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ABSTRACT. A class of random functions is formulated, which represent the

motion of a point in ¿-dimensional Euclidean space  (d > 1) undergoing random

changes of direction at random times while maintaining constant speed.   The

changes of direction are determined by random orthogonal matrices that are ir-

reducible in the sense of not having an almost surely invariant nontrivial sub-

space if d > 2, and not being almost surely nonnegative if d = 1.   An invariance

principle stating that under certain conditions a sequence of such random func-

tions converges weakly to a Gaussian process with stationary and independent

increments is proved.    The limit process has mean zero and its covariance ma-

trix function is given explicitly.   It is shown that when the random changes of

direction satisfy an appropriate condition the limit process is Brownian motion.

This invariance principle includes central limit theorems for the plane, with

special distributions of the random times and direction changes, that have been

proved by M. Kac, V. N. Tutubalin and T. Watanabe by methods different from

ours.   The proof makes use of standard methods of the theory of weak conver-

gence of probability measures, and special results due to P. Billingsley and B.

Rosen, the main problem being how to apply them.    For this, renewal theoretic

techniques are developed, and limit theorems for sums of products of indepen-

dent identically distributed irreducible random orthogonal matrices are obtained.

1.  Introduction and notation.   In this work we present an invariance principle

which is an extension of results obtained by M. Kac, V. N. Tutubalin and T. Wa-

tanabe.   Let 72 be a positive integer and consider a point moving in the plane,

starting from the origin at time zero, maintaining constant speed c  , and changing

direction in the following way:   it stays on the 2th direction for a random amount

of time  z"n . and then changes direction by a random angle a..   Suppose the a. ate

independent with common distribution p.   M. Kac has shown in [5] (although not

stating the problem this way) that if cn = 72, rn ¿ = I/72 for all i, and p is symmetric

(i.e. p(A) = p(- A)), then at time t = 1, that is, after the 72th step, the two coordi-

nates of the position of the point, suitably normalized, jointly have an asymptotic
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distribution as n —> °° which is that of two independent Gaussian random variables.

V. N. Tutubalin has the same result in [8] when a. is 0 or - 9, each with probabili-

ty 1/2, and 6 is incommensurable with respect to 277 (and other minor differences),

as a special case of a three-dimensional theorem of a type different from ours.   T.

Watanabe in [9] has proved that when the r    . are independent and exponentially

distributed with parameter c  , and the a. are uniformly distributed on [- 77, 77)

and independent of the  r        the process (the space of trajectories) converges

weakly to planar normalized Brownian motion when c   —> »as n —7 00.   Our pur-

pose is to extend such results both in the type of the distributions involved and

in the dimension of the space where the motion takes place.   Since the complete

definition of our random functions is long, we shall give now a rather nonstringent

formulation of them and their invariance principle.   Let a point move in a ¿-dimen-

sional Euclidean space  (d > 1), changing direction at random times as above, with

the direction changes being given by independent (and independent of the previous

direction) and identically distributed random orthogonal matrices; assume these

matrices are irreducible in the sense of not having an a.s. invariant nontrivial sub-

space if d>2, and not being a.s. nonnegative if d= 1, and moreover let them de-

pend on n, as do the random times; suppose the random times tend to zero in some

adequate way, and c   —>»»aszi —7 <x; then under certain more technical than quali-

tative conditions the process determined by the trajectory of the point, suitably

normalized, converges weakly as  n —» °° to a Gaussian process with stationary

and independent increments, mean zero and covariance matrix function which we

can exhibit.   The limit process is Brownian motion if the change of direction ma-

trices satisfy a certain property (Condition (A)).   Important parts of the proof are:

a theorem of B. Rosen [6], used to prove the weak convergence of the one(time)-

dimensional distributions, which turns out to imply the convergence of all the fi-

nite-dimensional distributions; the use of inequalities of P. Billingsley [l] (§12)

to prove the basic Lemma 3.4, which implies the tightness of the sequence of ran-

dom functions and is used in applying Rosen's theorem; renewal theoretic  tech-

niques that are employed throughout the proof; and limit theorems for irreducible ran-

dom orthogonal matrices, which enter into the application of Rosen's theorem and

are the tool that made the proof possible for any dimension > 3.   Kac 's three-di-

mensional result in [5] is not included in our theorem.
p

In the remainder of this section we establish the notation.   In V2 we define the

random functions, state the invariance principle and some observations about it,

and notice that the results previously cited are special cases.   The proofs of the

invariance principle and the observations form §3.    s4 consists of the renewal

theoretic results, and §5 contains some facts and the limit theorems regarding ir-

reducible random orthogonal matrices.   These two sections, although they are part

of the proof, have been separated due to their independent nature, and for the same
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reason the results therein are sometimes more general than is required by the proof,
but only to the extent that seems natural without much extra effort; also, they will

be used for further work.

Notation.   Vectors are column-vectors,    denotes matrix transposition, ( , )

stands for inner product of vectors and tr for the trace of a matrix.   The vector
norm   ||x|| = (lf_ .JC2)' ^ > with x = Up • • •, x¿)',and the matrix norm   ||A|| =

supj||Áx¡: ||x|| = 1| are used.  F stands for expectation, E [ | ?1 for conditional ex-

pectation with respect to the Borel field ÍF, and E[ \Xa, a eCt] for conditional

expectation with respect  to j\Xa,  a £ (jf ¡, the last symbol denoting the Borel field

generated by the random elements  X  ,  a £ Q.   With the above norms we have for

a random matrix A of order d and a Borel field A the basic inequality

\\ElA\m <Vd E[Mm    a.s.,

... , . ...        /v^ 2\1 /2       v^      1     1which is a consequence of the elementary inequalities   (Z.._    x .)        < 2 ._    \x .\ <

\Jd(2._ . x. )      .   The distribution of the random element X is denoted py, and 8

is the probability  measure concentrated at the point x.   The symbols D, P and

a.s. are abbreviations for "in distribution", "in probability" and "almost sure-

ly".   I ] denotes the integral part of a real number, and when a real number ap-

pears in a position where there obviously should be an integer it is interpreted

as its integral part.   The symbol      stands for positive part.   The indicator func-

tion of the set S is denoted 1„.   The identity matrix is /.

The spaces  D[0, T]d and £>[0, <»)d of functions from [O, T] and [O, «,), re-

spectively, into the ri-dimensional Euclidean space  R    (d > 1) which are right-

continuous with left limits everywhere are the same sets as the d-told products

of D[0, T]    with itself and  D[0, «x»)1 with itself^ respectively.   C[ 0, oo)rf is the

subspace of D[0, 00)"  consisting of functions continuous  everywhere.   A metric

on D[0, °o)    exists which is separable and complete, and for each finite   T > 0

its restriction to the set |/lr0 Tj :/ e D[0, °°)d\ is equivalent to the Skorokhod

metric p on D[0, T]d, namely p(x, y) = max^.^ 8(x., y A), for x = (x^--- , xA'

and y = (yv'",y¿Y, with

8U., y.) = inf   I   sup    k.(,)-y.(A(/))|+ sup ,       A(s)-AQ)   \
AeA   |0</<T      ' ,l 0<s,i<T;SJt ë s-t j'

where A is the set of all strictly increasing and continuous functions of [O, T]

onto itself (see [7], [ll]).  D[0, °°)d   will denote this metric space.   Convergence

of random elements of this space is convergence in distribution, or weak conver-

gence of their distributions.   Our basic source for the weak convergence theory
used here is P. Billingsley's book [l].
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2. The random functions and the invariance principle.

