
AN INTRODUCTION TO THE
THEORY OF PIEZOELECTRICITY



Advances in Mechanics and Mathematics

Volume 9

Series Editors:

David Y. Gao
Virginia Polytechnic Institute and State University,  U.S.A.

Ray W. Ogden
University of Glasgow, U.K.

Advisory Editors:

I. Ekeland
University of British Columbia, Canada

K.R. Rajagopal
Texas A&M University, U.S.A.

T. Ratiu
Ecole Polytechnique, Switzerland

W. Yang
Tsinghua University, P.R. China



AN INTRODUCTION TO THE
THEORY OF PIEZOELECTRICITY

by

JIASHI YANG
Department of Engineering Mechanics
University of Nebraska-Lincoln, U.S.A.

Springer



eBook ISBN: 0-387-23546-9
Print ISBN: 0-387-23573-6

Print ©2005 Springer Science + Business Media, Inc.

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2005 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com



Contents

Foreword xi

Preface xiii

1 1
CHAPTER ONE 1
NONLINEAR ELECTROELASTICITY FOR STRONG FIELDS 1
1.
2.

3.
4.
5.
6.
7.
8.

DEFORMATION AND MOTION OF A CONTINUUM 1
GLOBAL BALANCE LAWS 9
2.1
2.2
2.3
2.4

Polarization 10
Piezoelectric Effects 10
Electric Body Force, Couple, and Power 11
Balance Laws 12

LOCAL BALANCE LAWS 13
MATERIAL FORM OF LOCAL BALANCE LAWS 18
CONSTITUTIVE RELATIONS 21
INITIAL-BOUNDARY-VALUE PROBLEM 24
VARIATIONAL FORMULATION 26
TOTAL STRESS FORMULATION 28

31
31
31
31
35
35
35
37
38
39
39
40
41
42
42
43

2
CHAPTER TWO
LINEAR PIEZOELECTRICITY FOR INFINITESIMAL FIELDS
1.
2.

3.

4.

LINEARIZATION
BOUNDARY-VALUE PROBLEM
2.1
2.2
2.3
2.4

Displacement-Potential Formulation
Boundary-Value Problem
Principle of Superposition
Compatibility

VARIATIONAL PRINCIPLES
3.1
3.2
3.3

Hamilton’s Principle
Mixed Variational Principles
Conservation Laws

UNIQUENESS
4.1
4.2

Poynting’s Theorem
Energy Integral



vi

5.

6.

7.
8.
9.
10.

4.3 Uniqueness 43
44
44
45
46
46
47
48
50
53
57

OTHER FORMULATIONS
5.1
5.2

Four-Vector Formulation
Vector Potential Formulation

CURVILINEAR COORDINATES
6.1
6.2

Cylindrical Coordinates
Spherical Coordinates

COMPACT MATRIX NOTATION
POLARIZED CERAMICS
QUARTZ AND LANGASITE
LITHIUM NIOBATE AND LITHIUM TANTALATE

3 59
59
59
59
60
61
61
61
62
63
64
64
64
65
65
66
67
68
68
69
70
70

71
72
74
75
78
79
82

CHAPTER THREE
STATIC PROBLEMS
1.

2.

3.

4.

5.

6.
7.
8.
9.

EXTENSION OF A CERAMIC ROD
1.1
1.2
1.3
1.4

Boundary-Value Problem
Shorted Electrodes
Open Electrodes
Electromechanical Coupling Factor

THICKNESS-STRETCH OF A CERAMIC PLATE
2.1
2.2
2.3
2.4

Boundary-Value Problem
Shorted Electrodes
Open Electrodes
Electromechanical Coupling Factor

THICKNESS-SHEAR OF A QUARTZ PLATE
3.1
3.2
3.3
3.4

Boundary-Value Problem
Free Surfaces
Clamped Surfaces
Electromechanical Coupling Factor

TORSION OF A CERAMIC CIRCULAR CYLINDER
1.1
1.2
1.3

Boundary-Value Problem
Shorted Electrodes
Open Electrodes

TANGENTIAL THICKNESS-SHEAR OF A
CERAMIC CIRCULAR CYLINDER
ANTI-PLANE PROBLEMS OF POLARIZED CERAMICS
A SURFACE DISTRIBUTION OF ELECTRIC POTENTIAL
A CIRCULAR HOLE UNDER AXISYMMETRIC LOADS
AXIAL THICKNESS-SHEAR OF A CIRCULAR CYLINDER

10.
11.

