
778 G. H. HARDY fNov.-Dec, 

AN INTRODUCTION TO T H E THEORY 
OF NUMBERS* 

BY G. H. HARDY 

PART I 

1. Farey Series. The theory of numbers has always occu-
pied a peculiar position among the purely mathematical 
sciences. It has the reputation of great difficulty and mystery 
among many who should be competent to judge; I suppose 
that there is no mathematical theory of which so many well-
qualified mathematicians are so much afraid. At the same 
time it is unique among mathematical theories in its appeal 
to the uninstructed imagination and in its fascination for 
the amateur. It would hardly be possible in any other sub-
ject to write books like Landau's Vorlesungen or Dickson's 
History, six great volumes of overwhelming erudition, better 
than the football reports for light breakfast table reading. 

The excursions of amateur mathematicians into mathe-
matics do not usually produce interesting results. I wish 
to draw your attention for a moment to one very singular 
exception. Mr. John Farey, Sen., who lived in the Napoleonic 
era, has a notice of twenty lines in the Dictionary of National 

Biography, where he is described as a geologist. He received 
as a boy "a good mathematical training". He was at one time 
agent to the Duke of Bedford, but afterwards came to Lon-
don, where he acquired an extensive practice as a consulting 
surveyor, which led him to travel much about the country 
and "collect minerals and rocks". His principal work was a 
geological survey of Derbyshire, undertaken for the Board 
of Agriculture, but he also wrote papers in the Philosophical 

Magazine, on geology and on many other subjects, such as 

* The sixth Josiah Willard Gibbs Lecture, read at New York City, 
December 28, 1928, before a joint session of the American Mathematical 
Society and the American Association for the Advancement of Science. 
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music, sound, comets, carriage wheels and decimal coinage. 
As a geologist, Farey is apparently forgotten, and, if that 
were all there were to say about him, I doubt that he would 
find his way into the Dictionary of National Biography today. 

I t is really very astonishing that Farey's official biographer 
should be so completely unaware of his subject's one real 
title to fame. For, in spite of the Dictionary of National 

Biography, Farey is immortal; his name stands prominently 
in Dickson's History and in the German encyclopaedia of 
mathematics, and there is no number-theorist who has not 
heard of "Farey's series". Just once in his life Mr. Farey rose 
above mediocrity and made an original observation. He 
did not understand very well what he was doing, and he 
was too weak a mathematician to prove the quite simple 
theorem he had discovered. I t is evident also that he did 
not consider his discovery, which is stated in a letter of 
about half a page, at all important; the editor of the Philo-
sophical Magazine printed a very stupid criticism in the next 
volume, and Farey, usually a rather acrid controversialist, 
ignored it completely. He had obviously no idea that this 
casual letter was the one event of real importance in his life. 
We may be tempted to think that Farey was very lucky ; but 
a man who has made an observation that has escaped Fermât 
and Euler deserves any luck tha t comes his way.* 

Farey's observation was this. The Farey series of order 

n is the series, in order of magnitude, of the irreducible 
rational fractions between 0 and 1 whose denominators do 
not exceed n. Thus 

0 1 1 1 1 2 1 2 3 1 

ryi'T'T'T' 3; s ' 7 ; 2 ' 
4 3 2 5 3 4 5 6 1 

T' T' T' T' T' T' 6~' T' T 

* It should be added tha t Farey's discovery had been anticipated 14 
years before by C. Haros: see Dickson's History, vol. 1, p. 156. Cauchy 
happened to see Farey's note and at tr ibuted the theorem to him, and 
everyone else has followed Cauchy's example. 
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is the Farey series of order 7. There are two simple theorems 
about Farey series; (1) if p/q and p'/q' are two consecutive 
terms, then 

P'q- pq
f = 1 , 

and (ii) if p/q, p'/q
f
, p"/q" are three consecutive terms, then 

P' ^P + P" 

q'~ q + q" ' 

The second theorem (which is that actually stated by Farey) 
is an immediate consequence of the first, as we see by 
solving the equations 

P'q-Pq'=l, P"q'-P'q"=h 

for p
1 and q'. 

The theorems are not of absolutely first class importance, 
but they are not trivial, and all of the many proofs have 
some feature of real interest. One of the simplest uses the 
language of elementary geometry. We consider the lattice 

or Gitter L in a plane formed by drawing parallels to the axes 
at unit distance from each other; the intersections, the 
points (#, y) with integral coordinates, are called the points 

of the lattice. It is obvious that the properties of the lattice 
are independent of the particular lattice point 0 selected 
as origin and symmetrical about any origin. The lattice is 
transformed into itself by the linear substitution 

%' = ax + Py, y' = yx + 8y, 

where a, j8, y, ô are integers and A=ad— /3Y = 1, since then 
there is a pair x, y which give any assigned integral values 
for x', y

r
. 

The area of the parallelogram P based on the origin and 
two lattice points (xi, 3/1), and (x2, ^2), not collinear with 0, is 

à = ± (xiy2 — x2yi). 

We can construct a lattice L' (an oblique lattice) by produc-
ing and drawing parallels to the sides of P . A necessary and 
sufficient condition that L

r should be equivalent to L, that 
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is, that they should contain the same lattice points, is that 
8 = 1, that is, that 8 should have its smallest possible value. 
I t is clear that this is also a necessary and sufficient condi-
tion that there should be no lattice point inside P , and it is 
easy to see that if there is such a point inside P , there is 
one inside, or on the boundary of, the triangular half of P 
nearer to 0. 

We may call the lattice point (q,p) which corresponds to 
a fraction p/q in its lowest terms a visible lattice point; 
there is no other lattice point which obscures the view of 
it from 0. Let us consider all the visible lattice points which 
lie inside, or on the boundary of, the triangle bounded by the 
lines y = 0, x = n, y — x. I t is plain that these points corre-
spond one by one to the fractions of the Farey series of order 
n. When the ray R from O to (q, p) rotates from the x-axis 
to the line y = x, it passes through each of these points 
in turn. If we take two consecutive positions of P , corres-
ponding to the points (q, p), (q', p'), the parallelogram based 
on these two points contains no lattice point inside it, since 
otherwise there would be a lattice point inside its nearer 
triangle, and therefore a Farey fraction between p/q and 
p'/q'. It follows that 

8 = fq- pq' = 1, 

which proves Farey's theorem. 

2. Purpose of this Lecture. So much then for Farey's 
discovery; it is a curious theorem, and its history is still 
more curious; but I have no doubt allowed myself to dwell 
upon it a little longer than its intrinsic importance deserves. 
My discussion of it will, however, help me to explain what I 
am trying to do in this lecture. 

I shall imagine my audience to be made up entirely of 
men like Farey. I know that most of them are very much 
better mathematicians, but I shall not assume so; I shall 
assume only that they possess the common school knowl-
edge of arithmetic and algebra. But I shall also assume 
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that , like Farey, they are curious about the properties of 
integral numbers; one need after all be no Ramanujan for 
that . 

Let us then imagine such a man playing about with num-
bers (as so many retired officers in England do) and puzzling 
himself about the curious properties which they seem to 
possess. What odd properties would strike him? What are 
the first questions he would ask? We must not try to be very 
systematic; if we do, we shall make no progress in an hour. 
We must aim merely at a rough preliminary survey of the 
ground. If in the course of our survey, we find the opportun-
ity for any illuminating remark, we may delay to make it, 
as I have already delayed over Mr. Farey, even if it does 
not seem to fall in quite its proper logical place. Then, if 
time permits, we may return to examine a little more closely 
any important difficulties which our preliminary survey 
has revealed. 

3. Congruences to a Modulus. There is no doubt that the 
first general idea which we should have to explain is that 
of a congruence. Two numbers a and b are congruent to mod-

ulus m if they leave the same remainder when divided by w, 
tha t is, if m is a divisor of a — b. We write 

a = b (modtri), m\ a —• b. 

I t is obvious that congruences are of immense practical 
importance. Ordinary lite is governed by them; railway 
time tables and lists of lectures are tables of congruences. 
The absolute values of numbers are comparatively unim-
portant; we want to know what time it is, not how many 
minutes have passed since the creation. 

A great many problems both of arithmetic and of common 
life depend upon the solution of congruences involving an 
unknown x, such as 

aox
n
 + ai%

n
~

l + • • • + an = 0 (mod tri). 