2.1.   The random functions.  The random functions we shall study arise from

the following physical process.   A point moves in a ¿/-dimensional Euclidean space
Rd  (d > 1), starting from the origin at time t = 0 in a random direction (unit vec-

tor) ¿f, with constant speed c, for a random amount of time T., at which time it takes

on a new direction, A  <f, where  A     is a random orthogonal matrix, and the motion

continues on by repetition of this pattern; thus, departing from the position cTyf;

the point travels in the random direction Aç, with constant speed c, for a random

amount of time  r , when it takes on the new direction A  A.Ç, where A    is a ran-

dom orthogonal matrix; et cetera.   We consider a sequence of such random motions,

and define the nth random function X  (t),  t > 0, to be the position at time / of the

point in the nth motion.   Thus, for n - 1,2, • • • (with A       - I)

N   (Z)n

X (i)=c      T     T     .A      .   ,.-.A     J;n n    '—i        n,i     n,i—l n,0^n

(1)
i=1

NnU)

+ c„   U-   Z     Tn,i   ]A„,N   (i)'" *«.(£,•        '>°.
v   '-1    /

where  zV  (i) = maxli: 2.   , r    . < t\, t > 0, and c    is a positive constant (the
n z = I     72, i — —     ' rz r

speed).   The function
N   U)

n

(2) X (t)mc     Y,    r   .A     .   ..-.A   J ,       t>0,n n    ¿—i        n,i     n,i-\ 72,0'n' —     '
z'=l

describes the pure jumping motion which consists in staying at each turning posi-

tion until the time of the next turn.   We make the following assumptions.   For each

n, the nonnegative random variables (times)  T    .,   i > 1, are not identically zero,

are independent,, and have the same distribution (possibly with an atom at 0), the

random matrices A     .,   z> 1, are independent, identically distributed and jointly

independent of {r    .}, and the initial random direction £    is independent of |r    .,

A     .[.   So defined, the  X    are random elements of D[0, °A)   and the X    are randomn,i n n
elements of the subspace C[0, o^Y1 of D[0, oo)¿. A probability space (fi ,f , P )

on which X and X are defined of course exists, and we follow the usual practice

of omitting the index zz from the notation of the probability measure.

We wish to obtain an invariance principle for random functions of the types

(1)   or (2), that is, given a sequence of such functions satisfying certain condi-

tions, we want to prove the existence of, and exhibit, a weak limit of the (possi-

bly normalized) sequence, which limit, expectedly a diffusion, depends on the dis-

tributions of the random times and random matrices involved in the definitions of

the elements of the sequence only through some of their moments.   It will be seen
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that under the conditions of the invariance principle weak limits of the sequences

ÍX  \ and ¡X  i are the same, and therefore the principle need only be stated for

Sx" |.
n

As they are at this point, our random functions are too general to yield the

invariance theorem we want, and therefore we make further assumptions.   The times

r    . should somehow tend to zero as n —> <*>.   We shall assume that there is a se-
72,1

quence  \r.\ of random variables and a sequence  \b   \ of positive real numbers con-

verging to infinity such that T    .-T./b.   Letting  N(t) = max[¿: 2._x i\ < t\, / > 0,

we have  N (t) = N(b t),  t > 0.   Regarding the orthogonal matrices A    ., in order

to prevent the motion from remaining in a proper subspace of R   , d > 2, or from

not being able to change direction in R   , we require that they be irreducible, the

definition of an irreducible (as opposed to reducible) random matrix A (of order d)

being that P[AV CV]<1  for every nontrivial subspace V of R   , tot d>2, and

that the single entry of A not be a.s. nonnegative for d=l.   We mention at this

point that if a random orthogonal matrix A is irreducible the matrix  / - EA  is non-

singular (see § 5).   We do not require the orthogonal matrices  A     .  to be proper

(i.e. with determinant + 1).    These qualitative conditions complete the definition

of the class of random functions that concerns us here.

2.2. The invariance principle.

Theorem.  //
(i) Er  < oo for some p > 3,

(ii) (A    ,, 72 > 1\ has no reducible weak limit points and lim (/ - EA    ,)~72, 1 — r 7Z —CO 72,7

exists, and

(iii)  a     a     ■■• are positive real numbers such that  lim (c  /a  b      ) = 1,12' r 72—>oo       72        72    72

then as  n —> °o  the sequence of random functions  \X  /a   \  converses in distribu-
' n      72 °

tion on D[0, oo)    to the Gaussian random function X with stationary and indepen-

dent increments, mean 0 and covariance matrix function EX(t)X(t) ' = tC/dEr  ,

C= Varr]/+ (Er x)2 \^^'EKi)"l + ^'EA^"^''\ ■

Let us make a few observations, some of which we will verify at the end of

§3.
1. Even with the provisions of irreducibility of the A        and their weak limit

points, the limit X may be degenerate.   Example:   In ß3, with r    constant and

/l    0    0 \    /0   -1   0\
An   i = Ai=      °      °     "I     ,  (   1      0       0)'     \0    1    o I   \0   0     1/

each with probability lA for all 72, we have rank C = 2, so that X concentrates on a
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two-dimensional subspace.   What happens in this example is that, if x, y, z are the

coordinate axes, the y-component of X /a    is bounded by v3c rja b  , which con-r n     n '   T       h 1      n  n'
verges to zero as n —> °°.   To see why this is so let u   , u  , u   be the unit vectors

along the corresponding coordinate directions and let   U = {u ,-u  , u ,-u , u  ,-u
X x       y y       z 2

since for each i.A.   , • • • A, U C U, it suffices to take  zz   or - u    as the initial di-'    z-1 1     — y y
rection; now, it can easily be seen that with probability one Au lies in the xz-

plane, A • • • A zz does not lie in the xz-plane for some i > 2, and for the first

such i, A.   , • ■ • A.u   = - u  , and that the same holds with - u    in place of zz  ;
z-i        l y        y n (t) y y

hence the y-component of (c /a  )S.°.     r    .A     .   , •••A    .zz    isO, cr,/a b   orJ r »      n'      i- 1        rz,z    tz,z-1 7j,0   y '     n   V    n   n
— c  r./a b  .   In this example we also have that in the xz-plane the component pro-

cesses of the limit X are dependent.   In general we can say, however, that the

limit X is degenerate only if   r    is a.s. constant, that rank C > 2 when d > 3, and

that, for d = 1 or 2, X can be totally degenerate (i.e.   C = 0), which occurs if and

only if both   r,   and all weak limit points of  [A     , S are a.s. constant.   For d > 3l r n,\ —

every (constant) orthogonal matrix is reducible and hence cannot be a weak limit

point of {An l \ (this is why X cannot be totally degenerate), but, for d = 1 or 2,

1A       !  can have a.s. constant weak limit points (- 1 for d = 1).72, 1 r J

2.   Of special interest are random motions of our class whose changes of di-

rection satisfy the following property.   If A     A2 and A     are independent and

identically distributed random orthogonal matrices (of order d), then, as functions

of the direction x, the distributions of the projection of A  x on x and of the pro-

jection of A   A   x on x ate invariant under the transformation A      i.e. for any di-

rection x

(A2AjX, A1x)l(A2x, x)    and    (A J A 2A ,x, A jX) S (A 3 A 2*. x).

