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With the recent explosion in the amount, the variety, and the dimensionality of available

data, identifying, extracting, and exploiting their underlying structure has become a

problem of fundamental importance for data analysis and statistical learning.

Topological data analysis (TDA) is a recent and fast-growing field providing a set of new

topological and geometric tools to infer relevant features for possibly complex data. It

proposes new well-founded mathematical theories and computational tools that can be

used independently or in combination with other data analysis and statistical learning

techniques. This article is a brief introduction, through a few selected topics, to basic

fundamental and practical aspects of TDA for nonexperts.
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1 INTRODUCTION AND MOTIVATION

Topological data analysis (TDA) is a recent field that emerged from various works in applied
(algebraic) topology and computational geometry during the first decade of the century. Although
one can trace back geometric approaches to data analysis quite far into the past, TDA really started as a
field with the pioneering works of Edelsbrunner et al. (2002) and Zomorodian and Carlsson (2005) in

persistent homology and was popularized in a landmark article in 2009 Carlsson (2009). TDA is
mainly motivated by the idea that topology and geometry provide a powerful approach to infer
robust qualitative, and sometimes quantitative, information about the structure of data [e.g., Chazal
(2017)].

TDA aims at providing well-founded mathematical, statistical, and algorithmic methods to infer,
analyze, and exploit the complex topological and geometric structures underlying data that are often
represented as point clouds in Euclidean or more general metric spaces. During the last few years, a
considerable effort has been made to provide robust and efficient data structures and algorithms for
TDA that are now implemented and available and easy to use through standard libraries such as the
GUDHI library1 (C++ and Python)Maria et al. (2014) and its R software interface Fasy et al. (2014a),
Dionysus2, PHAT3, DIPHA4, or Giotto5. Although it is still rapidly evolving, TDA now provides a set

of mature and efficient tools that can be used in combination with or complementarily to other data
science tools.
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The Topological Data Analysis Pipeline
TDA has recently known developments in various directions and
application fields. There now exist a large variety ofmethods inspired
by topological and geometric approaches. Providing a complete

overview of all these existing approaches is beyond the scope of
this introductory survey. However, many standard ones rely on the
following basic pipeline that will serve as the backbone of this article:

1. The input is assumed to be a finite set of points coming with a
notion of distance—or similarity—between them. This
distance can be induced by the metric in the ambient space
(e.g., the Euclidean metric when the data are embedded in R

d)
or comes as an intrinsic metric defined by a pairwise distance
matrix. The definition of the metric on the data is usually given
as an input or guided by the application. It is, however,

important to notice that the choice of the metric may be
critical to revealing interesting topological and geometric
features of the data.

2. A “continuous” shape is built on the top of the data in order to
highlight the underlying topology or geometry. This is often a
simplicial complex or a nested family of simplicial complexes,
called a filtration, which reflects the structure of the data on
different scales. Simplicial complexes can be seen as higher-
dimensional generalizations of neighboring graphs that are
classically built on the top of data in many standard data
analysis or learning algorithms. The challenge here is to define

such structures as are proven to reflect relevant information
about the structure of data and that can be effectively
constructed and manipulated in practice.

3. Topological or geometric information is extracted from the
structures built on the top of the data. This may either result in
a full reconstruction, typically a triangulation, of the shape
underlying the data fromwhich topological/geometric features
can be easily extracted or in crude summaries or
approximations from which the extraction of relevant
information requires specific methods, such as persistent
homology. Beyond the identification of interesting
topological/geometric information and its visualization and

interpretation, the challenge at this step is to show its
relevance, in particular its stability with respect to
perturbations or the presence of noise in the input data.
For that purpose, understanding the statistical behavior of
the inferred features is also an important question.

4. The extracted topological and geometric information provides new
families of features and descriptors of the data. They can be used to
better understand the data—in particular, through
visualization—or they can be combined with other kinds of
features for further analysis and machine learning tasks. This
information can also be used to design well-suited data analysis

and machine learning models. Showing the added value and the
complementarity (with respect to other features) of the
information provided using TDA tools is an important question
at this step.

Topological Data Analysis and Statistics
Until quite recently, the theoretical aspects of TDA and topological
inference mostly relied on deterministic approaches. These

deterministic approaches do not take into account the random
nature of data and the intrinsic variability of the topological
quantity they infer. Consequently, most of the corresponding
methods remain exploratory, without being able to efficiently

distinguish between information and what is sometimes called
the “topological noise” (see Section 6.2 further in the article).

A statistical approach to TDA means that we consider data as
generated from an unknown distribution but also that the
topological features inferred using TDA methods are seen as
estimators of topological quantities describing an underlying
object. Under this approach, the unknown object usually
corresponds to the support of the data distribution (or part of
it). The main goals of a statistical approach to topological data
analysis can be summarized as the following list of problems:

Topic 1: proving consistency and studying the convergence
rates of TDA methods.
Topic 2: providing confidence regions for topological features
and discussing the significance of the estimated topological
quantities.
Topic 3: selecting relevant scales on which the topological
phenomenon should be considered, as a function of
observed data.
Topic 4: dealing with outliers and providing robust methods
for TDA.

Applications of Topological Data Analysis in
Data Science
On the application side, many recent promising and successful results
have demonstrated the interest in topological and geometric
approaches in an increasing number of fields such as material
science (Kramar et al., 2013; Nakamura et al., 2015; Pike et al.,
2020), 3D shape analysis (Skraba et al., 2010; Turner et al., 2014b),
image analysis (Qaiser et al., 2019; Rieck et al., 2020),multivariate time
series analysis (Khasawneh and Munch, 2016; Seversky et al., 2016;
Umeda, 2017), medicine (Dindin et al., 2020), biology (Yao et al.,

2009), genomics (Carrière and Rabadán, 2020), chemistry (Lee et al.,
2017; Smith et al., 2021), sensor networks De Silva and Ghrist (2007),
or transportation (Li et al., 2019), to name a few. It is beyond our scope
to give an exhaustive list of applications of TDA. On the other hand,
most of the successes of TDA result from its combination with other
analysis or learning techniques (see Section 6.5 for a discussion and
references). So, clarifying the position and complementarity of TDA

with respect to other approaches and tools in data science is also an
important question and an active research domain.

The overall objective of this survey article is two-fold. First, it
intends to provide data scientists with a brief and comprehensive

introduction to the mathematical and statistical foundations of
TDA. For that purpose, the focus is put on a few selected, but
fundamental, tools and topics, which are simplicial complexes
(Section 2) and their use for exploratory topological data analysis
(Section 3), geometric inference (Section 4), and persistent
homology theory (Section 5), which play a central role in TDA.
Second, this article also aims at demonstrating how, thanks to the
recent progress of software, TDA tools can be easily applied in data
science. In particular, we show how the Python version of the
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GUDHI library allows us to easily implement and use the TDA

tools presented in this article (Section 7). Our goal is to quickly
provide the data scientist with a few basic keys—and relevant
references—so that he can get a clear understanding of the basics

of TDA and will be able to start to use TDA methods and software
for his own problems and data.

Other reviews on TDA can be found in the literature, which are
complementary to our work. Wasserman (2018) presented a
statistical view on TDA, and it focused, in particular, on the
connections between TDA and density clustering. Sizemore
et al. (2019) proposed a survey about the application of TDA to
neurosciences. Finally, Hensel et al. (2021) proposed a recent
overview of applications of TDA to machine learning.

2 METRIC SPACES, COVERS, AND
SIMPLICIAL COMPLEXES

As topological and geometric features are usually associated with
continuous spaces, data represented as finite sets of observations
do not directly reveal any topological information per se. A
natural way to highlight some topological structure out of data
is to “connect” data points that are close to each other in order to

exhibit a global continuous shape underlying the data.
Quantifying the notion of closeness between data points is
usually done using a distance (or a dissimilarity measure), and
it often turns out to be convenient in TDA to consider data sets as
discrete metric spaces or as samples of metric spaces. This section
introduces general concepts for geometric and topological
inference; a more complete presentation of the topic is given
in the study by Boissonnat et al. (2018).

Metric Spaces
Recall that a metric space (M, ρ) is a set M with a function

ρ: M ×M→R+, called a distance, such that for any x, y, z ∈ M,
the following is the case:

i) ρ(x, y) ≥ 0 and ρ(x, y) � 0 if and only if x � y,
ii) ρ(x, y) � ρ(y, x), and
iii) ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Given a metric space (M, ρ), the set K(M) of its compact
subsets can be endowed with the so-called Hausdorff distance;
given two compact subsets A, B 4 M, the Hausdorff distance
dH(A, B) between A and B is defined as the smallest nonnegative
number δ such that for any a ∈ A, there exists b ∈ B such that ρ(a,

b) ≤ δ, and for any b ∈ B, there exists a ∈ A such that ρ(a, b) ≤ δ
(see Figure 1). In other words, if for any compact subset C4M,
we denote by d(.,C): M→R+ the distance function to C defined
by d(x, C)d inf c∈Cρ(x, c) for any x ∈M, then one can prove that
the Hausdorff distance between A and B is defined by any of the
two following equalities:

dH(A,B) � max sup
b∈B

d(b,A), sup
a∈A

d(a,B){ }
� sup

x∈M

|d(x,A) − d(x,B)| � ‖d(.,A) − d(.,B)‖∞

It is a basic and classical result that the Hausdorff distance is
indeed a distance on the set of compact subsets of a metric space.
From a TDA perspective, it provides a convenient way to quantify the
proximity between different data sets issued from the same ambient

metric space. However, it sometimes occurs that one has to compare
data sets that are not sampled from the same ambient space.
Fortunately, the notion of the Hausdorff distance can be
generalized to the comparison of any pair of compact metric
spaces, giving rise to the notion of the Gromov–Hausdorff distance.

Two compact metric spaces, (M1, ρ1) and (M2, ρ2), are
isometric if there exists a bijection ϕ: M1 → M2 that preserves
distances, that is, ρ2(ϕ(x), ϕ(y)) � ρ1(x, y) for any x, y ∈ M1. The
Gromov–Hausdorff distance measures how far two metric spaces
are from being isometric.

Definition 1. The Gromov–Hausdorff distance dGH(M1, M2)

between two compact metric spaces is the infimum of the real
numbers r ≥ 0 such that there exists a metric space (M, ρ) and two
compact subspaces C1 and C2 ⊂M that are isometric to M1 andM2

and such that dH(C1, C2) ≤ r.
The Gromov–Hausdorff distance will be used later, in Section

5, for the study of stability properties and persistence diagrams.
Connecting pairs of nearby data points by edges leads to the

standard notion of the neighboring graph from which the
connectivity of the data can be analyzed, for example, using
some clustering algorithms. To go beyond connectivity, a
central idea in TDA is to build higher-dimensional

equivalents of neighboring graphs using not only connecting
pairs but also (k + 1)-uple of nearby data points. The resulting
objects, called simplicial complexes, allow us to identify new
topological features such as cycles, voids, and their higher-
dimensional counterpart.

Geometric and Abstract Simplicial
Complexes
Simplicial complexes can be seen as higher-dimensional
generalization of graphs. They are mathematical objects that

are both topological and combinatorial, a property making
them particularly useful for TDA.

Given a setX � {x0, . . . , xk} ⊂ R
d of k + 1 affinely independent

points, the k-dimensional simplex σ � [x0, . . . , xk] spanned by X
is the convex hull ofX. The points ofX are called the vertices of σ,
and the simplices spanned by the subsets of X are called the faces
of σ. A geometric simplicial complex K in R

d is a collection of
simplices such that the following are the case:

i) any face of a simplex of K is a simplex of K and
ii) the intersection of any two simplices of K is either empty or

a common face of both.

The union of the simplices of K is a subset of Rd called the
underlying space of K that inherits from the topology ofRd . So, K
can also be seen as a topological space through its underlying
space. Notice that once its vertices are known, K is fully
characterized by the combinatorial description of a collection
of simplices satisfying some incidence rules.
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Given a set V, an abstract simplicial complex with the vertex
set V is a set ~K of finite subsets of V such that the elements of V
belong to ~K and for any σ ∈ ~K , any subset of σ belongs to ~K . The

elements of ~K are called the faces or the simplices of ~K . The
dimension of an abstract simplex is just its cardinality minus 1
and the dimension of ~K is the largest dimension of its simplices.
Notice that simplicial complexes of dimension 1 are graphs.

The combinatorial description of any geometric simplicial K
obviously gives rise to an abstract simplicial complex ~K .
The converse is also true; one can always associate with an
abstract simplicial complex ~K a topological space | ~K| such
that if K is a geometric complex whose combinatorial
description is the same as ~K , the underlying space of K is
homeomorphic to | ~K|. Such a K is called a geometric

realization of ~K . As a consequence, abstract simplicial
complexes can be seen as topological spaces and geometric
complexes can be seen as geometric realizations of their
underlying combinatorial structure. So, one can consider
simplicial complexes at the same time as combinatorial objects
that are well suited for effective computations and as topological
spaces from which topological properties can be inferred.