A CIRCULAR HOLE UNDER SHEAR
A CIRCULAR CYLINDER IN AN ELECTRIC FIELD



vii

12.
13.

A SCREW DISLOCATION 85
86A CRACK

4 89
89
89

CHAPTER FOUR
VIBRATIONS OF FINITE BODIES
1.

2.

3.

4.

5.

6.

7.
8.
9.

THICKNESS-STRETCH VIBRATION OF A CERAMIC
PLATE (THICKNESS EXCITATION)
1.1
1.2
1.3

Boundary-Value Problem
89
90
91
92

94
94
96
96

Free Vibration
Forced Vibration

THICKNESS-STRETCH VIBRATION OF A CERAMIC
PLATE (LATERAL EXCITATION)
2.1
2.2
2.3

Boundary-Value Problem
Free Vibration
Forced Vibration

THICKNESS-SHEAR VIBRATION OF A QUARTZ
PLATE (THICKNESS EXCITATION) 97

97
99

3.1
3.2
3.3
3.4

Boundary-Value Problem
Free Vibration
Forced Vibration 101

101Mechanical Effects of Electrodes
TANGENTIAL THICKNESS-SHEAR VIBRATION OF
A CIRCULAR CYLINDER 105

108
109
110
111
111
112
113
113
114
115
115
116
117
118
119
121
122

AXIAL THICKNESS-SHEAR VIBRATION OF A
CIRCULAR CYLINDER
5.1
5.2
5.3
5.4

Boundary-Value Problem
Clamped and Electroded Surfaces
Free and Unelectroded Surfaces
Free and Electroded Surfaces

SOME GENERAL RESULTS
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Abstract Formulation
Self-Adjointness
Reality
Orthogonality
Positivity
Variational Formulation

Perturbation Based on Variational Formulation
Perturbation Based on Abstract Formulation

EXTENSIONAL VIBRATION OF A THIN ROD
RADIAL VIBRATION OF A THIN RING
RADIAL VIBRATION OF A THIN PLATE



viii

10.
11.
12.

RADIAL VIBRATION OF A THIN CYLINDRICAL SHELL 126
127RADIAL VIBRATION OF A THIN SPHERICAL SHELL

FREQUENCY SHIFTS DUE TO SURFACE
ADDITIONAL MASS 129

135
135
135
135
137
137
139
141
143
144
145
146
147
147
148
149
151
154
154
157
160
163

5
CHAPTER FIVE
WAVES IN UNBOUNDED REGIONS
1.
2.

3.

4.

5.

6.
7.

8.
9.

PLANE WAVES
REFLECTION AND REFRACTION
2.1
2.2

Reflection
Reflection and Refraction

SURFACE WAVES
3.1
3.2

A Half-Space with an Electroded Surface
A Half-Space with an Unelectroded Surface

INTERFACE WAVES
4.1
4.2

An Electroded Interface
An Unelectroded Interface

WAVES IN A PLATE
5.1
5.2

Anti-Symmetric Waves
Symmetric Waves

WAVES IN A PLATE ON A SUBSTRATE
GAP WAVES
7.1
7.2

A Gap between Two Half-Spaces of Different Ceramics
A Gap between Two Half-Spaces of the Same Ceramic

WAVES ON A CIRCULAR CYLINDRICAL SURFACE
ACOUSTIC WAVE GENERATION

6 167
167

167
167

CHAPTER SIX
LINEAR EQUATIONS FOR SMALL FIELDS SUPERPOSED
ON FINITE BIASING FIELDS
1.
2.

3.
4.
5.
6.

A NONLINEAR SPRING
LINEARIZATION ABOUT A BIAS
2.1
2.2
2.3

Linearization of Differential Equations
A Variational Principle
Linearization Using the Total Stress Formulation

VARIATIONAL APPROACH
SMALL BIASING FIELDS
THEORY OF INITIAL STRESS
FREQUENCY PERTURBATION

169
171
174
174
175
178
179
180



ix

7. ELECTROSTRICTIVE CERAMICS 184
184
185

7.1
7.2

Nonlinear Theory
Effects of a Small, Electrical Bias

7 187
187
187
187
187
189
190
190
190
196
196
197
198
198
206
206
207
208
209
209
212
212
213
221
221
222
223
225
228

CHAPTER SEVEN
CUBIC AND OTHER EFFECTS
1.