It follows from this that the random matrix A = A     satisfies the condition

E(A'(EA + EA')A)= EA + EA'    and    E(A ' (EA ' EA)A) = FA 'FA,

or equivalently, by Lemma 5.2,
Condition (A). EA + EA' = a! and FA 'FA = ßl tot some constants a and ;8.

This condition holds automatically for d = 1, and when A is proper, also for

d = 2.   If the matrices A       = (zz'"')  satisfy Condition (A), thenn,l z; '

/ l-ld  AEa^)2
j ;= 1       ;z

C = I Varz-j + (Ft-j)2 lim   —-
\ "-"   l-2EaV + Zd   AEa(n))2
\ zz ; = 1 n

where z is arbitrary.   Therefore the limit X is a (f-dimensitAal Brownian motion

process (understood here as a ¿-dimensional vector process whose components are

independent (one-dimensional) Brownian motion processes with the same variance

parameter), and hence for d > 3 it is nondegenerate.   We further remark that under
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Condition (A), tot ci > 3 if À is a weak limit point of [A    A then \\EA\\ < 1, be-
cause   \\EA\\ = 1   is equivalent to A being a.s. constant and hence reducible.   We

note that the matrix A       in the above example does not satisfy Condition (A).

3.  For d = 2 we represent the proper rotation A        in the form

(cos a - sina
72 72

sina cosa72 n

where a^ is a random variable taking values in the interval [-77, 77).   The con-

dition of itreducibility takes the form pa   / pà_n +   (l - p)8Q, 0 < p < 1.   The
72

limit X is a two-dimensional (or totally degenerate) Brownian motion process with

variance parameter

/ 1 - (Feos a)2 - (E sin a^)2
■rß—   [ VarT-j + (EtA    lim-
¿    l   \ "~°° (1-F cos a )2 + (Esina )2

\ 72' 72

Suppose that a is a weak limit point of {a   \ (ua / p8_    + (l - p)80, 0 < p < 1).

If ais a.s. constant X has the minimum possible variance parameter,

Var r./2Er.; but if ais not a.s. constant the  a    can be shifted (mod the interval

[-77, 77)) so that X has any variance parameter in the interval

\(2Erx)-x (Vatrx + (ErA2ß), (2Erx)-x   (var ^ + (ErA2ß~ ' J J   ,

where

1 =((E cosa)2 + (E sina)2)172

l + ((E cosa)2+ (E sina)2)1''2'

In particular, if E cos a= E sin a= 0 we have the unique limit variance param-

eter    Er./2Er , and we note that in this case the limits as 27 —> ̂ ° of the mean

and variance parameter of X  /a     ate equal to the limits as 72 —> cm  of the mean

and variance parameter of the random vector rfV^i   y where the unit vector cf

has the Haar distribution and is independent of  ¡r.¡.

2.3. Special cases. We will include here only special cases that yield re-

sults obtained by other authors, and other means, for d = 2 and proper rotations.

Let a   = a for all 72, with asymmetrically distributed (i.e. pJ<A) = pj,- A)
tot each Borel set A); then the limit Brownian motion process has variance param-

eter

0   -TrT"   I Varr   + (Er.r-    .
2Erx   \        l 1     1 - E cosa /

With T, = 1,   b    = c   = 72, a    = \Jn, ¿r   = (cosa     sin a  ) ' and / = 1  we obtain
1 ' 72 72 72 ^72 U' U

that the random vectors
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(72 Z- 1                                      72 Z- 1 \    '

1 y y i  y y
——   *—• cos   *-* a... —— *-* sin   ¿-^ a. f    ,
yfn ¿=1 /=0 '   V« ía0 '"° ' I

where  a., /> 0, are independent and a., / > 1, are distributed as a, converge

in distribution as n —> =*> to (N     N A , where N. and N 7 are independent normal

distributions with mean 0 and variance a   = (l + E cos a)/2(l - F cos a).   This

central limit theorem appears in M. Kac's book [5], with a    also distributed as a

and without an explicit limit variance, and in V. N. Tutubalin's paper [8], with

Pa= (^q+ ^_q)/2 and the requirement that 6 be incommensurable with respect to

277, which, as we have seen, is unnecessary.

Now let  r,   have the gamma distribution  r(/3, X), b    = c  , a    = 1 and rf   =1 ° ~'      '     n        n'     n ^n
(cosa   A, sin a   „)  , and let a    .,  i > 1, be distributed as  a  .   Then the  corre-

72,0' 72,0        ' 72,;'    '    —       ' 72

sponding vector  processes (which we might call generalized scattering transport

processes) converge weakly as n —> ̂  to the planar Brownian motion process with

variance parameter

x  L     ß 1-(E cosan)2-(Esinan)2
a2 = -    r- + — lim    -

\       A"-,°   (1 - F cos a )2 + (Fsina )2

If all a    . ate uniformly distributed on [-77, 77) and ß = A = 1  (so that r^ .  is
exponentially distributed with parameter c  ), then  a   =1, which coincides with

T. Watanabe's result in his paper [9].

3. The proof.  The hypothesis of the invariance theorem and the basic in-

equality (§1) will frequently be used without mention.   The proof employs the re-

sults of §§4 and 5.   To simplify the notation we will assume that a   = 1, which

implies no loss of generality, and we can obviously assume  p < 5.

3.1.   Preparatory lemmas. We will show first that weak limits of the random

functions X    and their associated jumping processes Xn given by (1 ) and (2),

respectively, are the same.

Lemma 3.1.   // Er. < 00 for some a > 0 and the sequence {c /¿>(a~ \   is

bounded, then {X  \ and {X  \ both converge weakly to the same limit or neither

converges.

Proof.  Since the Skorokhod metric p on D[0, T]     is dominated by the sup

norm metric we have from (1) and (2) that

/       No) \       c I     NU)    \
PiXn, X) < cn 02SUPT    y-fc    rn> i j -T-^sup^ ^ - 2- rt) ,

and the last random variable converges to zero in probability as  n —> «¡  by Lemma

4.1 (put  b   =da, then c /b   = ic /b(a-l)/a)il/d )).   This implies that the con-
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elusion is true for the random functions restricted to the time interval [O, T] tot

each finite   T > 0  (see [l, Theorem 4.1]), but this is sufficient (see [ll]).     □

We remark that this lemma is valid if the matrices A     . are only contractive.

From the hypothesis of the invariance theorem we see that the conditions of

Lemma 3.1 are satisfied with a= 2.   We may then work with X   or X    for inves-

tigating weak convergence, whichever is more convenient, and therefore we make
the following nolational convention:   both (1) and (2) shall be represented by X

throughout the proof, and where appropriate we will point out which one we are

using.