Building Simplicial Complexes From Data
Given a data set, or more generally, a topological or metric
space, there exist many ways to build simplicial complexes. We

present here a few classical examples that are widely used in
practice.

A first example is an immediate extension of the notion of the
α-neighboring graph. Assume that we are given a set of points X
in a metric space (M, ρ) and a real number α ≥ 0. The
Vietoris–Rips complex Ripsα(X) is the set of simplices [x0, . . . ,
xk] such that dX(xi, xj)≤ α for all (i, j), see Figure 2. It follows
immediately from the definition that this is an abstract simplicial
complex. However, in general, even whenX is a finite subset ofRd ,

Ripsα(X) does not admit a geometric realization in R
d ; in

particular, it can be of a dimension higher than d.
Closely related to the Vietoris–Rips complex is the Čech

complex Cechα(X) that is defined as the set of simplices [x0,
. . . , xk] such that the k + 1 closed balls B(xi, α) have a non-empty
intersection, see Figure 2. Notice that these two complexes are
related by

Ripsα(X)4Cechα(X)4Rips2α(X)

and that if X ⊂ R
d , then Cechα(X) and Rips2α(X) have the same

one-dimensional skeleton, that is, the same set of vertices
and edges.

The Nerve Theorem
The Čech complex is a particular case of a family of complexes
associated with covers. Given a cover U � (Ui)i∈I of M, that is, a

family of sets Ui such that M � ∪i∈IUi, the nerve of U is the
abstract simplicial complex C(U) whose vertices are the Ui’s and
such that

σ � Ui0, . . . ,Uik[ ] ∈ C U( ) if and only if ∩k
j�0Uij ≠∅.

Given a cover of a data set, where each set of the cover can
be, for example, a local cluster or a grouping of data points
sharing some common properties, its nerve provides a
compact and global combinatorial description of the
relationship between these sets through their intersection
patterns (see Figure 3).

A fundamental theorem in algebraic topology relates, under
some assumptions, the topology of the nerve of a cover to the
topology of the union of the sets of the cover. To be formally
stated, this result, known as the Nerve theorem, requires the

introduction of a few notions.
Two topological spaces, X and Y, are usually considered as

being the same from a topological point of view if they are

FIGURE 1 | Left: the Hausdorff distance between two subsets A and B of the plane. In this example, dH(A, B) is the distance between the point a in A which is the

farthest from B and its nearest neighbor b on B. Right: the Gromov–Hausdorff distance between A and B. A can be rotated—this is an isometric embedding of A in the

plane—to reduce its Hausdorff distance to B. As a consequence, dGH(A, B) ≤ dH(A, B).
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homeomorphic, that is, if there exist two continuous bijective

maps f: X → Y and g: Y → X such that f°g and g°f are the identity
map of Y and X, respectively. In many cases, asking X and Y to be
homeomorphic turns out to be too strong a requirement to ensure
that X and Y share the same topological features of interest for
TDA. Two continuous maps f0, f1: X→ Y are said to be homotopic
if there exists a continuous map H: X × [0, 1] → Y such that for
any x ∈ X, H(x, 0) � f0(x) and H(x, 1) � g(x). The spaces X and Y
are then said to be homotopy equivalent if there exist two maps, f:
X → Y and g: Y → X, such that f°g and g°f are homotopic to the
identity map of Y and X, respectively. The maps f and g are then
called homotopy equivalent. The notion of homotopy

equivalence is weaker than the notion of homeomorphism; if
X and Y are homeomorphic, then they are obviously homotopy
equivalent, but the converse is not true. However, spaces that are
homotopy equivalent still share many topological invariants; in
particular, they have the same homology (see Section 4).

A space is said to be contractible if it is homotopy equivalent to
a point. Basic examples of contractible spaces are the balls and,
more generally, the convex sets in R

d . Open covers for whom all
elements and their intersections are contractible have the
remarkable following property.

Theorem 1 (Nerve theorem). Let U � (Ui)i∈I be a cover of a

topological space X by open sets such that the intersection of any
subcollection of the Ui’s is either empty or contractible. Then, X and
the nerve C(U) are homotopy equivalent.

It is easy to verify that convex subsets of Euclidean spaces are
contractible. As a consequence, if U � (Ui)i∈I is a collection of
convex subsets of R

d , then C(U) and ∪i∈IUi are homotopy
equivalent. In particular, if X is a set of points in R

d , then the
Čech complex Cechα(X) is homotopy equivalent to the union of
balls ∪x∈XB(x, α).

The Nerve theorem plays a fundamental role in TDA; it

provides a way to encode the topology of continuous spaces
into abstract combinatorial structures that are well suited for the
design of effective data structures and algorithms.

3 USING COVERS AND NERVES FOR
EXPLORATORY DATA ANALYSIS AND
VISUALIZATION: THE MAPPER
ALGORITHM

Using the nerve of covers as a way to summarize, visualize, and
explore data is a natural idea that was first proposed for TDA in the
study by Singh et al. (2007), giving rise to the so-called Mapper
algorithm.

Definition 2. Let f : X→R
d , d ≥ 1, be a continuous real valued

function and let U � (Ui)i∈I be a cover ofR
d . The pull-back cover of

X induced by (f ,U) is the collection of open sets (f −1(Ui))i∈I. The
refined pull-back is the collection of connected components of the
open sets f−1(Ui), i ∈ I.

The idea of the Mapper algorithm is, given a data set X and
a well-chosen real-valued function f : X→R

d , to summarize
X through the nerve of the refined pull-back of a cover U of
f (X) (see Figure 4A). For well-chosen covers U (see below),
this nerve is a graph providing an easy and convenient way to
visualize the summary of the data. It is described in
Algorithm 1 and illustrated on a simple example in
Figure 4B.

The Mapper algorithm is very simple (see Algorithm 1); but it
raises several questions about the various choices that are left to
the user and that we briefly discuss in the following.

FIGURE 2 | Čech complex Cechα(X) (left) and the Vietoris–Rips Rips2α(X) (right) of a finite point cloud in the plane R
2. The bottom part of Cechα (X) is the union of

two adjacent triangles, while the bottom part of Rips2α(X) is the tetrahedron spanned by the four vertices and all its faces. The dimension of the Čech complex is 2. The

dimension of the Vietoris–Rips complex is 3. Notice that this latter is thus not embedded in R
2.
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The Choice of f
The choice of the function f, sometimes called the filter or lens
function, strongly depends on the features of the data that one
expects to highlight. The following ones are among the ones more
or less classically encountered in the literature:

-Density estimates: the Mapper complex may help to
understand the structure and connectivity of high-density
areas (clusters).
-PCA coordinates or coordinate functions obtained from a nonlinear
dimensionality reduction (NLDR) technique, eigenfunctions of graph
laplacians may help to reveal and understand some ambiguity in the
use of nonlinear dimensionality reductions.
-The centrality function f (x) � ∑y∈Xd(x, y) and the
eccentricity function f (x) � maxy∈Xd(x, y) sometimes appear
to be good choices that do not require any specific knowledge
about the data.

-For data that are sampled around one-dimensional
filamentary structures, the distance function to a given
point allows us to recover the underlying topology of the
filamentary structures Chazal et al. (2015d).

The Choice of the Cover U
When f is a real-valued function, a standard choice is to take U to
be a set of regularly spaced intervals of equal length, r > 0, covering
the set f (X). The real r is sometimes called the resolution of the cover,
and the percentage g of overlap between two consecutive intervals is

called the gain of the cover. Note that if the gain g is chosen below 50%,
then every point of the real line is covered by, atmost, 2 open sets ofU ,
and the output nerve is a graph. It is important to notice that the
output of Mapper is very sensitive to the choice of U , and small
changes in the resolution and gain parameters may result in very large

changes in the output, making the method very unstable. A classical
strategy consists in exploring some range of parameters and selecting
the ones that turn out to provide themost informative output from the
user perspective.

The Choice of the Clusters
The Mapper algorithm requires the clustering of the preimage of
the open sets U ∈ U . There are two strategies to compute the
clusters. A first strategy consists in applying, for each U ∈ U , a
cluster algorithm, chosen by the user, to the preimage f−1(U). A
second, more global, strategy consists in building a neighboring

graph on the top of the data setX, for example, a k-NN graph or a
ε-graph, and, for each U ∈ U , taking the connected components
of the subgraph with the vertex set f−1(U).

Theoretical and Statistical Aspects of
Mapper
Based on the results on stability and the structure of Mapper
proposed in the study by Carrière and Oudot (2017), advances
toward a statistically well-founded version of Mapper have been
made recently in the study by Carriere et al. (2018).

Unsurprisingly, the convergence of Mapper depends on both
the sampling of the data and the regularity of the filter function.
Moreover, subsampling strategies can be proposed to select a
complex in a Rips filtration on a convenient scale, as well as the
resolution and the gain for defining the Mapper graph. The case
of stochastic and multivariate filters has also been studied by
Carrière and Michel (2019). An alternative description of the
probabilistic convergence of Mapper, in terms of categorification,
has also been proposed in the study by Brown et al. (2020). Other
approaches have been proposed to study and deal with the

FIGURE 3 | Point cloud sampled in the plane and a cover of open sets for this point cloud (left). The nerve of this cover is a triangle (right). Edges correspond to a set

of the cover whereas a vertex corresponds to a non-empty intersection between two sets of the cover.

Algorithm 1 | The Mapper algorithm

Input: a data set X with a metric or a dissimilarity measure between data

points, a function f : X→R (or Rd ), and a cover U of f (X)
for each U ∈ U decompose f−1(U) into clusters CU,1 , . . . ,CU,kU .

Compute the nerve of the cover of X defined by the CU,1 , . . . ,CU,kU , U ∈ U.

Output: a simplicial complex; the nerve (often a graph for well-chosen covers →

easy to visualize) includes the following:

- a vertex vU,i for each cluster CU,i and

- an edge between vU,i and vU′,j if CU,i ∩ CU′,j ≠ ∅.
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instabilities of the Mapper algorithm in the works of Dey et al.
(2016), Dey et al. (2017).

Data Analysis With Mapper
As an exploratory data analysis tool, Mapper has been
successfully used for clustering and feature selection. The idea

is to identify specific structures in the Mapper graph (or
complex), in particular, loops and flares. These structures are
then used to identify interesting clusters or to select features or
variables that best discriminate the data in these structures.
Applications on real data, illustrating these techniques, may be
found, for example, in the studies by Carrière and Rabadán
(2020), Lum et al. (2013), Yao et al. (2009).

4 GEOMETRIC RECONSTRUCTION AND
HOMOLOGY INFERENCE

Another way to build covers and use their nerves to exhibit the
topological structure of data is to consider the union of balls
centered on the data points. In this section, we assume that Xn �

{x0, . . . , xn} is a subset of Rd , sampled i. i. d. according to a
probability measure μ with compact support M ⊂ R

d . The
general strategy to infer topological information about M from
μ proceeds in two steps that are discussed in the following part of
this section:

1. Xn is covered by a union of balls of a fixed radius centered on
the xi’s. Under some regularity assumptions on M, one can
relate the topology of this union of balls to the one of M and

2. from a practical and algorithmic perspective, topological
features of M are inferred from the nerve of the union of
balls, using the Nerve theorem.

In this framework, it is indeed possible to compare spaces
through isotopy equivalence, a stronger notion than
homeomorphism; X4R

d and Y4R
d are said to be (ambient)

isotopic if there exists a continuous family of homeomorphisms
H: [0, 1] × R

d
→R

d , H continuous, such that for any t ∈ [0, 1],
Ht � H(t, .): Rd

→R
d is a homeomorphism, H0 is the identity

map inRd , andH1(X) � Y. Obviously, ifX and Y are isotopic, then
they are homeomorphic. The converse is not true; a knotted circle
and an unknotted circle inR3 are not homeomorphic (notice that
although this claim seems rather intuitive, its formal proof

requires the use of some nonobvious algebraic topology tools).

4.1 Distance-Like Functions and
Reconstruction
Given a compact subset K ofRd and a nonnegative real number r,
the union of balls of radius r centered on K, Kr

� ∪x∈KB(x, r),
called the r-offset of K, is the r-sublevel set of the distance
function dK : R

d
→R defined by dK(x) � inf y∈K‖x − y‖; in

FIGURE 4 | (A) Refined pull-back cover of the height function on a surface in R
3 and its nerve. (B)Mapper algorithm on a point cloud sampled around a circle and

the height function. First, the pull-back cover of the height function defined on the point cloud is computed and refined (left). Second, the nerve of the refined pull-back is

visualized as a graph (right).
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other words, Kr � d−1k ([0, r]). This remark allows us to use
differential properties of distance functions and to compare
the topology of the offsets of compact sets that are close to
each other with respect to the Hausdorff distance.