2.

3.

4.

5.

6.

CUBIC THEORY
1.1
1.2

Cubic Effects
Quadratic Effects

NONLOCAL EFFECTS
2.1
2.2

Nonlocal Theory
Thin Film Capacitance

GRADIENT EFFECTS
3.1
3.2
3.3
3.4

Gradient Effect as a Weak Nonlocal Effect
Gradient Effect and Lattice Dynamics
Polarization Gradient
Electric Field Gradient and Electric Quadrupole

THERMAL AND VISCOUS EFFECTS
4.1
4.2
4.3
4.4
4.5

Equations in Spatial Form
Equations in Material Form
Constitutive Equations
Boundary-Value Problem
Linear Equations

SEMICONDUCTION
5.1
5.2

Governing Equations
Surface Waves

DYNAMIC THEORY
6.1
6.2
6.3
6.4
6.5

Governing Equations
Quasistatic Approximation
Anti-Plane Problems of Ceramics
Surface Waves
Electromagnetic Radiation

8
CHAPTER EIGHT
PIEZOELECTRIC DEVICES
1. GYROSCOPES

1.1
1.2

Governing Equations
An Example

235
235
235
235
236
236



2.

3.
4.

5.

TRANSFORMERS 242
242
246
247

2.1
2.2
2.3
2.4

A One-Dimensional Model
Free Vibration Analysis
Forced Vibration Analysis
Numerical Results 250

PRESSURE SENSORS 254
260TEMPERATURE SENSORS

4.1
4.2

Equations for Small Fields Superposed on a Thermal Bias 261
Analysis of a Temperature Sensor 264

VIBRATION SENSITIVITY OF A RESONATOR 269

REFERENCES 277

Index 281

Appendix 1 List of Notation 285

Appendix 2 Electroelastic Material Constants 287

x



Foreword

This book is based on lecture notes for a graduate course that has been
offered at University of Nebraska-Lincoln on and off since 1998. The course
is intended to provide graduate students with the basic aspects of the
continuum modeling of electroelastic interactions in solids. A concise
treatment of linear, nonlinear, static and dynamic theories and problems is
presented. The emphasis is on formulation and understanding of problems
useful in device applications rather than solution techniques of mathematical
problems. The mathematics used in the book is minimal. The book is
suitable for a one-semester graduate course on electroelasticity. It can also
be used as a reference for researchers. I would like to take this opportunity
to thank UNL for a Maude Hammond Fling Faculty Research Fellowship in
2003 for the preparation of the first draft of this book. I also wish to thank
Ms. Deborah Derrick of the College of Engineering and Technology at UNL
for editing assistance with the book, and Professor David Y. Gao of Virginia
Polytechnic Institute and State University for recommending this book to
Kluwer for publication in the series of Advances in Mechanics and
Mathematics.

JSY
Lincoln, Nebraska
2004



Preface

Electroelastic materials exhibit electromechanical coupling. They
experience mechanical deformations when placed in an electric field, and
become electrically polarized under mechanical loads. Strictly speaking,
piezoelectricity refers to linear electromechanical couplings only.
Electrostriction may be the simplest nonlinear electromechanical coupling,
where mechanical fields depend on electric fields quadratically in the
simplest description. Electroelastic materials have been used for a long time
to make many electromechanical devices. Examples include transducers for
converting electrical energy to mechanical energy or vice versa, resonators
and filters for frequency control and selection for telecommunication and
precise timing and synchronization, and acoustic wave sensors.

Although most of the book is devoted to the linear theory of
piezoelectricity, the book begins with a concise chapter on the nonlinear
theory of electroelasticity. It is hoped that this will be helpful for a deeper
understanding of the theory of piezoelectricity, because the linear theory is a
linearization of the nonlinear theory about a natural state with zero fields.
The presentation of the linear theory of piezoelectricity is rather independent
so that readers who are not interested in nonlinear electroelasticity can begin
directly with Section 2 of Chapter 2 on linear piezoelectricity.

Whereas the majority of books on elasticity treat static problems, the
author believes that dynamic problems deserve more attention for
piezoelectricity. Therefore, they occupy more space in this book. Chapter 3
is on linear statics and Chapters 4 and 5 are on linear dynamics. This is
because in technological applications piezoelectric materials seem to be
used in devices operating with vibration modes or propagating waves more
than with static deformations. Chapters 2 to 5 form the core for a one-
semester course on linear piezoelectricity.