Such congruences may be classified like algebraical equations, 
as linear, quadratic, • • • , according to the value of n. 
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Our first instinct in dealing with congruences is to follow 
up the analogy with algebra. In algebra a linear equation 
has one root, a quadratic two, and so on. We find at once 
that there are obvious and striking contrasts; even the linear 
congruence suggests a whole series of problems, and a full 
discussion of quadratic congruences involves quite an im-
posing body of general ideas. 

Let us take the simplest case, the linear congruence, and 
suppose first that we are concerned only with one particular 
modulus, such as 7 or 24. We have then an example of a 
genuinely finite mathematics. Congruent numbers have 
exactly the same properties and cannot be distinguished, 
and our mathematics contains only a finite number of things. 

In such a mathematics any problem can be solved by enumer-
ation; we can solve 2x = S (mod 7) by trying all possible 
values of x, and we find there is a unique solution, x = 6. 
If we try to solve 2x = 5 (mod 24), we find that there is no 
solution; if I lecture every other day, I shall sooner or later 
lecture on Thursday, but if I lecture every other hour, I 
may never lecture at 5 P.M. 

The difference is of course accounted for by the fact 
that 7 is prime and 24 is not. Here we encounter the notion 
of a prime, a number without factors, and all kinds of specu-
lations suggest themselves. Can we tell, by any method 
short of trial of all possible divisors, whether any given num-
ber is prime or not? Are there formulas for primes? Are the 
primes infinite in number, and if so, what is the law of their 
distribution? 

Again, it appears that all numbers are composed of primes, 
that primes are the ultimate material out of which the world 
of numbers is built up. We are bound to ask how; and here 
we meet our first big theorem, the "fundamental theorem of 
arithmetic," the theorem that factorization is unique. But 
we shall probably be wise to allow our enquirer to take this 
theorem for granted until he has acquired a little of the 
sophistication which comes with wider knowledge. 

We may observe, however, before passing on, that the con-
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trast between arithmetic and algebra becomes much more 
marked as soon as we consider congruences of higher degree. 
An equation of the fourth degree has, with appropriate 
conventions, just four roots. But 

x
4 s 1 (mod 13) 

has 4 roots, 1, 5, 8, and 12; 

x
A = 1 (mod 16) 

has 8 roots, 1, 3, 5, 7, 9, 11, 13, and IS; and 

x
4 s 2 (mod 16) 

has none. 
4. Regarding Decimals. I pass to another subject that has 

an irresistible fascination for amateurs, the subject of 
decimals. Some decimals are finite and some recurring, but 
it is easy to write down decimals, such as 

(a) 0.10100100010 • • • (b) 0.11010001000 • • • 
which are neither. Here (a) the number of 0's increases 
by one at each stage, (b) the ranks of t he l ' s are 1,2,4,8, • • • . 
More amusing examples are 

(c) 0.01101010001010 • • • 

(in which the l 's have prime rank) and 

(d) 0.23571113171923 • • • 

(formed by writing down the prime numbers in order). 
The proof for (c) demands the knowledge that there is an 
infinity of primes, and that for (d) rather more.* 

The answer to some of the obvious questions is immediate. 
A finite decimal represents a rational fraction p/(2

a
5^)} a 

pure recurring decimal a fraction p/q, where q is not divisible 
by 2 or 5, and a mixed recurring decimal a fraction in which 
q is divisible by 2 or 5 and also by some other number. 
The converses of these theorems are also true, but the proof 
demands a little genuinely arithmetical reasoning. I shall 
state the proof in the simplest case, since it depends upon 

* See Pólya and Szegö's Aufgaben aus der Analysis, vol. 2, pp. 160, 383. 
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the logical principle which is perhaps our most effective 
weapon in the elementary parts of the theory, where we are 
dealing with so simple a subject matter that our choice of 
arguments is naturally very restricted. 

Suppose p<q and q prime to 10. If we divide all powers 
10" by q, there are only q possible remainders, and one 
at least must be repeated. I t follows that there are a vi 

and a vi > v\ such that 

10"* s 10"s 10"i(10"*-"i - 1) s 0 

to modulus q. I t follows that, if we write V2 — vi = N, we 
have 10* = 1, so that g 110* - 1 and 

P
 p 

— = = P . 10-* + P-10-** + • • • . 
q 10* - 1 

Since P < 1 0 * , this is a pure recurring decimal with a period 
of at most N. The principles which we have used are (a) 
that if there are more than q things of at most q kinds, there 

must be two of them of the same kind; (b) that if 10"Q is 
divisible by g, and q is prime to 10, then Q is divisible by q. 

In the second we are of course appealing to the "fundamental 
theorem". The first is the general logical principle to which 
I referred just now. 

Let us take a slightly more complicated variant of this 
principle. If there are two sets of objects 

a>iyQ>2) ' ' ' ? amy bi,b2, • • • , bm, 

no two of either set being the same ; and if every b is equal to an 

a ; then the b's are the a
y
s arranged in a different order. We may 

apply this principle to obtain further information about the 
period of our recurring decimal. I suppose now that q is 
prime. If q and a are given, and a is not a multiple of q, 

it is impossible tha t 
ra = sa (mod q) 

unless r = 5. If (ra) is the remainder when ra is divided by qy 

the two sets 
r, (ra) (r = 1,2, • • • , q - 1) 
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satisfy the conditions of our principle and are therefore the 
same except in order. I t follows that 

{q _ i) I a«-i s I J M - 1 1 ' = (? " 1) ! (mod q), 

and therefore that 

a
q
~

l s 1 (mod g) ; 

Fe rma i s Theorem. In the particular case in which we are 
interested, a is 10, and Fermat 's Theorem shows that we 
may take N = q — 1, so that the period of p/q cannot exceed 
q — 1 figures. Observe that we have appealed to the funda-
mental theorem twice in the proof. 

I t is familiar to everyone that \ has 6 figures, the maximum 
number. We are bound to ask what other primes q possess 
this property; the values of q less than 50 are in fact 7, 17, 
19, 23, 29, and 47, but here we begin to get into deeper water. 
I cannot stop to discuss this question now, but before passing 
on I must mention another familiar text-book theorem which 
I shall have to quote later. This is Wilson's Theorem, that 

(q - 1) ! + 1 ss 0 (mod q) 

if and only if q is prime. Of the mass of proofs catalogued by 
Dickson, that of Dirichlet depends most directly on principles 
which we have used already. It is an immediate consequence 
of these principles that, if x is any one of the set 1, 2, • • • , 
q—1, there is just one other, y, such that xy = l (mod q); 

we call y the associate of x. I t is plain that 1 and q — 1 are 
associated with themselves; and no other number can be, 
since xi

2
 =x£ implies #i = #2 or xi^q — #2. It follows that the 

numbers 2, 3, • • • , q — 2 are composed of %(q — 3) distinct 
pairs the product of each of which is congruent to 1. Hence 

2 • 3 • • • (g - 2) = l(*-3>/2 = 1, 

( 0 - 1 ) 1 ^ - 1 ^ - 1 , 

which is one half of Wilson's Theorem. The converse half 
is practically obvious, since (q—l)l would be divisible by 
any factor of q. 
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5. Algebraic and Transcendental Numbers. The study of 
decimals leads directly to problems concerning rationality 

and irrationality. Our decimals such as 0.1010010001 • • • 
must represent irrational numbers. What criteria are there 
for deciding whether a given number is rational or irrational? 
To ask this question is to go a little outside the theory of 
numbers proper, which is concerned first with integers, and 
then with rationals or irrationals of special forms, such as the 
form a-\-b\/2, and not with irrationals as a whole or general 
criteria for irrationality. The problem is, however, one about 
which an amateur will certainly demand information. 

The famous argument of Pythagoras shows that A/2 is 
irrational; if a lb is in its lowest terms and a

2
 = 2b

2
, then a 

and b must both be even, a contradiction. I t is obvious to 
us now that the Pythagorean argument extends at once to 
V 3 , A / 5 , • • • , 21/3, • • • , and generally to N

lfm
, where N is 

any number which is not a perfect mth power. There is a 
curious and very instructive historical puzzle connected with 
this argument. There is a passage in Plato's Theaetetus, 

discussed at length by Heath in his History of Greek Mathe-

matics, about the at tempt of Theodorus to generalize 
Pythagoras's proof. Theodorus, working some 50 years after 
Pythagoras, proved the irrationality of -\/N for all values of 
N (except square values) up to 17 inclusive. Why, ask the 
historians did he stop? Why in any case should it have taken 
mathematicians like the Greeks 50 years to make so obvious 
an extension? Zeuthen in particular expended a great deal 
of ingenuity upon this question, but I think that the in-
genuity was misplaced, and that the answer is obvious. 