Definition 3 (Hausdorff distance in R
d). The Hausdorff

distance between two compact subsets K, K′ of Rd is defined by

dH K ,K ′( ) � ‖dK − dK′‖∞ � sup
x∈Rd

|dK(x) − dK ′(x)|.

In our setting, the considered compact sets are the data set Xn

and of the support M of the measure μ. When M is a
smooth compact submanifold, under mild conditions on
dH(Xn,M), for some well-chosen r, the offsets of Xn are
homotopy equivalent to M Chazal and Lieutier (2008), Niyogi
et al. (2008) (see Figure 5 for an illustration). These results extend

to larger classes of compact sets and lead to stronger results on the
inference of the isotopy type of the offsets of M Chazal et al.
(2009c), Chazal et al. (2009d). They also lead to results on the
estimation of other geometric and differential quantities such as
normals Chazal et al. (2009c), curvatures Chazal et al. (2009e), or
boundary measures Chazal et al. (2010) under assumptions on
the Hausdorff distance between the underlying shape and the
data sample.

These results rely on the one-semiconcavity of the squared
distance function d2K , that is, the convexity of the function
x→ ‖x‖2 − d2K (x), and can be naturally stated in the following

general framework.
Definition 4. A function ϕ: Rd

→R+ is distance-like if it is
proper (the preimage of any compact set in R is a compact set in
R

d) and x → ‖x‖2 − ϕ2(x) is convex.

Thanks to its semiconcavity, a distance-like function ϕ has a
well-defined, but not continuous, gradient ∇ϕ: Rd

→R
d that can

be integrated into a continuous flow (Petrunin, 2007) that allows
us to track the evolution of the topology of its sublevel sets and to
compare it to one of the sublevel sets of close distance-like
functions.

Definition 5. Let ϕ be a distance-like function and let ϕr �
ϕ−1([0, r]) be the r-sublevel set of ϕ.

• A point x ∈ R
d is called α-critical if ‖∇xϕ‖ ≤ α. The

corresponding value r � ϕ(x) is also said to be α-critical.
• The weak feature size of ϕ at r is the minimum r′ > 0 such
that ϕ does not have any critical value between r and r + r′.
We denote it by wfsϕ(r). For any 0 < α < 1, the α-reach of ϕ is
the maximum r such that ϕ−1((0, r]) does not contain any
α-critical point.

The weak feature size wfsϕ(r) (resp. α-reach) measures the
regularity of ϕ around its r-level sets (resp. O-level set). When ϕ �

dK is the distance function to a compact set K ⊂ R
d , the one-reach

coincides with the classical reach from geometric measure theory

Federer (1959). Its estimation from random samples has been
studied by Aamari et al. (2019). An important property of a
distance-like function ϕ is that the topology of their sublevel sets
ϕr can only change when r crosses a 0-critical value.

Lemma 1 (isotopy lemma grove (1993)). Let ϕ be a distance-
like function and r1 < r2 be two positive numbers such that ϕ has no
0-critical point, that is, points x such that ∇ϕ(x) � 0, in the subset
ϕ−1([r1, r2]). Then all the sublevel sets ϕ

−1([0, r]) are isotopic for r ∈
[r1, r2].

FIGURE 5 | Example of a point cloudXn sampled on the surface of a torus inR3 (top left) and its offsets for different values of radii r1 < r2 < r3. For well-chosen values
of the radius (e.g., r1 and r2), the offsets are clearly homotopy equivalent to a torus.
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As an immediate consequence of the isotopy lemma, all the

sublevel sets of ϕ between r and r + wfsϕ(r) have the same
topology. Now the following reconstruction theorem from
Chazal et al. (2011b) provides a connection between the
topology of the sublevel sets of close distance-like functions.

Theorem 2 (Reconstruction theorem). Let ϕ, ψ be two
distance-like functions such that ‖ϕ − ψ‖∞ < ε, with reachα(ϕ)
≥ R for some positive ε and α. Then, for every r ∈ [4ε/α2, R − 3ε]
and every η ∈ (0, R), the sublevel sets ψr and ϕη are homotopy
equivalent when

ε≤
R

5 + 4/α2
.

Under similar but slightly more technical conditions, the
Reconstruction theorem can be extended to prove that the
sublevel sets are indeed homeomorphic and even isotopic
(Chazal et al., 2009c; Chazal et al., 2008).

Coming back to our setting and taking for ϕ � dM and ψ � dXn

the distance functions to the support M of the measure μ and to
the data set Xn, the condition reachα(dM) ≥ R can be interpreted
as the regularity condition on M6. The Reconstruction theorem
combined with the Nerve theorem tells that for well-chosen
values of r, η and the η-offsets of M are homotopy equivalent
to the nerve of the union of balls of radius r centered on Xn, that
is, the Cech complex Cechr(Xn).

From a statistical perspective, the main advantage of these
results involving the Hausdorff distance is that the estimation of
the considered topological quantities boils down to support

estimation questions that have been widely studied (see

Section 4.3).

4.2 Homology Inference
The above results provide a mathematically well-founded
framework to infer the topology of shapes from a simplicial
complex built on the top of an approximating finite sample.
However, from a more practical perspective, it raises two issues.
First, the Reconstruction theorem requires a regularity
assumption through the α-reach condition that may not
always be satisfied and the choice of a radius r for the ball
used to build the Čech complex Cechr(Xn). Second, Cechr(Xn)

provides a topologically faithful summary of the data through a
simplicial complex that is usually not well suited for further data
processing. One often needs topological descriptors that are easier
to handle, in particular numerical ones, which can be easily
computed from the complex. This second issue is addressed
by considering the homology of the considered simplicial
complexes in the next paragraph, while the first issue will be
addressed in the next section with the introduction of persistent
homology.

Homology in a Nutshell
Homology is a classical concept in algebraic topology, providing a
powerful tool to formalize and handle the notion of the
topological features of a topological space or of a simplicial
complex in an algebraic way. For any dimension k, the
k-dimensional “holes” are represented by a vector space Hk,
whose dimension is intuitively the number of such
independent features. For example, the zero-dimensional
homology group H0 represents the connected components of
the complex, the one-dimensional homology groupH1 represents

FIGURE 6 | Some examples of chains, cycles, and boundaries on a two-dimensional complex K: c1, c2, and c4 are one-cycles; c3 is a one-chain but not a one-

cycle; c4 is the one-boundary, namely, the boundary of the two-chain obtained as the sum of the two triangles surrounded by c4. The cycles c1 and c2 span the same

element in H1(K) as their difference is the two-chain represented by the union of the triangles surrounded by the union of c1 and c2.

6As an example, if M is a smooth compact submanifold, then reach0(ϕ) is always

positive and known as the reach of M Federer (1959).
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the one-dimensional loops, the two-dimensional homology
group H2 represents the two-dimensional cavities, and so on.

To avoid technical subtleties and difficulties, we restrict the
introduction of homology to the minimum that is necessary to

understand its usage in the following of the article. In particular,
we restrict our information to homology with coefficients in Z2,
that is, the field with two elements, 0 and 1, such that 1 + 1 � 0,
which turns out to be geometrically a little bit more intuitive.
However, all the notions and results presented in the sequel
naturally extend to homology with coefficients in any field. We
refer the reader to the study by Hatcher (2001) for a complete and
comprehensible introduction to homology and to the study by
Ghrist (2017) for a recent, concise, and very good introduction to
applied algebraic topology and its connections to data analysis.

Let K be a (finite) simplicial complex and let k be a

nonnegative integer. The space of k-chains on K, Ck(K) is the
set whose elements are the formal (finite) sums of k-simplices of
K. More precisely, if {σ1, . . . , σp} is the set of k-simplices ofK, then
any k-chain can be written as

c � ∑p
i�1

εiσ i with εi ∈ Z2.

If c′ � ∑p
i�1εi′σ i is another k-chain and λ ∈ Z2, the sum c + c′ is

defined as c + c′ � ∑p
i�1(εi + εi′ )σ i and the product λ.c is defined as

λ.c � ∑p
i�1(λ.εi)σ i, making Ck(K) a vector space with coefficients

in Z2. Since we are considering coefficients in Z2, geometrically, a
k-chain can be seen as a finite collection of k-simplices and the
sum of two k-chains as the symmetric difference of the two
corresponding collections7.

The boundary of a k-simplex σ � [v0, . . . , vk] is the (k − 1)-
chain

zk(σ) � ∑k
i�0

(−1)i v0, . . . , v̂i, . . . , vk][

where [v0, . . . , v̂i, . . . , vk] is the (k − 1)-simplex spanned by all the
vertices except vi

8. As the k-simplices form a basis of Ck(K), zk
extends as a linear map from Ck(K) to Ck−1(K) called the

boundary operator. The kernel Zk(K) � {c ∈ Ck(K): zk � 0} of
zk is called the space of k-cycles of K, and the image Bk(K) � {c ∈
Ck(K): ∃c′ ∈ Ck+1(K), zk+1(c′) � c} of zk+1 is called the space of
k-boundaries of K. The boundary operators satisfy the following
fundamental property:

zk−1°zk ≡ 0 for any k ≥ 1.

In other words, any k-boundary is a k-cycle, that is, Bk(K) 4
Zk(K) 4 Ck(K). These notions are illustrated in Figure 6.

Definition 6 (simplicial homology group and Betti numbers).
The kth (simplicial) homology group of K is the quotient vector
space

Hk(K) � Zk(K)/Bk(K).

The kth Betti number of K is the dimension βk(K) � dimHk(K)
of the vector space Hk(K).

Figure 7 gives the Betti numbers of several simple spaces. Two
cycles, c, c′ ∈ Zk(K), are said to be homologous if they differ by a
boundary, that is, if there exists a (k + 1)-chain d such that c′ � c +
zk+1(d). Two such cycles give rise to the same element of Hk. In
other words, the elements of Hk(K) are the equivalence classes of
homologous cycles.

FIGURE 7 | Betti numbers of the circle (top left), the two-dimensional sphere (top right), and the two-dimensional torus (bottom). The blue curves on the torus

represent two independent cycles whose homology class is a basis of its one-dimensional homology group.

7Recall that the symmetric difference of two sets A and B is the set AΔB � (A \ B) ∪

(B \ A).

8Notice that as we are considering coefficients in Z2 , here −1 � 1 and thus (−1)i � 1

for any i.
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Simplicial homology groups and Betti numbers are topological
invariants; if K, K′ are two simplicial complexes whose geometric
realizations are homotopy equivalent, then their homology
groups are isomorphic and their Betti numbers are the same.

Singular homology is another notion of homology that allows
us to consider larger classes of topological spaces. It is defined for
any topological space X similarly to simplicial homology, except
that the notion of the simplex is replaced by the notion of the
singular simplex, which is just any continuous map σ: Δk → X
where Δk is the standard k-dimensional simplex. The space of

k-chains is the vector space spanned by the k-dimensional
singular simplices, and the boundary of a simplex σ is defined
as the (alternated) sum of the restriction of σ to the (k − 1)-
dimensional faces of Δk. A remarkable fact about singular
homology is that it coincides with simplicial homology
whenever X is homeomorphic to the geometric realization of a
simplicial complex. This allows us, in the sequel of this article, to
indifferently talk about simplicial or singular homology for
topological spaces and simplicial complexes.

Observing that if f: X → Y is a continuous map, then for any
singular simplex σ: Δk→ X in X, f °σ: Δk→ Y is a singular simplex

in Y, one easily deduces that continuous maps between
topological spaces canonically induce homomorphisms
between their homology groups. In particular, if f is a
homeomorphism or a homotopy equivalence, then it induces
an isomorphism between Hk(X) and Hk(Y) for any nonnegative
integer k. As an example, it follows from the Nerve theorem that
for any set of points X ⊂ R

d and any r > 0, the r-offset Xr and the
Čech complex Cechr(X) have isomorphic homology groups and
the same Betti numbers.

As a consequence, the Reconstruction theorem 2 leads to the
following result on the estimation of Betti numbers.

Theorem 3. Let M ⊂ R
d be a compact set such that reachα(dM)

≥ R > 0 for some α ∈ (0, 1) and let X be a finite set of points such
that dH(M,X) � ε< R

5+4/α2
. Then, for every r ∈ [4ε/α2, R − 3ε] and

every η ∈ (0, R), the Betti numbers of Cechr(X) are the same as the
ones of Mη.