Next we will prove three preparatory lemmas.

Lemma 3.2.   Let t and h be real numbers such that  0 < t < h, h    real numbers—       —       '       72

such that h   —> h as n —> «>, and T    random variables that are independent of all

the random elements which determine X , such that T   < h   a.s. and T "A; t as
72' 72—72 72

77 _ oo.   Lez* 0 < a < 2.   Then if h = I

lim^E||Xn(¿n)-Xn(Tn+)||a=0,

and there is a constant K such that if h > t there is an integer nQ depending only

on  h - t such that, for all n > na,

- + Mla s Z/Í2.     A<*/2
n' ' n' 72' " 72 'E\\X(h)-X(T+)\\a<K(h-t)

and if h    and t    are real numbers such that  0 < t    < h    and (h   - t )      = 0(b  )'7272 —      72 72 72 72 72

as n —> °° there is an integer «0 such that, ¡or all n > na,

E\\X (h)-X(t )\\a <K(h   -t )a/2."      72       72 72721'— 72 72

Here X^  is (1) or (2).

Proof.  X    is (2).   By straightforward computation one obtains

oo oo

E||X (h)-X (T+)||2=c2  Z Z       El
7=0      * = r+l [n   (r + )=r>N   lh   ) = s]

72       72 72        72

S-l

Z     r2       h 2     L Z      t    .t    E(A    .   .
i = r+l     "'' ! = r+i     /=i+l     ».» ">J        ".'-1

••,/A72,0^'

(EA    .)>'-¿A    .   ....A      £ V72,1' 72,2-1 72,0S72    |

By Lemma 4.3 the indices of the rn . can be changed to obtain, performing the
summation on /',
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s- 1

(s-^,, +2r        ,r_.     £    F(A_,.   ,r   c     2.    F(A    .   , ...A    n(f ,
",S     !=r+l 7J.Z-1 72,0^72'

0    .A    ..... A    nf )> ,72,Z,S      72,Z- 1 72,0^72     /     '

whe re Ön,t,i = (Ei*»,l -(E^n>1)í_¿+1)('- E'4„il)"1, and hence, because

>n.i,J<n(i-EAntl)-%

BlxM-X¿T+n)V

<c2nEiNnihn)-NniT+n))ir2Nn{hn)  +   4|U-Eil.^-1!^^^.

Using the assumption on   r     ., and the Holder inequality with  l/p + l/q = 1 and p
72 » Z

an integer large enough so that  Er^q+    < °°, we obtain

E\\X ib)-X iT + )\\2"       72       72 72        77     "

^  cl    f ¡Nib h )-N(b T + )   •
< ™ I p I 72     72y 72_72- r r

whence the conclusions follow by Lemmas 4.4 and 4.6 and Liapunov's inequality,

for X    given by (2).
It is easy to show that there is a constant M such that, with the notation of

(Dand (2),
(E||X ih)-X (T+)!|2)1/2<(E||X (h)-X (T+)!|2)1/2 + M/è1/2,"      72       72 72        72    " — "       72       72 72 72    " 72       '

which yields the lemma for  X    given by (1).     O
In what follows it will sometimes be convenient to introduce the initial direc-

tion in the notation of X  , and to view X    as a family of random functions, one

member of the family for each initial direction; thus  X n(x) is the member

/ V \
XbU t) = Xn(x, t) + c    1 t -    Z    rn,i)An.Nn'tVA«,Ox>

where
NJt)

Xnix,t) = cn   Z     rniAn^r..Ant0x,      t>0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1973] ¿-DIMENSIONAL POLYGONAL RANDOM FUNCTIONS 423

We say that two random functions of our class have the same distribution when

they are identically distributed for each initial direction.

In the next lemma we express the fact that after a turning time the process

X     is influenced by its history up to that time only through the direction after the

turn (which depends on all the previous directions).

Lemma 3.3. Given / > 0 there is a random function Y in our class, defined

on the same probability space as X , which is distributed as X and independent

of \X   (r), r < t\, and such that for s > /

X (Ç , s) - X (Ç , t) = Y (Ç ,(s - T    N   . .   ,)+) + 0 ,
77   ^72 72   ^72 72   ^>n 72,N     (()+  1 ^77

72

and also

X (£ , s) - X (ff , /) = Y (C , s - t) + 0 ,
72   ^72 72   ^72 77   ^727 72'

where
Nn(t)+l

£n = An,N   (t)+l"'An,0^n, Tn,N   (z)+l= ,        Tn,i'
ri 72 2=1

and E\\<pn\\a= 0(b~a/2) for 0<a<p- 1 and E\\0J2  — 0 as n -.<*..   Here X ̂  is
(l) or (2).

Proof.  X    is (2).   It is easily verified that the first expression holds with   Yn

defined by

Nn(b)

Yn(x,h)-^cn  Z  r  â        ..An0x,    h>0,
ï= 1

With   rn.i= Tn,Nn(t)+l + l>   Nn(h)=max{k: 2. = j F^. < h\, ^,; = ^.N^ 1 + !,

z > 1,  A    n = /, and—      ' 72, u

^n   =   C72r72,Nn(z)+lj472,Nn(z)-,-/i77,0^1LTniN     (/)+lS^'

and then it is clear that  X    and Y    have the indicated distribution properties.

From  E\\<f>  \\a<(c /b )aE^(fe  ()+1   and Lemma 4.4 it follows that   E\\<pJa =
,- 72

0(b"a    ) as 72 —♦ ».    For the second expression we put

6   = c6 - (Y (C , s - t) - Y (C ,(* - T   N  z,)+1) + ̂ ;
72 ^72 72   ^72 72   ^72 72 , W ^U >+  1

then by Minkowski's inequality

W6jV'*<£(Bfa tUl)l/2 + (E\\Yn(s-t).Yn((s.TntN(t)+l)^)U2.
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the first term on the right converges to zero by Lemma 4.4, and so does the sec-

ond one by Lemma 3.2 because s - t > s - T    zy(zl+l —*'s - t as n —> <*>.
'      72

For X    given by (1) the proof is similar.    D

Lemma 3.4.   // h    and t     are real numbers such that  0 < t    < h  ,' 72 72 —      72 72'

lim inf        (h   - t ) > 0 and lim sup     „(¿   - t ) < °°, there is an integer nn, de-n — .oo    n        « rn^oo     72        n 0 0'

pending only on the sequence {h   - t   \, and constants K and c such that

K(h -t \yv   72      n'

f    SUP,      'KI t   <s<b n
I     72 72

<*> -* „M *f
c2r

/or z?// n >n0 and all e > c lim sup   ^^(è   - z* ), where y = (p - l)/2 (no/e /¿«z:

1 < y< 2).   Here X    is (1).