Theodorus did not know the fundamental theorem of arith-

metic; there is something of a puzzle about the history of 
that theorem, but it cannot have been known to the Greeks 
before Euclid's time. The triviality of the generalization 
to us is due entirely to our knowledge of this theorem. 
Suppose, for example, we wish to prove that 

a
2 = 60b

2
, 
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where a and b are integers without common factor, is im-
possible. We argue that a2 cannot be divisible by 3 unless a 

is divisible by 3 ; hence a = 3c, a
2 = 9c2, 3c

2 = 20Ô2, and a repeti-
tion of the argument shows that b also is divisible by 3. 
We can prove that 3 \a

2 implies 3 \a without the fundamental 

theorem, by enumeration of possible cases, considering sepa-
rately the cases in which a = 0, 1, 2 (mod 3). If it were 17 
instead of 3, the process would be a little tedious; and in any 
case such a classification of numbers would have been very 
novel in Theodorus's time. I am so far from being puzzled by 
the limitations of his work that I regard what he did as a 
very remarkable achievement. 

There are very few types of numbers which present them-
selves at all naturally in analysis and which can be proved 
to be irrational. I t is obvious that a number like logio 2 
is irrational, for a power of 2 cannot be a power of 10. The 
proof for e, from the exponential series, is quite easy, and 
that for e

2 not very much more difficult. That for T is 
decidedly more so, and when we come to numbers like e3 

and 7T2, it ceases to be worth while to worry about elementary 
proofs; we may as well go the whole way and prove e and ir 

are transcendental. The most famous constant in analysis, 
after e and x, is Euler's constant 7 ; and the proof of the ir-
rationality of 7 is one of the classical unsolved problems 
of mathematics. I t has never been proved that 2V*, 3V2, 
and similar numbers are irrational; no plausible method 
for attacking such problems has even been suggested. I am 
inclined to think that the number which holds out the best 
hopes for new discovery is the number e

T
, which presents 

itself so naturally in the formulas of elliptic functions. 

I said just now that e and T were "transcendental". I 
must not stop to talk at length about this famous theorem 
of Lindemann,* which contains the final proof that the 

* See for example Hobson's Trigonometry, third edition, p. 305, or the 
same author's Squaring the Circle. 
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quadrature of the circle, in the classical sense, is impossible; 
but the statement of the theorem introduces a notion that 
we shall require, that of an algebraic number. An algebraic 
number is the root of an equation 

a0x
n
 + aix

n
-

x + • • • + o» = 0, 

where the a's are integers. An algebraic integer is an algebraic 
number whose characteristic equation has unity for its lead-
ing coefficient. Thus \/2 and l + \ / ( —5) are algebraic in-
tegers. A transcendental number is a number which is not 
algebraic; and Lindemann's Theorem is that IT is trans-

cendental. I t is easy to show that all lengths which can be 
constructed by euclidean methods are algebraic, and in-
deed algebraic numbers of a quite special kind. If follows 
that the quadrature of the circle by any euclidean construc-
tion is impossible. 

There is another direction in which we may be tempted 
to digress at this point, the theory of the approximation 
of irrationals by rationals, what is now called "diophantine 
approximation". There is just one theorem in this field that 
I shall mention, because it is connected so directly with what 
I have just been saying, and because it depends upon another 
of the stock arguments of number theory, the principle that 
an integer numerically less than 1 is 0. This is Liouville's 
theorem, that there are transcendental numbers. I t is 
naturally much easier to prove this than to prove that a given 
number such as w is transcendental. 

Liouville proves first that it is impossible to approximate 

rationally to an algebraic number with more than a certain 

accuracy. It is quite easy to see why. Suppose that £ is 
an algebraic number defined by 

ƒ(*) = *&
n + tfi^-1 + • • • + an = 0. 

We may suppose that the equation is irreducible, that is 
to say that ƒ(£) cannot be resolved into simpler algebraic 
factors of similar form; in this case we say that £ is of degree n. 

We can obviously find a number M, depending only on £, 
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such that 
\f(x) | < M 

for x near £. Suppose now that p/q is a rational, near £. 
Then 

/ (î-\ =1. 

where N is an integer not zero. I t follows from our general 
principle that | N | è 1 and 

I / M l 1 
I \q/\ q

n 

'(f)-'(f)->»-(f-)' 

But 

(i?), 

g / \ g / \ g 

where rj lies between />/g and £. Hence, for al! g, 

f (P/q) 

fW 

l 
> 

Mq
n 

It is impossible to approximate rationally to an algebraic num-

ber of degree n with an order of accuracy higher than q~~
n
. 

On the other hand it is easy to write down numbers 
which have rational approximations of much higher accuracy 
than this; we have only to take a decimal of 0's and l 's 
in which the l 's are spaced out sufficiently widely. Thus 

£ = 
1 

101! 
• + • 

1 

102! + " 103! + = .11000100000 

is approximated by its first k terms, that is, by a fraction 

± P 
q 10*! 

with an error of order I0~
(k

^
1)l

 = q~
k
~

1
. Hence it is not an al-

gebraic number of degree k and, since k is arbitrary, it must be 
transcendental. Obviously Liouville's argument enables us 
to construct transcendental numbers as freely as we please. 
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6. Arithmetic. Forms. The theory of irrationals starts 
from Pythagoras, and there is another great branch of the 
theory of numbers which also starts from him and about 
which I must now say something. This is the theory of forms. 

Our interest in the theory of forms begins when we observe 
that there are Pythagorean triangles with integral sides; 
thus 32+42 = 52. The first problem which suggests itself 
is that of determining all such triangles, and the solution 
given in substance by Diophantus, is easy. All the integral 
solutions of 

x
2
 -\- y

2
 ~ z

2 

are given by 

X = \(£2
 ~ v

2
) , y = 2X&, Z = He + r)

2
) , 

where the letters are integers and £ and rj are coprime and 
of opposite parity. This problem is trivial, but it suggests 
an infinity of others. 

It is natural to begin by a generalization of the problem. 
Let us discard the hypothesis that the hypotenuse z is 
integral; then 

n = z
2
 — x

2 + y
2 

is the sum of two squares, and we are led to ask what num-
bers n possess this property. This is the first and simplest 
problem in the theory of quadratic forms, and the answer 
to it shows that no such problem can be quite easy. Even 
linear forms are not quite trivial; the solution of ax + by — n 

in integers is a quite interesting elementary problem. When 
we consider quadratic forms, we come up against difficulties 
of a different order. 

The first theorem in the subject is another theorem of 
Fermât, that x

2
+y

2
 = n is soluble when n is a prime p = 4w + l 

and, apart from trivial variations of the sign and order of 
x and y, uniquely. I t is to be observed that the equation 
is plainly insoluble when n is 4 m + 3, since any square is 
congruent to 0 or 1 to modulus 4. This theorem is one of the 
most famous in the theory of numbers, and very rightly so, 
since it was the first really difficult theorem in the subject 
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proved by any mathematician. There is no really simple 
proof, and the most natural, that which depends on the 
Gaussian numbers a+bi, introduces a whole series of ideas 
of revolutionary importance. 

The first stage of the proof consists in proving that there 

is a number x such that 

x
2 = — 1 (mod p), 

or p\l-\-x
2
. Let us go back for a moment to the proof I 

sketched of Wilson's Theorem. Let us associate the numbers 
x = l, 2, • • • , p — 1 in pairs x, y not, as then, so that rry = l, 
but sö that 

xy = — 1 (mod p). 