In particular, if M is a smooth m-dimensional submanifold of
R

d , then βk(Cechr(X)) � βk(M) for any k � 0, . . . , m.
From a practical perspective, this result raises three difficulties:

first, the regularity assumption involving the α-reach ofMmay be
too restrictive; second, the computation of the nerve of a union of

balls requires the use of a tricky predicate testing the emptiness of
a finite union of balls; third, the estimation of the Betti numbers
relies on the scale parameter r, whose choice may be a problem.

To overcome these issues, Chazal and Oudot (2008)
established the following result, which offers a solution to the
first two problems.

Theorem 4. Let M ⊂ R
d be a compact set such that wfs(M) �

wfsdM(0)≥R> 0 and let X be a finite set of points such that
dH(M,X) � ε< 1

9
wfs(M). Then for any r ∈ [2ε, 1

4
(wfs(M) − ε)]

and any η ∈ (0, R),

βk Xη( ) � rk Hk Ripsr(X)( )→Hk Rips4r(X)( )( )
where rk(Hk(Ripsr(X))→Hk(Rips4r(X))) denotes the rank of the
homomorphism induced by the (continuous) canonical
inclusion Ripsr(X)-Rips4r(X).

Although this result leaves the question of the choice of the
scale parameter r open, it is proven in the study by Chazal and
Oudot (2008) that a multiscale strategy whose description is
beyond the scope of this article provides some help in identifying
the relevant scales on which Theorem 4 can be applied.

4.3 Statistical Aspects of Homology
Inference
According to the stability results presented in the previous
section, a statistical approach to topological inference is
strongly related to the problem of distribution support
estimation and level sets estimation under the Hausdorff
metric. A large number of methods and results are available
for estimating the support of a distribution in statistics. For
instance, the Devroye and Wise estimator (Devroye and Wise,
1980) defined on a sampleXn is also a particular offset of Xn. The
convergence rates of both Xn and the Devroye and Wise
estimator to the support of the distribution for the Hausdorff

distance were studied by Cuevas and Rodríguez-Casal (2004) in
R

d . More recently, the minimax rates of convergence of manifold
estimation for the Hausdorff metric, which is particularly relevant
for topological inference, has been studied by Genovese et al.
(2012). There is also a large body of literature about level sets
estimation in various metrics (see, for instance, Cadre, 2006;
Polonik, 1995; Tsybakov, 1997) and, more particularly, for the
Hausdorff metric Chen et al. (2017). All these works about

FIGURE 8 | Effect of outliers on the sublevel sets of distance functions. Adding just a few outliers to a point cloud may dramatically change its distance function and

the topology of its offsets.
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support and level sets estimation shed light on the statistical
analysis of topological inference procedures.

In the study by Niyogi et al. (2008), it was shown that the
homotopy type of Riemannian manifolds with a reach larger

than a given constant can be recovered with high probability
from offsets of a sample on (or close to) the manifold. This
article was probably the first attempt to consider the
topological inference problem in terms of probability. The
result of the study by Niyogi et al. (2008) was derived from a
retract contraction argument and was on tight bounds over
the packing number of the manifold in order to control the
Hausdorff distance between the manifold and the observed
point cloud. The homology inference in the noisy case, in the
sense that the distribution of the observation is concentrated
around the manifold, was also studied by Niyogi et al. (2008),

Niyogi et al. (2011). The assumption that the geometric
object is a smooth Riemannian manifold is only used in
the article to control in probability the Hausdorff distance
between the sample and the manifold and is not actually
necessary for the “topological part” of the result. Regarding
the topological results, these are similar to those of the
studies by Chazal et al. (2009d), Chazal and Lieutier
(2008) in the particular framework of Riemannian
manifolds. Starting from the result of the study by Niyogi
et al. (2008), the minimax rates of convergence of the
homology type have been studied by Balakrishna et al.

(2012) under various models for Riemannian manifolds
with a reach larger than a constant. In contrast, a
statistical version of the work of Chazal et al. (2009d) has
not yet been proposed.

More recently, following the ideas of Niyogi et al. (2008),
Bobrowski et al. (2014) have proposed a robust homology
estimator for the level sets of both density and regression
functions, by considering the inclusion map between nested
pairs of estimated level sets (in the spirit of Theorem 4
above) obtained using a plug-in approach from a kernel
estimator.

4.4 Going Beyond Hausdorff Distance:
Distance to Measure
It is well known that distance-based methods in TDA may fail

completely in the presence of outliers. Indeed, adding even a
single outlier to the point cloud can change the distance function
dramatically (see Figure 8 for an illustration). To answer this
drawback, Chazal et al. (2011b) have introduced an alternative
distance function which is robust to noise, the distance-to-
measure.

Given a probability distribution P in R
d and a real parameter

0 ≤ u ≤ 1, the notion of distance to the support of P may be
generalized as the function

δP,u: x ∈ R
d
1inf t > 0 ; P(B(x, t))≥ u{ },

where B(x, t) is the closed Euclidean ball of center x and radius t.
To avoid issues due to discontinuities of the map P → δP,u, the
distance-to-measure (DTM) function with parameter m ∈ [0, 1]
and power r ≥ 1 is defined by

dP,m,r(x): x ∈ R
d
1

1

m
∫m

0

δrP,u(x) du( )1/r

. (1)

A nice property of the DTM proved by Chazal et al. (2011b) is
its stability with respect to perturbations of P in the Wasserstein
metric. More precisely, the map P → dP,m,r is m

−1
r-Lipschitz, that

is, if P and ~P are two probability distributions on R
d , then

‖dP,m,r − d~P,m,r‖∞ ≤m−1rWr(P, ~P) (2)

whereWr is the Wasserstein distance for the Euclidean metric on
R

d , with exponent r9. This property implies that the DTM
associated with close distributions in the Wasserstein metric
have close sublevel sets. Moreover, when r � 2, the function
d2P,m,2 is semiconcave, ensuring strong regularity properties on the
geometry of its sublevel sets. Using these properties, Chazal et al.
(2011b) showed that under general assumptions, if ~P is a

probability distribution approximating P, then the sublevel sets
of d~P,m,2 provide a topologically correct approximation of the
support of P.

In practice, the measure P is usually only known through a
finite set of observations Xn � {X1, . . . ,Xn} sampled from P,
raising the question of the approximation of the DTM. A
natural idea to estimate the DTM from Xn is to plug the
empirical measure Pn instead of P into the definition of the
DTM. This “plug-in strategy” corresponds to computing the
distance to the empirical measure (DTEM). For m � k

n
, the

DTEM satisfies

dr
Pn ,k/n,r

(x)d
1

k
∑k
j�1

‖x − Xn‖
r
(j),

where ‖x − Xn‖(j) denotes the distance between x and its jth
neighbor in {X1, . . . , Xn}. This quantity can be easily computed in

practice since it only requires the distances between x and the
sample points. The convergence of the DTEM to the DTM has
been studied by Chazal et al. (2017) and Chazal et al. (2016b).

The introduction of the DTMhasmotivated further works and
applications in various directions such as topological data
analysis (Buchet et al., 2015a), GPS trace analysis (Chazal
et al., 2011a), density estimation (Biau et al., 2011), hypothesis
testing Brécheteau (2019), and clustering (Chazal et al., 2013), just
to name a few. Approximations, generalizations, and variants of
the DTM have also been considered (Guibas et al., 2013; Phillips
et al., 2014; Buchet et al., 2015b; Brécheteau and Levrard, 2020).

5 PERSISTENT HOMOLOGY

Persistent homology is a powerful tool used to efficiently
compute, study, and encode multiscale topological features of
nested families of simplicial complexes and topological spaces.
It does not only provide efficient algorithms to compute the

Betti numbers of each complex in the considered families, as

9See Villani (2003) for a definition of the Wasserstein distance
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required for homology inference in the previous section, but
also encodes the evolution of the homology groups of the
nested complexes across the scales. Ideas and preliminary

results underlying persistent homology theory can be traced
back to the 20th century, in particular in the works of
Barannikov (1994), Frosini (1992), Robins (1999). It started
to know an important development in its modern form after
the seminal works of Edelsbrunner et al. (2002) and
Zomorodian and Carlsson (2005).

5.1 Filtrations
A filtration of a simplicial complex K is a nested family of
subcomplexes (Kr)r∈T, where T4R, such that for any r, r′ ∈

T, if r ≤ r′ then Kr 4 Kr’ and K � ∪r∈TKr. The subset T may be

either finite or infinite. More generally, a filtration of a topological
space M is a nested family of subspaces (Mr)r∈T, where T4R,
such that for any r, r′ ∈ T, if r ≤ r′ thenMr4Mr’ andM � ∪r∈TMr.
For example, if f : M→R is a function, then the family Mr �

f−1((−∞, r]), r ∈ R defines a filtration called the sublevel set
filtration of f.

In practical situations, the parameter r ∈ T can often be
interpreted as a scale parameter, and filtrations classically used
in TDA often belong to one of the two following families.

Filtrations Built on Top of Data
Given a subsetX of a compact metric space (M, ρ), the families of
Rips–Vietoris complexes (Ripsr(X))r∈R and Čech complexes
(Cechr(X))r∈R are filtrations10. Here, the parameter r can be

interpreted as a resolution at which one considers the data set
X. For example, if X is a point cloud in R

d , thanks to the
Nerve theorem, the filtration (Cechr(X))r∈R encodes the
topology of the whole family of unions of balls X

r �

∪x∈XB(x, r), as r goes from 0 to + ∞. As the notion of
filtration is quite flexible, many other filtrations have been
considered in the literature and can be constructed on the top
of data, such as the so-called witness complex popularized in
TDA by De Silva and Carlsson (2004), the weighted Rips
filtrations Buchet et al. (2015b), or the so-called DTM
filtrations Anai et al. (2019) that allow us to handle data

corrupted by noise and outliers.

Sublevel Sets Filtrations
Functions defined on the vertices of a simplicial complex give rise to
another important example of filtration: letK be a simplicial complex

FIGURE 9 | (A) Example 1: the persistence barcode and the persistence diagram of a function f : [0, 1]→R. (B) Example 2: the persistence barcode and the

persistence diagram of the height function (projection on the z-axis) defined on a surface in R
3.

10We take here the convention that for r < 0, Ripsr(X) � Cechr(X) � ∅

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 66796313

Chazal and Michel An Introduction to TDA

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


with vertex set V and f : V →R. Then f can be extended to all
simplices of K by f([v0, . . . , vk]) � max{f(vi): i � 1, . . . , k} for any
simplex σ � [v0, . . . , vk] ∈ K and the family of subcomplexes,Kr � {σ

∈ K: f(σ) ≤ r}, defines a filtration called the sublevel set filtration of f.
Similarly, one can define the upper-level set filtration of f.

In practice, even if the index set is infinite, all the considered
filtrations are built on finite sets and are indeed finite. For
example, when X is finite, the Vietoris–Rips complex Ripsr(X)
changes only at a finite number of indices, r. This allows us to
easily handle them from an algorithmic perspective.

5.2 Starting With a Few Examples
Given a filtration Filt � (Fr)r∈T of a simplicial complex or a
topological space, the homology of Fr changes as r increases;

new connected components can appear, existing components can
merge, loops and cavities can appear or be filled, etc. Persistent

homology tracks these changes, identifies the appearing features,
and associates a lifetime with them. The resulting information is
encoded as a set of intervals called a barcode or, equivalently, as a

multiset of points in R
2 where the coordinate of each point is the

starting and end point of the corresponding interval.
Before giving formal definitions, we introduce and illustrate

persistent homology on a few simple examples.

