
where Var(t) = {v1,v2,…,vn}. The order of the variables has no importance.



17

Definition 3.5:  A token element is a pair (p,c) where p ∈ P and c ∈ C(p),
while a binding element is a pair (t,b) where t ∈ T and b ∈ B(t). The set of all
token elements is denoted by TE while the set of all binding elements is denoted
by BE.

A marking is a multi-set over TE while a step is a non-empty and finite
multi-set over BE. The initial marking M0 is the marking which is obtained
by evaluating the intitialisation expressions:

∀ (p,c) ∈ TE: M0(p,c) = (I(p))(c).

The sets of all markings and steps are denoted by M and Y, respectively.

Each marking M ∈ TEMS determines a unique function M* defined on P such that
M*(p) ∈ C(p)MS:

∀ p ∈ P ∀ c ∈ C(p): (M*(p))(c) = M(p,c).

On the other hand, each function M*, defined on P such that M*(p) ∈ C(p)MS for
all p ∈ P, determines a unique marking M:

∀ (p,c) ∈ TE: M(p,c) = (M*(p))(c).

Thus we shall often represent markings as functions defined on P (and we shall
use the same name for the function and the multi-set representation of a mark-
ing).

Now we are ready to give the formal definition of enabling and occurrence
(in which we represent steps by multi-sets while we represent markings by func-
tions). Some explanations follow below.

Definition 3.6:  A step Y is enabled in a marking M iff the following prop-
erty is satisfied:

∀ p ∈ P: ∑
(t,b) ∈ Y

  E(p,t)<b>  ≤    M(p).

We then say that (t,b) is enabled and we also say that t is enabled. The elements
of Y are concurrently enabled (when  Y  ≥ 1).

When a step Y is enabled in a marking M1 it may occur, changing the marking
M1 to another marking M2, defined by:

∀ p ∈ P: M2(p) = (M1(p) – ∑
(t,b) ∈ Y

  E(p,t)<b>) + ∑
(t,b) ∈ Y

  E(t,p)<b>.

M2 is directly reachable from M1. This is written: M1 [Y› M2.

The expression evaluation E(p,t)<b> gives us the tokens, which are removed
from p when t occurs with the binding b. By taking the sum over all binding el-
ements (t,b) ∈ Y we get all the tokens that are removed from p when Y occurs.
This multi-set is required to be less than or equal to the marking of p. It means
that each binding element (t,b) ∈ Y must be able to get the tokens specified by
E(p,t)<b>, without having to share these tokens with other binding elements of



18

Y. It should be remembered that all bindings of a step, according to Def. 3.4,
automatically satisfy the corresponding guards. Moreover, it should be noted that
the summations in Def. 3.6 are summations over a multi-set Y. When a binding
element appears more than once in Y, we get a contribution for each appearance.

The occurrence of a step is an indivisible event. Although the formula above
requires the subtraction to be performed before the addition we do not recognise
the existence of an intermediate marking, where the tokens in the first sum have
been removed while those in the second have not yet been added. It should also
be noted that a step does not need to be maximal. When a number of binding el-
ements are concurrently enabled, it is possible to have an occurring step which
only contains some of them.

Definition 3.7:  A finite occurrence sequence is a sequence of markings
and steps:

M1 [Y1› M2 [Y2› M3 … Mn [Yn› Mn+1

such that n ∈ N , and  Mi [Yi›  M i+1  for all i ∈ {1,2,… ,n} M1 is the start
marking, Mn+1 is the end marking and n is the length.

Analogously, an infinite occurrence sequence is a sequence of markings
and steps:

M1 [Y1› M2 [Y2› M3 …

such that  Mi [Yi› Mi+1  for all i ≥1.

A marking M" is reachable from a marking M' iff there exists a finite occur-
rence sequence starting in M' and ending in M". The set of markings which are
reachable from M' is denoted by [M'›. A marking is reachable iff it belongs
to [M0›.

We allow occurrence sequences of length zero. This means that M ∈ [M› for all
markings M. Often we omit some parts of an occurrence sequence, e.g., all the
intermediate markings. In particular, we use:

M  [t ,b›         and        M [  t  ›
to denote that the binding element (t,b) and the transition t is enabled in the
marking M.

4  Dynamic Properties of CP-nets  
Dynamic properties characterise the behaviour of individual CP-nets, e.g.,
whether it is possible to reach a marking in which no step is enabled. It is often
rather difficult to verify dynamic properties – in particular when relying only on
informal arguments. However, in Sects. 6 and 7 we shall introduce a number of
formal analysis methods which can be used to prove dynamic properties. In this
paper we only introduce some of the most important dynamic properties.



19

A much more complete set of dynamic properties can be found in Chap. 4 of
[27].

Boundedness properties tell us how many tokens we may have at a par-
ticular place:

Definition  4.1:   Let a place p ∈ P, a non-negative integer n ∈ N  and a
multi-set m ∈ C(p)MS be given.
(i) n is an integer bound for p iff:

∀ M ∈ [M0›:  M(p)  ≤ n.

(ii) m is a multi-set bound for p iff:
∀ M ∈ [M0›: M(p) ≤ m.

For the data base system (with n managers) we have the following bounds. All of
them are optimal, i.e., the smallest possible bounds:

Multi-set Integer

Inactive DBM n

Waiting DBM 1

Performing DBM n – 1

Unused MES n2 – n

Sent, Received, Acknowledged MES n – 1

Passive, Active E 1

Notice that multi-set bounds and integer bounds supplement each other. From
one of them it is often possible to deduce information which cannot be deduced
from the other, and vice versa. This is, e.g., the case for the places Waiting and
Inactive. For Waiting the integer bound gives us much more precise information
than the multi-set bound. For Inactive it is the other way round.

Home properties tell us about markings (or sets of markings) to which it is
always possible to return:

Definition  4.2:  Let a marking M ∈ M  and a set of markings X ⊆  M  be
given:
(i) M is a home marking iff:

∀ M' ∈ [M0›: M ∈ [M'›.

(ii) X is a home space iff:
∀ M' ∈ [M0›: X ∩ [M'› ≠ Ø.

It is easy to see that M  is a home marking iff {M} is a home space. Notice that
the existence of a home marking tells us that it is possible to reach the home
marking. However, it is not guaranteed that we ever do this. In other words,
there may exist infinite occurrence sequences which do not contain the home
marking. A similar remark applies to home spaces.



20

For the data base system it can be shown that the initial marking is a home
marking. From this it follows that any reachable marking is a home marking.

Liveness properties tell us that a set of binding elements X remains active.
This means that it is possible, for each reachable marking M', to find an occur-
rence sequence starting in M' and containing an element from X.

Definition 4.3:  Let a marking M ∈ M and a set of binding elements X ⊆  BE
be given.

(i) M is dead iff no binding element is enabled, i.e., iff:
∀ x ∈ BE: ¬  M[x›.

(ii) X is dead in M iff no element of X can become enabled, i.e., iff:
∀ M' ∈ [M› ∀ x ∈ X: ¬  M' [x›.

(iii) X is live iff there is no reachable marking in which X is dead, i.e., iff:
∀ M' ∈ [M0› ∃ M" ∈ [M'› ∃ x ∈ X: M"[x›.

Liveness only demands that elements of X can become enabled. Thus there may
be infinite occurrence sequences starting in M' and containing no elements of X.
It should be noted that live is not the negation of dead. Each live set of binding
elements is non-dead – but the opposite is not true. For a transition t ∈ T, we use
BE(t) ⊆  BE to denote the set of all those binding elements which contain t. We
say that t is dead or live iff BE(t) possesses the corresponding property. We also
say that t is strictly live iff {x} is live for all x ∈ BE(t).

For the data base system, we have that all four transitions are strictly live.
This can be verified by proving that the initial marking M0 is a home marking
and that there exists an occurrence sequence which starts in M0 and contains all
binding elements of BE.

Fairness properties tell us how often the different binding elements occur.
For a set of binding elements X ⊆  BE and an infinite occurrence sequence σ of
the form:

σ = M1 [Y1› M2 [Y2› M3 …

we use ENX,i(σ) to denote the number of elements from X which are enabled in
the marking Mi (when an element is concurrently enabled with itself this is re-
flected in the count). Analogously, we use OCX,i(σ) to denote the number of ele-
ments from X which occur in the step Yi (when an element occurs concurrently
with itself this is reflected in the count).

We use ENX(σ) and OCX(σ) to denote the total number of enablings/ occur-
rences in σ, i.e.:

ENX(σ) =  ∑
i=1

∞
  E N X,i(σ )        and       OCX (σ )  =   ∑

i=1

∞
 OCX,i(σ). 