If anyx is associated with itself, our proposition is established. 
If not, we have arranged the numbers from 1 to p — 1 in 
! (£ —1) pairs of different numbers each satisfying the con-
dition. Hence 

(p - 1)1 ^TLxy = ( - 1)(P-»I* = 1 ; 

which is false, since, by Wilson's Theorem, 

We thus obtain our proposition by reductio ad absurdum. 
The second stage of the proof depends on much more novel 

ideas. We are concerned with the simplest case of an alge-

braic field. The field K(i) is the aggregate of numbers 

% = r-\-si = r + sV(— 1), 

where r and 5 are rational. This number satisfies the equation 

e - 2rÇ + r
2
 + s

2 = 0, 

and is an algebraic integer, in the sense I defined before, 
when 2r and r

2
+s

2 are integers, that is, when r and 5 are 
integers. We may denote by K*(i) the aggregate of all the 
integers 

a — a + bi 
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of K{i) ; a and b are ordinary integers. The numbers of K*(i) 

reproduce themselves by addition and multiplication, and 
we can define division in this field just as we define it in 
ordinary arithmetic. We can also define a prime of K*{i), and 
factorization of numbers into primes. There are four num-
bers, ± 1 and ±i, which play a part in the new arithmetic 
similar to that of 1 and —1 in ordinary arithmetic. These 
are the "unities" or divisors of 1. If we define the norm of 
a = a + bi as 

N(a) = a
2
 + b\ 

then the unities are characterized by the fact that their 
norm is 1. We do not count them as primes, just as, in the 
ordinary theory, we do not count 1 as a prime. 

We now make an assumption, namely that the analog 

of the fundamental theorem holds in the field K*(i), that is 
to say that, apart from any trivial complications which may 
be introduced by the unities, the factorization of a number 

of K*(i) into primes is unique. This assumption is in fact 
correct. Returning now to the first stage of our proof, there 
is an x such that 

p\ 1 + x
2 = (1 + ix)(l - ix). 

It is obvious that p does not divide 1+ix or 1 — ix, so that 
p divides the product of two numbers without dividing either 

of them. Hence p cannot be a prime in K*(i). We may there-
fore write 

p = 7rX, 

where N(TT) > 1 and N(K) > 1. But 

N(w)N(\) = N(p) = p\ 

so that N(w) and NÇK) must each be p. If we write 

T = a+ib, 

it follows that 
p = N(w) = a

2
 + b

2
, 

which is Fermat 's theorem. 
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We may be tempted by our success to further efforts in 
the same direction. I t is easy to satisfy ourselves, by con-
sidering particular cases, that any prime p = 20m + l is of 

the form a
2
 + 5b

2
: thus 61=4 2 + 5-32. Let us try to prove 

this theorem by a similar method. We must evidently con-
sider now the field i£*[\/( — 5)] formed of the algebraic 
integers of the form 

a = a + b\/(— 5) ; 

it is easy to show that such a number is an algebraic integer 
if and only if a and b are ordinary integers. There is no diffi-
culty in defining divisibility and primality in this field also. 

The first step in our proof must plainly be to prove the 
existence of an x for which p | l+5x 2 . This is not difficult, 
but it demands a little more knowledge of quadratic con-
gruences than I can assume, and I must take it for granted. 

We define the norm N(a) of a number of this field as 
a

2
 + 5b

2
. We then argue as before; we have 

p\ 1 + 5x
2 = (1 + * V ( - 5))(1 - W(- 5)), 

so that p divides a product without dividing either factor 
and is therefore not a prime. Hence, as before £ = 7rX, 
where N(T) > 1 and N(K) > 1, and N (r) and N (X) must each 
be p. I t follows that 

p = N(T) = a
2
 + 5b

2
, 

the theorem we set out to prove. 
At this point, however, there is a shock in store for us; 

we find that we can prove too much. The number 

q = (2 + V ( - 5))(2 - V(- 5)) 

is divisible by 3, while neither factor is so. Hence 3 is not 
a prime. Hence 

3 = TTX, 9 = N(T)N(K), 

and N(w) and NÇK) are each 3. I t follows that 

3 = N(w) = a
2
 + 5b

2
. 



1929.] INTRODUCTION TO NUMBER THEORY 795 

Similarly we can prove that 

7 = #2+562; 
and both of these theorems are obviously false. 

There must therefore be a mistake somewhere in our argu-
ment, and if you examine it, and are prepared to believe 
that I have not been misleading you wilfully, you will see 
that there is only one step which can be questioned. In all 
three cases I concluded the argument by an appeal to the 
same theorem; a number which divides the product of two 

numbers without dividing either of them cannot be prime. 

This is true in ordinary arithmetic, because of the funda-
mental theorem; if 7 were a divisor of 15 = 3*5, 15 would be 
factorable into primes in two distinct manners. I t follows 
that the analog of the fundamental theorem in the field 

K*[\/( — 5)] must be false; and this is easily verified when 
once our suspicions have been excited; thus 

2-3 = (l + V ( - 5 ) ) ( l - V ( - 5 ) ) , 

3-7 = (l + 2 V ( - 5 ) ) ( l - 2 V ( - 5 ) ) ( 

and all of these numbers are prime in K*[\/( — 5)]. The 
proof which I gave of the theorem concerning primes 20m+ 1 
was therefore fallacious, although the theorem is true. The 
proof of Fermat 's theorem, on the other hand, was correct, 
since factorization is unique in K*{i). 

7. Further Problems. I t is clear that we must go back to 
the beginning and study the theory of primes a little more 
closely; but before I do this I should like to call your atten-
tion to a series of further problems suggested by Fermât 's 
theorem. We know now when a prime is the sum of two 
squares, and we have to consider the same problem for gen-
eral n. Here in fact there are three different problems. 

The first and most obvious problem is that of determin-
ing the necessary and sufficient conditions that n should be 
representable. This problem may be solved quite easily 
with the aid of the Gaussian numbers; n must be 2

a
M

2
N, 

where ce is 0 or 1 and N contains prime factors of the form 
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4 m + 1 only. We are then led naturally to the corresponding 
problem for other forms, first for the general binary quadratic 
form 

ax
2 + bxy + cy

2
, 

then for quadratic forms in a larger number of variables, 
such as 

x
2
 + y

2
 + z

2
, x

2
 + y

2
 + z

2
 + t

2
, 

and then for forms of higher degree, such as x
s
+y* and x 4 + y . 

There is a highly developed theory of the general quadratic 
form; the most famous theorem is perhaps Lagrange's 
theorem, that every number is the sum of four squares. But 
as soon as we begin to consider cubic or higher forms we find 
ourselves on the boundary of knowedge. There is for example 
no criterion analogous to Fermâtes by which we can decide 
whether a given number is the sum of two cubes. 

The second problem about the form x
2
+y

2 suggested by 
Fermat's theorem is that of determining the number of 

representations. This problem may be interpreted in two 
different ways. We may want an exact formula, in terms 
of the factors of n, and in this case the Gaussian theory 
again gives what we want; r(n), the number of representa-
tions, is given by the formula 

r{n) = 4{rfi(») - ds(n)}, 

where d\{n) and dz(n) are the numbers of divisors of n of 
the forms 4 m + 1 and 4 m + 3 respectively. This is, however, 
not the most interesting interpretation of the problem. 
We may want, not a formula like this, but information con-
cerning the order of magnitude of r(n), whether r(n) is gen-
erally large when n is large, whether numbers are usually 
representable freely or with difficulty. In this case our 
formula gives us very little help, and the solution of the 
problem requires quite different methods. 

I t is here that we come into contact for the first time with 
a new branch of the theory, the modern "analytic" theory. 
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This theory has two special characteristics. The first is 
one of method; it uses, besides the methods of the classical 
theory, the methods of the modern theory of functions of a 
complex variable. The second is that it is concerned pri-
marily with problems of order of magnitude and asymptotic 
distribution. The distinction is not a perfectly sharp one; 
there are "exact", "finite" theorems which have only been 
solved by "analytic" methods. For example, every number 

greater than 1010
 is expressible as the sum of 8 cubes; this 

theorem includes no reference to "order of magnitude", 
and is a "finite" theorem in just the same sense as Fermat's 
theorem about the squares, but the only known proof is 
analytic. On the whole, however, it is the problems of 
asymptotic distribution which dominate the theory. 

The answer given by the analytic theory to the special 
question which I raised is roughly as follows. The average 
value of r{n) is T. It must be observed that representations 
which differ only trivially, that is, in the sign or order of x 

and y, are reckoned as distinct. If we allow for this, the aver-
age number of representations is rather less than a half; this 
is explained by the fact that, as we shall see, most numbers 
are not representable. On the other hand r{n) tends to 
infinity with n with tolerable rapidity for numbers of appro-
priate forms, more rapidly for example than any power of 
log n. The corresponding problems for cubes or higher powers 
present difficulties which are at present quite insuperable, 
and all that I can do is to mention a few curiosities. The 
smallest number representable by two cubes in two really 
distinct ways is 

1729 = 13 + 123 = 9 3 + 103, 

and the smallest representable in three ways is probably 

175959000 = 703 + 5603 = 1983 + 5523 = 3153 + 5253. 