Example 1
Let f : [0, 1]→R be the function of Figure 9A and let Fr �
f −1((−∞, r))r∈R be the sublevel set filtration of f. All the sublevel
sets of f are either empty or a union of intervals, so the only nontrivial
topological information they carry is their zero-dimensional
homology, that is, their number of connected components. For

r < a1, Fr is empty, but at r � a1, a first connected component appears
in Fa1. Persistent homology thus registers a1 as the birth time of a

FIGURE 10 | The sublevel set filtration of the distance function to a point cloud and the construction of its persistence barcode as the radius of balls increases. The blue curves in

the unions of balls represent one-cycles associatedwith the blue bars in the barcodes. The persistence diagram is finally defined from the persistence barcodes. (A) For the radius r � 0,

theunionof balls is reduced to the initial finite set of points, eachof themcorresponding toa zero-dimensional feature, that is, a connectedcomponent; an interval is created for thebirth for

each of these features at r � 0. (B) Some of the balls started to overlap, resulting in the death of some connected components that get merged together; the persistence diagram

keeps trackof thesedeaths, putting anendpoint to the corresponding intervals as they disappear. (C)Newcomponents havemerged, giving rise to a single connectedcomponent and,

so, all the intervals associated with a zero-dimensional feature have been ended, except the one corresponding to the remaining components; two new one-dimensional features have

appeared, resulting in twonew intervals (inblue) startingon their birth scale. (D)Oneof the twoone-dimensional cycleshasbeen filled, resulting in itsdeath in the filtrationand theendof the

corresponding blue interval. (E)All the one-dimensional features have died; only the long (and never dying) red interval remains. As in the previous examples, the final barcode can also be

equivalently represented as a persistence diagram where every interval (a, b) is represented by the point of coordinates (a, b) in R
2. Intuitively, the longer an interval in the barcode or,

equivalently, the farther from the diagonal the corresponding point in the diagram, the more persistent, and thus relevant, the corresponding homological feature across the

filtration. Notice also that for a given radius r, the kth Betti number of the corresponding union of balls is equal to the number of persistence intervals

corresponding to k-dimensional homological features and containing r. So, the persistence diagram can be seen as a multiscale topological signature encoding

the homology of the union of balls for all radii as well as its evolution across the values of r.
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connected component and starts to keep track of it by creating an
interval starting at a1. Then, Fr remains connected until r reaches the
value a2, where a second connected component appears. Persistent
homology starts to keep track of this new connected component by

creating a second interval starting at a2. Similarly, when r reaches a3,
a new connected component appears and persistent homology
creates a new interval starting at a3. When r reaches a4, the two
connected components created at a1 and a3merge together to give a
single larger component. At this step, persistent homology follows
the rule that it is the most recently appeared component in the
filtration that dies; the interval started at a3 is thus ended at a4, and a
first persistence interval encoding the life span of the component
born at a3 is created. When r reaches a5, as in the previous case, the
component born at a2 dies, and the persistent interval (a2, a5) is
created. The interval created at a1 remains until the end of the

filtration, giving rise to the persistent interval (a1, a6), if the filtration
is stopped at a6, or (a1, + ∞), if r goes to + ∞ (notice that in this
latter case, the filtration remains constant for r > a6). The obtained
set of intervals encoding the life span of the different homological
features encountered along the filtration is called the persistence
barcode of f. Each interval (a, a′) can be represented by the point of
coordinates (a, a′) in the R

2 plane. The resulting set of points is
called the persistence diagram of f. Notice that a function may have
several copies of the same interval in its persistence barcode. As a
consequence, the persistence diagram of f is indeed amulti-set where
each point has an integer-valued multiplicity. Last, for technical

reasons that will become clear in the next section, one adds to the
persistence all the points of the diagonal Δ � {(b, d): b � d} with an
infinite multiplicity.

Example 2
Let f : M→R now be the function of Figure 9B, whereM is a two-
dimensional surface homeomorphic to a torus, and let Fr �
f −1((−∞, r))r∈R be the sublevel set filtration of f. The zero-
dimensional persistent homology is computed as in the previous
example, giving rise to the red bars in the barcode. Now, the
sublevel sets also carry one-dimensional homological features.

When r goes through the height a1, the sublevel sets Fr that
were homeomorphic to two discs become homeomorphic to the
disjoint union of a disc and an annulus, creating a first cycle
homologous to σ1 in Figure 9B. An interval (in blue) representing
the birth of this new one-cycle is thus started at a1. Similarly, when r
goes through the height a2, a second cycle, homologous to σ2, is
created, giving rise to the start of a new persistent interval. These
two created cycles are never filled (indeed, they span H1(M)) and
the corresponding intervals remain until the end of the filtration.
When r reaches a3, a new cycle is created that is filled and thus dies
at a4, giving rise to the persistence interval (a3, a4). So now, the

sublevel set filtration of f gives rise to two barcodes, one for zero-
dimensional homology (in red) and one for one-dimensional
homology (in blue). As previously stated, these two barcodes
can equivalently be represented as diagrams in the plane.

Example 3
In this last example, we consider the filtration given by a union of
growing balls centered on the finite set of points C in Figure 10.
Notice that this is the sublevel set filtration of the distance

function to C, and thanks to the Nerve theorem, this filtration
is homotopy equivalent to theČech filtration built on the top ofC.
Figure 10 shows several level sets of the filtration as follows:

a) For the radius r � 0, the union of balls is reduced to the initial
finite set of points, each of them corresponding to a zero-
dimensional feature, that is, a connected component; an
interval is created for the birth for each of these features at r � 0.

b) Some of the balls started to overlap, resulting in the death of
some connected components that get merged together; the
persistence diagram keeps track of these deaths, putting an
end point to the corresponding intervals as they disappear.

c) New components have merged, giving rise to a single
connected component and, so, all the intervals associated
with a zero-dimensional feature have been ended, except the

one corresponding to the remaining components; two new
one-dimensional features have appeared, resulting in two new
intervals (in blue) starting on their birth scale.

d) One of the two one-dimensional cycles has been filled,
resulting in its death in the filtration and the end of the
corresponding blue interval.

e) All the one-dimensional features have died; only the long (and
never dying) red interval remains. As in the previous examples,
the final barcode can also be equivalently represented as a
persistence diagram where every interval (a, b) is represented
by the point of coordinates (a, b) in R

2. Intuitively, the longer an

interval in the barcode or, equivalently, the farther from the
diagonal the corresponding point in the diagram, the more
persistent, and thus relevant, the corresponding homological
feature across the filtration. Notice also that for a given radius
r, the kth Betti number of the corresponding union of balls is equal
to the number of persistence intervals corresponding to
k-dimensional homological features and containing r. So, the
persistence diagram can be seen as a multiscale topological
signature encoding the homology of the union of balls for all
radii as well as its evolution across the values of r.

5.3 Persistent Modules and Persistence
Diagrams
Persistent diagrams can be formally and rigorously defined in a
purely algebraic way. This requires some care, and we only give
the basic necessary notions here, leaving aside technical subtleties
and difficulties. We refer the readers interested in a detailed
exposition to Chazal et al. (2016a).

Let Filt � (Fr)r∈T be a filtration of a simplicial complex or a
topological space. Given a nonnegative integer k and considering
the homology groups Hk(Fr), we obtain a sequence of vector

spaces where the inclusions Fr ⊂ Fr’, r ≤ r′ induce linear maps
between Hk(Fr) and Hk(Fr’). Such a sequence of vector spaces
together with the linear maps connecting them is called a
persistence module.

Definition 7. A persistence module V over a subset T of the real
numbers R is an indexed family of vector spaces (Vr|r ∈ T) and a
doubly indexed family of linear maps (vrs : Vr →Vs | r ≤ s) which
satisfy the composition law vst◦v

r
s � vrt whenever r ≤ s ≤ t, and

where vrr is the identity map on Vr.
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In many cases, a persistence module can be decomposed into a
direct sum of interval modules I(b,d) of the form

. . . , → 0→ . . . , → 0→Z2 → . . . , →Z2 → 0→ . . .

where the maps Z2 →Z2 are identity maps while all the other maps
are 0. Denoting b (resp. d), the infimum (resp. supremum) of the
interval of indices corresponds to nonzero vector spaces; such a
module can be interpreted as a feature that appears in the filtration at
index b and disappears at index d. When a persistencemoduleV can

be decomposed as a direct sum of interval modules, one can show
that this decomposition is unique up to reordering the intervals (see
(Chazal et al., 2016a, Theorem 2.7)). As a consequence, the set of
resulting intervals is independent of the decomposition of V and is
called the persistence barcode of V. As in the examples of the
previous section, each interval (b, d) in the barcode can be
represented as the point of coordinates (b, d) in the plane R

2.
The disjoint union of these points, together with the diagonal Δ �

{x � y}, is a multi-set called the persistence diagram of V.
The following result, from (Chazal et al., 2016a, Theorem 2.8),

gives some necessary conditions for a persistence module to be
decomposable as a direct sum of interval modules.

Theorem 5. LetV be a persistence module indexed by T ⊂ R. If
T is a finite set or if all the vector spaces Vr are finite-dimensional,
then V is decomposable as a direct sum of interval modules.
Moreover, for any s, t ∈ T, s ≤ t, the number βst of intervals
starting before s and ending after t is equal to the rank of the linear
map vst and is called the (s, t)-persistent Betti number of the
filtration.

As both conditions above are satisfied for the persistent
homology of filtrations of finite simplicial complexes, an
immediate consequence of this result is that the persistence
diagrams of such filtrations are always well defined.

Indeed, it is possible to show that persistence diagrams can be
defined as soon as the following simple condition is satisfied.

Definition 8. A persistence module V indexed by T ⊂ R is
q-tame if for any r < s in T, the rank of the linear map vrs : Vr →Vs

is finite.
Theorem 6 Chazal et al. (2009a), Chazal et al. (2016a). IfV is a

q-tame persistence module, then it has a well-defined persistence
diagram. Such a persistence diagram dgm(V) is the union of the
points of the diagonal Δ of R2, counted with infinite multiplicity,
and a multi-set above the diagonal inR2 that is locally finite. Here,
by locally finite, we mean that for any rectangle R with sides

parallel to the coordinate axes that does not intersect Δ, the
number of points of dgm(V), counted with multiplicity,
contained in R is finite. Also, the part of the diagram made of
the points with the infinite second coordinate is called the essential
part of the diagram.

The construction of persistence diagrams of q-tame modules is
beyond the scope of this article, but it gives rise to the same notion as
in the case of decomposable modules. It can be done either by
following the algebraic approach based upon the decomposability

properties of modules or by adopting a measure theoretic approach
that allows us to define diagrams as integer-valued measures on a
space of rectangles in the plane. We refer the reader to Chazal et al.
(2016a) for more information.

Although persistence modules encountered in practice are
decomposable, the general framework of the q-tame persistence
module plays a fundamental role in the mathematical and
statistical analysis of persistent homology. In particular, it is
needed to ensure the existence of limit diagrams when
convergence properties are studied (see Section 6).

A filtration Filt � (Fr)r∈T of a simplicial complex or of a
topological space is said to be tame if for any integer k, the

persistence module (Hk(Fr)|r ∈ T) is q-tame. Notice that the
filtrations of finite simplicial complexes are always tame. As
a consequence, for any integer k, a persistence diagram
denoted dgmk(Filt) is associated with the filtration Filt.
When k is not explicitly specified and when there is no
ambiguity, it is usual to drop the index k in the notation
and to talk about “the” persistence diagram dgm(Filt) of the
filtration Filt. This notation has to be understood as
“dgmk(Filt) for some k.”

5.4 Persistence Landscapes
The persistence landscape introduced in the study by Bubenik
(2015) is an alternative representation of persistence diagrams.
This approach aims at representing the topological information
encoded in persistence diagrams as elements of a Hilbert space,
for which statistical learning methods can be directly applied. The
persistence landscape is a collection of continuous, piecewise
linear functions λ: N × R→R that summarizes a persistence
diagram dgm.

A birth–death pair p � (b, d) ∈ dgm is transformed into the
point (b+d

2
,

d−b
2
) (see Figure 11). Remember that the points with

FIGURE 11 | Example of a persistence landscape (right) associated with a persistence diagram (left). The first landscape is in blue, the second one in red, and the

last one in orange. All the other landscapes are zero.
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infinite persistence have been simply discarded in this definition.
The landscape is then defined by considering the set of functions
created by tenting the features of the rotated persistence diagram
as follows:

Λp(t) �

t − b t ∈ b,
b + d

2
[ ]

d − t t ∈
b + d

2
, d( ]

0 otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

The persistence landscape λdgm of dgm is a summary of the
arrangement of piecewise linear curves obtained by overlaying the
graphs of the functions {Λp}p∈dgm. Formally, the persistence
landscape of dgm is the collection of functions

λdgm(k, t) � kmax
r∈dgm

Λr(t), t ∈ [0,T], k ∈ N, (4)

where kmax is the kth largest value in the set; in particular, 1max
is the usual maximum function. Given k ∈ N, the function

λdgm(k, .): R→R is called the kth landscape of dgm. It is not
difficult to see that the map that associates to each persistence
diagram its corresponding landscape is injective. In other words,
formally, no information is lost when a persistence diagram is
represented through its persistence landscape.

The advantage of the persistence landscape representation
is two-fold. First, persistence diagrams are mapped as elements
of a functional space, opening the door to the use of a broad
variety of statistical and data analysis tools for further
processing of topological features see Bubenik (2015),
Chazal et al. (2015c) and Section 6.3.1. Second, and

fundamental from a theoretical perspective, the persistence
landscapes share the same stability properties as those of
persistence diagrams (see Section 5.7).