Since all elements in the two sums are non-negative integers, it is easy to see that
the sums must be convergent – either to an element of N or to ∞.



21

Definition 4.4:  Let X ⊆  BE be a set of binding elements and σ be an infi-
nite occurrence sequence.

(i) X is impartial for σ iff it has infinitely many occurrences, i.e., iff:
OCX(σ) = ∞.

(ii) X is fair for σ iff an infinite number of enablings implies an infinite
number of occurrences, i.e., iff:
EN X(σ) = ∞   ⇒    OCX(σ) = ∞.

(iii) X is just for σ iff a persistent enabling implies an occurrence, i.e., iff:
∀ i≥  1: [ENX,i(σ) ≠ 0  ⇒   ∃ k ≥  i: [ENX,k(σ) = 0 ∨  OCX,k(σ) ≠ 0]].

When X is impartial for all infinite occurrence sequences of the given CP-net
(starting in a reachable marking), we say that X is impartial. Analogous defini-
tions are made for fair and just.

We say that a transition t ∈ T is impartial, fair or just iff BE(t) possesses the cor-
responding property. We also say that t is strictly impartial (strictly fair /
strictly just) iff {x} is impartial (fair / just) for all x ∈ BE(t). It is reasonably
easy to prove that impartiality implies fairness, which in turn implies justice.

For the data base system, we have that all four transitions are impartial. SM is
strictly just, while the other three transitions are strictly fair.

5  Simulation  
Simulation of CP-nets can be supported by a computer tool or it can be totally
manual, for example, performed on a blackboard or in the head of a modeller.
Simulation is similar to the debugging of a program, in the sense that it can re-
veal errors, but never be sufficient to give a full proof for the correctness of a
system. Some people argue that this makes simulation uninteresting and that the
modeller should concentrate on the more formal analysis methods presented in
Sects. 6 and 7. We do not agree with this conclusion. On the contrary, we con-
sider simulation to be just as important and necessary as the formal analysis
methods.

In our opinion, all users of CP-nets (and other kinds of Petri nets) are forced
to make simulations – because it is impossible to construct a CP-net without
thinking about the possible effects of the individual transitions. Thus the proper
question is not whether the modeller should make simulations or not, but
whether he wants computer support for the simulation activity. With this
rephrasing the answer becomes trivial. Of course, we want computer support.
This means that the simulations can be done much faster and with no errors.
Moreover, it means that the modeller can use all his mental capabilities to inter-
pret the simulation results – instead of using most of his efforts to calculate the
possible occurrence sequences. Simulation is often used in the design phases and
during the early investigation of a system design, while the more formal analysis
methods are used for validation.



22

The CPN simulator described in [13] represents the ongoing simulation di-
rectly on the CPN diagram – by high-lighting the enabled and occurring transi-
tions and by showing how the markings of the individual places change. In an in-
teractive simulation the steps are chosen by the user. This is done under strict
supervision and guidance by the CPN simulator, which, e.g., checks the legality
and the enabling of all the proposed binding elements. In an automatic simula-
tion the steps are chosen by the CPN simulator. This is done by means of a ran-
dom number generator. In both cases it is the CPN simulator that performs the
really complex work: the calculation of the enablings and the calculation of the
effects of the occurring steps.

It is possible to vary the amount of graphical feedback which is provided by
the CPN simulator. In the most detailed mode the user watches all the occurring
transitions. He sees the input tokens, the output tokens, and the current marking.
There is a trade-off between information and speed. With the most detailed feed-
back it is impossible to execute and observe more than a few steps per minute.
With less feedback, the speed can be increased by a factor 100 –1000.

The CPN simulator is designed to work with complex CP-nets. Some indus-
trial applications use CPN models with more than 500 transitions. Fortunately, it
turns out that a large CP-net simulates almost as fast as a small CP-net (when
speed is measured in terms of the number of occurring binding elements). The
reason for this is the locality of the enabling and occurrence rule. When a transi-
tion has occurred, it is only necessary to recalculate the enabling of the nearest
neighbours (and the number of these are often independent of the size of the
model). The calculation of the new enabling is the most expensive part of the
simulation. Without local rules for enabling and occurrence, the calculation
would grow linearly with the model size and that would make it very cumber-
some to simulate large systems.

Above, we have only mentioned a small fraction of the facilities in the CPN
simulator. More thorough descriptions can be found in [13] and in [27].

6  Occurrence Graphs  
In this section we deal with occurrence graphs (which are also called reachability
graphs or state spaces). The basic idea behind occurrence graphs is to construct a
graph with a node for each reachable marking and an arc for each occurring
binding element. Obviously such a graph may become very large, even for small
CP-nets. Fig. 2 shows the occurrence graph for the data base system with 3 man-
agers.

Each node represents a reachable marking. To save space (in our drawing) we
represent the marking by listing those managers which have a message addressed
to them – on Sent, Received or Acknowledged, respectively. This means that
(2,3,–) denotes a marking in which d1 is Waiting, while d2 is Inactive and d3

Performing. Analogously (23,–,–) denotes a marking in which d1 is Waiting,
while d2 and d3 are Inactive. The initial marking is represented by (–,–,–). This



23

node is drawn twice – to avoid long arcs. The second copy has a dashed border
line.

23,–,–

2,3,–

3,2,–

–,23,–

2,–,3

3,–,2

–,2,3

–,3,2

–,–,23

–,–,– 13,–,–

1,3,–

3,1,–

–,13,–

1,–,3

3,–,1

–,1,3

–,3,1

–,–,13

12,–,–

1,2,–

2,1,–

–,12,–

1,–,2

2,–,1

–,1,2

–,2,1

–,–,12

–,–,–

RM,1,3

SA,1,3
RM,1,2

SA,1,2RM,1,2
SA,1,3

RM,1,2

SA,1,2
RM,1,3

SA,1,2
RM,1,3 SA,1,3

SM,1

RM,2,3

SA,2,3
RM,2,1

SA,2,1RM,2,1
SA,2,3

RM,2,1

SA,2,1
RM,2,3

SA,2,1
RM,2,3 SA,2,3

SM,2

RM,3,2

SA,3,2
RM,3,1

SA,3,1RM,3,1
SA,3,2

RM,3,1

SA,3,1
RM,3,2

SA,3,1
RM,3,2 SA,3,2

SM,3

RA,1

RA,2

RA,3

Fig. 2.  Occurrence graph for data base system with 3 managers

Each arc represents an occurrence M1 [b› M2 where M1 and M2 are reachable
markings while b is a binding element enabled in M1. We write  SM, i  and
RM, i, k  instead of (SM, <s = di>) and (RM, <s = di, r = dk>), and analogously for
SA and RA.

Definition 6.1:  A directed graph is a tuple DG = (V, A, N) such that:

(i) V is a set of nodes (or vertices).
(ii) A is a set of arcs (or edges) such that:

• V ∩  A = Ø.
(iii) N is a node function. It is defined from A into V × V.

DG is finite iff V and A are finite.



24

It should be noted that, in contrast to classical graph theory, we allow a directed
graph to have several arcs between the same ordered pair of nodes (and thus we
define A as a separate set and not as a subset of V × V).

An arc a with N(a) = (v1,v2) is said to go from the source node v1 to the
destination node v2, and we define two functions s, d ∈ [A →  V]. The first func-
tion maps each arc into its source node, while the second maps each arc into its
destination node.

Definition 6.2:  The full occurrence graph of a CP-net, also called the
O-graph, is the directed graph OG = (V, A, N) where:

(i) V = [M0›.
(ii) A = {(M1,b,M2) ∈ V × BE × V   M1 [b› M2}.
(iii) ∀ a=(M1,b,M2) ∈ A: N(a) = (M1,M2).

When we have a CP-net where all variables (in the arc expressions and guards)
have finite types, it is straightforward to prove that the O-graph is finite iff all
places are bounded. Notice that an occurrence graph only contains arcs that cor-
respond to steps with a single binding element. Otherwise, we would have had,
e.g., an arc from node (23,–,–) to node (–,23,–), with the inscription
1`(RM, 1, 2) + 1`(RM, 1, 3). Such arcs would give us information about the con-
currency between binding elements, but they are not necessary for the verifica-
tion of the kind of dynamic properties defined in Sect. 4.