Linear piezoelectricity assumes infinitesimal deviations from an ideal
reference state in which there are no pre-existing mechanical and/or electric
fields (initial or biasing fields). The presence of biasing fields makes a
material apparently behave like a different material and renders the linear
theory of piezoelectricity invalid. The behavior of electroelastic bodies
under biasing fields can be described by the linear theory for infinitesimal
incremental fields superposed on finite biasing fields, which is the subject of
Chapter 6. The theory of the incremental fields is derived from the nonlinear



xiv

theory of electroelasticity when the nonlinear theory is linearized about a
bias.

Chapter 7 gives a brief presentation of nonlinear theory including the
cubic effects of displacement gradient and electric potential gradient, linear
nonlocal theory, linear theory of gradient effects of electrical variables,
coupled thermal and dissipative effects, semiconduction, and dynamic
theory with Maxwell equations.

The development of the theory of electroelasticity was strongly
motivated and influenced by its applications in technology. A book on
piezoelectricity does not seem to be complete without some discussion on
the applications of the theory, which is given in Chapter 8. A piezoelectric
gyroscope, a transformer, a pressure sensor, a temperature sensor, and a
resonator are discussed in this chapter.

Throughout the book, effort has been made to present materials with
mathematics that are necessary and minimal. Two-point Cartesian tensors
with indices are assumed and are used from the very beginning, without
which certain concepts of the nonlinear theory cannot be made fully clear.
Some concepts from partial differential equations relevant to the well-
postness of a boundary-value problem are helpful, but classical solution
techniques of separation of variables and integral transforms, etc., are not
necessary. Although most problems appear as boundary-value problems of
partial differential equations, usually part of a solution is either known or
can be guessed from physical reasoning. Therefore some solution techniques
for ordinary differential equations are sufficient.

Many problems are analyzed in the book. Some exercise problems are
also provided. The problems were chosen based on usefulness and
simplicity. Most problems have applications in devices, and have closed-
form solutions.

Due to the use of quite a few stress tensors and electric fields in
nonlinear electroelasticity, a list of notation is provided in Appendix 1.
Material constants used in the book are given in Appendix 2.



Chapter 1

NONLINEAR ELECTROELASTICITY FOR
STRONG FIELDS

In this chapter we develop the nonlinear theory of electroelasticty for
large deformations and strong electric fields. Readers who are only
interested in linear theories may skip this chapter and begin with Chapter 2,
Section 2. This chapter uses two-point Cartesian tensor notation, the
summation convention for repeated tensor indices and the convention that a
comma followed by an index denotes partial differentiation with respect to
the coordinate associated with the index.

1. DEFORMATION AND MOTION OF A CONTINUUM

This section is on the kinematics of a deformable continuum. The
section is not meant to be a complete treatment of the subject. Only results
needed for the rest of the book are presented.

Consider a deformable continuum which, in the reference configuration
at time occupies a region V with boundary surface S (see Figure 1.1-1). N
is the unit exterior normal of S. In this state the body is free from
deformation and fields. The position of a material point in this state may be
denoted by a position vector in a rectangular coordinate system

denotes the reference or material coordinates of the material point. They
are a continuous labeling of material particles so that they are identifiable.
At time t, the body occupies a region v with boundary surface s and exterior
normal n. The current position of the material point associated with X is
given by which denotes the present or spatial coordinates of the
material point.

Since the coordinate systems are othogonal,

where and are the Kronecker delta. In matrix notation,
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Figure 1.1-1. Motion of a continuum and coordinate systems.