5.5 Linear Representations of Persistence
Homology
A persistence diagram without its essential part can be
represented as a discrete measure on Δ+

� {p � (b, d), b < d <
∞}. With a slight abuse of notation, we can write the following:

dgm � ∑
p∈dgm

δp,

where the features are counted with multiplicity and where δ(b,d)
denotes the Dirac measure in p � (b, d). Most of the persistence-
based descriptors that have been proposed to analyze persistence
can be expressed as linear transformations of the persistence
diagram, seen as a point process

Ψ(dgm) � ∑
p∈dgm

f (p),

for some function f defined on Δ and taking values in a
Banach space.

In most cases, we want these transformations to apply
independently at each homological dimension. For k ∈ N a
given homological dimension, we then consider some linear
transformation of the persistence diagram, restricted to the
topological features of dimension k as follows:

Ψk dgmk( ) � ∑
p∈dgmk

fk(p), (5)

where dgmk is the persistence diagram of the topological features
of dimension k and where fk is defined on Δ and takes values in a
Banach space.

Betti Curve
The simplest way to represent persistence homology is the Betti
function or the Betti curve. The Betti curve of homological
dimension k is defined as

βk(t) � ∑
(b,d)∈dgm

w(b, d)1t∈[b,d]

where w is a weight function defined on Δ. In other words, the Betti
curve is the number of barcodes at timem. This descriptor is a linear
representation of persistence homology by taking f in (5) such that
f(b, d) (t) � w(b, d)1t∈[b,d]. A typical choice for the weigh function is
an increasing function of the persistencew(b, d) � ~w(d − b) where ~w
is an increasing function defined onR+. One of the first applications

of Betti curves can be found in the study by Umeda (2017).

Persistence Surface
The persistence surface (also called persistence images) is
obtained by making the convolution of a diagram with a
kernel. It has been introduced in the study by Adams et al.
(2017). For K: R2

→R, a kernel, andH, a 2 × 2 bandwidth matrix
(e.g., a symmetric positive definite matrix), let for u ∈ R

2

FIGURE 12 | Perfect matching and the bottleneck distance between a

blue and a red diagram. Notice that some points of both diagrams are

matched to points of the diagonal.
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KH(u) � det(H)
−1/2K H−1/2u( ).

Let w: R2
→R+ a weight function defined on Δ. One defines

the persistence surface of homological dimension k associated
with a diagram dgm, with kernel K and bandwidth matrix H by
the following:

∀u ∈ R
2
, ρk(dgm)(u) � ∑

p∈dgmk

w(r)KH(u − p).

The persistence surface is obviously a linear representation of

persistence homology. Typical weigh functions are increasing
functions of the persistence.

Other Linear Representations of
Persistence
Many other linear representations of persistence have been proposed
in the literature, such as the persistence silhouette (Chazal et al.,
2015b), the accumulated persistence function (Biscio and Møller,
2019), and variants of the persistence surface (Reininghaus et al.,
2015; Kusano et al., 2016; Chen et al., 2017).

Considering persistence diagrams as discrete measures and
their vectorizations as linear representation is an approach that
has also proven fruitful to studying distributions of diagrams
Divol and Chazal (2020) and the metric structure of the space of
persistence diagrams Divol and Lacombe (2020) (see Sections 5.6
and Section 6.3).

5.6 Metrics on the Space of Persistence
Diagrams
To exploit the topological information and topological features

inferred from persistent homology, one needs to be able to
compare persistence diagrams, that is, to endow the space of
persistence diagrams with a metric structure. Although several
metrics can be considered, the most fundamental one is known as
the bottleneck distance.

Recall that a persistence diagram is the union of a discrete
multi-set in the half-plane above the diagonal Δ and, for technical
reasons that will become clear below, of Δ where the point of Δ is
counted with infinite multiplicity. A matching (see Figure 12)
between two diagrams, dgm1 and dgm2, is a subset m 4 dgm1 ×

dgm2 such that every point in dgm1 \Δ and dgm2 \Δ appears

exactly once inm. In other words, for any p ∈ dgm1 \Δ and for any
q ∈ dgm2 \Δ, ({p}× dgm2) ∩m and (dgm1 ×{q}) ∩m each contains
a single pair. The bottleneck distance between dgm1 and dgm2 is
then defined by

db dgm1, dgm2( ) � inf
matching m

max
(p,q)∈m

‖p − q‖∞.

The practical computation of the bottleneck distance boils
down to the computation of a perfect matching in a bipartite
graph for which classical algorithms can be used.

The bottleneck metric is an L∞-like metric. It turns out to be
the natural one to express stability properties of persistence
diagrams presented in Section 5.7, but it suffers from the
same drawbacks as the usual L∞ norms, that is, it is

completely determined by the largest distance among the pairs
and does not take into account the closeness of the remaining
pairs of points. A variant to overcome this issue, the so-called
Wasserstein distance between diagrams, is sometimes considered.

Given p ≥ 1, it is defined by

Wp dgm1, dgm2( )p � inf
matching m

∑
(p,q)∈m

‖p − q‖p
∞
.

Useful stability results for persistence in the Wp metric exist
among the literature, in particular the study by Cohen-Steiner
et al. (2010), but they rely on assumptions that make them

consequences of the stability results in the bottleneck metric.
A general study of the space of persistence diagrams endowed
with Wp metrics has been considered in the study by Divol and
Lacombe (2020), where they proposed a general framework,
based upon optimal partial transport, in which many
important properties of persistence diagrams can be proven in
a natural way.

5.7 Stability Properties of Persistence
Diagrams
A fundamental property of persistence homology is that

persistence diagrams of filtrations built on the top of data sets
turn out to be very stable with respect to some perturbations of
the data. To formalize and quantify such stability properties, we
first need to be precise with regard to the notion of perturbation
that is allowed.

Rather than working directly with filtrations built on the top of
data sets, it turns out to be more convenient to define a notion of
proximity between persistence modules, from which we will derive a
general stability result for persistent homology. Then, most of the
stability results for specific filtrations will appear as a consequence of
this general theorem. To avoid technical discussions, from now on,

we assume, without loss of generality, that the considered persistence
modules are indexed by R.

Definition 9. Let V,W be two persistence modules indexed by
R. Given δ ∈ R, a homomorphism of degree δ between V andW is
a collectionΦ of linear maps ϕr: Vr→Wr+δ, for all r ∈ R such that
for any r ≤ s, ϕs◦v

r
s � wr+δ

s+δ◦ϕr .
An important example of a homomorphism of degree δ is the

shift endomorphism 1δ
V
which consists of the families of linear

maps (vrr+δ). Notice also that homomorphisms of modules can
naturally be composed; the composition of a homomorphism Ψ
of degree δ between U and V and a homomorphism Φ of degree

δ′ betweenV andW naturally gives rise to a homomorphismΦΨ
of degree δ + δ′ between U and W.

Definition 10. Let δ ≥ 0. Two persistence modules V,W are
δ-interleaved if there exist two homomorphisms of degree δ, Φ,
from V to W and Ψ, from W to V such that ΨΦ � 12δ

V

and ΦΨ � 12δ
W
.

Although it does not define a metric on the space of
persistence modules, the notion of closeness between two
persistence modules may be defined as the smallest
nonnegative δ such that they are δ-interleaved. Moreover, it
allows us to formalize the following fundamental theorem

(Chazal et al., 2009a; Chazal et al., 2016a).
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Theorem 7 (Stability of persistence). Let V and W be two
q-tame persistence modules. IfV andW are δ-interleaved for some
δ ≥ 0, then

db(dgm(V), dgm(W))≤ δ.

Although purely algebraic and rather abstract, this result is
an efficient tool to easily establish concrete stability results in
TDA. For example, we can easily recover the first persistence
stability result that appeared in the literature (Cohen-Steiner
et al., 2005).

Theorem 8. Let f , g: M→R be two real-valued functions
defined on a topological space M that are q-tame, that is, such
that the sublevel set filtrations of f and g induce q-tame modules at
the homology level. Then for any integer k,

db dgmk( f ), dgmk( g)( )≤ ‖f − g‖∞ � sup
x∈M

| f (x) − g(x)|

where dgmk(f) (resp. dgmk(g)) is the persistence diagram of
the persistence module (Hk( f

−1(−∞, r))|r ∈ R) (resp.
(Hk(g

−1(−∞, r))|r ∈ R)) where the linear maps are the one
induced by the canonical inclusion maps between sublevel sets.

Proof. Denoting δ � ‖f − g‖∞, we have that for any r ∈ R,
f −1(−∞, r)4g−1(−∞, r + δ) and g−1(−∞, r)4f −1(−∞, r + δ).
This interleaving between the sublevel sets of f induces a
δ-interleaving between the persistence modules at the homology
level, and the result follows from the direct application of Theorem 7.

Theorem 7 also implies a stability result for the persistence
diagrams of filtrations built on the top of data.

Theorem 9. Let X and Y be two compact metric spaces and let
Filt(X) and Filt(Y) be the Vietoris–Rips of Čech filtrations built on
the top of X and Y. Then

db(dgm(Filt(X)), dgm(Filt(Y)))≤ 2dGH(X,Y)

where dgm(Filt(X)) and dgm(Filt(Y)) denote the persistence
diagram of the filtrations Filt(X) and Filt(X).

As we already noticed in Example 3 of Section 5.2, the
persistence diagrams can be interpreted as multiscale topological

features of X and Y. In addition, Theorem 9 tells us that these
features are robust with respect to perturbations of the data in the
Gromov–Hausdorff metric. They can be used as discriminative features
for classification or other tasks (see, for example, Chazal et al. (2009b) for
an application to nonrigid 3D shape classification).

We now give similar results for the alternative persistence
homology representations introduced before. From the definition
of the persistence landscape, we immediately observe that λ(k, ·) is
one-Lipschitz, and thus, stability properties similar to those for
persistence diagrams are satisfied for the landscapes.

Proposition 1 (stability of persistence landscapes; Bubenik

(2015)). Let dgm and dgm’ be two persistence diagrams (without
their essential parts). For any t ∈ R and any k ∈ N, we have the
following:

(i) λ(k, t) ≥ λ(k + 1, t) ≥ 0.
(ii) |λ(k, t) − λ′(k, t)| ≤ db(dgm, dgm′)).

A large class of linear representations is continuous with
respect to the Wasserstein metric Ws in the space of

persistence diagrams and with respect to the Banach norm of
the linear representation of persistence. Generally speaking, it is
not always possible to upper bound the modulus of continuity of
the linear representation operator. However, in the case where s �

1, it is even possible to show a stability result if the weight function
takes small values for points close to the diagonal (see Divol and
Lacombe (2020), Hofer et al. (2019b)).

Stability Versus Discriminative Capacity of
Persistence Representations
The results of the study by Divol and Lacombe (2020) showed
that continuity and stability are only possible with weigh
functions taking small values for points close to the diagonal.
However, in general, there is no specific reason to consider that
points close to the diagonal are less important than others, given a
learning task. In a machine learning perspective, it is also relevant
to design linear representation with general weigh functions,
although it would be more difficult to prove the consistency of
the corresponding methods without at least the continuity of the

representation. Stability is thus important but maybe too strong a
requirement for many problems in data sciences. Designing linear
representation that is sensitive to specific parts of persistence
diagrams rather than globally stable may reveal a good strategy in
practice.

6 STATISTICAL ASPECTS OF PERSISTENT
HOMOLOGY

Persistence homology by itself does not take into account the
random nature of data and the intrinsic variability of the
topological quantity they infer. We now present a statistical

approach to persistent homology, in the sense that data are
considered to be generated from an unknown distribution. We
start with several consistency results for persistent homology
inference.

6.1 Consistency Results for Persistent
Homology
Assume that we observe n points (X1, . . . , Xn) in a metric space
(M, ρ) drawn i. i. d. from an unknown probability measure μ

whose support is a compact set denoted Xμ. The

Gromov–Hausdorff distance allows us to compare Xμ with
compact metric spaces not necessarily embedded in M. In the
following, an estimator X̂ of Xμ is a function of X1 . . . , Xn that
takes values in the set of compact metric spaces.

Let Filt(Xμ) and Filt(X̂) be two filtrations defined onXμ and X̂.
Starting from Theorem 9; a natural strategy for estimating the
persistent homology of Filt(Xμ) consists in estimating the support
Xμ. Note that in some cases, the space M can be unknown and the
observations X1 . . . , Xn are then only known through their
pairwise distances ρ(Xi, Xj), i, j � 1, . . . , n. The use of the
Gromov–Hausdorff distance allows us to consider this set of

observations as an abstract metric space of cardinality n,
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independently of the way it is embedded in M. This general
framework includes the more standard approach consisting
in estimating the support with respect to the Hausdorff
distance by restraining the values of X̂ to the compact sets
included in M.