Proof.  Let 8   = h   - t    and
72 72 72

^-*. + ».*/I*i/2]»     *-Q.-.[*;/2l;

the

t-

P|       sup IX (s)-X (î )|| >
s<£

(a) <p|"     max ||X  (r    A-X (r    0)|| >-l\<k<bXJ2        n   "<k "   n'°     - 2J

+ P sup
Z   <s< h

\X is)- X it
lïksb

max !|X (r    , ) - X (r    n)|| >
j f2       "      72      72,fe 72      72,0    "   —

To study the first term on the right of (a) we set S    , =

1    (X>72,Z)-X72(r72,!-1))'^=1'"-'   e¿/2'and    ̂ )0"=   0;   then   ̂ aS   Ín   [1'   P"   88])

[max
\<k<bXn

\X ir    A-X (7     0)||>-1
,2     »       72     72,Zt 72      72 , 0   "   ~   2  \

(b) <   P [max
l<k<bXn n miní||í„>JkH.P

« ,è1/2
-^,J1> *]

+ P        max
1 szesfe1

L. 72

II *    ('       J   -X    ('       i.       1^11   >-rJ-,2     "       72      72,Ze 72      72,Ze-l    »   — g

We will now obtain an upper bound for the first term on the right of (b).   Let i, j
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1 '2and k be integers such that 0<i<j<k<b'.   By and in the notation of Lemma

3.3, applied to S    , - S     ., we have for À > 0'       rr 72, k 72,;'

P[I|S    .-S    .11 > A, IIS    ,-S    .||>A]
11     72,7 72,7M   — "     72,lfe 72, J"   —

= PU\X (r    .) - X (r    .)|| > A, ||X (r    ,) - X  (r    )\\ > A]
(V) "      72      72,/ 72     72,Zü   -       '   "      72      72,k 72      72,7    "   -

< PiUJ > A/2]

For the first term on the right of (c) we see by Chebyshev's inequality and Lemma

3.3 that, as 72-^00,  P[||cSj > A/2] < A""2 y0(b~y), and since lim intn^oo8n > 0,
k - i > 1, and b   —> 00, then, for all sufficiently large 72,

(d) PÍUJ > A/2] < \-2y (8n(k - i)/lbln/2])y.

For the second term of (c) we have

P^nKJ - Xjrjl > A, II Yn(Cn, (rn>k - TntNnKj)+ A*)\\ > A/2]

=  / PL\KKJ - X«ir«ß * A' H Yn(x' r)" * V21

C = *• (r72,Ze - r«,Nn(7n>y)+ 1)+ = rK(^' *>•

where  zx    is the joint distribution of £n and (r    fe - Tn ^   ,       .   ,)   .   We will
' '      72      72,7

study this integral separately over the sets   b~   < r < r    , - r    ■ and 0 < r < b~ .

Under the condition  C   = x and (r    , - T    .,   ,       -,   A    = r  the random vectors^72 72,k        n,N   (r     .)+ 1
72      72,7

X (r    .) - X (7    .) and Y (x, r) ate independent, and   Y (x   r) is independent of72      72,7 72      72,2 72v    ' r ' 72       ' r

the random elements appearing in the condition; using these facts together with

Chebyshev's inequality and the last part of Lemma 3.2 it follows that there are

constants   KQ and K,   such that, for all sufficiently large 72,

/-, <_J_f, 1 \T/2    2r        , sr/2
n,k~rn ,j X'        °      72,; 72,2 ^7 0V   72,* 72,;

1    ̂

The integrand ove*  0 < r < è-1   is bounded above by  lr , i because
fi -      -     72 >       Lcn/fen2;\/2j

|| Y (r)|| < c  r, and hence   f . < lr , i, which equals zero for each

A > 0 and all sufficiently large n because  c /b   —> 0 as 72 —> 00, so that, for each

A > 0 and all sufficiently large 72,
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/ <     1     (8»{k-l)
o****;1-x27 [ib1/2]

In conclusion, there is a constant  K? such that, for each A > 0 and all   suffi-
ciently large n,

P^XnK,?-KKß>-^Yn^Kk-^,N   fr     ,+ 1)+)|l>V2]
«      72,7

(e)

<X-27iK28nik- Ô/Lblf2])7

From (c), (d) and (e) we see that there is a constant  K,  such that, for each A > 0

and all sufficiently large n,

W. J - *„..■« * A' K,k - SnJ > ¿I < A" ̂ < W* - M*r»r .
whence follows, by Theorem 12.1 of Ll], that there is a constant  K.   such that,

for each e > 0 and all sufficiently large n,

(f) -f"    max miniH^ J,||5 -i„.JI*|r1    <
l<ksbl/¿ n,bU¿

\- n n -J

8y4r      < K,     n   .4 ,2y

We can treat simultaneously the second term on the right of (a) and the second term

on the right of (b) because they have a common bound; indeed, the following in-

equalities are easily verified.

PÍ     sup        ||Xn(s) - X^JH -       max ||X>      ) - *„(,      )| > A
\ t   &s<b .,., ,1/2
l_ 72-1

<P\     max / sup \\Xnis)-Xnitn)\\-\\Xj,rn<k)-Xj,tn)\\>x\
|l<fe<fe1/2    \Tn,k-^s^Tn,k /'       J

(g) X
<P\     max sup IIX^^-X^H^A

\l<k<bln/2    rn,k-l-sírn,k J

< 1
Le s /[*1/2]*x]

72    Tí J7
and

(h)
■«        llX«^«.*)-X«(V*-l)||^X

l<fe<i>1/2 1/2^1

and clearly if lim supn_00§n < e/8 then, for all sufficiently large n,

(i)
1 =0.

Le   S   /[fc1/2]>£/8]
n   n       n
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(a), (b), (f), (g), (h) and (i) establish the lemma.    D
3.2.  Weak convergence.

Lemma 3.5.  \Xn(t),  0< t <T; n = 1,2,« • • } is tight for each finite positive
T.   Here X    is (1).72 v    '

Proof.  It is enough to show that for each e > 0 and 77 > 0 there is a o,  0 <

8 < 1, and an integer 720 such that

^+8 K/*>-*„«!><]    S*»

for all n >nQ (nQ independent of /) and all t,  0 < t < T - 8 (see [l, p. 58]).    In
Lemma 3.4 let /   = t, h   = t + S and choose 8 so that c8 < e and KSy~ /( y < r¡.    an n — '

In the next two lemmas we will prove that the finite-dimensional distributions

of the sequence [X  Î converge weakly to the desired limiting distributions.   By

the finite-dimensional distributions of a random element X of D[0, o»)    we mean

all the /e-dimensional distributions of X, for k - 1,2,« • • , the ¿-dimensional dis-

tributions of X being the (¿¿(-dimensional) distributions of the random vectors

(X(ty),..., X(tk))tot all /j <t2 <■••< tk.

Lemma 3.6.   Let X be a random element of D[0, oo)    with stationary and in-

dependent increments.   If the one-dimensional distributions of X (rf ) converge

weakly to those of X, independently of jcf \, as n —> °», then all the finite-dimen-

sional distributions of X    converge weakly to those of X as n — ♦ o».   Here  X     is

d)or(2).