When we draw O-graphs, like the one in Fig. 2, we usually inscribe each node
with a text string describing the marking which the node represents. To save
space, we sometimes use a condensed representation of the marking.
Analogously, we inscribe each arc with the binding element which it represents.
For an arc (M1,b,M2), it would be redundant to include the two markings M1 and
M2 in the arc inscription – because these two markings are already described via
the node inscriptions of the source node and the destination node.

Below we give an abstract algorithm to construct the O-graph. W is a set of
nodes. It contains those nodes for which we have not yet found the successors,
i.e., the nodes that wait to be processed. Node(M) is a procedure which creates a
new node M, and adds M to W. If M is already a node, the procedure has no ef-
fect. Analogously, Arc(M1,b,M2) is a procedure which creates a new arc
(M1,b,M2) with source M1 and destination M2. If (M1,b,M2) is already an arc, the
procedure has no effect (this never happens for O-graphs but it may happen for
OE-graphs and OS-graphs which we introduce later in this section). For a
marking M1 ∈ M we use Next(M1) to denote the set of all possible “next moves”:

Next(M1) = {(b,M2) ∈ BE × M   M1 [b› M2}.



25

Proposition 6.3:  The following algorithm constructs the O-graph. The al-
gorithm halts iff the O-graph is finite. Otherwise the algorithm continues for-
ever, producing a larger and larger subgraph of the O-graph.

W := Ø
Node(M0)
repeat

select a node  M1 ∈ W
for all  (b,M2) ∈ Next(M1)  do
begin

Node(M2)
Arc(M1,b,M2)

end
remove M1 from W

until    W = Ø.

Proof:  Straightforward consequence of Def. 6.2.  

When the O-graph is infinite or too big to be constructed, by the available com-
puting power, it may still be very useful to construct a partial O-graph, i.e., a
subgraph of the O-graph. A discussion of this can be found in [28].

We define finite directed paths and strongly connected components in the
usual way (a strongly connected component is a subgraph in which there exists a
directed path from any node to any node). The detailed definitions can be found
in Chap. 1 of [28] and in most text books on graph theory.

We use SCC to denote the set of all strongly connected components (of a
given directed graph), and we use v 

c to denote the strongly connected component
to which a node v belongs. A similar notation is used for arcs.

Definition 6.4:  The directed graph DG* = (V*, A*, N*) is the SCC-graph
of a directed graph DG = (V, A, N) iff the following properties are satisfied:

(i) V* = SCC.
(ii) A* = {a ∈ A   s(a) 

c ≠ d(a) 
c}.

(iii) ∀ a ∈ A*: N*(a) = (s(a) 
c, d(a) 

c).

The SCC-graph contains a node for each strongly connected component of DG.
The SCC-graph contains those arcs (among the arcs of DG) which connect two
different strongly connected components. Intuitively, we can obtain the
SCC-graph by folding the original graph. We position all nodes of each strongly
connected component "on top of each other" and we lump them into a single
node which has all the arcs of the original nodes – with exception of those arcs
which start and end in the same component.

For CP-nets with a cyclic behaviour, we often have O-graphs with a single
strongly connected component, and hence the SCC-graph has a single node and
no arcs. This is the case for the data base system.



26

By means of the occurrence graph in Fig. 2 (and the corresponding
SCC-graph) it is possible to investigate the dynamic properties of the data base
system. This is done by using a set of propositions, called proof rules. The
proof rules relate properties of the occurrence graph and the SCC-graph to dy-
namic properties of the CP-net. In Prop. 6.5 we use SCCT to denote those nodes
of the SCC-graph which have no outgoing arcs. We use (t,b) ∈ A to denote that a
binding element (t,b) can be found on one of the arcs of the O-graph.

Proposition 6.5:  For O-graphs we have the following proof rules which
are valid for all p ∈ P and all t ∈ T:

(i) Best Integer Bound (p) = max{ M(p)    M ∈ V}.
(ii) Best Multi-set Bound (p) = ∑

c ∈ C(p)

 max{M(p,c)   M ∈ V} `c.

(iii)  SCC   = 1  ⇒   M0 is a home marking.
(iv)  SCC   = 1 ∧  ∀ b ∈  B(t): (t,b) ∈ A  ⇒   t is strictly live.

The proof rules in Prop 6.5 are specialisations of rules given in Chap. 1 of [28]
(which also contains a large number of other proof rules, e.g., for the fairness
properties). The proofs of the proof rules are rather straightforward. They can
be found in [28].

It is easy to see that the proof rules in Prop. 6.5 allow us to verify the bound-
edness, home and liveness properties which we have postulated for the data base
system in Sect. 4. To use (i) and (ii) in Prop. 6.5, it is convenient to expand the
condensed marking representation used in Fig. 2, so that we can see the marking
of those places p we are interested in. In [28] it is shown how to verify fairness
properties by means of occurrence graphs.

Even for a small occurrence graph, like the one in Fig. 2, the construction
and investigation are tedious and error-prone. In practice it is not unusual to
handle CP-nets which have occurrence graphs containing more than 100,000
nodes (and many CP-nets have millions of markings). Thus it is obvious that we
have to construct and investigate the occurrence graphs by means of a computer.
A detailed description of an occurrence graph tool can be found in [14], [27] and
[28]. We also want to develop techniques by which we can construct reduced oc-
currence graphs without losing too much information. Below we sketch one way
to obtain such a reduction. All the formal details can be found in [28].

Many systems contain some kind of symmetry. In the data base system we
treat all managers in a similar way. Hence we may interchange them – without
modifying the behaviour of the system. As an example, there is a lot of similari-
ties between the markings (1,–,3) and (2,–,3). They are symmetrical, in the sense
that one of them can be obtained from the other by interchanging d1 with d2 in
all tokens, i.e., by means of a permutation of DBM.

We use ΦDBM to denote all permutations of DBM. We say that φ ∈ ΦDBM is a
symmetry and that it maps the marking M into a symmetrical marking φ(M),
which we obtain from M by replacing each d ∈ DBM by φ(d). We also say that M
and φ(M) are equivalent and write M ≈M φ(M). ΦDBM is an algebraic group
(with functional composition as the law of composition and identity function as



27

neutral element). This implies that ≈M becomes an equivalence relation. Similar
notation and terminology are used for binding elements and for multi-sets of to-
ken values. All the arc expressions of the data base system satisfy the following
property for all φ ∈ ΦDBM and all b ∈ B(t) where t is the transition of the arc a:

(*) E(a)<φ(b)> = φ(E(a)<b>).

Intuitively, this means that symmetrical bindings have symmetrical effects. We
can obtain the tokens used for the binding φ(b) by applying φ to the tokens used
for b. Property (*) is local and static. It can be determined from the individual
transitions without considering the set of all reachable markings. From (*) we can
prove the following dynamic property which is satisfied for all markings
M', M" ∈ [M0›, all binding elements b ∈ BE and all φ ∈ ΦDBM:

(**) M' [b› M" ⇔  φ(M') [φ(b)› φ(M").

Intuitively, this means that symmetrical markings have symmetrical enabled
binding elements which will lead to symmetrical successor markings. When (**)
is satisfied, it makes sense to construct occurrence graphs where we only have a
node for each equivalence class of markings and an arc for each equivalence class
of occurring binding elements. Such a graph is called an occurrence graph
with symmetries (or an OS-graph). The OS-graph for the data base system
with three managers is shown in Fig. 3. As usual we have represented each
equivalence class by means of one of its members.

An OS-graph is often much smaller than the corresponding O-graph. For the
data base system the O-graph grows with exponential speed while the OS-graph
only grows quadratic (the detailed calculations can be found in [28]). Fig. 4 illus-
trates the space complexity of O-graphs and OS-graphs. However, it is equally
important how much time it takes to generate the two kinds of occurrence
graphs. The time complexity of the O-graph construction is of order O(n2

 * 3n),
while the time complexity of the OS-graph construction is of order O(n3).

23,–,–

3,2,–

3,–,2

–,23,–

–,3,2

–,–,23

–,–,–

RM,1,2
RM,1,3

SA,1,2
SA,1,3

SA,1,2
RM,1,3

SM,1 RA,1

Fig. 3.  OS-graph for data base system with 3 managers

Although OS-graphs are often much smaller than the corresponding
O-graphs, they are – to a very large degree – as powerful with respect to the
verification of dynamic properties. The proof rules in Prop. 6.6 are closely re-
lated to those in Prop. 6.5. We use * to denote multiplication of the multi-set
DBM by an integer. As before, we use (t,b) ∈ A to denote that a binding element



28

(t,b) can be found on one of the arcs of the graph. However, it should be noticed
that each arc now represents an equivalence classes of binding elements. By
(t,b) ∈ A we demand (t,b) to belong to one of these equivalence classes.