The finite set Xnd{X1, . . . ,Xn} is a natural estimator of the
support Xμ. In several contexts discussed in the following, Xn

shows optimal rates of convergence to Xμ with respect to
the Hausdorff distance. For some constants a, b > 0, we say

that μ satisfies the (a, b)-standard assumption if for any x ∈ Xμ

and any r > 0,

μ(B(x, r))≥min arb, 1( ). (6)

This assumption has been widely used in the literature of set

estimation under the Hausdorff distance (Cuevas and Rodríguez-
Casal, 2004; Singh et al., 2009). Under this assumption, it can be
easily derived that the rate of convergence of dgm(Filt(Xn)) to
dgm(Filt(Xμ)) for the bottleneck metric is upper bounded by
O(

log n
n
)1/b. More precisely, this rate upper bounds the minimax

rate of convergence over the set of probability measures on the
metric space (M, ρ) satisfying the (a, b)-standard assumption on M.

Theorem 10. Chazal et al. (2014) For some positive constants a
and b, let

Pd μ on M | Xμ is compact and ∀x ∈ Xμ,∀r > 0,{
μ(B(x, r))≥min 1, arb( )}.

Then, it holds

sup
μ∈P

E db dgm Filt Xμ( )( ), dgm Filt Xn( )( )( )[ ]≤C log n

n
( )1/b

where the constant C only depends on a and b.
Under additional technical assumptions, the corresponding

lower bound can be shown (up to a logarithmic term) (see Chazal
et al. (2014)). By applying stability results, similar consistency
results can be easily derived under alternative generative models
as soon as a consistent estimator of the support under the
Hausdorff metric is known. For instance, from the results of
the study by Genovese et al. (2012) about Hausdorff support
estimation under additive noise, it can be deduced that the

minimax convergence rates for the persistence diagram
estimation are faster than (log n)−1/2. Moreover, as soon as a
stability result is available for some given representation of
persistence, similar consistency results can be directly derived
from the consistency for persistence diagrams.

Estimation of the Persistent Homology of Functions
Theorem 7 opens the door to the estimation of the persistent
homology of functions defined on R

d , on a submanifold of Rd or,
more generally, on a metric space. The persistent homology
of regression functions has also been studied by Bubenik

et al. (2010). The alternative approach of Bobrowski et al.
(2014), which was based on the inclusion map between nested
pairs of estimated level sets, can be applied with kernel
density and regression kernel estimators to estimate
persistence homology of density functions and regression

FIGURE 13 | (A,B) Two persistence diagrams for two configurations of MBP. (C)MDS configuration for thematrix of bottleneck distances. (D) Persistence diagram

and confidence region for the persistence diagram of an MBP.
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functions. Another direction of research on this topic
concerns various versions of robust TDA. One solution is
to study the persistent homology of the upper-level sets of
density estimators (Fasy et al., 2014b). A different approach,
more closely related to the distance function, but robust to
noise, consists in studying the persistent homology of the

sublevel sets of the distance to measure defined in Section 4.4

(Chazal et al., 2017).

6.2 Statistic of Persistent Homology
Computed on a Point Cloud
For many applications, in particular when the support of the
point cloud is not drawn on or close to a geometric shape,

persistence diagrams can be quite complex to analyze. In
particular, many topological features are closed to the
diagonal. Since they correspond to topological structures that
die very soon after they appear in the filtration, these points are
generally considered as noise (see Figure 13 for an illustration).
Confidence regions of persistence diagrams are rigorous answers
to the problem of distinguishing between the signal and the noise
in these representations.

The stability results given in Section 5.7 motivate the use of
the bottleneck distance to define confidence regions. However,
alternative distances in the spirit of Wasserstein distances can be
proposed too. When estimating a persistence diagram dgm with

an estimator d̂gm, we typically look for some value ηα such that

P db d̂gm, dgm)≥ ηα)≤ α,((
for α ∈ (0, 1). Let Bα be the closed ball of radius α for
the bottleneck distance, centered at d̂gm in the space of

persistence diagrams. Following Fasy et al. (2014b), we can
visualize the signatures of the points belonging to this ball in
various ways. One first option is to center a box of a side length of
2α at each point of the persistence diagram d̂gm. An alternative
solution is to visualize the confidence set by adding a band at
(vertical) distance ηα/2 from the diagonal (the bottleneck distance
being defined for the ℓ∞ norm) (see Figure 13 for an illustration).

The points outside the band are then considered as significant
topological features (see Fasy et al. (2014b) for more details).

Several methods have been proposed in the study by Fasy et al.
(2014b) to estimate ηα in different frameworks. These methods
mainly rely on stability results for persistence diagrams;
confidence sets for diagrams can be derived from confidence

sets in the sample space.

Subsampling Approach
This method is based on a confidence region for the support K of
the distribution of the sample in the Hausdorff distance. Let ~Xb be
a subsample of size b drawn from the sample ~Xn, where b � o(n/
logn). Let qb(1 − α) be the quantile of the distribution of
Haus( ~Xb,Xn). Take η̂αd2q̂b(1 − α), where q̂b is an estimation

qb(1 − α) using a standard Monte Carlo procedure. Under a (a, b)
standard assumption and for an n large enough, Fasy et al.
(2014b) showed that

P db dgm(Filt(K)), dgm Filt Xn( )( )( )> η̂α)(
≤ P(Haus K ,Xn( )> η̂α)≤ α + O

b

n
( )1/4

.

Bottleneck Bootstrap
The stability results often lead to conservative confidence sets. An
alternative strategy is the bottleneck bootstrap introduced in the study
by Chazal et al. (2016b). We consider the general setting where a
persistence diagram d̂gm is defined from the observation (X1, . . . , Xn)
in a metric space. This persistence diagram corresponds to the
estimation of an underlying persistence diagram dgm, which can be
related, for instance, to the support of themeasure, or to the sublevel sets
of a function related to this distribution (for instance, a density function

when the Xi’s are in R
d). Let (X*

1, . . . ,X
*
n) be a sample from the

empirical measure defined from the observations (X1, . . . , Xn). Let also
d̂gm

*
be the persistence diagramderived from this sample.We can then

take for ηα the quantity η̂α defined by

FIGURE 14 | (A) First three landscapes for zero-homology of the alpha shape filtration defined for a time series of acceleration ofWalker A. (B) Variable importances

of the landscape coefficients for the classification of walkers. The first 3,000 coefficients correspond to the three landscapes of dimension 0 and the last 3,000

coefficients to the three landscapes of dimension 1. There are 1,000 coefficients per landscape. Note that the first landscape of dimension 0 is always the same using the

Rips complex (a trivial landscape), and consequently, the corresponding coefficients have a zero-importance value.
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P db d̂gm
p

, d̂gm)> η̂α |X1, . . . ,Xn) � α.(( (7)

Note that η̂α can be easily estimated using Monte Carlo
procedures. It has been shown in the study by Chazal et al.
(2016b) that the bottleneck bootstrap is valid when computing
the sublevel sets of a density estimator.

Bootstrapping Persistent Betti Numbers
As already mentioned, confidence regions based on stability
properties of persistence may lead to very conservative
confidence regions. Based on the concepts of stabilizing
statistics Penrose and Yukich (2001), asymptotic normality for
persistent Betti numbers has been shown recently by Krebs and
Polonik (2019) and Roycraft et al. (2020) under very mild
conditions on the filtration and the distribution of the sample
cloud. In addition, bootstrap procedures are also shown to be
valid in this framework. More precisely, a smoothed bootstrap
procedure together with a convenient rescaling of the point cloud

seems to be a promising approach for boostrapping TDA features
from point cloud data.

6.3 Statistic for a Family of Persistent
Diagrams or Other Representations
Up to now in this section, we were only considering statistics
based on one single observed persistence diagram. We now
consider a new framework where several persistence
diagrams (or other representations) are available, and we
are interested in providing the central tendency, confidence

regions, and hypothesis tests for topological descriptors built
on this family.

6.3.1 Central Tendency for Persistent Homology
Mean and Expectations of Distributions of Diagrams
The space of persistence diagrams being a general metric space
but not a Hilbert space, the definition of a mean persistence
diagram is not obvious and unique. One first natural approach to
defining a central tendency in this context is to consider Fréchet
means of distributions of diagrams. Their existence has been
proven in the study by Mileyko et al. (2011), and they have also

been characterized in the study by Turner et al. (2014a). However,
they may not be unique, and they turn out to be difficult to
compute in practice. To partly overcome these problems,
different approaches have been recently proposed based on
numerical optimal transport Lacombe et al. (2018) or linear
representations and kernel-based methods Divol and Chazal
(2020).

Topological Signatures From Subsamples
Central tendency properties of persistent homology can also be
used to compute topological signatures for very large data sets, as
an alternative approach to overcome the prohibitive cost of

persistence computations. Given a large point cloud, the idea
is to extract many subsamples, to compute the persistence
landscape for each subsample, and then to combine the
information.

For any positive integer m, let X � {x1, . . . , xm} be a sample of
m points drawn from a measure μ in a metric space M and which
support is denoted by Xμ. We assume that the diameter of Xμ is
finite and upper bounded by T

2
, where T is the same constant as in

the definition of persistence landscapes in Section 5.4. For ease of
exposition, we focus on the case k � 1 and the set λ(t) � λ(1, t).
However, the results we present in this section hold for k > 1. The
corresponding persistence landscape (associated with the
persistence diagram of the Čech or Rips–Vietoris filtration) is
λX and we denote byΨ

m
μ the measure induced by μ⊗m on the space

of persistence landscapes. Note that the persistence landscape λX
can be seen as a single draw from the measureΨm

μ . The point-wise
expectations of the (random) persistence landscape under this
measure is defined by EΨm

μ
[λX(t)], t ∈ [0,T]. The average

landscape EΨm
μ
[λX] has a natural empirical counterpart, which

can be used as its unbiased estimator. Let Sm1 , . . . , S
m
ℓ

be ℓ

independent samples of size m from μ
⊗m. We define the

empirical average landscape as

λm
ℓ
(t) �

1

b
∑b
i�1

λSm
i
(t), for all t ∈ [0,T], (8)

and propose to use λm
ℓ
to estimate λXμ

. Note that computing the
persistent homology of Xn is O(exp(n)), whereas computing the
average landscape is O(b exp(m)).

Another motivation for this subsampling approach is that it
can also be applied when μ is a discrete measure with the support
XN � {x1, . . . , xN } lying in a metric space M. This framework can
be very common in practice, when a continuous (but unknown)
measure is approximated by a discrete uniform measure μN

on XN .

The average landscape EΨm
μ
[λX] is an interesting quantity on

its own, since it carries some stable topological information about
the underlying measure μ, from which the data are generated.

Theorem 11. [Chazal et al. (2015a)] Let X ∼ μ⊗m and Y ∼ ]
⊗m,

where μ and ] are two probability measures on M. For any p ≥ 1,
we have

EΨm
μ
λX[ ] − EΨm

]

λY[ ]
����� �����

∞
≤ 2m

1
pWp(μ, ]),

where Wp is the pth Wasserstein distance on M.
The result of Theorem 11 is useful for two reasons. First, it tells

us that for a fixed m, the expected “topological behavior” of a set
of m points carries some stable information about the underlying
measure from which the data are generated. Second, it provides a
lower bound for the Wasserstein distance between two measures,
based on the topological signature of samples of m points.

6.3.2 Asymptotic Normality
As in the previous section, we consider several persistence
diagrams (or other representations). The next step after giving
central tendency descriptors of persistence homology is to
provide asymptotic normality results for these quantities
together with bootstrap procedures to derive confidence
regions. It is of course easier to show such results for
functional representations of persistence. In the studies by
Chazal et al. (2015b), Chazal et al. (2015c), following this
strategy, confidence bands for landscapes are proposed from
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the observation of landscapes λ1, . . . , λN drawn i. i. d. from a
random distribution in the space of landscapes. The asymptotic
validity and the uniform convergence of the multiplier bootstrap is
shown in this framework. Note that similar results can also be

proposed for many representations of persistence, in particular by
showing that the corresponding functional spaces are Donsker spaces.

6.4 Other Statistical Approaches to
Topological Data Analysis
Statistical approaches for TDA are seeing an increasing interest
and many others have been proposed in recent years or are still
subject to active research activities, as illustrated in the following
non-exhaustive list of examples.

Hypothesis Testing
Several methods have been proposed for hypothesis testing
procedures for persistent homology, mostly based on
permutation strategies and for two-sample testing. Robinson
and Turner (2017) focused on pairwise distances of persistence
diagrams, whereas Berry et al. (2020) studied more general
functional summaries. Hypothesis tests based on kernel
approaches have been proposed in the study by Kusano (2019).
A two-stage hypothesis test of filtering and testing for persistent
images was also presented in the study by Moon and Lazar (2020).

