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Summary. Wave motion in an anisotropic solid is fundamentally different 
from motion in an isotropic solid, although the effects are often subtle and 
difficult to recognize. There are such a wide range of three-dimensional 
variations possible in anisotropic media that it is difficult to understand 
the behaviour of wave motion without experimentation. Laboratory experi- 
ments are very difficult to construct and extensive numerical experiments 
have now given many theoretical insights so that the behaviour of waves in 
anisotropic media is now comparatively well understood. This introduction 
summarizes some of the relationships and insights required for this 
underst anding. 

1 Introduction 

Any homogeneous uniform material whose properties vary with direction is anisotropic, and 
its elastic behaviour with respect to appropriate seismic wavelengths can be described by 
effective elastic constants in one of a range of anisotropic symmetry systems. Seismic waves 
penetrating such anisotropic material display a number of characteristic and diagnostic 
effects, which are subtly different from those of waves propagating in isotropic solids. 

The general theory of wave motion in anisotropic elastic solids is well known (Love 
1944), with further notable contributions being made by Duff (1960), Lighthill (1960), 
Kraut (1963) and others. Uniform homogeneous elastic solids may be divided into eight 
anisotropic symmetry systems with distinct and individual properties. These eight systems 
include, as extrema, the isotropic system with maximum symmetry where every plane is a 
symmetry plane, and the triclinic system with minimum symmetry where there are no 
symmetry planes. The effects of propagation in any particular symmetry system cannot be 
directly investigated by means of general expressions, and it is only since numerical 
experiments have been made with digital computers that we have gained any real under- 
standing of wave propagation in specific anisotropic symmetry systems. Such numerical 
applications require rather different theoretical developments from the previous general 
applications. The theory for these numerical applications has been reviewed by Crampin 
(198 1). In this paper, we describe the physical behaviour of wave motion required to under- 
stand and interpret observations of wave propagation in anisotropic solids. 
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18 S. Cramp in 
2 Basic assumptions 

The theoretical developments reviewed in Crampin (1981) can be derived from five basic 
relationships, which may be found in any textbook of theoretical elasticity (for example, 
Love 1944), and they will not be proven here. However, we list them here, although they 
are not necessary for understanding this introduction, as they do provide the essential 
mathematical background on which this understanding is based. 

(1) The equations of motion for waves propagating with infinitesimal displacements in a 
purely anisotropic medium in equilibrium are: 

pa2ujlat2 = cikmn u,, n k ;  (1) 

where p is the density; uj is the component of displacement in the j t h  direction; { c j h , }  
is the fourth-order tensor of elastic constants; and = a2u, /axnaxk.  All suffixes 
take the values 1, 2 and 3 unless otherwise specified, and the suffix summation convention 
is understood throughout, whereby if any suffix occurs twice it is put equal to 1, 2 and 3 
in turn and the results summed. 

o j k  = CjkmnUm, n ; 

where { o j k }  is the second-order stress tensor; and urn, = au, /ax , ,  . Note that the stress 
tensor is necessarily a symmetric matrix with three mutually orthogonal principal directions 
of stress. 

(3) The fourth-order tensor of elastic constants necessarily transforms by the tensor 
transformation law: 

(2) The three-dimensional generalization of Hooke’s stress-strain relationship is: 
(2) 

(3) 
, I ,  I 

Cikmn = x j , p x k , q  x r n , r x n , s c p q m ;  

where x i  = ax@xp are the direction cosines. 
(4) The elastic tensor has the following symmetries: 

Cjkmn = Ckjmn = c m n j k .  

We are immediately able to demonstrate from these basic equations an important property 
of the elastic tensor: 

( 5 )  meorem: the plane x p  = 0 is a plane of (mirror) symmetry if and only if C j k m n  = 0 
whenever one or three of j ,  k ,  m ,  n, is equal to p .  A plane in an anisotropic elastic solid will 
possess mirror symmetry if the elastic constants are unchanged by reflection in the plane. 
The direction cosines representing a reflection in the x p  = 0 plane are: 

X i  k = 0 f O r j  # k ;  X i k = l f o r j = k + p ;  and x i  = -1 for j = k = p .  