Proposition 6.6:  For OS-graphs we have the following proof rules which
are valid for all p ∈ P and all t ∈ T:

(i) Best Integer Bound (p) = max{ M(p)    M ∈ V}.
(ii) Best Multi-set Bound (p) = max{M(p,c)   M ∈ V ∧  c ∈ C(p)}  * C(p).
(iii)  SCC   = 1  ⇒   M0 is a home marking.
(iv)  SCC   = 1 ∧  ∀ b ∈  B(t): (t,b) ∈ A  ⇒   t is strictly live.

Rule (ii) is only valid when all the values of type C(p) can be mapped into each
other by means of the allowed set of permutations. Otherwise we get a slightly
more complex rule, because we have to make a separate investigation for each
equivalence class of C(p).

O-graph OS-graph

 DBM Nodes  Arcs Nodes  Arcs

O(n) O(n * 3n) O(n2
 * 3n) O(n2) O(n2)

2 7 8 4 4
3 28 42 7 8
4 109 224 11 14
5 406 1,090 16 22
6 1,459 4,872 22 32
7 5,104 20,426 29 44
8 17,497 81,664 37 58
9 59,050 314,946 46 74
10 196,831 1,181,000 56 92
15 71,744,536 669,615,690 121 212
20 23,245,229,341 294,439,571,680 211 382

Fig. 4.  The size of the O-graphs and OS-graphs for the data base system

Above, we have sketched the main ideas behind OS-graphs. All the formal
definitions can be found in [28]. In general, we allow the use of subgroups of
permutations (e.g., all rotations) and we also allow cartesian products to be sup-
plemented by other structuring mechanisms, e.g., lists, records and discrete
unions.

Permutations is only one way to obtain symmetries. In general, it is not neces-
sary to impose any restrictions on the way in which a symmetry maps markings
into markings and binding elements into binding elements – as long as we satisfy
the consistency requirement in (**). It is also possible to start directly with
equivalence relations for markings and binding elements (and replace (**) by a
weaker consistency requirement). Then we obtain occurrence graphs with
equivalence classes (also called OE-graphs). OE-graphs can be used for a
wide variety of purposes – because they allow many different kinds of equiva-
lence relations to be used. The theory of OE-graphs and OS-graphs (with general
symmetries) can be found in [28].



29

The original ideas behind occurrence graphs with symmetries were developed
in [21]. Similar reduction methods are described in [6], [7], [10] and [15]. The
first two of these papers deal with a subclass of CP-nets, called Well-Formed
CP-nets, while the last two deal with more general transition systems.

There are several other ways to reduce occurrence graphs. Stubborn sets
discard some of the many orderings in which concurrent binding elements may
occur (see [45] and [46]). Covering markings take care of the situation in
which some places become unbounded (see [16] and [31]). It is widely believed
that it is possible to combine the use of symmetries, stubborn sets and covering
markings (see [21] and [39]). Intuitively, this is rather obvious. However, the
mathematics behind the combined methods become rather hairy.

Analysis by means of occurrence graphs has several attractive properties.
First of all, it is extremely easy to use occurrence graphs. The construction and
the analysis (of standard properties) can be fully automated. This means that the
modeller does not need any knowledge of the underlying mathematics. As an ex-
ample, it is not necessary to know how it is checked whether two markings are
symmetrical or not, or how the different proof rules work. Secondly, the occur-
rence graph contains all details about the behaviour of the CP-net – since it rep-
resents all possible occurrence sequences. Hence, it is possible to investigate all
kinds of dynamic properties by means of occurrence graphs (with the exception
of those properties which deal with concurrency). The main drawback of occur-
rence graph analysis is the fact that the occurrence graphs become very large.
Even a small CP-net may have an occurrence graph which is intractable. The use
of symmetries (and other reduction methods) improves the situation, but it does
not remove the problem. With our present knowledge (and technology) we can-
not hope to verify large systems by means of  occurrence graphs. However, we
can use occurrence graphs on selected subnets. This is a very effective way to
find errors. A small mistake will often imply that we do not get, e.g., an ex-
pected marking bound or an expected home marking. It is also possible to inves-
tigate more complex CP-nets – by means of partial occurrence graphs, where we
only develop, e.g., a fixed number of outgoing arcs for each node. Such a
method will very often catch errors – although it cannot count as a full proof of
the desired system properties. A partial occurrence graph corresponds to making
a large number of simulation runs – the graph represents the results in a sys-
tematic way.

One problem with occurrence graphs is the fact that it is necessary to fix all
system parameters (e.g., the number of managers in the data base system) before
an occurrence graph can be constructed. This means that we always find proper-
ties which are specific to the chosen values of the system parameters. In practice
the problem isn’t that big. When we understand how a data base system behaves
for a few managers, we also know a lot about how it behaves when there are
more managers. This is of course only true when we talk about the logical cor-
rectness of a system, and not when we speak about the performance.



30

7  Place Invariants  
The basic idea behind place invariants is to construct equations which are satis-
fied for all reachable markings. In the data base system we expect each manager
to be either Inactive, Waiting or Performing. This is expressed by the following
equation satisfied for all reachable markings M:

M(Inactive) + M(Waiting) + M(Performing) = DBM.

Analogously, we expect each message to be either Unused, Sent, Received or
Acknowledged and we expect the system to be either Active or Passive:

M(Unused) + M(Sent) + M(Received) + M(Acknowledged) = MES

M(Active) + M(Passive) = 1`e.

These three equations are examples of place invariants. Each of them states that a
certain set of places has – together – an invariant multi-set of tokens, i.e., a
multi-set of tokens which is the same for all reachable markings.

It is possible to modify the tokens of some of the involved places, before we
make the multi-set addition. This is illustrated by the following place invariant,
where we use the function Rec to map each message (s,r) into the receiver r:

M(Inactive)  + M(Waiting) + Rec(M(Received)) = DBM.

Without the function Rec it would have been impossible to add the three
multi-sets – because two of them are over DBM while the last one is over MES.
Each of the above equations can be written on the form:

Wp1(M(p1)) + Wp2(M(p2)) + … + Wpn(M(pn))  = minv

where {p1, p2, …, pn} ⊆  P. Each weight Wp is a function mapping from the
type of p into some common type A ∈ Σ shared by all weights. Finally minv is a
multi-set. It can be determined by evaluating the left-hand side of the equation in
the initial marking (or in any other reachable marking).

As illustrated by the following invariant there are situations in which we want
some of the weights to be negative:

M(Performing) – Rec(M(Received)) = Ø.

There are also situations in which we want weights that map each token of p into
several elements of type A – instead of just one. This is illustrated by the follow-
ing invariant where the function Mes maps each data base manager into n – 1 to-
kens of type MES:

M(Sent) + M(Received) + M(Acknowledged) – Mes( M(Waiting)) = Ø.

To capture the two extensions of weights, described above, we introduce
weighted sets. A weighted set is defined in exactly the same way as a multi-set
– except that we replace N by Z, i.e., allow coefficients to be negative. The op-
erations on weighted sets are similar to the operations on multi-sets. For
weighted sets it is always possible to perform subtraction and we can make
scalar-multiplication with negative integers. However, it no longer makes sense



31

to talk about the size (because the sum of the coefficients may be divergent). The
set of all weighted sets over A is denoted by AWS. A formal definition of
weighted sets and their operations can be found in [28]. It is a straightforward
modification of Defs. 3.1 and 3.2.

Having introduced weighted sets, we demand each place p ∈ P to have a weight
Wp ∈ [C(p) →  AWS]. To apply Wp to a weighted set m ∈ C(p)WS (or a multi-set
m ∈ C(p)MS), we apply Wp to each individual element. This gives us an extended
function Wp ∈ [C(p)WS → AWS] defined by:

Wp(m) = ∑
c ∈ C(p)

 m(c) * Wp(c).

It is easy to show that Wp is linear, i.e., that it satisfies:

Wp(m1 + m2) = Wp(m1) + Wp(m2)

for all weighted-sets m1, m2 ∈ C(p)WS. Hence we say that Wp is the linear exten-
sion of Wp. It can be proved that there is a one-to-one correspondence between
[C(p) → AWS] and the linear functions in [C(p)WS → AWS]. Hence, we do not need
to distinguish between Wp and Wp.

The intuition behind an invariant is the following. For each marking M, we
use a set of weights W = {Wp}p∈ P to calculate a weighted set called a weighted
sum:

W(M) = ∑
p ∈ P

  Wp(M(p)).