Proof.  The proof is by induction on the dimension of the finite-dimensional

distributions, the initial step of the induction being the hypothesis.   Let us as-

sume the truth of the result for the ¿-dimensional distributions and consider arbi-

trary times  ¿j < t2 <• • • < tk = t < z\    j « s.   The convergence of the (k +1 dimen-

sional distributions associated with these times will obtain if we show that for an

arbitrary function /: R(  +   '    —> R, continuous with compact support, it holds that

mxn(tx),---,xn(tk),xn(tk+l)-xn(tk))

- Ef(X(t j ),.. . , X(tk), X(tk + j ) - X(tk))    as n — -,

or, since X has stationary independent increments and X(0)  ='0,

.., xk, Xn(s) - Xn(t))\ Xn(t) = x{,  i = 1, • • • , k]pn(dx^,..., dxk)

— J E/(Xj,..., xk, X(s - t))p(dxlt. • • , dxk)    as 72—>~,

Jel/G

where pn  is the distribution of (X^Cij), • • • , X„(*¿)) and p. is that of  (X(t j), •

X(/, )).   By and in the notation of Lemma 3.3 we have
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X (£ ,s)-X (£ , t)=d   + Y (C ,s-t),
72   =72' n^n' 72 72   ^72' '

and hence, since / is uniformly continuous, given arbitrary e > 0 there is a 8 > 0

such that

J" ELfixv ..., xk, Xn(s) - Xn(t))\ Xn(t.) = *.,  i - 1,... , k]pn(dxv ..., dxk)

- f Elfixy - ■ •, xk, Yn(s - t))\ Xn(t.) = x., i = 1,..., k]pnidxv... , rfx^)

<c+2 sup       |/U)|P[||ÖJ|>§],
zeR(k+l)d

and therefore, since we know by Lemma 3.3 that  ||ö || —> 0 as n —> °«, it suffices

to show that

Eifixv • • • , xk, Ynis - t))\ Xnit) = xp  i=l,-.-,k]

—> Ef(x ,  • • • , x,, X(s - /))    as n —» °°

uniformly for  (¡Cj,«.. , x, ) in compact sets of P        (it is easy to see that

Ef(x ,• ",*,, X(s - t)) is continuous on P    ), or equivalently that

£[/K,.l. ••-.*„,*.    y72^-^lX72('P   =   ̂ ,z'     «•*■!,•••.*]

—»F/txj,. • • , xfe, X(s - /))    aszi-t»

when  (x    ,,•«•, x    , ) —► (x,,...,x,)asn —>°®.   Let us demonstrate that this
71 y 1 Tt * ft 1 ft

is true.   Let

Stz(,)= f(xn,l>'"> Xn,k> "   )     and     g(-)=/(%l'"-. xfe.  •   );

hence   e  (x  ) —» p(x) when x    —> x as n —> °», and since the condition X  (z.) ="72       72 ^>        ' 72 72      Z

x    ., z = 1, • • •, k, affects   V (C , s - t) only through £,n, and by hypothesis

V  (£ , s - t) converges weakly to  X(s - /) independently of !£„!> it follows that

subject to the condition X (/.) = xn ;., i - 1, • • • , k, for each n,

Z¿YSS - ¿)) -g^s - '))    as n -* -;

finally, since the g    ate uniformly bounded we have that

E[gn(yn(s - t))\ Xnit p = xn.,  i=l,.-.,k]  - Fg(X(s - t))    as n ^ -,

the desired conclusion.    □

Lemma 3.7.  The one-dimensional distributions of Xn(i;n) converge weakly,

independently of [f \, to those of the Gaussian random function X with stationary

and independent increments, mean 0 and covariance matrix function EX(t)X(t)  =

tC/dEr., where
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C7S 72   —> °o.C = Var r.I + (Er,)2   j lim    [(/ - EA    .)" l + (I - EA ' ,)" !] - /
j   TZ— "»1 "-1

Here Xß  z's (l)or (2).

Proof.  X   is (1).   We note first that C can be written as

C = Er\l+ (Er A2 lit^ [EA^C/- EA^)" * + EA'n x(l-EA'n A"1).

The conclusion follows from a theorem of B. Rosen [6], and we need only to veri-

fy that its conditions are satisfied.

Let us fix i > 0 and denote s . = / z/72,  i = 0,1, • • • , 72,

and

S (a) = X (tlan]/n),       0<a< 1.
72 72 — ~

We have
0.72

S (a) = Z  Y     ,       0<a<l,
72 ■      1        ' *, *2= 1

3)and we wish to show that S (1) — ■> X(z") as 72 —> —.   In our case sufficient condi-

tions are

(i)   there is a positive constant K such that

lim sup E       Z-      Y
n-°°       \\i=ßn + i     »•'

<K(a-ß)    tot 0<ß<a<l,

(Ü)

lim lim sup -jj-Fl
SiO 72--     ° \ iy<a+S)", y    .||>í]

-¿-7 = 0.72+ 1 72,2"

(0+8)72

^ Ki
z'=a„+l      "•'

= 0

for 0 < a < 1 and every e > 0

(this implies condition (C4) of [6]),

(iii) lim supE
72— —

and

(iv) lim SUP E

(0 + 8)72

Z        Y.
_¿=a.7z+ 1 72,2

S (a) = 0    f or 0 < a < a + S < 1,

(zx + S)t7 / (0 + 8)72

Z       Y.I       Y    .
2=072+1 "•'\í=a72+l n,î2

S (a) -5TÉ77C

for 0< a<a+ <5< 1.
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Let us see that these conditions are satisfied.

Condition (i).  By Lemma 3.2,
072

lim sup E
72— — 2'=/3t2+1

= lim sup E
72—— |

X ffan[\_x      tlßn] < Mt(a - ß),

where M is a constant.

Condition (ii). We have the identity [l, p. 223],
(a + $)n

El
[P<a+S)72      y ||sí]

11       2=072+1       72,ZM

Z     Y
2' = 072+l        "

e2P v    tKa + 8)n]\
Xn\—-     -

/;'    2P

whence the result follows by using Lemma 3.4.

We will verify Conditions (iii) and (iv) for X    given by (2).   It is easy to see

that these conditions will then hold for X^ given by (1) also.

Condition (iii). We will omit the procedure since it is similar, but much sim-

pler, to that for Condition (iv), which we will treat in some detail.   The following

obtains

E\\E

(a+S)n

S (a) <Vd^(ErN{bt   )+l + 2\\(l-EAn^\\ErN(b  h  }),
l = 072 + 1

where  t   = t\ß.n]/n and h   = ¿[(a + o)t2]/t2.   The condition follows from the hypoth-

esis of the theorem   and Lemma 4.4.

Condition (iv).  Let

Sn,i = ^n>An,0>'~>An,i-l>rn,l>->Tn.i+¿>        2^>

§72.0=  ^,7, l!'