These direction cosines impose the following conditions on the reflected elastic constants 
C;kmn by the tensor transformation (3); 

Cikmp = -Cjkmp ; Cikpp = c jkpp  ; Cjpmp - Cjprnp ; Cjppp - -c jppp  c p p p p  - Cpppp ; (5) 

and all their equivalents by the symmetry relationships (4). Thus, the constants are 
invariant under these conditions if and only if Cjkmn = 0 whenever one or three of i, k, m, n 
are equal t o p .  

Note that repeated application of this theorem demonstrates that if the elastic tensor 
possesses two orthogonal symmetry planes ( x l  = 0 and x2  = 0, say) then the third mutually 
orthogonal plane ( x g  = 0) is also a plane of mirror symmetry. 

(4) 

1 -  1 -  1 -  and 
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Introduction to anisotropic wave propagation 19 

3 Body-wave phase velocities 

The velocities of plane body-waves in anisotropic media are obtained by substituting the 
expressions for plane waves into the equations of motion (1) to yield three simultaneous 
equations in pc’, where c is the phase velocity. There are several ways to  do this. The 
conventional technique is to  express the equations for the velocity in a particular direction 
in terms of direction cosines with respect to  a coordinate system fixed in the anisotropic 
solid. These lead to  three simultaneous Kelvin-Christoffel equations which can be solved 
comparatively easily for three distinct body-waves, which generally have three distinct 
velocities. Although the Kelvin-Christoffel equations are convenient for calculating velocities 
in homogeneous material, they lead to unwieldy expression for calculations in multilayered 
models. 

The preferred technique, proposed by Crampin (1970), is to rotate the elastic tensor so 
that all problems are reduced to propagation with apparent velocity c in the xl-direction. 
This has the advantage that all analytical expressions and computer programs can be written 
in concise general forms by making use of the summation convention for repeated suffices, 
which are well adapted for computer manipulation. Thus at the expense of an initial rotation 
of the elastic tensor, calculations in all symmetry systems can be calculated by the same 
computer program. This technique is one of the key features permitting the numerical 
developments (Crampin 1981). We shall demonstrated the use of the technique in the 
calculation of plane body-waves. 

A plane-wave propagating in the xl-direction, with phase velocity c, can be written: 

uj =ai exp[ iw( t -x l /c ) ]  for i = I , ? ,  3. (6) 

pc2a1 = ~ 1 1 1 1  a l +  clI21 a2 -t c1131a3; 

pc2a2 = czlll a1 + czl51 a2 -t cz131 a3;  

Substituting ( 5 )  into the equation of motion ( I ) ,  we have three equations: 

( 7 )  

pcZa3 =c3111 al ’ c3121 a 2  ’ C3131 a3 ; 

where we have omitted the common multiplier (-iw)’ exp[ io( t -x l /c ) ] .  
These three simultaneous equations may be solved in a variety of ways. However, the 

preferred technique for numerical solution is to  write the equations as linear eigenvalue 
problems, which are particularly well suited to  solution by  computer. We have: 

( T - p c 2 Z ) a  = 0 ;  (8) 

where T is the 3 x 3 matrix: 

cllll el121 el131 i c3111 c3121 c3131 I T =  C Z l l l  c2121 c2131 ; (9 

Z is the 3 x 3  identity matrix; and a ,  with elements ai, is the amplitude vector of the 
displacements. 

The matrix T is a principal minor of  the real symmetric positive-definite matrix of 
Zlastic constants, and is also a real symmetric positive-definite matrix. Consequently, the 
cigenvalue problem (8) has three real positive roots for pc2 with orthogonal eigenvectors. 