I t can be proved that there exist numbers with as many 
different representations as we please. A. E. Western has 
carried out very heavy computations concerning représenta-
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tions by cubes; he has for example found 6 numbers, of which 
the smallest is 1,259,712, representable as the sum of three 

cubes in six different ways. The smallest number doubly 
representable by two fourth powers is probably 

635318657 = 594 + 1584 = 1334 + 1344 ; 

there is, so far as I know, no known example of a number 
with three such representations, nor any proof that such 
a number exists. 

The nature of the problems of the analytic theory be-
comes clearer when we consider the third problem suggested 
by Fermâtes theorem. This is the problem of determining 
the distribution of the representable numbers. We want to 
know how many numbers are representable, or, to put it 
more precisely, how many numbers less than a large assigned 
number x are representable. If Q(x) is the number of such 
numbers, what is the order of magnitude of Q(x)? Are 
nearly all numbers representable, or just a majority, or 
only a few? The answer is in fact that Q(x) is approximately 

Ax 

(logx)
1
!* 

where A is a constant; to put it roughly, quite a lot of 
numbers are representable, but strictly an infinitesimal pro-
portion of the whole. This explains why the average number 
of representations turned out to be less than one. 

This problem about Q{x) is a very interesting one, but 
there is another of the same kind which is obviously still 
more interesting and much more fundamental. This is the 
problem of the distribution of the primes themselves; how 

many primes are there less than x? I shall say something about 
this problem in a moment; it is in any case time for us to 
return to the theory of primes, since all our enquiries have 
ended in questions about them, and it is obviously impossible 
to make serious progress until we know more both of their 
elementary properties and of the laws which govern their 
distribution. 
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PART II 

8. The Fundamental Theorem. The fundamental theorem 

of arithmetic is the beginning of the theory of numbers, and 
it is plain that our first task must be to make this theorem 
secure. 

There is another historical puzzle about the fundamental 
theorem. Who first stated the theorem, explicitly and 
generally? The natural answer is Euclid, since the Elements 

contain all the materials for the proof. Everything rests on 
Euclid's famous algorithm for the greatest common divisor. 
Given two numbers a, b, of which a is the greater, we form 
che table 

a = be + bi, b = biCi + b2, b\ = b2c2 + 63, • • # 

where bi, b2, • • • , a^e the remainders in the ordinary sense 
of elementary arithmetic. Since 

b>bx>b2> 

bn must sooner or later be zero. The last positive remainder 
5 has the properties implied by the words greatest common 

divisor, and it follows from the process by which S is formed 
that any number which divides both a and b divides S. 

Let us note in passing that there is an analogous process 
in K*(i), but that the analogy fails in K*[y/( — 5)]. In ordi-
nary arithmetic, given a and b, we can find a number congru-
ent to a mod b and less than b. There is a similar theorem for 
the Gaussian numbers. Here there is no strict order of 
magnitude between different numbers, and we have to use 
the order of magnitude of their norms. Given a and /3, there 
is a number, congruent to a mod (3, whose norm is less than 
that of j8. There is no such theorem in K*[\/( — 5)], and 
the process analogous to Euclid's fails. 

When the existence of S is once established, the proof of 
the fundamental theorem is easy. We write 

S = (a, 6) 
and we say that a is prime to b when (a, b) = 1. The crucial 
lemma is that if (a, b) =X and b \ac, then b\c\ in particular, a 

prime cannot divide a product without dividing one or other of 
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the factors. This once granted, anybody can construct the 
proof of the fundamental theorem for himself; and you will 
remember that it was just this proposition which led to our 
troubles in X * [ V ( - 5 ) ] . 

The lemma itself may be proved as follows. We construct 
the euclidean algorithm for a and b, with the final remainder 
1. If we multiply it throughout by c, we have the algorithm 
for ac and be, and the final remainder is c. It follows that 

(acjbc) = c. 

Since b divides ac, by hypothesis, and also be, it divides c. 

This is Euclid's own argument, and with it he had proved 
what is essential in the fundamental theorem. It is a very 
singular thing that he should then omit to state the magnifi-
cent theorem that he has proved. He is over the line and 
free, but apparently disdains the formality of touching down. 
I do not know of any formal statement of the theorem earlier 
than Gauss. The substance of the theorem, however, is in 
the Elements-, it was plainly unknown, as I explained before, 
to the Greeks from SO to 100 years before Euclid's time; and 
I see no particular reason for questioning the obvious view 
that it is Euclid's own. 

As soon as we have proved the fundamental theorem our 
elementary knowledge falls into line. The theory of linear 
congruences, the theorems of Fermât and Wilson and all 
their consequences, the elementary theory of decimals and 
of the divisors of numbers, may be developed straight-
forwardly and without the introduction of essentially new 
ideas. I can now say something about the more modern 
side of the theory of primes. 

9. Problems Concerning Primes. What are the most natural 
questions to ask about primes? I say deliberately the most 
natural', we must remember that a natural question does 
not always seem, on fuller reflection, to have been a rea-

sonable one. I t is natural to an engineer to ask us for a finite 
formula for 
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I e~
x2

dx, 

or for a solution of some simple looking differential equation 
in finite terms. If we fail to satisfy him, it is not because of 
our stupidity, but because the world does not happen to 
have been made that way. 

So, if any one asks us (1) to give a general formula f or the 

nth prime pn, a formula in the sense in which 

pn = n\ pn = n
2
 + 1, pn = [e

n
], 

where [x] denotes the integral part of x, would be a formula, 
I can only reply that it is not a reasonable question. It is, 
I will not say demonstrably impossible, but wildly im-
probable, that any such formula exists. The distribution of 
the primes is not like what it would have to be on any such 
hypothesis. I should make the same reply to a good many 
other questions which an amateur might be likely to ask, for 
example if he asked me (2) to give a rule f or finding the prime 

which immediately follows a given prime. I t would of course be 
perfectly reasonable that he should press me for the reasons 
why I gave so purely a negative a reply. On the other hand 
the problem (3) to find the number of primes below a given 

limit is, if interpreted properly, an entirely reasonable and 
a soluble problem. The problems (4) to prove that there are 

infinitely many pairs of primes differing by 2, and (5) to 

prove that there are infinitely many primes of the f or m n
2
 + l, 

are also entirely reasonable, and if (as is the case) we cannot 
solve them, it is quite reasonable to condemn our lack of 
ingenuity. 

10. The Distribution of Primes. If we wish to classify these 
problems and to decide which of them are reasonable and 
which are not, the first essential is to understand broadly the 
present state of knowledge about the distribution, the dis-
tribution in the large or asymptotic distribution, of the primes. 
It is this theory which gives the solution of problem (3). 

We denote by ir(x) the number of primes not exceeding 
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x. The first step is to prove that (a) the number of primes 

is infinite-, w(x) tends to infinity with x. This is another of 
Euclid's great contributions to knowledge, and Euclid's 
proof is perhaps the classical example of proof by reductio 
ad absurdum. If the theorem is false, we may denote the 
primes by 2, 3, 5, • • • , P , and all numbers are divisible 
by one of these. On the other hand the number 

(2-3-5 • • • P) + 1 

is obviously not divisible by any of 2, 3, • • • , P , and this 
is a contradiction. 

Another very interesting proof is due to Pólya.* It is 
easy to see that any two of the numbers 

2 + 1,22 + 1,24 + 1, • • • , «n = 2*n + 1 

are prime to each other. For suppose that p is an odd prime 
and that p\un, p \un+k. Then also 

p\2
2tl

 —l=Mn+k — 2} 

since 
x

2k
™ - 1 

is algebraically divisible by x
m
+l, and therefore 

p I un+k — (un+k — 2) = 2 , 

which is absurd. It follows that the number of primes less 
than un is at least n, and therefore that the number of primes 
is infinite. In fact the argument shows not merely that 
TT(X)—»GO but that 

T(X) > A log log x, 

where A is a constant. Something in this direction, though 
a little less, can be proved by a refinement of Euclid's 
argument. 