The weighted sum is demanded to be independent of the marking, and hence we
have W(M) = W(M0) for all M ∈ [M0›. It is usually the case that many of the
weights are zero functions, i.e., map each weighted-set into Ø.

How do we check that a set of weights really determines an invariant? Unless
the system is trivial, we do not want to calculate W(M) for all reachable mark-
ings. Hence we introduce place flows. A set of weights W = {Wp}p ∈ P is a
place flow iff the following property is satisfied for all (t,b) ∈ BE:

∑
p ∈ P

  Wp(E(p,t)<b>) = ∑
p ∈ P

  Wp(E(t,p)<b>).

The intuition behind a place flow is to check that each binding element (t,b) re-
moves – when the weights are taken into account – a set of tokens that is identical
to the set of tokens which is added. For each occurring step M1 [t,b› M2 we then
have that the weighted sum W(M2) becomes identical to the weighted sum
W(M1), because the removed tokens are counterbalanced by the added tokens.



32

Definition 7.1:  Let A ∈ Σ be a type and let W = {Wp}p∈ P be a set of linear
functions such that Wp ∈ [C(p)WS → AWS] for all p ∈ P.

(i) W is a place flow iff:

∀ (t,b) ∈ BE:  ∑
p ∈ P

  Wp(E(p,t)<b>) =  ∑
p ∈ P

  Wp(E(t,p)<b>).

(ii) W determines a place invariant iff:

∀ M ∈ [M0›:  ∑
p ∈ P

  Wp(M(p)) =  ∑
p ∈ P

  Wp(M0(p)).

The following theorem is the heart of invariant analysis. It tells us that the static
property in Def. 7.1 (i) is sufficient and necessary to guarantee the dynamic
property in Def. 7.1 (ii).

Theorem 7.2:  W is a place flow ⇔  W determines a place invariant.

⇒  is satisfied for all CP-nets.
⇐  is only satisfied when the CP-net does not have dead binding elements.

Proof:  Assume that W is a place flow. We first prove that M1 [Y› M2 implies
W(M1) = W(M2). From the occurrence rule in Def. 3.6 we have:

∀ p ∈ P: M2(p) + ∑
(t,b) ∈ Y

 E(p,t)<b> = M1(p) + ∑
(t,b) ∈ Y

 E(t,p)<b>

which implies:

∑
p ∈ P

  Wp( M2(p) + ∑
(t,b) ∈ Y

 E(p,t)<b>) =  ∑
p ∈ P

  Wp( M1(p) + ∑
(t,b) ∈ Y

 E(t,p)<b>).

From the linearity of the weight functions we get:

∑
p ∈ P

  Wp( M 2(p)) +  ∑
p ∈ P

  ∑
(t,b) ∈ Y

  Wp(E(p,t)<b>)

= ∑
p ∈ P

  Wp( M 1(p)) +  ∑
p ∈ P

  ∑
(t,b) ∈ Y

  Wp(E(t,p)<b>).

From the flow property we have:

∀ (t,b) ∈ BE:  ∑
p ∈ P

  Wp(E(p,t)<b>) = ∑
p ∈ P

  Wp(E(t,p)<b>)

which implies:

∑
(t,b) ∈ Y

      ∑
p ∈ P

  Wp(E(p,t)<b>) = ∑
(t,b) ∈ Y

      ∑
p ∈ P

  Wp(E(t,p)<b>)

which we can rewrite to:

∑
p ∈ P

  ∑
(t,b) ∈ Y

  Wp(E(p,t)<b>) = ∑
p ∈ P

  ∑
(t,b) ∈ Y

  Wp(E(t,p)<b>).

The two double sums in this equation are identical to those which we had above.
Hence we conclude that:



33

∑
p ∈ P

  Wp( M2(p)) = ∑
p ∈ P

  Wp( M1(p)),

i.e., that W(M2) = W(M1).
Next let M ∈ [M0› be a reachable marking and let σ be an occurrence sequence

which starts in M0 and ends in M. By applying our result above to each step
Mi [Yi› Mi+1 of σ, we conclude that W(M) = W(M0). Hence we have proved ⇒ .

Next let us assume that W determines an invariant and that the CP-net has no
dead binding elements. This means that each binding element (t,b) has at least one
reachable marking M1 in which it becomes enabled. Let M2 be the marking de-
termined by M1 [t,b› M2. By a sequence of arguments which is very similar to
the ones we have made above, it can be seen that W(M2) = W(M1) implies that
(t,b) satisfies the property in Def. 7.1 (i). Hence, we have shown ⇐ .    

Above we have discussed how we can use flows to check whether a set of weights
determines an invariant or not. Later in this section, we discuss how to find suit-
able weights, i.e., how to construct invariants. However, first we illustrate how
we can use invariants – to prove dynamic properties of the CP-net.

The data base system has the invariants shown below (plus many more). For
brevity, and improved readability, we omit M(). This means that we write Wp(p)
instead of Wp(M(p)). The function Ign (for ignore) maps each token (of any
type) into e ∈ E.

PIDBM Inactive + Waiting + Performing = DBM
PIMES Unused + Sent + Received + Acknowledged = MES
PIE Active + Passive = E
PIPER Performing  = Rec(Received)
PIWA Mes(Waiting) = Sent + Received + Acknowledged
PIAC Active = Ign(Waiting)

Let us first show that the invariants can be used to prove the integer and
multi-set bounds postulated in Sect. 4.

All the multi-bounds follow from PIDBM, PIMES and PIE, respectively. The
same is true for the integer bounds for Inactive, Unused, Passive and Active. The
integer bound for Waiting follows from PIAC since we have already shown that
 M(Active)  ≤ 1. The integer bound for Sent, Received and Acknowledged fol-
lows from PIW A , since we know that  M(Waiting)   ≤  1 and hence that
 Mes(M(Waiting))  ≤ n – 1. The integer bound for Performing follows from
PIPER, since we know that  M(Received)  ≤ n – 1.  It is straightforward to con-
struct occurrence sequences which show that all the bounds are optimal, i.e., the
smallest possible. We omit this part of the proof.

Next let us show that the data base system cannot reach a dead marking. The
proof is by contradiction: Let us assume that we have a reachable marking M
which is dead, i.e., has no enabled transitions. From PIDBM we know that M has n
tokens of type DBM, distributed on the places Inactive, Performing and Waiting.
Now let us investigate where these tokens can be positioned.



34

Let us first assume that at least one data base manager, s, is Waiting. From
PIAC it follows that there is exactly one Waiting manager and it also follows that
the system is Active. From PIDBM, we know that the remaining n – 1 managers
are Inactive or Performing. From PIWA we know that the messages Mes(s) are
either Sent, Received or Acknowledged, and we also know that no other mes-
sages are in these states. From PIPER it then follows that each manager
r ∈ DBM  – {s} is Performing iff the message (s,r) is Received and that r is
Inactive iff the message (s,r) is either Sent or Acknowledged. A message (s,r) on
Sent would imply that RM is enabled (since s is Inactive). A message (s,r) on
Received would imply that SA is enabled (since s is Performing). Hence, we
conclude that all messages in Mes(s)  must be Acknowledged. However, this im-
plies that RA is enabled (since s is Waiting and the system is Active). Hence, we
have a contradiction (with the assumption that M is dead).

Next, let us assume that no data base manager is Waiting. From the invariants
it is then easy to prove that M is identical to the initial marking in which SM is
enabled. Hence, we have a contradiction (with the assumption that M is dead).

From the proof above, we know that any message on Sent can be moved to
Received, and that any message on Received can be moved to Acknowledged.
This means that, from any marking M ∈ [M0›, we can reach a marking in which
Sent, Received and Performing have no tokens. From the invariants it then fol-
lows that we are either in the initial marking M0 or in a marking from which M0

can be reached by an occurrence of RA. Hence, we have shown that M0 is a home
marking.

It is easy to construct an occurrence sequence which starts in M0 and contains
all binding elements. Since M0 is a home marking, we then conclude that all four
transitions are strictly live.