These equations immediately demonstrate some of the fundamental features of body- 
wave propagation in anisotropic media. The three real roots of  (8) show that there are three 
-5vdy-waves in every direction of phase propagation with orthogonal particle motion and B 
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20 S. Cramp in 

with velocities which, in general, are different and vary with direction. These waves 
correspond to a quasi P-wave, qP, with approximately longitudinal particle polarization, and 
two quasi shear-waves, qS1 and qS2 ,  with approximately transverse particle motion. The 
particle polarizations of these body-waves are fixed in the material along any direction of 
phase propagation, and, in general, will not be parallel to the displacements of P-, SV-, 
and SH-waves in isotropic horizontally layered solids. These properties have distinctive 
effects, particularly on shear-wave propagation. A shear wave entering a region of anisotropy 
necessarily has to split into the two or more fixed polarizations appropriate for that 
particular direction of energy propagation. (There will generally be a qP-wave component 
as well, but this is usually small, and can be neglected.) These fixed quasi shear-waves travel 
at difference velocities and separate in time, so that on re-entry into an isotropic region the 
original pulse cannot be reconstructed. Thus the passage through a region of anisotropy 
writes a characteristic signature into the polarization of the shear wavetrains, which, because 
shear waves have a unique velocity in isotropic media, is preserved for the remaining 
isotropic sections of the path. The phenomenon is illustrated schematically in fig. 4 of 
Crampin, Evans & Atkinson (1984b). 

The Earth has a complicated velocity structure, and the small velocity variation with 
direction expected in anisotropy is unlikely to be resolved except when examining velocity 
variations in many directions in one plane. Almost the only situation where we can do this 
in the Earth is when examining the variation with azimuth of P,-wave velocities. It is 
significant that the earliest, and most widely recognized, anisotropy in the Earth is the 
velocity anisotropy of P,-waves beneath the thin homogeneous oceanic crust (Hess 1964; 
Raitt ef al. 1969; and many others). 

4 Anisotropic symmetry systems 

Almost all we need to know about anisotropic symmetry systems and most of the analysis 
in Crampin (1981) can be derived from equations (1) to (5). Equations (1) and (2) show that 
there are 34 = 81 elastic constants, which the symmetry conditions (4) reduce to 21 
independent constants. These are usually written in the form of the symmetric matrix in 
Fig. l(a). 

Now it might be though that media with up to 21 independent elastic constants would 
have far too many possible variations to be easily classified. In fact, anisotropic symmetry 
systems are very readily classified by the relative arrangement of planes of (mirror) 
symmetry into eight distinct symmetry systems. All the more common symmetry systems 
have one or more symmetry planes with the spatial orientations shown in Fig. 2, and the 
corresponding matrices of elastic constants in Fig. l(b). These symmetry systems have 
distinct and characteristic properties, which in conventional crystallography are discussed in 
terms of point groups, space lattices, and other fundamental geometrical considerations. 
However, in wave-propagation analysis the most distinctive features of the different 
symmetry systems are the arrangements of symmetry planes. 

The relationship between the orientation of the symmetry planes in Fig. 2 and the 
particular matrix of elastic constants in Fig. l(b) is straightforward. The monoclinic 
system, for example, has one plane of mirror symmetry, x 3  = 0, say. Consequently, we 
know from equation (5) that the monochic elastic constants Cikmn equal zero whenever 
one of three of j ,  k,  m, n = 3. Replacing such constants by zero in Fig. l(a), we obtain the 
arrangement of elastic constants in the monoclinic system in Fig. I(b). Similarly, the 
orthohombic system has three mutually perpendicular symmetry planes, say x1 = 0, x 2  = 0 
and x 3  = 0. Replacing the elements in Fig. l(a) which have one or three of their suffixes 
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Introduction to misotropic wave prupagatwn 21 

equal to 1, 2 and 3, taken separately, we have the arrangement of constants in the ortho- 
rhombic system in Fig. l(b). The relationships can also be demonstrated for the other 
symmetry systems, although the procedure is more complicated because the tensor of 
elastic constants must be rotated to get the particular symmetry plane normal to one of 
the coordinate directions so that we can apply equation ( 5 ) .  