There is a third line of argument which is a little less 
elementary but may be made to prove a good deal more, f 

* See Pólya and Szegö, loc. cit., pp. 133, 342. 
f See Dickson's History, vol. 1, p. 414, where the proof is at tr ibuted 

to Auric. 
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If 2, 3, 5, • • • , P were the only primes, then every number 
would be of the form 

2
a
3

b
5

c • • • P
k
. 

If this number is less than x, then a fortiori 2
a is less than x, 

so that a is less than a constant multiple of logx, and the same 
argument applies to &, c) • • • , k. The number of possible 
choices of a, & , • • • , k is therefore less than a multiple of 
(logx)T, where ir is the total number of primes. In other 
words the number of numbers less than x is less than 

A (log x)
T, 

where A is a constant, and this is impossible, since x tends 
to infinity more rapidly than any power of log x. A refine-
ment of the argument leads to the inequality 

71 \^J ^ SX , 

log log x 

and the underlying principle may be stated roughly thus, 
that if the number of primes were finite, there would not be 

enough numbers to go round. 

We are still a very long way from the ultimate truth. 
I t is in fact possible to prove, and by comparatively elemen-
tary methods, that the order of magnitude ofir(x) isx(\.ogx)~

l
. 

This theorem, conjectured by Legendre and Gauss, was 
first proved by Tchebycheff in 1848. 

There are two much earlier theorems of Euler which point 
in this direction. The first is the theorem that (b) the series 

extended over all prime numbers p, is divergent. The proof of 
this theorem depends upon an identity, also due to Euler, 
upon which the whole of the modern theory of primes is 
founded. The identity is 
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l~
s
 + 2~

s
 + 3~

s
 + • • • = 2>~

s 

1 

~ (1 - 2-s)(l - 3~s)(l - 5~s) • • • 

and is valid for s > 1 ; it is at bottom merely the analytical 
expression of the fundamental theorem, and its importance 
arises from the fact that it asserts the equivalence of two 
expressions of which one contains the primes explicitly 
while the other does not. From Euler's identity we deduce 
(b) roughly as follows : if ^lp~

l were convergent, then 

would be convergent, and therfore ^n~
l would be conver-

gent, which is false. Of course the proof really needs a 
rather more careful statement. 

Euler's second theorem is (c) the quotient of TT(X) by x 

tends to zero ; or in symbols 

7r(x) 
— -*0, 

X 

or, as we write it now 

ir(x) = 0{x) . 

The proportion of primes is ultimately infinitesimal, u
almost 

all" numbers are composite. The theorem is a quite simple 
corollary of (b); roughly, if we remove from the numbers 
less than x all multiples of the primes 2, 3, • • • , p, other 
than these primes themselves, we are left something like 

• 0 - 7 ) 0 - 7 ) 0 - T ) " ( - 7 ) 
numbers. The product multiplying x tends to zero when 
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p—ïco, because of (b), and from this we can deduce Euler's 
second theorem. 

I t is rather curious that, although Euler's second theorem 
is a corollary of the first, the lessons which we learn from the 
two theorems concerning the distribution of the primes have 
exactly opposite tendencies. The second theorem tells us 
that the number of primes below a given limit is not too 

great, that the primes are in the end rather liberally spaced 
out; it is in fact exactly equivalent to the theorem that 
(d) the nth prime pn has an order of magnitude greater than 

n, or 
pn 

> oo . 
n 

If on the other hand the order of magnitude of pn were much 

greater than n, if it were for example n
2 or n

l0/9 or n(log n)
2
, 

then the series ^prT
1 would be convergent, which is just what 

Euler's first theorem denies. What we learn from the two 
theorems together is something like this. If, as we hope, 
the true order of magnitude of pn can be measured by some 
simple function <i>{n)} then that function must be of order 
higher than n, but somewhere near the boundary of con-
vergence of the series 

The' most obvious function which satisfies these require-
ments is n log n, and to say that pn is of order n log n is the 
same thing as to say that ir(x) is of order x(log x)~

l
. This is 

just what is asserted by TchebychefFs theorem. 

11. Tchebychefs Theorem. The formal statement of 
TchebychefFs theorem is (e) the order of magnitude of ir(x) 

is x(\og # ) - 1 ; there are constants A and B such that 

Ax Bx 
< w(x) < 

log x log x 

This theorem is precisely equivalent to (f) the order of mag-

nitude of pn is n log n ; there are constants A and B such that 
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An log n < pn < Bnlog n. 

The proofs of these theorems given by Tchebycheff have been 
simplified a good deal by Landau, and I can give you a 
sketch of one half of the proof which should enable you to 
understand without much difficulty the general character 
of the whole. 

We begin by replacing w(x) by another function. We can 
write TT(X) in the form 

fl"0) = ZU ; 
p~ x 

count one for every prime up to x. A more convenient and 
really a more natural function is 

d(x) = X > g £ , 

the logarithm of the product of all primes up to. x. This function 
seems at first sight a more complicated function, but it is 
easy enough to see why it is more convenient to work with. 
The most natural operation to perform on primes is mul-

tiplication, and this is the operation which we employ in 
forming 6(x). I t is because it is natural to multiply primes 
and not to add or subtract them that problems like the 
problem of the prime pairs (p, p + 2), or Goldbach's problem 
of expressing numbers as sums of primes, turn out to be so 
terribly difficult. 

Since x/x
x
~

b tends to infinity, for any positive value of 5, 
we may expect that nearly all the primes which contribute 
to 6(x) will lie in the interval (x1_ô, x)f so that their log-
arithms lie between (1 —ô) log x and log x. Hence we may 
expect 6{x) to be very much the same function as TT(X) log x, 

and in fact there is no difficulty in proving that 

6(x) ~ ir(x) log x, 

tha t is, that the ratio of the two functions tends to 1. It 
follows that the inequalities in (e) are equivalent to 

Ax < 6{x) < Bx. 
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I shall sketch the proof of the second inequality, which is 
rather the simpler. 

Suppose that x is a power of 2, say 2
m
. The primes 

between x/2 and x divide xl but not (x/2) !, so that 

xl 

The expression on the right is one term in the binomial ex-
pansion of (1 + 1)* = 2*, and therefore 

n p ̂  2*. 
x/2< p è x 

Replacing x by 

x/2, x/4, x /8 , • • • 

and multiplying the results, we find that 

pèx 

and 
6(x) S 2 log 2-x . 

This proves the theorem when x = 2 m
. If 

2
m
<x<2

m+1 

we have 

6(x) ^ 0(2m+1) ^ 4 log 2-2™ < 4 log 2-x. 

Hence we may take B—4t log 2. The proof of the second 
inequality is, as I said, not quite so simple, but does not 
involve essentially more difficult ideas. We have thus 
determined the order of magnitude of TC(X) and of pn, and 
it is perhaps a little astonishing that a problem which sounds 
so abstruse should have so comparatively simple a solution. 

n p 
x/2<vâ x 
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12. The Prime Number Theorem, Tchebychefï's solution 
of the problem is, however, one with which it is impossible 
to remain content for long, since the whole trend of our 
discussion has been to suggest that much more is true than 
we have proved. In fact Tchebychefï's work, fine as it is, 
is the record of a failure ; it is what survives of an unsuccessful 
at tempt to prove what is now called the Prime Number 

Theorem. 

This is the theorem that (g) T(X) and x(log # ) - 1 ^re asymp-

totically equivalent; the ratio of the two functions tends to unity. 

We express this by writing 

x 
T(X) ~ • 

log x 

The Prime Number Theorem is equivalent to 

pn~ nlogn, 

and we may express it very roughly by saying that the odds 

are log xto 1 that a large number x is not prime. 

The Prime Number Theorem, the central theorem of the 
analytic theory of numbers, was proved independently by 
Hadamard and by de la Vallée-Poussin in 1896. The empiri-
cal evidence for its truth had for long been overwhelming, 
and I suppose that every number-theorist since Legendre 
had tried to prove it. The theorem differs from all those 
which I have discussed so far in that it is apparently im-
possible to prove it by properly elementary methods; there 
is no proof known which does not depend essentially on 
complex function theory. I do not mean to imply that there 
is any terrible difficulty in the proof; there are considerable 
difficulties of detail, but the fundamental ideas on which 
it depends are tolerably straightforward. They are, however, 
quite unlike any of those of which I have spoken, and I 
should require a whole lecture to explain them even to a 
strictly mathematical audience. Actually, a good deal more 
is known; it can be proved that T(X) is approximated still 
more closely by the "logarithm-integral" of x, 
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/

x
 dt 

, 
j log t 

that in fact 

T(X) = Li x + O < > 
I (log x)

k
) 

for every k, the error being of lower order than the quotient 
of x by any power of log x; and it is probable, though not 
yet proved, that the order of the error does not very ma-
terially exceed that of \/x. 