?       = ( A £ ?  : A n [/V (t ) = ù £ §    -for each  i > 0¡,
72,Z      ' tí n    n n,i —

77

/   = t[an]/n and h   = tl(a+ 8)n]/n.   Then
72 72

(<X + 8)tZ

Z       Y    . = X  (h  ) - X  (/  ),       S  (a) = X  (/  )
2 = 072+1 "•' "       " "      "' " *•*

and A\X (t )\ C J    ,  , so we haven   n     —     n ,z
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and

E\\E

[(a+S)n /(a+8)n \,i "I

T.       Y    . I     Z       Y    . I  ¡S (a)
¡=an+l      "•!\i = an+l      "•'/   I   "     J

[N   (h   ) N   <*„>7i    n n    n

Z S        r   .r   .
i-Nn(tnUli.HnUnUl "•' "•'

"J I

m      r   W      W
<AlE \\c2E Z Z t    .t    .
- "n     Lf-N.(i.)+l/.N.(t,)+l   "•' "•»

Si7F77c

• U    .   ,..-/l    nf )U    ■   ,--.A    „f )'|ï   ,      -S-ji-
V     71,1-1 71,0*71 71,;-1 71,0*71 71,Z^ jEt.

We will show that the last expression converges to zero.   Denote

Y   =E Z E

.(A    .   ,...A    nf )(A    .   ,...A    n^)'?   ,V     72.Z-1 72,0=72/v     72,7-1 72,0^72 "''„J

and fn(r, s)= 1[N  (<  }       N  (¿  )=J]. Using Lemmas 4.2 and 4.3 we can write
n    n n     n

Y»'='   E   s^j^^<rJAny--\MKr---An,oQ'\§nJ
S

+   £ ,Et/>, SVBif+1 V((AB>í.1-\,oíB)UBif...As>04)'1 = 7+2

+ (A    .../I   nf )U    ■  .--A   „í)')l§    ]n,r n.O^n        n,i-l n,0^n      ' t->n,r

+    Z    EL/(r,s)r2    U    .   ...-A    „f )(A    .   ,-../l   n£)'|§    .1.        _     L,'n   '       n,5     7i,i-l n,0*7i       7i,i-I rt,0=7i    '^rtff1=7+2 '

s-1        s

+    Z      Z    E\Jir,s)r        ,r    ((A    .   ....A   „rf )(/l    .  ....A   J )'
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Let us introduce random matrices \B    ,, B    ,,••• î that are distributed as [A     ,,72,1'72,2' 71, 1 '

An 2, • • • \ and are independent of everything determining X  , and let Ç,      = A        ,

• ••A    Q¿jn (¿      is measurable with respect to \)n r).   Then, using the indepen-

dence assumptions, performing the summation on /' and applying Lemma 4.2 again

we obtain

C=S,ÊKW-^X,N(i     )K72       72

+ (N(hn) - Nn(tn))rn>N        ,_, rniN (V n0'n + 0 Vn)\ Ï      ] + R„,

where 0   = EA    Ai - EA    A
72 72,1 72,1

-1

N   (h   )-N   U   )
72       72 72      72

U   -___i_ Z E[(B    .-..B    ,v)(B    .-•■B    ,r>)' 177],»"zviS)rF(i)        ,, ",7     n<l n   n'}      n>1 *    "
72s    72' 72 v   n 1= ¿

.V   (A    ),N   (Z   )-l
72       72 72      72

V
"     NJbZJ-~N(t) 7=2? ^(B„iy---B„|1r/n)(B„)j....B72)1r?n)'|77J

72       72' 72*   72

with   'J« = CíV   (Z   )'and

+ Tn.N„Uny+lr„Nnu/EAn.¡-^\J   " " ){'-E\A-'E[{Bn,JAB„,l%Y\l¿
<VV-W

i.N^J-l'a.N,«",)

ZV  (i   )-N U  )-2t+lZn    n        n Si
(£[(b   ■•••b   ,7))(ö   .--.ß   ,7i )'|i7 ](EA' ,) (I-EA' ,)-•,_2 n.« n.l'n       n.« n.I'n     ''n n,l n,l'

ZV «.  )-ZV U  )-k+l ,,,      „,_ j
+ (EAnil)" a-E/t„iI)-1El(B„,il-BBilr/„)(BBii...Bnilr/M)'|r)lll)|ï„i(ii|

Using the assumption on r     . we have
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clY„-5im- (£ri' + (£7,)2 um (e + e'
"  "        dEr    \     ' I      i;       Ti       7i

N(bnbn)-N(bn,n)

b 'El

Ka  t  )Vn+'N(b  b   )-x'NU  b   ̂ rP'n^A^nAn  n n  n n  n n\

n 1 n   n n

^K+en)(ELrN(b_hJ^rN(bJ  ,|J      ]_(Er^)|   '
n  n n  n

c"   at

<  Si

rN(i.„/,„) (ü.     T)

+ TNU,b)-lTmbbj]   \Vn-Tr^en^
<U

"     d)M
b      d 1   |   «       n       71        n      n   1

) ^l£r?'+(Er.)2lr(9>e7.)i^X;

hence

c2y -8 j¿- C
i  7i        ¿Er.

Z  /('>+r2E||R ||,

where (by using the basic inequality and the Holder inequality with l/p + 1/q =

and q an integer large enough so that Er\p+ 1 < °°, and the fact that || Uj\, \\VJ\

and || 6 ||  are bounded uniformly in n, say by a common bound K)

q \ 1 /<?
7<1>      "   |1"        6

N(bnb„)-N(b„ln)       St

. |(r-.2i) U/plf i(Fr2f Ft2 p )l2p2K2\\ld.
iKITN(b  b   V N<-bnh„)->       N<-br,hn'

.2
,(2)       "     Sz    ipipi 2 i'f       l_Fr2l

-2KE|e[rTO 4  j.,^.  $S^]-(Erx)2\\/d,

Z<3>_ JL_§L   z" (Fr2P
«      li

I '9

4- ?K(Fr2p Er2p )U2p \F "   d

,V/,U

/(4)_    »   &  £   ,,0,    g   _lim (f3'+e)l|,    and
» 6n   <Z '"   "       71       „ 71       n

2

¿. lErJ+ <&,)'2«.
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By the hypothesis of the theorem r      —» 0 and r   ' —> 0.   By Lemmas 4.4 and
4.6, /^1} -».0, since hn -* t(a + 8) and tn — /a.   By Lemma 4.7, z^2) -> 0, be-
cause ErA+    < — for some  p > 1 (notice what J is with r    .= r./b).   Bv1                                     r                                       72,z n,i       r    n'       "

Lemmas 4.4 and 5.3, /( 3) —> 0, as  N(b h  ) - N(b t ) ^'-   and IIn II = 1.   Now,'72 ' 72    72 72   72 "   '7211 '

c2E||R  || </(1)+/(2), wheren    "    n" — J n J n    '

■An-V*«^ L{Ermntn)+x ^E<N(bntn)+Abnhn.
\1/2|

and, using the Holder inequality as above,

«W-»,',)-1

i=2

W-N»;>U,rfl  I/2'
Í   AE/1' ,)

+    E
N(A A )-zV(A z )-l *=2

N(bnhn)-mntn)-\ W„bn)-KbjH)+l-k

(EA„ i) ',
n  n' n n

2ij\l/2«

where   /
72, k E^Bn,k- • • Bn,lTln){Bn,k- • ■ Bn,\%)'\rln] and ^ is a constant.    By

the hypothesis of the theorem and Lemmas 4.4, 4.6 and 5.4, Pn   ' —> 0 and pn   '—•

0 as 72 —> —.