There are four arrangements of planes not shown in Fig. 2. These are the isotropic 
system with two elastic constants where all planes are symmetry planes, and three rather 
uncommon symmetry systems or subsystems. The uncommon systems are the triclinic 
system with up to 21 independent elastic constants whose only symmetry is reflection in 
the origin, and the two subsystems marked (2)* in Fig. l(b). The trigonaI system (2)* has 
RO planes of symmetry, but the x3-axis is a three-fold rotation axis, so that the system is 

( 0 )  

cllll ‘1122 ‘1133 ‘1123 ‘1131 cL112 

‘2211 ‘2222 ‘2233 ‘2223 ‘2231 ‘2212 

‘3311 ‘3322 ‘3333 ‘3323 ‘3331 ‘3312 

‘2311 ‘2322 ‘2333 ‘2323 ‘2331 ‘2312 

‘3111 ‘3122 ‘3133 ‘3123 ‘3131 ‘3112 

‘1211 ‘1222 ‘1233 ‘1223 ‘1231 ‘1212 

t b )  
HONCCLINIC 

a b c .  

b e € .  

c f h .  

. .  * j  

d g i .  

. . .  k 

ORTHORHWBIC TRIGONAL. ( 1 )  

. d  e b c . . .  a b c d . .  

- g  b d e . . .  b a c - d  . . 
. i  c e f - . -  c c e . . .  
k .  . . . g . .  d 7 l . C . .  

m .  . . . .  h .  . .  . . F d  

. n  . . . . .  I . .  . . d x  

where x = (a-b)/2 

TRICONAL (2)* PBTRACONAL ( 1 )  TRTRACONAI. ( 2 ) *  

a b c d g .  a h c . . .  a b c . . g  

b a c - d - g  . b a c . . .  b a c .  . - a  
c c e . . .  c c d - - .  c c d  . . .  
d - d  - f - - 8  . . .  e . .  . . .  e . .  

g - g  . . f d . . . .  e .  . . . .  e .  

. . . - g  d x . . . . .  f g - g  . . . f  

where x = (a-b)/2 

HEXAGONAL CUR IC ISOTROPIC 

a b c .  . .  a b h . . .  a b b . .  . 
b a c . . .  b a b  . . .  b s h  . . .  
c c d . .  - b b a  . . .  b b a  . . .  
. . .  e . .  . . .  c . .  . . .  x . .  

. . . .  e .  . . . .  c .  . . . .  X .  

. . . . .  x . . . . .  c . . . . .  X 

where x - (a-b)/2 where x = (a-b)/2 

*re 1. (a) Usual representation of the symmetric fourth-order tcnsor of elastic constants. If x,  y ,  z 
are principal axes and the cykm are all different, this has the form of a triclinic symmetry system. (b) 
The range of possible symmetry systems (escluding triclinic) with x,  y ,  z, are principal axes. 
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22 S. Cramp in 

a x 

Y 

Figure 2. Orientation of symmetry planes of the more common symmetry systems: (a) monoclinic; 
(b) tetragonal; (c) orthorhombic; (d) hexagonal; (e) trigonal; and ( f )  cubic. 

unchanged by 2n/3 rotations about this axis. Similarly, the tetragonal system marked (2)* 
has one plane of symmetry, x3 = 0, and the x3-axis is a four-fold rotation axis, so that the 
system is unchanged by 2 ~ / 4  rotations. Note that these last three systems are theoretically 
possible, but they do not commonly occur in any mineral or inclusion assemblages and they 
have not been used in any numerical calculations. 

Table 1 lists the number of independent elastic constants and the arrangement of 
symmetry planes for the various anisotropic symmetry systems. It is worth noting that the 
symmetry systems cannot be arranged in any unique order of increasing complexity or 
increasing symmetry. Each system has unique and individual properties unlike any other 
symmetry system. However, these properties refer to the overall behaviour of the symmetry 
system. Wave motion in any particular symmetry plane is very similar to motion in any other 
symmetry plane, and wave motion in any off-symmetry plane has generalized behaviour 
which is not dependent on the particular symmetry system. 

5 Symmetry planes 

The orientation of the anisotropic symmetry planes to the free surface and to the direction 
of propagation has major effects on seismic phenomena. In many circumstances, the 
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Introduction to anisotropic wave propagation 
Table 1. Symmetry planes and shear-wave singularities in anisotropic symmetry systems. 