Now let us discuss how we can find flows. There are two possible approaches.
The first approach tries to make a fully automatic calculation of the flows –
starting from scratch, i.e., without using any of the knowledge which the mod-
eller has built up during the construction of the system. It is possible to make
such a calculation. A CP-net can be represented as a matrix, I, with a row for
each place and a column for each transition. Each matrix element I(p,t) is a
function. It maps each binding b ∈ B(t) into the weighted set of tokens
E(t,p)<b> – E(p,t)<b> (which describe how the marking of p is changed when t
occurs with the binding b). For each occurring step M1 [Y› M2, we then have the
following matrix equation:

M 2 = M1 + I * Y

where Y is the column vector with the elements {Y(t)  t ∈ T}, while M1 and M2

are the column vectors with the elements {M1(p)  p ∈ P} and {M2(p)  p ∈ P}, re-
spectively. The matrix product is defined in the usual way, i.e.:

(I * Y)(p) = ∑
t ∈ T

 I(p,t) * Y(t).

However, we no longer multiply integers, instead we apply the function I(p,t) to
the multi-set Y(t). From mathematics, it is well-known that matrices and matrix
multiplication can be generalised in this way, and it can be proved that all the



35

usual rules for matrices still apply (provided that the new multiplication opera-
tion satisfies certain basic requirements, e.g., associativity). It can also be proved
that a set of weights is a flow iff the row vector W with the elements {Wp  p ∈ P}
is a solution to the following homogeneous matrix equation – where multiplica-
tion is defined as composition of the functions W(p) and I(p,t) while 0 denotes a
matrix vector in which all elements are zero functions:

W  * I = 0.

The equation can be solved by means of Gauss-elimination. However, there are a
couple of problems. The first problem is the fact that we may have matrix ele-
ments for which the inverse function does not exist (intuitively this means that
we cannot divide matrix elements by each other). This problem can be circum-
vented, but the algorithms become rather complex. The second problem is more
profound. A CP-net usually has infinitely many flows – because any linear com-
bination of flows is itself a flow. It is possible to find a basis for the flows, but it
is not at all easy to do this in such a way that the flows in the basis determine the
invariants which are useful to prove dynamic properties. Hence, we are left with
the problem of finding those linear combinations which are useful to us, and this
problem is often as difficult as finding the basis. The representation of CP-nets as
matrices and the calculation of flows via matrix equations are described in [12],
[23], [25] and [33].

The second approach to calculation of flows does not try to find the flows
from scratch. Instead it builds on the idea that the modeller constructs some sets
of weights which he expects to determine invariants. Such potential invariants
may be derived, e.g., from the system specification and from the modeller’s
knowledge of the expected system properties. The invariants may be specified
during the analysis of the CP-net. However, it is much more useful (and also
easier) to specify the invariants while the CP-net is being created. This means
that we construct the invariants as an integrated part of the design (in a similar
way as a good programmer specifies a loop invariant at the moment he creates
the loop). In programming, it would be most unusual (and unrealistic), first to
write a large program (without even thinking about invariants) and then expect
an automatic construction of useful invariants which can be easily interpreted by
the programmer.

The proposed weights are checked by means of the property in Def. 7.1 (i).
This means that the check is constructive, in the sense that it indicates exactly
where the problems are – by identifying the transitions (or even the binding ele-
ments) that violate the flow property. Hence, it is usually rather straightforward
to figure out how to modify the CP-net or the weights so that we obtain valid
flows.

It is not trivial to check flows – although it is much easier than to find them
from scratch. When the set of bindings is small we can simply test each binding
in turn. However, when a transition t has a large set of possible bindings, or even
an infinite set, we need a more subtle method. We want to show that the function
which maps each binding b ∈ B(t) into the weighted set:



36

∑
p ∈ P

  Wp(E(t,p)<b>) – ∑
p ∈ P

  Wp(E(p,t)<b>)

is the zero-function, i.e., that it maps all b into Ø. The invariant analysis tool de-
scribed in [9] verifies this by using the lambda expression of the function. The
lambda expression is available because the arc expressions are specified in the
functional programming language Standard ML (which compiles into lambda ex-
pressions). By means of lambda reductions it is possible to verify that the func-
tion is the zero function. Arc expressions may be arbitrarily complex, and hence
there may exist transitions where the reduction is impossible. However, the tool
in [9] is able to cope with most of the arc expressions which are found in
“standard” CP-nets.

Above, we have advocated that the modeller should be responsible for the
construction of potential invariants. However, there are several ways in which
this process can be supported by tools. Hence, it is more adequate to think about
the construction as semi-automatic than to think of it as purely manual. We have
already discussed how the construction of flows can be supported by an auto-
matic check. In addition to this it is also possible, under certain circumstances, to
deduce some weights – when other weights are known. As an example, let us as-
sume that the modeller is looking for an invariant which relates the marking of
Inactive, Waiting and Performing. If the modeller specifies that all other places
have weights which are zero-functions, it is possible to prove that Inactive,
Waiting and Performing must have identical weights. The proof is by contradic-
tion: Let us assume that there exists, e.g., a manager d such that WInac(d) ≠
WPerf(d). It is then easy to see that the binding elements of the form
(RM,<s = d, r =…>) violate the flow property in Def. 7.1 (i). More information
about a method to relate weights to each other can be found in [9] and [25]. The
basic idea behind the method is to perform a reduction of the CP-net – without
changing the set of place invariants.

In general, we envision an interactive system in which the user may specify
the weights of certain places, e.g., to be zero functions. Based on this informa-
tion the system calculates a number of derived weights – or tells us that the spec-
ified weights are inconsistent with each other. The situation can be compared to a
spreadsheet model. Whenever the user changes a number in the spreadsheet, all
the corresponding equations are recalculated, and the new results are shown.
Whenever the user changes a weight in the CP-net, all the corresponding depen-
dencies are recalculated, and the new derived weights are shown.

It is also desirable to develop tool support for the use of invariants, i.e., to
help the modeller to prove dynamic properties. As an example, it is possible to
implement algorithms which use the invariants to derive bounds for the marking
of certain places – from a specified marking of other places. With such a system
it would be much easier and less error prone to perform the kind of arguments
which we made to prove that the data base system is deadlock free. The main de-
velopment problem for such a system is the design of a suitable user interface.

Transition invariants and transition flows are the duals of place invariants and
place flows. This means that we attach a weight to each transition. Intuitively, a
transition flow determines a set of occurrence sequences that have no total effect,



37

i.e., have the same start and end marking. Transition flows can be calculated in a
way which is similar to that of place flows – but it is also in this case easier and
more useful to construct the invariants during the creation of the CP-net.
Transition invariants are used for similar purposes as place invariants, i.e., to in-
vestigate the dynamic properties of CP-nets.

Analysis by means of place and transition invariants has several attractive
properties. First of all, it is possible to obtain an invariant for a hierarchical
CP-net by composing invariants of the individual pages. This means that it is
possible to use invariants for large systems – without encountering the same kind
of complexity problems as we have for occurrence graphs. Secondly, we can find
invariants without fixing the system parameters, such as the number of data base
managers. Hence we can obtain general properties which are independent of the
system parameters. Thirdly, we can construct the invariants during the design of
a system and this will usually lead to an improved design and also an improved
understanding of the system. The main drawback of invariant analysis is the fact
that it requires skills which are considerably higher (and more mathematical)
than those required by the other analysis methods. This means that it is more
difficult to use invariants in industrial system development.

8  Historical Remarks  
The foundation of Petri nets was presented by Carl Adam Petri in his doctoral
thesis [38]. The first nets were called Condition/Event Nets (CE-nets). This net
model allows each place to contain at most one token. The place is considered to
represent a boolean condition, which can be either true or false. In the following
years a large number of people contributed to the development of new net mod-
els, basic concepts, and analysis methods. One of the most notable results was the
development of Place/Transition Nets (PT-nets) allowing a place to contain sev-
eral tokens.

For theoretical considerations CE-nets turned out to be more tractable than
PT-nets, and much of the theoretical work concerning the definition of basic
concepts and analysis methods has been performed on CE-nets. Later, a new net
model called Elementary Nets (EN-nets) was proposed in [41] and [44]. The basic
ideas of this net model are very close to those of CE-nets – but EN-nets avoid
some of the technical problems which turned out to be present in the original
definition of CE-nets.

For practical applications, PT-nets were used. However, it often turned out
that this net model was too low-level to cope with real-world applications in a
manageable way. Different researchers started to develop their own extensions of
PT-nets – adding concepts such as: priority between transitions, time delays,
global variables to be tested and updated by transitions, zero testing of places,
etc. In this way a large number of different net models were defined. However,
most of these net models were designed with a single, and often very narrow,
application area in mind. This created a serious problem. Although some of the
net models could be used to give adequate descriptions of certain systems, most



38

of the net models possessed almost no analytic power. The main reason for this
was the large variety of different net models. It often turned out to be a difficult
task to translate an analysis method developed for one net model to another – and
in this way the efforts to develop suitable analysis methods were widely scat-
tered.

