An Introduction to Wavelets

CHARLES K. CHUI
Department of Mathematics
Texas A&M University
College Station, Texas

ACADEMIC PRESS
San Diego New York Boston
London Sydney Tokyo Toronto

Contents

Pı	Prefaceix			
1.	An Overview	1		
	1.1. From Fourier analysis to wavelet analysis	1		
	1.2. The integral wavelet transform and time-frequency analysis	6		
	1.3. Inversion formulas and duals			
	1.4. Classification of wavelets			
	1.5. Multiresolution analysis, splines, and wavelets			
	1.6. Wavelet decompositions and reconstructions			
2.	Fourier Analysis	23		
	2.1. Fourier and inverse Fourier transforms	99		
	2.2. Continuous-time convolution and the delta function			
	2.3. Fourier transform of square-integrable functions			
	2.4. Fourier series			
	2.5. Basic convergence theory and Poisson's summation formula			
3.	Wavelet Transforms and Time-Frequency Analysis	49		
	3.1. The Gabor transform			
	3.2. Short-time Fourier transforms and the Uncertainty Principle			
	3.3. The integral wavelet transform			
	3.4. Dyadic wavelets and inversions			
	3.5. Frames			
	3.6. Wavelet series			
4.	Cardinal Spline Analysis	81		
	4.1. Cardinal spline spaces	81		
	4.2. B-splines and their basic properties			
	4.3. The two-scale relation and an interpolatory			
	graphical display algorithm	90		
	4.4. B-net representations and computation of cardinal splines			
	4.5. Construction of spline approximation formulas			
	4.6. Construction of spline interpolation formulas	109		

viii Contents

5.	Scaling Functions and Wavelets	119
	5.1. Multiresolution analysis	
	5.2. Scaling functions with finite two-scale relations	128
	5.3. Direct-sum decompositions of $L^2(\mathbb{R})$	
	5.4. Wavelets and their duals	146
	5.5. Linear-phase filtering	
	5.6. Compactly supported wavelets	168
6.	Cardinal Spline-Wavelets	177
	6.1. Interpolatory spline-wavelets	177
	6.2. Compactly supported spline-wavelets	
	6.3. Computation of cardinal spline-wavelets	
	6.4. Euler-Frobenius polynomials	195
	6.5. Error analysis in spline-wavelet decomposition	
	6.6. Total positivity, complete oscillation, zero-crossings	207
7.	Orthogonal Wavelets and Wavelet Packets	215
	7.1. Examples of orthogonal wavelets	215
	7.2. Identification of orthogonal two-scale symbols	220
	7.3. Construction of compactly supported orthogonal wavelets	229
	7.4. Orthogonal wavelet packets	236
	7.5. Orthogonal decomposition of wavelet series	240
N	Totes	245
R	teferences	251
S	ubject Index	257
Δ	Appendix	265