Symmetry Number of Number and orientation of 
system independent symmetry planes (referred 

elastic to principal axes) 
constants 

Shear-wave singularities 
Kiss Inter- 

section 

three identical: x-, y -  and z-cuts 6 0 
six identical: planes joining 
opposite sides of cube I 

one z-cut - planes through axis of 
[symmetry (z-axis) 
three identical: sides of 
triangular prism 

0 0 

Cubic 3 

Hexagonal 5 

Trigonalb 6 (7)a 

23 

Point 

8 

0 

2 " + 6  
2" + 18d 
etc.d 

two identical: x -  andy-cuts  2 0 8 
one z-cut 
two identical: planes joining 
opposite sides of prism 

0 ( t2d  
0 

I 
I TetragonaJb 6 [7Ia 

Orthorhombic 9 three distinct: x-, y -  and z-cuts 

etc.d 

l e t c d  
Monoclinic 13  one z-cut 0 0 8 

a Possible but rarely occurring configurations. 
bThe names of these systems refer to  two possible elastic tensors (see text): the systems with fewer 
constants occur most commonly. 
CPoint singularities on axes. 

Systems with more complicated patterns of singularities (usually of less common occurrence). 

presence or absence of symmetry planes in a few critical orientations with respect to the 
direction of phase propagation has more fundamental effects on the behaviour of the seismic 
wave than the particular anisotropic symmetry system. Symmetry planes have two major 
effects on body waves. P and SV motion is decoupled from SH motion: ( 1 )  when the propa- 
gation direction lies in a vertical symmetry plane; and (2) when the propagation direction 
lies in a symmetry plane, and the polarization of the P-wave and one of the S-waves is 
parallel and the polarization of the other S-wave is at right angles to the symmetry plane. 
The effect of symmetry-plane orientations on surface waves is discussed in Crampin (1981). 

The velocities of body-waves propagating in symmetry planes have particularly simple 
relationships with the elastic constants for weakly anisotropic solids. The three body-wave 
phase velocities in the plane xg = 0 area: 

P V ~ = A  +B,cos36+Bssin26 t C c  cos l8  tC,s in46;  
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24 S. Cramp in 

Cc = [ C i i l i  + ~2222-2 (ciizz + 2cizi2)1/8; 

c, = (czlll-c1222)/2; 

D = [ciiii + czzzz - 2 (ciizz - 2cizn)1/8; 

E,=-C,; 

E, = - C,; 

F = (c1313 + c2323)/2; 

Gc = (c1313 - c2323)/2; 

G.y = c2313; 

p is the density; 8 is the azimuth measured from the xl-direction (xl and x3 are not 
necessarily principal axes); and SP and SR are shear waves polarized parallel and at right 
angles, respectively, to the symmetry plane. The P-wave equation in (10) was first derived 
by Backus (1965) and the shear-wave equations by Crampin (1977). The equations are 
correct to the first order in the difference between the anisotropic and isotropic elastic 
constants. Note that the equations take a particularly simple form when 8 is measured from 
a direction of sagittal symmetry: using the appropriate conditions for x2  = 0 to be a plane of 
symmetry in the theorem in Section 2, the coefficients of the sine term in equations (10) 
vanish and leave the reduced equations with cosine terms. 

Both the full and reduced equations are of great value in modelling studies, especially 
modelling studies of cracked solids (Crampin 1978; Crampin, McGonigle & Barnford 1980). 
The equations are simple relationships between velocities and elastic constants, which are 
linear in the elastic constants and valid for all symmetry planes. The restriction to the 
symmetry plane is severe. In other planes, the variations for P-waves may depend on second- 
order differences between the elastic constants so that the variations have significantly 613 
and 88 terms (Crampin 1982), and the shear-wave variations are usually completely 
inappropriate. The shear-wave equations break down because the shear-wave phase velocities 
form two distinct sheets which touch only in a number of singular points, which for most 
symmetry systems are confined to symmetry planes (Crampin & Yedlin 1981; Crampin 
1981). Table 1 lists the number of shear-wave singularities in the various symmetry 
systems. There are three types of singularity: kiss singularities, where two phase-velocity 
sheets come into tangential contact at a point; intersection singularities possible only in 
hexagonal systems, where the two phase-velocity sheets come into contact along a (circular) 
line and, in some senses, may be thought of as two sheets intersecting; and point singularities 
where the two phase-velocity sheets come into contact at the vertices of conical projections 
from each surface. These singularities are a very common phenomena, and may cause 
anomalies in the propagation and energy transmission of rays of shear waves propagating 
near the direction of singularities (Crampin 1981). 