The breakthrough with respect to this problem came when Predicate/
Transition Nets (PrT-nets) were presented in [18]. PrT-nets were the first kind
of high-level nets which were constructed without any particular application area
in mind. PrT-nets form a nice generalisation of PT-nets and CE-nets (exploiting
the same kind of reasoning that leads from propositional logic to predicate
logic). PrT-nets can be related to PT-nets and CE-nets in a formal way – and this
makes it possible to generalise most of the basic concepts and analysis methods
that have been developed for these net models – so that they also become appli-
cable to PrT-nets. Later, an improved definition of PrT-nets was presented in
[19]. This definition draws heavily on sigma algebras (as known from the theory
of abstract data types).

However, it soon became apparent that PrT-nets present some technical
problems when the analysis methods of place invariants and transition invariants
are generalised. It is possible to calculate invariants for PrT-nets, but the inter-
pretation of the invariants is difficult and must be done with great care to avoid
erroneous results. To overcome this problem the first version of Coloured Petri
Nets (CP81-nets) was defined in [23]. The main ideas of this net model are di-
rectly inspired by PrT-nets, but the relation between a binding element and the
data values of the tokens involved in the occurrence is now defined by functions
and not by expressions as in PrT-nets. This means that invariants can be inter-
preted without problems.

However, it often turns out that the functions attached to arcs in CP81-nets are
more difficult to read and understand than the expressions attached to arcs in
PrT-nets. Moreover, as indicated above, there is a strong relationship between
PrT-nets and CP81-nets – and from the very beginning it was clear that most de-
scriptions in one of the net models could be informally translated to the other net
model, and vice versa. This lead to the idea of an improved net model – combin-
ing the qualities of PrT-nets and CP81-nets. This net model was defined in [24]
where the nets were called High-level Petri Nets (HL-nets). Unfortunately, this
name has given rise to a lot of confusion since the term “high-level nets” at that
time started to become used as a generic name for PrT-nets, CP81-nets, HL-nets,
and several other kinds of net models. To avoid this confusion it was necessary to
change the name from HL-nets to Coloured Petri Nets (CP-nets).

CP-nets have two different representations. The expression representation
uses arc expressions and guards, while the function representation uses linear
functions between multi-sets. There are formal translations between the two rep-
resentations (in both directions). The expression representation is nearly identical
to PrT-nets (as presented in [18]), while the function representation is nearly
identical to CP81-nets. The first coherent presentations of CP-nets and their anal-
ysis methods were given in [25] and [26].



39

Today most of the practical applications of Petri nets (reported in the litera-
ture) use either PrT-nets or CP-nets. There is very little difference between
PrT-nets and CP-nets (and many modellers do not make a clear distinction be-
tween the two kinds of net models). The main differences between the two net
models are hidden inside the methods to calculate and interpret place and transi-
tion invariants (and this is of course not surprising when you think about the
original motivation behind the development of CP81-nets). Instead of viewing
PrT-nets and CP-nets as two different modelling languages it is, in our opinion,
much more adequate to view them as two slightly different dialects of the same
language.

Several other classes of high-level nets have been defined. Most of these are
quite similar to CP-nets, but use different inscription languages (e.g., building on
algebraic specifications or object oriented languages). For more information, see
the bibliographical remarks to Chap. 1 in [27]. Some of the most important pa-
pers on high-level nets, their analysis methods and applications have been
reprinted in [30].

9  Conclusion  
This paper has presented an overview of the theoretical aspects of CP-nets. After
an informal introduction, we presented the formal definition of CP-net models
and the formal definition of their behaviour. Then we defined a number of dy-
namic properties and finally we discussed how CP-nets can be analysed, to inves-
tigate their dynamic properties. Due to space limitations for this paper, we have
only been able to give the most important definitions and to state the most impor-
tant propositions and theorems (without proofs). The proofs and a large number
of additional details can be found in [27] and [28].

The development of CP-nets has been driven by the desire to develop a
modelling language – at the same time theoretically well-founded and versatile
enough to be used in practice for systems of the size and complexity that we find
in typical industrial projects. To be successful it has been mandatory to support
the modelling and analysis activities by a powerful set of computer tools avail-
able on different hardware and software platforms. It has also been necessary to
develop hierarchical CP-nets, i.e., techniques which allow a model to be com-
posed of a set of submodels with well-defined interfaces and well-defined inter-
action. Hierarchical CP-nets are defined in Chap. 3 of [27]. The dynamic prop-
erties and the analysis methods presented in Sects. 5–7 (of the present paper) can
easily be extended to cope with hierarchical nets. Details can be found in [27] and
[28] which define all concepts directly for hierarchical nets and treat non-hierar-
chical nets as a special case (where the model consists of only one module).

The space limitations for this paper have not made it possible to present ex-
amples of the industrial use of CP-nets. Neither has it been possible to give a
comprehensive description of the tool support. Reports on a number of case
studies can be found in [1], [2], [3], [4], [5], [8], [11], [17], [20], [22], [27], [32],
[36], [40], [42] and [43]. Nearly all the case studies have been conducted in an in-



40

dustrial setting. Many of them have used the Design/CPN tool described in [13]
and [27].

Acknowledgements
Many students and colleagues – in particular at Aarhus University and Meta
Software – have influenced the development of CP-nets, their analysis methods
and their tool support. The development has been supported by several grants
from the Danish Natural Science Research Council. A more detailed description
of individual contributions can be found in the preface of [27].

References  
[1] G. Balbo, S.C. Bruell, P. Chen, G. Chiola: An Example of Modelling and

Evaluation of a Concurrent Program Using Colored Stochastic Petri Nets:
Lamport’s Fast Mutual Exclusion Algorithm. IEEE Transactions on
Parallel and Distributed Systems, 3 (1992). Also in [30], 533–559.

[2] J. Berger, L. Lamontagne: A Colored Petri Net Model for a Naval
Command and Control System. In: M. Ajmone-Marsan (ed.): Application
and Theory of Petri Nets 1993. Proceedings of the 14th International Petri
Net Conference, Chicago 1993, Lecture Notes in Computer Science Vol.
691, Springer-Verlag 1993, 532–541.

[3] C. Capellmann, H. Dibold: Petri Net Based Specifications of Services in an
Intelligent Network. Experiences Gained from a Test Case Application.
In: M. Ajmone-Marsan (ed.): Application and Theory of Petri Nets 1993.
Proceedings of the 14th International Petri Net Conference, Chicago 1993,
Lecture Notes in Computer Science Vol. 691, Springer-Verlag 1993, 542–
551.

[4] L. Cherkasova, V. Kotov, T. Rokicki: On Net Modelling of Industrial Size
Concurrent Systems. In: M. Ajmone-Marsan (ed.): Application and
Theory of Petri Nets 1993. Proceedings of the 14th International Petri Net
Conference, Chicago 1993, Lecture Notes in Computer Science Vol. 691,
Springer-Verlag 1993, 552–561.

[5] L. Cherkasova, V. Kotov, T. Rokicki: On Scalable Net Modeling of
OLTP. In PNPM93: Petri Nets and Performance Models. Proceedings of
the 5th International Workshop, Toulouse, France 1993, IEEE Computer
Society Press, 270-279.

[6] G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad: On Well-Formed
Coloured Nets and Their Symbolic Reachability Graph. In [30], 373–396.

[7] G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad: A Symbolic
Reachability Graph for Coloured Petri Nets. Submitted to Theoretical
Computer Science.



41

[8] S. Christensen, L.O. Jepsen: Modelling and Simulation of a Network
Management System Using Hierarchical Coloured Petri Nets.
In: E. Mosekilde (ed.): Modelling and Simulation 1991. Proceedings of
the 1991 European Simulation Multiconference, Copenhagen, 1991,
Society for Computer Simulation 1991, 47–52.

[9] S. Christensen, J. Toksvig: Tool Support for Place Flow Analysis of
Hierarchical CP-nets. Computer Science Department, Aarhus University,
Denmark, Version 2.0.1, 1993.

[10] E.M. Clarke, T. Filkorn, S. Jha: Exploiting Symmetry in Temporal Logic
Model Checking. In: C. Courcoubetis (ed.): Computer Aided Verification.
Proceedings of the 5th International Conference on Computer Aided
Verification, Elounda, Greece, 1993, Lecture Notes in Computer Science
Vol. 697, Springer-Verlag 1993, 450–462.