13. Formulas f or Primes. I return now for a moment to 
a question which I discussed shortly before, the question 
whether it was reasonable to expect an "elementary formula" 
for the nth prime pn> Let us imagine that my questioner 
was obstinate in his desire for such a formula; how could I 
refute his successive suggestions? If he suggested 

pn = nlogn, 

I should have the obvious reply that n log n is not an integer. 
Suppose then that he modified his formula to 

pn = [n log n]. 

I should reply that his formula did not agree with the known 
facts of the asymptotic theory. I t agrees with pn~n log n} 

the first and most obvious deduction from the Prime Number 
Theorem itself; but the theory carries us much further; it 
enables us, for example, to show that 

pn = n log n + n log log n + 0{n), 

which contradicts the formula. If, becoming more cautious, 
he asked me what ground I had for denying that pn might 
be some elementary combination of 

n, logn, log log n, • • • , 

I should naturally find it harder to refute him, but I could 
advance three arguments which are enough in the aggregate 
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to make up a tolerably convincing case, (i) Since Li# is a 
very good approximation to ir(x), the inverse function 
\A~

x
n must be a very good approximation to pn. Now it is 

demonstrable that neither the logarithm integral nor its 
inverse* is an elementary function. It is therefore very 
unlikely that there should be an elementary formula for pn. 

(ii) If the "elementary formula" does not involve the symbol 
[ • • • ] of the "integral part", the function which it defines 
will generally not be integral for integral n. If it does, it 
loses all its simplicity and all its plausibility, (iii) An elemen-
tary function may be expected to behave with tolerable regu-
larity at infinity, and so may all its differences. Now ex-
tremely little is known about the difference pn+i — pn of 
two successive primes, but everything that is known, or 
seems probable from the evidence of the tables, suggests 
extreme irregularity in its behavior. The Prime Number 
Theorem shows that the average value of pn+i — pn must be 
log n, and tend to infinity with n. On the other hand there is 
overwhelming evidence that the smallest possible values of 
pn+i — pn, namely, 2, 4, 6, • • • , recur indefinitely. It seems 
practically certain, not merely that there are infinitely many 
prime pairs (p, p + 2) but that there are infinitely many trip-
lets (p, p + 2, p + 6), and so with any combination of suc-
cessive primes that is arithmetically possible; such a com-
bination as (p, p + 2, p+4:) is naturally not possible, since 
one of these numbers must be divisible by 3. All this seems 
hopelessly inconsistent with the existence of such a formula 
as was suggested, and it is clear that speculation in this 
direction is a waste of time. 

There are, however, questions which have a somewhat 
similar tendency and which cannot be dismissed so sum-
marily. There is one, for example, mentioned in Carmichael's 
little book. The problem, as he states it, is "to find a prime 

greater than a given prime" which might be interpreted as 

* This may be deduced from general theorems proved recently by 
J. F . Rit t . 
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meaning either "to find an elementary function <j>{n) such that 

<j>(n) —»co and 4>(n) is prime f or every n, or for all n beyond a 

certain limit" or as meaning "to find an elementary function 

4>{p) such that (/>(p)>p and (j>(p) is prime whenever p is prime." 

With either interpretation, it is a reasonable challenge, and 
the problem has not been solved. 

Let us take the first form of the problem, which is perhaps 
the more natural, and let us begin by demanding less, 

namely that <j){n) shall be prime only for an infinity of values 

of n. In this case the problem becomes trivial, since n is a 
solution, by Euclid's theorem. It is, however, very interesting 
to observe that even then n, and certain simple linear func-
tions such as 4n — 1 and 6n — l, are the only trivial solutions. 
Dirichlet proved that any linear function an + b has the pro-
perty required, provided only that b is prime to a, or in other 
words that every arithmetical progression (subject to the last 
reservation) contains an infinity of primes. This theorem is 
quite difficult, except in a few special cases such as those which 
I mentioned, and it exhausts our knowledge in this particular 
direction. No one has ever proved that any of the functions 

n
2
+ 1, 2

n - 1, 2
n
 + 1 

is prime for an infinity of values of n. With functions of 
two variables we can progress a good deal farther; we know 
for example that every quadratic form am

2
 + bmn+cn

2 

contains an infinity of primes, provided of course that 
a, ô, c have no common factor and that b

2
^ 4ac, and we can 

study the law of their distribution. 
To find a (j>(n) prime for every n is naturally still more 

difficult. Here linear functions are obviously useless, and 
no solution of any kind is known. Fermât conjectured that 

22w + 1, 

is always prime, but Euler proved that this is false, since 

232 + 1 = 4294967297 = 641-6700417. 
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So far as I know, no one else has ever advanced any other 
suggestion which is even plausible. 

In view of the apparently insuperable difficulties of this 
problem, there is a certain interest in negative results. I t is 
plain, first, that an + b cannot be prime for all n, or all 
large n. More generally, no polynomial 

f(n) = a0n
k
 + ain

k
~

x
 + - - - + ak 

can be prime for all or all large n\ for \if(m) — M then f(rn+m) 

is divisible by M for all r. There are entertaining curiosities 
in this field ; thus 

n
2 — n + 41 

is prime for the first 41, and 

n2 _ 7 9 n + 1 6 0 1 

for the first 80 values of n. It is obvious that forms like 

a
n — 1, a

n
 + 1 

cannot be prime for all large n, since, for example, a3m —1 is 
divisible by am— 1, and it is natural to suppose that the same 
is true for 

PO,2 w ,3" ,4 w , • • • , k
n
), 

where P is any polynomial with integral coefficients.! 

14. The Fundamental Theorem in an Algebraic Field. I 
must not allow myself to succumb to the temptation of talk-
ing too long about the theory of the distribution of primes, 
which is after all only one chapter in arithmetic. There are 
other topics about which our imaginary enquirer will cer-
tainly demand more information, and of these I think one 
stands out; it is certain that he will want fuller explanations 
about the field K*[y/( — 5)] and the other algebraic fields in 
which the analog of the fundamental theorem fails. All 
ordinary arithmetic depends, it seems, upon the fundamental 
theorem; how then can there be an arithmetic in a field in 

t Morgan Ward of Pasadena has found a very simple proof of this 
theorem. 
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which it is false? It would seem that the arithmetic of such 
a field can bear no real resemblance to ordinary arithmetic. 
I shall spend the rest of my time in an at tempt to explain, 
in the very broadest outline, how order is restored. 

I shall begin by quoting a remark of Hilbert which is 
trivial in itself but which shows us at once the direction in 
which we must look for a solution. Consider the numbers 

1,5,9,13,17,21, • • • 

of the form 4 m + 1. These numbers form a group for multipli-
cation (though naturally not for addition), and we can define 
divisibility and primality in the group. The "primes" are the 
numbers 

5,9,13,17,21,29,33,37,41,49, • • • 

which are greater than 1, of the form 4m + l, and not de-
composable into factors of this form. Thus 21, 57, 77, and 
209 are "primes"; but 

4389 = 21-209 = 57-77, 

so that a number of the group may be resolved into "prime" 
factors in different ways. 

In this case the solution of the mystery is obvious. The 
"fundamental theorem" fails because of the absence from the 

group of the numbers 4 m + 3 of ordinary arithmetic. In fact 

21 = 3-7, 57 = 3-19, 77 = 7-11, 2 0 9 = 1 1 - 1 9 

and 

21-209 = (3-7)(ll-19) = (3-19)(7-ll) = 57-77. 

We cannot give a proper account of the properties of the 
numbers 4 m + 1 so long as we insist on excluding the numbers 
4 m + 3 ; the numbers Am + 1 do not form by themselves an 

adequate basis for arithmetic. This observation has of course 
no intrinsic interest, since no reasonable person would expect 
that they would do so. It is trivial in itself, but it is not at all 
trivial in its suggestion, since it suggests that the troubles of 
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the field K* [\/( — 5) ] may be remedied by considering the field 

as part of some larger field. 