6 Energy transport 

A consequence of the phase velocity being a vector and varying with direction in anisotropic 
media is that the wavenumber, K ,  the number of wavelengths in unit distance, is also a vector 
and varies with direction. This means that the expression for the group velocity in isotropic 
media, U = awlarc, must also be written as a vector: 

u = (aw/aK,, aw/aK,, aw/aK3). (1 1) 

Thus the energy transport of seismic waves of all types propagating in uniform purely 
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Introduction to anisotropic wave propagation 
( b )  

2 - C U T  

0 90 180 0 

25 

ia)  
X - C U T  

5.5 
I - C U T  

wgo 
30 0 

Y z 2  x x  Y 

(C) 

Y z z  x x  Y 

(e)  

X - C U T  Y - C U T  

O I A G - C U T S  

-X  2 X . ’ l  x Y Z  

(d I )  (d  2 )  

90 

X. Y - C U T S  Z - C U T  . ‘ ( -CUTS 2 - C U T  

€ X . Y  x Y I 

( f )  

Z - C U T  X . Y , Z - C U T S  O I A G - C U T S  
7.5 5.5 

2 

0 90 a SO 0 so 0 
1.5 i- 

180 0 
2 . 5  

Y z z  u x  1 > , ‘ , Z  y . ’ ( . z  - z  
Figure 3. Examples of velocity variations of the three body-waves over planes in six anisotropic 
symmetry systems. The variations are shown over quadrants in the x-, y- and z-cuts (these are symmetry 
planes unless otherwise indicated), and those symmetry planes not included in this corner. The principal 
axes are indicated below the variations. Solid lines are exact phase velocities; dashed lines are group 
velocities (in non-symmetry planes the group velocities are projected on to the plane of phase variation). 
Group and phase velocities are joined every 10” of phase velocity direction. (a) monoclinic BIPHPQ: a 
biplanar cracked structure, where two quadrants of the z-cut variations are shown; (b) terragonal rutile; 
( c )  orthorhombic olivine; ( d l )  hexagonal - dry parallel cracks, HCDl from Crampin (1984); (d2) 
hexagonal - liquid-filled parallel cracks, HCSl from Crampin (1 984); (e) trlgonal or-quartz: the  two other 
sides of the triangular prism are symmetry planes with the same variations as the x-cut, where two quad- 
rants of the variations are shown; ( f )  cubic silicon. 
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26 S. Cramp in 
elastic anisotropic media is never normal to the plane of constant phase, except in a few 
very restrictive cases such as body-waves propagating perpendicular to the symmetry axis of 
a solid with hexagonal anisotropic-symmetry. 

The plane of constant phase of a plane wave propagating in the xl-direction in a uniform 
anisotropic solid travels at a constant phase velocity a $ / a K ,  = c ,  so that from (12) the group 
velocity becomes: 

u = (c, a w / a K z ,  aw/aK3). (12) 

We see that the energy of a plane wave travels at the phase velocity perpendicular to the 
plane, but also has a component of motion parallel to the plane. 

These properties have a number of consequences for the propagation of seismic rays. In 
general, a ray of seismic body waves is not perpendicular to the instantaneous plane of 
constant phase. The ray (energy) travels in a straight line between a source and a receiver in 
homogeneous media so that the travel time measured at a single point gives the group 
velocity. The phase velocity can only be determined by analysis of records from an array of 
receivers. Similarly, the place where a particular energy group strikes an interface is deter- 
mined by the ray and group velocity, but the behaviour at the interface is determined by a 
generalized Snell's law applied to the propagation direction and phase velocity. This means 
that incident, reflected and refracted propagation vectors are coplanar at a plane interface, 
the incident, reflected and refracted rays are, in general, not coplanar. 