[11] H. Clausen, P.R. Jensen: Validation and Performance Analysis of Network
Algorithms by Coloured Petri Nets. In PNPM93: Petri Nets and
Performance Models. Proceedings of the 5th International Workshop,
Toulouse, France 1993, IEEE Computer Society Press, 280-289.

[12] J.M. Couvreur, J. Martínez: Linear Invariants in Commutative High Level
Nets. In: G. Rozenberg (ed.): Advances in Petri Nets 1990, Lecture Notes
in Computer Science Vol. 483, Springer-Verlag 1991, 146–165. Also in
[30], 284 –302.

[13] Design/CPN. Reference Manual. Meta Software Corporation, 125 Cam-
bridge Park Drive, Cambridge MA 02140, USA, Version 2.0, 1993.

[14] Design/CPN Occurrence Graph Analyzer. Meta Software Corporation,
125 Cambridge Park Drive, Cambridge MA 02140, USA, Version 0.35,
1993.

[15] E.A. Emerson, A.P. Sistla: Symmetry and Model Checking. In: C. Cour-
coubetis (ed.): Computer Aided Verification. Proceedings of the 5th
International Conference on Computer Aided Verification, Elounda,
Greece, 1993, Lecture Notes in Computer Science Vol. 697, Springer-
Verlag 1993, 463–477.

[16] A. Finkel: A Minimal Coverability Graph for Petri Nets. Proceedings of
the 11th International Conference on Application and Theory of Petri
Nets, Paris 1990, 1–21.

[17] G. Florin, C. Kaiser, S. Natkin: Petri Net Models of a Distributed Election
Protocol on Undirectional Ring. Proceedings of the 10th International
Conference on Application and Theory of Petri Nets, Bonn 1989, 154 –
173.

[18] H.J. Genrich, K. Lautenbach: System Modelling with High-level Petri
Nets. Theoretical Computer Science 13 (1981), North-Holland, 109–136.

[19] H.J. Genrich: Predicate/Transition Nets. In: W. Brauer, W. Reisig,
G. Rozenberg (eds.): Petri Nets: Central Models and Their Properties,
Advances in Petri Nets 1986 Part I, Lecture Notes in Computer Science
Vol. 254, Springer-Verlag 1987, 207–247. Also in [30], 3– 43.



42

[20] H.J. Genrich, R.M. Shapiro: Formal Verification of an Arbiter Cascade.
In: K. Jensen (ed.): Application and Theory of Petri Nets 1992.
Proceedings of the 13th International Petri Net Conference, Sheffield
1992, Lecture Notes in Computer Science Vol. 616, Springer-Verlag
1992, 205–223.

[21] P. Huber, A.M. Jensen, L.O. Jepsen, K. Jensen: Reachability Trees for
High-level Petri Nets. Theoretical Computer Science 45 (1986), North-
Holland, 261–292. Also in [30], 319–350.

[22] P. Huber, V.O. Pinci: A Formal Executable Specification of the ISDN
Basic Rate Interface. Proceedings of the 12th International Conference on
Application and Theory of Petri Nets, Aarhus 1991, 1–21.

[23] K. Jensen: Coloured Petri Nets and the Invariant Method. Theoretical
Computer Science 14 (1981), North-Holland, 317–336.

[24] K. Jensen: High-level Petri Nets. In: A. Pagnoni, G. Rozenberg (eds.):
Applications and Theory of Petri Nets, Informatik-Fachberichte Vol. 66,
Springer-Verlag 1983, 166–180.

[25] K. Jensen: Coloured Petri Nets. In: W. Brauer, W. Reisig, G. Rozenberg
(eds.): Petri Nets: Central Models and Their Properties, Advances in Petri
Nets 1986 Part I, Lecture Notes in Computer Science Vol. 254, Springer-
Verlag 1987, 248–299.

[26] K. Jensen: Coloured Petri Nets: A High-level Language for System Design
and Analysis. In: G. Rozenberg (ed.): Advances in Petri Nets 1990,
Lecture Notes in Computer Science Vol. 483, Springer-Verlag 1991, 342–
416. Also in [30], 44 –122.

[27] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Vol. 1: Basic Concepts. EATCS Monographs on Theoretical
Computer Science, Springer-Verlag, 1992.

[28] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Vol. 2: Analysis Methods. EATCS Monographs on
Theoretical Computer Science, Springer-Verlag. To appear in 1994.

[29] K. Jensen: Coloured Petri Nets with Time Stamps. Computer Science
Department, Aarhus University, Denmark, 1993.

[30] K. Jensen, G. Rozenberg (eds.): High-level Petri Nets. Theory and
Application. Springer-Verlag, 1991.

[31] R.M. Karp, R.E. Miller: Parallel Program Schemata. Journal of Computer
and System Sciences, Vol. 3, 1969, 147–195.

[32] W.W. McLendon, R.F. Vidale: Analysis of an Ada System Using Coloured
Petri Nets and Occurrence Graphs. In: K. Jensen (ed.): Application and
Theory of Petri Nets 1992. Proceedings of the 13th International Petri Net
Conference, Sheffield 1992, Lecture Notes in Computer Science Vol. 616,
Springer-Verlag 1992, 384–388.

[33] G. Memmi, J. Vautherin: Analysing Nets by the Invariant Method.
In: W. Brauer, W. Reisig, G. Rozenberg (eds.): Petri Nets: Central
Models and Their Properties, Advances in Petri Nets 1986 Part I, Lecture
Notes in Computer Science Vol. 254, Springer-Verlag 1987, 300 –336.
Also in [30], 247–283.



43

[34] R. Milner, R. Harper, M. Tofte: The Definition of Standard ML. MIT
Press, 1990.

[35] R. Milner, M. Tofte: Commentary on Standard ML. MIT Press, 1991.
[36] K.H. Mortensen, V. Pinci: Modelling the Work Flow of a Nuclear Waste

Management Program. Computer Science Department, Aarhus University,
Denmark, 1993.

[37] L. Paulson: ML for the Working Programmer. Cambridge University
Press, 1991.

[38] C.A. Petri: Kommunikation mit Automaten. Schriften des IIM Nr. 2,
Institut für Instrumentelle Mathematik, Bonn, 1962. English translation:
Technical Report RADC-TR-65-377, Griffiths Air Force Base, New York,
Vol. 1, Suppl. 1, 1966.

[39] L. Petrucci: Combining Finkel’s and Jensen’s Reduction Techniques to
Build Covering Trees for Coloured Nets. Petri Net Newsletter no. 36
(August 1990), Special Interest Group on Petri Nets and Related System
Models, Gesellschaft für Informatik (GI), Germany, 1990, 32–36.

[40] V.O. Pinci, R.M. Shapiro: An Integrated Software Development
Methodology Based on Hierarchical Colored Petri Nets. In: G. Rozenberg
(ed.): Advances in Petri Nets 1991, Lecture Notes in Computer Science
Vol. 524, Springer-Verlag 1991, 227–252. Also in [30], 649– 667.

[41] G. Rozenberg: Behaviour of Elementary Net Systems. In: W. Brauer,
W. Reisig, G. Rozenberg (eds.): Petri Nets: Central Models and Their
Properties, Advances in Petri Nets 1986 Part I, Lecture Notes in
Computer Science Vol. 254, Springer-Verlag 1987, 60 –94.

[42] R.M. Shapiro: Validation of a VLSI Chip Using Hierarchical Coloured
Petri Nets. Journal of Microelectronics and Reliability, Special Issue on
Petri Nets, Pergamon Press, 1991. Also in [30], 667– 687.

[43] R.M. Shapiro, V.O. Pinci, R. Mameli: Modelling a NORAD Command
Post Using SADT and Coloured Petri Nets. Proceedings of the IDEF Users
Group, Washington DC, May 1990.

[44] P.S. Thiagarajan: Elementary Net Systems. In: W. Brauer, W. Reisig,
G. Rozenberg (eds.): Petri Nets: Central Models and Their Properties,
Advances in Petri Nets 1986 Part I, Lecture Notes in Computer Science
Vol. 254, Springer-Verlag 1987, 26–59.

[45] A. Valmari: Stubborn Sets for Reduced State Space Generation.
In: G. Rozenberg (ed.): Advances in Petri Nets 1990, Lecture Notes in
Computer Science Vol. 483, Springer-Verlag 1991, 491–515.

[46] A. Valmari: Stubborn Sets of Coloured Petri Nets. Proceedings of the 12th
International Conference on Application and Theory of Petri Nets, Aarhus
1991, 102–121.