This is in fact the solution found by Kummer. We con-
sider the field L[V( — 5)] of numbers 

É = V(a + i \ / ( -5 ) ) , 

where a and b are ordinary integers. This is only an approxi-
mate statement ; we do not actually consider all such numbers, 
but only those satisfying certain further conditions; the 
greatest common divisor of a and b must be a square or five 
times a square, and a

2
 + Sb

2 must be a square. The field L 

includes i£*. The numbers of L form a group for multiplica-
tion, and we can define divisibility and primality in the 
field. Finally, the analog of the fundamental theorem is 
valid ; factorization is unique in L. The proof of this is quite 
simple, but requires a little attention to detail, and I must 
refer you for the details to Mordell's tract on Fermât's Last 

Theorem. 

We can now give a simple account of the equations in 
K*(y/( — 5)) which puzzled us before. Consider for example 
the equation 

3-7 = (1 + 2 V ( - 5))(1 - 2 V ( - 5)). 

It is easily verified that 

32 = ( 2 + v / ( - 5 ) ) ( 2 - V ( - 5 ) ) , 

72 = ( 2 + 3 v / ( - 5 ) ) ( 2 - 3 v / ( - 5 ) ) , 

(l + 2 v
/ ( - 5 ) ) 2 = - 1 9 + 4 V ( - 5 ) = - ( 2 - V ' ( - 5 ) ) ( 2 + 3 v / ( - 5 ) ) , 

( 1 _ 2 V ( - 5 ) ) 2 = - 1 9 - 4 v
/ ( - 5 ) = - ( 2 + V ( - 5 ) ) ( 2 - 3 v / ( - 5 ) ) . 

Hence, if we write 

a = V(2 + V(- 5)), a' = V(2 - V ( - 5)), 

0 = V(2 + W{~ 5)), 0' = V(2 - 3V(- 5)), 

we have 
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3 = aa',7 = Pp',l + 2\/(-5) = -a'(3, l - 2 \ / ( - 5 ) = - a / 3 ' , 

3-7 = aa'-/30' = a'p-aP' = (1 + 2 \ / ( - 5 ) ) ( 1 - 2 \ / ( ~ 5)) ; 

and all of these equations are entirely natural. In order to 

obtain a satisfactory theorem of factorization in K*, we must 

conceive iC* as immersed in the larger field L. The logic of 
the solution is exactly the same as that of the solution of 
the corresponding, but trivial, problem for the numbers 
4m + l. 

On the other hand there is an obvious contrast between 
the two solutions. It is natural to think of the field "4m + l" 
as part of the field "m" ; "m" is the more obvious and simpler 
field. It is not natural to think of K* as part of L\ K* is a 
much simpler and more natural field than L, and we should 
like to do without the reference to the latter if we could. It 
will be very tiresome if, whenever we consider an algebraic 
field, we are to be compelled to construct some more elabo-
rate field of which it is a part. We should prefer to tidy up 
the house without going out of doors. 

We may look for a hint once more in the numbers 4 m + 1. 
Some of these numbers are divisible by 7, a number outside 
the field; and these numbers stand in certain specific rela-
tions to one another inside the field. Could we give a rational 
account of these relations without explicit reference to the 
number 7? It is a very unnatural thing to try to do, since 
what is important about the numbers is precisely that they 
are divisible by 7, but we could do it; we could define the 
class 

21,49,77,105, 

of numbers 4 m + 1 divisible by 7 in terms of the field 4 m + 1 
itself. For example, we could take the first two numbers 
21 and 49, and say "the class in question is the class which 
begins with these two numbers and whose members recur at 
regular intervals in the field." It is of course an artificial 
definition, and it is impossible to conceal from ourselves 
what we are really doing. 
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It is often a very profitable exercise for a mathematician 
to force himself to solve some simple problem without 
the weapon obviously appropriate to the occasion, to throw 
away the key of the front door and insist on forcing himself 
in somehow through the window. The forced and unnatural 
solution of one problem will often turn out to contain the 
germ of a quite natural solution of another. So it proves in 
this case; it is natural to try to define the numbers of K* 

divisible by £ without going outside K* ; it is natural, and pos-
sible, and it gives us the key to what is, in the general case, 
the established method of constructing a satisfactory arith-
metic. 

It is obvious that, if a and /3 belong to K*, and £ \a and 
f |/3, then £ |Xa+/*/?, where X and /x are any numbers of X*. 
The converse proposition is not true; it is not true that if I 

is any set of numbers of the field K* which has the property 
"if a and /3 belong to I, then Xce+ju/3 belongs to I, for every 
X and ix of the field", then there exists a number £, belonging 
to i£* which divides every number of I. What is true is that 
every number of I is divisible by a £ which belongs to L but 
not in general to K*. The set I is identical with the set of num-
bers of K* divisible by £. Such a set I, or the more general set 
based on any finite number of numbers a, j3, 7, • • • , of K*, 

is called an ideal, the numbers £, underlying K* but not be-
longing to it, having been described by Kummer as "ideal 
numbers". In ordinary arithmetic ideals are simply the sets 
of numbers divisible by some special number such as 3, 
and there is nothing in particular to be gained by their 
introduction. In an algebraic field they are not, in general, 
the sets of numbers divisible by a number of the field, and their 
introduction is essential before arithmetic can get properly 
started. We can define multiplication and division of ideals, 
prime ideals, and so on, and when we have done this we find 
that the arithmetic of ideals has all the properties of ordinary 
multiplicative arithmetic. In particular, every ideal can be 

resolved uniquely into prime ideals-, the fundamental theorem 
is true when stated in terms of ideals. 
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The proof of the fundamental theorem is not particularly 
difficult; Landau presents it, with all the preliminary defini-
tions, in about a dozen pages of quite simple reasoning. But 
I would not commit the impertinence, even if I had the time, 
of assuming the airs of an expert in the algebraic theory of 
numbers, a subject which I admire only at a distance and in 
which I have never worked. It is ordinary rational arithmetic 
which attracts the ordinary man, and I have digressed out-
side it only because there is a good deal in it which it is im-
possible to appreciate properly without a little knowledge 
of the larger theory. It is impossible, for example, to appre-
ciate Euclid's arithmetical achievements until we realize 
that there are arithmetics in which the most obvious ana-
logs of his theorems are false. 

IS. Conclusion. Pedagogy. There are few things in the 
world for which I have less taste than I have for mathe-
matical pedagogics, but I cannot resist the temptation of 
concluding with one pedagogic lesson. There was, and I 
fear still is, a popular English text book of algebra which I 
used at school and which contained a chapter on the theory 
of numbers. It might be expected that such a chapter would 
be among the most instructive in the book; we might suppose, 
for example, that Euclid's algorithm, with its elegance, its 
simplicity, and its far reaching consequences, would be an 
ideal text for the instruction of a bright young mathematician. 
In fact the algorithm was never mentioned ; one was to find 
the highest common factor of 12091 and 14803, I suppose, 
by "trial" ; and all that the authors had to say of the funda-
mental theorem was that "it is so evident that it may be 
regarded as a necessary law of thought." It is possible of 
course that all this may have been expunged from later 
editions. It is certain, however, that chapters on number 
theory in textbooks of algebra are usually quite intolerably 
bad, and it is conceivable that Oxford University may have 
been right in erasing the subject altogether from its more ele-
mentary examination schedule. 
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The elementary theory of numbers should be one of the 
very best subjects for early mathematical instruction. It 
demands very little previous knowledge; its subject matter 
is tangible and familiar; the processes of reasoning which 
it employs are simple, general and few; and it is unique among 
the mathematical sciences in its appeal to natural human 
curiosity. A month's intelligent instruction in the theory of 
numbers ought to be twice as instructive, twice as useful, 
and at least ten times as entertaining as the same amount 
of "calculus for engineers". It is after all only a minority 
of us who are going to spend our lives in engineering work-
shops, and there is no particular reason why most of us should 
feel any overpowering interest in machines; nor is it in the 
least likely that, on those occasions when machines are of 
real importance to us, we shall require the power of dealing 
with them by methods more elaborate than the simplest 
rule of thumb. It is not engineering mathematics that is 
wanted for the understanding of modern physics, and still 
less is it wanted by most of us for the ordinary needs of 
life; we do not actually drive cars by solving differential 
equations. There may be a case for subordinating mathe-
matics to the linguistic and literary studies which are so 
much more obviously useful to ordinary men, but there is 
none for sacrificing a splendid subject to meet a quite imagin-
ary need. 
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