Fig. 3 shows the relationship between variations of phase and group velocity for examples 
of different symmetry systems. Two examples of hexagonal systems are shown to  indicate 
the wide range of angular patterns possible in most systems. In symmetry planes, the phase 
and group velocities are coplanar, and in non-symmetry planes the group velocities in Fig. 3 
are projected on to  the plane of phase-velocity variation. Lines at every 10" join velocities 
and directions along the ray (group-velocity curve) to the direction and velocity of the plane 
of constant phase (phase-velocity curve) for that ray. 

There are cusps on the group velocity surfaces associated with areas of high curvature on 
the quasi shear-wave phase-velocity surfaces. Such cusps can cause marked variations in. 
body-wave amplitudes and directions of ray paths for waves with curved wavefronts but 
cause remarkably little disturbance to plane wavefronts. 

7 Discussion 

Despite the fundamental differences in the equations for propagation in anisotropic media, 
seismograms through such media possess very few distinguishing features that enable the 
anisotropy to be diagnosed or estimated. The most distinctive feature of propagation in 
uniform anisotropic solids appears to be the variation of properties with direction (Fig. 3). 
However, the Earth has a very complicated structure with many lateral and vertical 
inhomogeneities with varying velocities and transmission coefficients. This means that 
conventional measurements of both body waves (P-wave amplitudes and arrival times) and 
surface waves (Rayleigh-wave amplitudes and dispersion curves) only yield reliable measure- 
ments of velocity anisotropy in exceptional circumstances, such as observations of P,- 
waves propagating in a horizontal Moho beneath the uniform oceanic crust. I t  is particularly 
difficult to diagnose anisotropy from P-wave arrivals as there are no anisotropic effects 
immediately recognizable on the seismogram. The possibly large deviation of the group 
velocity and direction from the phase vector in strongly anisotropic media is not apparent 
at individual three-component seismograms because the P-wave polarization follows the ray 
very closely (Crampin, Stephen & McGongle 1982), so that the observed behaviour appears 
to be very similar to that in isotropic media. Anisotropy, or transverse isotropy, is sometimes 
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Introduction to anisotropic wave propagation 27 

deduced from surface-wave dispersion observations when compatible isotropic inversions of 
Raleigh- and Love-waves cannot be found. However, failure to model any of the wide range 
of possible isotropic variations in the Earth will invalidate such deductions, as is now demon- 
strated by Mitchell (1984) for some of the original classic claims for transverse isotropy. 

Although shear-wave splitting is the most distinctive feature of body-wave propagation 
in anisotropic solids, analysis of body-wave particle motion, in a particular shear-wave 
polarization, even in isotropic media has received very little attention in the past. The 
numerical experiments suggest that information about the differential shear-wave velocity 
anisotropy and the orientation of in situ afisotropy along the ray path can be extracted 
from polarization diagrams of the shear wavetrain at or near the surface (Crampin 1981). 
This is complicated by the behaviour of shear-waves incident at a free surface, where 
shear-waves suffer mode conversion, and phase changes generate phases before and after 
the direct shear-wave arrival (Booth & Crampin 1984), which may be mistaken for shear- 
wave splitting. However, subsurface recordings, as in vertical seismic profiles (Gal'perin 
1971), will be free of the complications on recordings made on the free surface. 

Exact inversion of this information for structure and anisotropic parameters will be 
difficult without prohibitive amounts of data. However, since anisotropy alignments are 
in almost all cases due to the former or current stress-fields and the degree of anisotropy 
is inherent to the constituents of the material or the current state of the stress, these 
anisotropy techniques open up ways of examining new parameters for describing the interior 
of the Earth, with a wide range of applications (Crampin, Chesnokov & Hipkin 1984a). 
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