The transformation coefficients (shifters) between the two coordinate
systems are denoted by

In the rest of this book the two coordinate systems are chosen to be
coincident, i.e.,

Then becomes the Kronecker delta. A vector can be resolved into
rectangular components in different coordinate systems. For example, we
can also write

with

The motion of the body is described by

The displacement vector u of a material point is defined by
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or

A material line element dX at deforms into the following line element
at t:

where the deformation gradient

is a two-point tensor. The following determinant is called the Jacobian of the
deformation:

where and are the permutation tensor, and

The following relation exists identity):

As a special case, when i = p, then

With Equation (1.1 -14) it can be shown from (1.1-12) that

It can be verified that for all L, M, and N the following is true:

From Equation (1.1-17) the following can be shown:

Proof: Multiplying both sides of (1.1-17) by we have

Then
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Replacing the index r by i gives (1.1-18).
The following relation can then be derived:

Proof. Multiply both sides of (1.1-18) by

where (1.1-15) has been used. Replacing the index P by L gives (1.1-22).
The derivative of the Jacobian with respect to one of its elements is

Proof: From Equation (1.1-12)

where (1.1-22) has been used.
With (1.1-22) we can also show that

Proof: Differentiate both sides of (1.1-22) with respect to

because

Similarly, the following is true:

The length of a material line element before and after deformation is
given by

and
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where is the deformation tensor

Its inverse is

From Equation (1.1-32)

which defines J as a function of C.
It can then be shown that

where (1.1-24) has been used, and the components of C are treated as if they
were independent in the partial differentiation. Equation (1.1-36) implies
that

If J is written as a symmetric function of C in the sense that

then Equation (1.1-35) is true.
The derivative of with respect to C is given by

Proof:
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Proof: From Equation for a small variation of C,

where the components of C are treated as if they were independent in the

partial differentiation. Multiply Equation (1.1-40) by

or

Hence

Equation (1.1-39) follows when is written as a symmetric function of C
similar to (1.1-38).

From Equations (1.1-30) and (1.1-31):

where the finite strain tensor is defined by

The unabbreviated form of (1.1-45) is given below:
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At the same material point consider two non-collinear material line

elements and which deform into and The area of the

parallelogram spanned by and and that by and can be
represented by the following vectors, respectively:

They are related by

Proof:

where Equation (1.1-18) has been used.
At the same material point consider three non-coplanar material line

elements and which deform into and

The volume of the parallelepiped spanned by and and that

by and are related by

Proof:

where Equation (1.1-17) has been used.
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The velocity and acceleration of a material point are given by the
following material time derivatives:

The deformation rate tensor and the spin tensor are introduced by
decomposing the velocity gradient into symmetric and anti-symmetric parts

We also have

The strain rate and the deformation rate are related by

Proof:

The material derivative of the Jacobian is

Proof: From Equation (1.1-12)
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where Equation (1.1-22) has been used.
The following expression will be useful later in the book:

Proof: Since

we have, upon differentiating both sides,

Then

Multiplication of both sides of (1.1-63) by gives

Problems

1.1-1. Show (1.1-15) from (1.1-14).
1.1-2. Show (1.1-16).
1.1-3. Show (1.1-45).

1.1-4. Show that

2. GLOBAL BALANCE LAWS

This section summarizes the fundamental physical laws that govern the
motion of an elastic dielectric. They are experimental laws and are
postulated as the foundation for a continuum theory.
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2.1 Polarization

When a dielectric is placed in an electric field, the electric charges in its
molecules redistribute themselves microscopically, resulting in a
macroscopic polarization. The microscopic charge redistribution occurs in
different ways (see Figure 1.2-1).

Figure 1.2-1. Microscopic polarization: (a) electronic, (b) ionic, (c) orientational.

At the macroscopic level the distinctions among different polarization
mechanisms do not matter. A macroscopic polarization vector per unit
present volume,

is introduced which describes the macroscopic polarizing state of the
material.

2.2 Piezoelectric Effects

Experiments show that in certain materials polarization can also be
induced by mechanical loads. Figure 1.2-2(a) shows such a phenomenon
called the direct piezoelectric effect. The induced polarization can be at an
angle, e.g., perpendicular to the applied load, depending on the anisotropy of
the material. When the load is reversed, so is the induced polarization. When
a voltage is applied to a material possessing the direct piezoelectric effect,
the material deforms. This is called the converse piezoelectric effect (see
Figure 1.2-2(b)).



11

Figure 1.2-2. Macroscopic piezoelectric effects.

Whether a material is piezoelectric depends on its microscopic charge
distribution. For example, the charge distribution in Figure 1.2-3(a), when
deformed into Figure 1.2-3(b), results in a polarization.

Figure 1.2-3. Origin of the direct piezoelectric effect.