Persistence Homology Transform
The representations introduced before are all
transformations derived from the persistence diagram
computed from a fixed filtration built over a data set. The
persistence homology transform introduced in the studies by
Curry et al. (2018), Turner et al. (2014b) to study shapes in R

d

takes a different path by looking at the persistence homology
of the sublevel set filtration induced by the projection of the
considered shape in each direction in R

d . It comes with
several interesting properties; in particular, the persistence
homology transform is a sufficient statistic for distributions

defined on the set of geometric and finite simplicial
complexes embedded in R

d .

Bayesian Statistics for Topological Data Analysis
A Bayesian approach to persistence diagram inference has been
proposed in the study by Maroulas et al. (2020) by viewing a
persistence diagram as a sample from a point process. This
Bayesian method computes the point process posterior
intensity based on a Gaussian mixture intensity for the prior.

6.5 Persistent Homology and Machine
Learning
Using TDA and, more specifically, persistent homology for
machine learning is a subject that attracts a lot of information
and generated an intense research activity. Although the
recent progress in this area goes far beyond the scope of
this article, we briefly introduce the main research directions
with a few references to help the newcomer to the field to get
started.

Topological Data Analysis for Exploratory Data
Analysis and Descriptive Statistics
In some domains, TDA can be fruitfully used as a tool for

exploratory analysis and visualization. For example, the
Mapper algorithm provides a powerful approach to exploring
and visualizing the global topological structure of complex data
sets. In some cases, persistence diagrams obtained from data can
be directly interpreted and exploited for better understanding of
the phenomena from which the data have been generated. This is,
for example, the case in the study of force fields in granular media
(Kramar et al., 2013) or of atomic structures in glass (Nakamura
et al., 2015) in material science, in the study of the evolution of
convection patterns in fluid dynamics (Kramár et al., 2016), and
in machining monitoring (Khasawneh and Munch, 2016) or in

the analysis of nanoporous structures in chemistry (Lee et al.,
2017) where topological features can be rather clearly related to
specific geometric structures and patterns in the considered data.

Persistent Homology for Feature Engineering
There are many other cases where persistence features cannot be
easily or directly interpreted but present valuable information for
further processing. However, the highly nonlinear nature of
diagrams prevents them from being immediately used as
standard features in machine learning algorithms.

Persistence landscapes and linear representations of persistence
diagrams offer a first option to convert persistence diagrams into
elements of a vector space that can be directly used as features in

classical machine learning pipelines. This approach has been used,
for example, for protein binding (Kovacev-Nikolic et al., 2016),
object recognition (Li et al., 2014), or time series analysis. In the
same vein, the construction of kernels for persistence diagrams that
preserve their stability properties has recently attracted some
attention. Most of them have been obtained by considering
diagrams as discrete measures in R

2. Convolving a symmetrized
(with respect to the diagonal) version of persistence diagrams with
a 2D Gaussian distribution, Reininghaus et al. (2015) introduced a
multiscale kernel and applied it to shape classification and texture
recognition problems. Considering the Wasserstein distance

between projections of persistence diagrams on lines, Carriere et
al. (2017) built another kernel and tested its performance on several
benchmarks. Other kernels, still obtained by considering
persistence diagrams as measures, have also been proposed in
the study by Kusano et al. (2017).

Various other vector summaries of persistence diagrams
have been proposed and then used as features for different
problems. For example, basic summaries were considered in
the study by Bonis et al. (2016) and combined with
quantization and pooling methods to address nonrigid
shape analysis problems; Betti curves extracted from

persistence diagrams were used with one-dimensional
convolutional neural networks (CNNs) to analyze time-
dependent data and recognize human activities from inertial
sensors in the studies by Dindin et al. (2020), Umeda (2017);
persistence images were introduced in the study by Adams
et al. (2017) and were considered to address some inverse
problems using linear machine learning models in the study by
Obayashi et al. (2018).
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The kernels and vector summaries of persistence diagrams
mentioned above are built independently of the considered data
analysis or learning task. Moreover, it appears that in many cases,
the relevant topological information is not carried by the whole

persistence diagram but is concentrated in some localized regions
that may not be obvious to identify. This usually makes the choice
of a relevant kernel or vector summary very difficult for the user.
To overcome this issue, various authors have proposed learning
approaches that allow us to learn the relevant topological features
for a given task. In this direction, Hofer et al. (2017) proposed a
deep learning approach to learn the parameters of persistence
image representations of persistence diagrams, while Kim et al.
(2020) introduced a neural network layer for persistence
landscapes. In the study by Carrière et al. (2020a), the authors
introduced a general neural network layer for persistence

diagrams that can be either used to learn an appropriate
vectorization or directly integrated in a deep neural network
architecture. Other methods, inspired from k-means, propose
unsupervised methods to vectorize persistence diagrams (Royer
et al., 2021; Zieliński et al., 2010), some of them coming with
theoretical guarantees (Chazal et al., 2020).

Persistent Homology for Machine Learning
Architecture Optimization and Model Selection
More recently, TDA has seen new developments in machine learning
where persistent homology is no longer used for feature engineering

but as a tool to design, improve, or select models (see Carlsson and
Gabrielsson (2020), Chen et al. (2019), Gabrielsson and Carlsson
(2019), Hofer et al. (2019a), Moor et al. (2020), Ramamurthy et al.
(2019), Rieck et al. (2019)). Many of these tools rely on the
introduction of loss or regularization functions depending on
persistent homology features, raising the problem of their
optimization. Building on the powerful tools provided by
software libraries such as PyTorch or TensorFlow, practical
methods allowing us to encode and optimize a large family of
persistence-based functions have been proposed and experimented
on (Poulenard et al., 2018; Gabrielsson et al., 2020). A general

framework for persistence-based function optimization based on
stochastic subgradient descent algorithms with convergence
guarantees has been recently proposed and implemented in an
easy-to-use software tool (Carriere et al., 2020b). With a different
perspective, another theoretical framework to study the
differentiable structure of functions of persistence diagrams has
been proposed in the study by Leygonie et al. (2021).

7 TOPOLOGICAL DATA ANALYSIS FOR
DATA SCIENCES WITH THE GUDHI
LIBRARY

In this section, we illustrate TDA methods using the Python
library GUDHI11 (Maria et al., 2014) together with popular
libraries such as NumPy (Walt et al., 2011), scikit-learn
(Pedregosa et al., 2011), and pandas (McKinney, 2010). This

section aims at demonstrating that the topological signatures of
TDA can be easily computed and exploited using GUDHI. More
illustrations with Python notebooks can be found in the tutorial
GitHub12 of GUDHI.

7.1 Bootstrap and Comparison of Protein
Binding Configurations
This example is borrowed from Kovacev-Nikolic et al. (2016). In
this article, persistent homology is used to analyze protein
binding, and more precisely, it compares closed and open
forms of the maltose-binding protein (MBP), a large
biomolecule consisting of 370 amino acid residues. The
analysis is not based on geometric distances in R

3 but on a
metric of dynamical distances defined by

Dij � 1 − |Cij|,

where C is the correlation matrices between residues. The data
can be downloaded at this link13.

import numpy as np

import gudhi as gd

import pandas as pd

import seaborn as sns

corr_protein� pd.read_csv(“mypath/1anf.corr_1.

txt”, header�None, delim_whitespace�True)

dist_protein_1 � 1− np.abs(corr_protein_1.values)

rips_complex_1 � gd.RipsComplex(distance_

matrix�dist_protein_1, max_edge_length�1.1)

simplex_tree_1 � rips_complex_1.create_simplex_

tree(max_dimension�2)

diag_1 � simplex_tree_1.persistence()

gd.plot_persistence_diagram(diag_1)

For comparing persistence diagrams, we use the bottleneck
distance. The block of statements given below computes
persistence intervals and computes the bottleneck distance for
zero-homology and one-homology as follows:

interv0_1 � simplex_tree_1.persistence_

intervals_in_dimension(0)

interv0_2 � simplex_tree_2.persistence_

intervals_in_dimension(0)

bot0 � gd.bottleneck_distance(interv0_

1,interv0_2)

interv1_1 � simplex_tree_1.persistence_

intervals_in_dimension(1)

interv1_2 � simplex_tree_2.persistence_

intervals_in_dimension(1)

bot1 � gd.bottleneck_distance(interv1_1,

interv1_2)

11http://gudhi.gforge.inria.fr/python/latest/

12https://github.com/GUDHI/TDA-tutorial
13https://www.researchgate.net/publication/301543862_corr
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In this way, we can compute the matrix of bottleneck distances
between the fourteenMBPs. Finally, we apply a multidimensional
scaling method to find a configuration in R

2 which almost
matches with the bottleneck distances (see Figure 13C). We

use the scikit-learn library for the MDS as follows:

import matplotlib.pyplot as plt

from sklearn import manifold

mds � manifold.MDS(n_components�2,

dissimilarity�“precomputed”)

config � mds.fit(M).embedding_

plt.scatter(config [0:7,0], config [0:7, 1],

color�‘red’, label�“closed”)

plt.scatter(config [7:l,0], config [7:l, 1],

color�‘blue’, label�“red”)

plt.legend(loc�1)

We now define a confidence band for a diagram using the
bottleneck bootstrap approach. We resample over the lines (and
columns) of the matrix of distances, and we compute the
bottleneck distance between the original persistence diagram

and the bootstrapped persistence diagram. We repeat the
procedure many times, and finally, we estimate the quantile
95% of this collection of bottleneck distances. We take the value
of the quantile to define a confidence band on the original diagram
(see Figure 13D). However, such a procedure should be considered
with caution because as far as we know, the validity of the
bottleneck bootstrap has not been proven in this framework.

7.2 Classification for Sensor Data
In this experiment, the 3D acceleration of 3 walkers (A, B, and C)
has been recorded using the sensor of a smartphone14. Persistence

homology is not sensitive to the choice of axes, and so no
preprocessing is necessary to align the 3 time series according
to the same axis. From these three time series, we have picked, at
random, sequences of 8 s in the complete time series, that is, 200
consecutive points of acceleration in R

3. For each walker, we
extract 100 time series in this way. The next block of statements
computes the persistence for the alpha complex filtration for
data_A_sample, one of the 100 time series of acceleration of
Walker A.

alpha_complex_sample � gd.AlphaComplex

(points � data_A_sample)

simplex_tree_sample � alpha_complex_sample.

create_simplex_tree(max_alpha_square�0.3)

diag_Alpha � simplex_tree_sample.persistence()

From diag_Alpha, we can then easily compute and plot the
persistence landscapes (see Figure 14A). For all 300 time series,
we compute the persistence landscapes for dimensions 0 and 1,
and we compute the first three landscapes for the 2 dimensions.
Moreover, each persistence landscape is discretized on 1,000
points. Each time series is thus described by 6,000 topological

variables. To predict the walker from these features, we use a
random forest (Breiman, 2001), which is known to be efficient in
such a high-dimensional setting. We split the data into train and
test samples at random several times. We finally obtain an

averaged classification error of around 0.95. We can also
visualize the most important variables in the random forest
(see Figure 14B).

8 DISCUSSION

In this introductory article, we propose an overview of the most

standard methods in the field of topological data analysis. We also
provide a presentation of the mathematical foundations of TDA,
on the topological, algebraic, geometric, and statistical aspects.
The robustness of TDA methods (coordinate invariance and
deformation invariance) and the compressed representation of
data they offer make their use very interesting for data analysis,
machine learning, and explainable AI. Many applications have
been proposed in this direction during the last few years. Finally,
TDA constitutes an additional possible approach in the data
scientist toolbox.

Of course, TDA is suited to address all kinds of problems.

Practitioners may face several potential issues when applying
TDA methods. On the algorithmic aspects, computing
persistence homology can be time and resource consuming.
Even if there is still room for improvement, recent
computational advances have enabled TDA to be an effective
method for data science, thanks to libraries like GUDHI, for
example. Moreover, combing TDA using quantization methods,
graph simplification, or dimension reduction methods may
reduce the computational cost of the TDA algorithms.
Another potential problem we can face with TDA is that
returning to the data point to interpret the topological

signatures can be tricky because these signatures correspond
to classes of equivalence of cycles. This can be a problem when
there is a need to identify which part of the point cloud “has
created” a given topological signature. TDA is in fact more
suited to solving data science problems dealing with a family of
point clouds, each data point being described by its persistent
homology. Finally, the topological and geometric information
that can be extracted from the data is not always efficient for
solving a given problem in the data sciences alone. Combining
topological signatures with other types of descriptors is
generally a relevant approach.

Today, TDA is an active field of research, at the crossroads of

many scientific fields. In particular, there is currently an intense
effort to effectively combine machine learning, statistics, and
TDA. In this perspective, we believe that there is still a need for
statistical results which demonstrate and quantify the interest of
these data science approaches based on TDA.
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