2.3 Electric Body Force, Couple and Power

When a mechanically deformable and electrically polarizable material is
subjected to an electric field, a differential element of the material
experiences body force and couple due to the electric field. When such a
material deforms and polarizes, the electric field also does work to the
material. Fundamental to the development of the equations of
electroelasticity is the derivation of the electric body force, couple, and
power due to the electric field. This can be done by averaging fields
associated with charged and interacting particles [1] or particles with
internal degrees of freedom [2]. Tiersten [3] introduced a physical model of
two mechanically and electrically interacting and interpenetrating continua
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to describe electric polarization macroscopically. One continuum is the
lattice continuum which carries mass and positive charges. The other is the
electronic continuum which is negatively charged and is without mass.
Electric polarization is modeled by a small, relative displacement of the
electronic continuum with respect to the lattice continuum. By systematic
applications of the basic laws of physics to each continuum and combining
the resulting equations, Tiersten [3] obtained the expressions for the electric

body force couple and power as

where E is the electric field vector, is the present mass density, (a
scalar) is the present free charge density, and is the polarization

per unit mass. The presence of the mass density in is not obvious.
It is due to a relation between the density of the bound charge and mass
density [3]. The problem at the end of this section is helpful for
understanding (1.2-2).

2.4 Balance Laws

Let l be a closed curve. The continuum theory of electroelasticity
postulates the following global balance laws in integral form:

where D is the electric displacement vector, f is the mechanical body force
per unit mass, t is the surface traction on s, and e is the internal energy per
unit mass. The equations in (1.2-3) are, respectively, Gauss’s law (the
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charge equation), Faraday’s law in quasistatic form, the conservation of
mass, the conservation of linear momentum, the conservation of angular
momentum, and the conservation of energy. In the above balance laws, the
electric field appears to be static. This is the so-called quasistatic
approximation [4]. The approximation is valid when we are considering
phenomena at elastic wavelengths which are much shorter than
electromagnetic wavelengths at the same frequency [4]. Quasistatic
approximation can be considered as the lowest order approximation of the
electrodynamic theory through a perturbation procedure [5], which will be
shown in Chapter 7, Section 6 when discussing the dynamic theory. Within
the quasistatic approximation, the electric field depends on time through
coupling to the dynamic mechanical fields. The following relation exists
among D, E, and P:

where is the permittivity of free space.

Problem

1.2-1. Derive expressions for the force, couple, and power on a single,
stretchable dipole in an electric field.

3. LOCAL BALANCE LAWS

From Equation and using the divergence theorem, we can write

Equation (1.3-2) holds for any v. Assume a continuous integrand, then

From Equation with Stoke’s theorem, the line integral along l
can be converted to a surface integral over an area s whose boundary is l:

which implies that

From Equation change the integral back to the reference
configuration
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where Equation (1.1-58) has been used. Hence

With Equations (1.1-58) and (1.3-7) it can be shown that

Proof: With the change of integration variables

The Cauchy stress tensor can be introduced by

through the usual tetrahedron argument. Then from with (1.3-8)
and the divergence theorem, the balance of linear momentum becomes

Hence

From the balance of angular momentum can be written as
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The term on the left-hand side can be written as

The last term on the right-hand side can be written as

Substituting Equations (1.3-14) and (1.3-15) back into (1.3-13), we obtain

or

Hence

which implies that

or

It will be proven convenient to introduce an electrostatic stress
tensor whose divergence yields the electric body force
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For the existence of such consider

We have

where Equation (1.2-4) has been used. We note that is not unique in the

sense that there are other tensors that also satisfy (1.3-21). For example,

adding a second rank tensor with zero divergence to the in (1.3-22) will

not affect (1.3-21). In this book we will use (1.3-22).

With the balance of linear momentum, Equation (1.3-12), can be

written as

The balance of angular momentum, Equation (1.3-20), can be written as

which shows that the sum of the Cauchy stress tensor and the

electrostatic stress tensor is symmetric, which we call the total stress

tensor and denote it by

can also be decomposed into the sum of a symmetric tensor and the

symmetric Maxwell stress tensor as follows:

From Equation the conservation of energy is
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The left-hand side can be written as

The last term on the right-hand side can be written as

Substituting (1.3-29) and (1.3-30) back into (1.3-28) gives

or

With the equation of motion (1.3-12), the left-hand side of (1.3-32)
vanishes, and what is left is

which implies that

A free energy can be introduced through the following Legendre
transform:

Then

Substitute Equation (1.3-36) into (1.3-34)

In summary, the local balance laws are