The proof is complete.   For  X    given by (2) it follows  from Lemma 3.1.    n

Lemmas 3.1, 3.5, 3.6 and 3.7 prove that tor every finite positive T the se-

quence of random functions  {X (7),   0 < t < T; n = 1,2, • • • \ converges weakly on

D[0, T]     to the Gaussian random function  X(t),  0 < t < T, described in the invari-

ance principle (see [3]).   The works of Stone [7] and Whitt ([l0], [ll]) show that

this implies the conclusion of the invariance  principle.

3.3. Completion of the proof.  Here we will verify some of the observations

made after the invariance principle.

1. We have  C = Varrj/+ (ErA  M, where M is the matrix of the theorem in §5.

Therefore C is singular (X is degenerate) if and only if rl  is a.s. constant and M

is singular, and the statements about C follow from the properties of M at the end

of §5.
2. This follows directly from the results at the end of §5.

3. The variance parameter may be written as

1       (varr1 + (Er1)2  lim   Re L**£l)
2EA      \ ! 72— UEeZ<X„    J
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Therefore, since the mapping (1 + z)/(l — z) of the complex plane carries the cir-

cumference   |z| = a,  0 < a < 1, onto the (generalized) circumference with center on

the real axis and crossings of the real axis at the points   (1 - a)/(l + a) and

(1 + a)/(l - a), and if 6 is a fixed angle

i'a    +d) ¿(a    +Ö) -      id ia
Re(l+Fe     "        )/(l - Ee     "        )=Re(l + eldEe    n)/(l-el6Ee    "),

then by shifting a^ (mod the interval [- 77, 77)),

(2Fr1)-1(VarrI + (Er1)2Re(l + Ee^/Q - Fe'**)) can be made to take any value

in the interval

[Wr7(Varr' + (Erl)2^)'-2Í7--  (varr^íF^)2-^]   7

fa z'a
where ß   = (1 - |Fe    "|)/(1 + |Fe    "|), which is positive since a    is implicitly

assumed not to be a.s. constant.   The desired results follow from this.

4. Renewal theoretic lemmas.   All the statements in this section refer toa se-

quence  r.,  r,»""'   of nonnegative,  nonidentically zero, independent and identi-

cally distributed random variables, and to the random variable (the number of re-

newals up to t) N(t) = maxU: S^= x r. < t\,  t> 0.   We define  r¿ = 0 for i < 0.   The

underlying probability space is denoted (fi, J, P).   Some indications will be given

of only those proofs that are less elementary; other proofs and further results ap-

pear in [4].

Lemma 4.1.  // Fr" < 00 for given a > 0, then

1

0<s<.t"

—      SUP

Let 77, 6Q, 6., • • •   be a sequence of random elements (of some topological

space), with ö„ constant, which is independent of the sequence  r1? r2, • • • , and

consider the Borel fields §n = ^{-q, 6Q, • • • , 0n_p »"j, • • • , rn + j S for each n > 1,

and §0 = ÎÎTji, and the Borel field J( generated by r¡, dQ, ■ • • , ^n_v T\, • ' ' , ?n+ 1

up to the random index  N(t), that is Î(=|A eî:   A O [ Mr) = n] £ S„ for each

n > 0}, for each  / > 0.   If X(i) is a measurable function (with values in an arbi-

trary measurable space) of 77, dQ, • •   , ^(^„i > T\, ' * ' > TN(t)+ P tnen JiXit)\ £ ^¡.

Lemma 4.2.  For any random vector X and for each n > 0 and t > 0,

E^NU)sn]X^y''E^iNUUn]X^

Lemma 4.3.  For each n > 0 and k > 1, for any permutation a of jl,- • • , k\ and

any integers  z', ■ • • , i. such that 1 < i. <• • • < i. < k, and for any measurable vec-

tor X defined on  P°° or Rm for appropriate m,
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£'-1[N(Z)=72 + fe]X(7'l>,,,>   r72>   r72 + 21'""*    ' ? tl +  i .' 'n + k + 1 ' *  * '  ^ S 72 ~ 1^

=       E'-l[N(/)=n + jfe]X(i-1,. • • , Tn, i'„+o-(i1)»' * ' ' Tn+o-(i.)> Tn + k +

and in particular (with ^j    . = \(f>, CîS)

JlNCD-àl^V" •rVr*+l,'",)¿P

=    j[N(Z)^lX(r-(2'l )'•••'   ̂  (';)'  ^+1'"")

LMarch

>72-l 1,

dP.

Lemma 4.4.  For ail a > 0, z'/ Ez\ + 1 < —, ¿¿en, /or e^ery integer n > 0,

sup   F^(i)+1_n<oo.

Lemma 4.5.   For every integer m > 1   /èere z's a constant K such that, for all

t> 0,
EN(t)m< Kmaxil, tm\.

Lemma 4.6.  Let t and h be real numbers such that 0 < t < h, T   and H    non-—        — 72 72

negative random variables that are jointly independent of jr., z > 1} and such that

T   < H   a.s., T   —*'t and H   ^->'h as n —> —, aW for a positive integer m and some
72  —        72 ' 72 72 ' L °

8 > 0, sup   EHm+    < —, a72a* let b,, b2, • • •   be a sequence of positive real numbers

converging to infinity.   Then

N(bH)-N(bTA
lim     E

72 — —

h-t
Er,

and there is a constant K such that if h - t > 0  there is an integer nQ depending

only on h — t such that for all n > nQ

E((N(bnHn)- N(bnTn))/bn)m < K(h - t)m,

and if t    and h    are real numbers such that  0 < t   < h    and (h   - t  )~    = 0(b  ) as1        72 72 —     72 72 72 72 72

72 —► — there is an integer nQ such that for all n> n0

E((N(bnHn)-N(bnTn))/bT<K(hn-tT.

(The last assertion is valid for every positive integer m, with K depending on m.)

Proof.   For / > 0 the first assertion is obtained from the following result.   If

E(s), s > 0, are positive random variables that are independent of N(s) for each s

and such that  F(s)/s a-^5* 1 as s       —, and for a positive integer m and some  8 > 0,

sups a j E(F(s)/s)m + S < -, then

lim     B
s ——

V(F(s)) 1
Er,
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Let us prove this.   From the strong law of large numbers we have NÍF(s))/s —»'

1/Er. as s —> oo, and hence it is enough to show that {ÍNÍFÍs))/s)m,  s > l|  is uni-

formly integrable (see [2, Theorem 4.5.4]), which is true if sups&1 E(N(F(s))/s)m+ 8

< °°, but this follows from the inequality

E(N(F(s))/s)m + S   < X(l/sm + S + F(F(s)/s)m+ S),

which is obtained by using the independence hypothesis and Lemma 4.-5 (K is the

constant of Lemma 4.5).   For / = 0 the proof is similar.

We now prove the second assertion.   It can be shown by elementary methods

that

E(N(b H )- N(b T )f < F(l + N(b (H   - T )))m.v 72      72' v    72      72"        —        v v    72v     72 n" '

Using this inequality together with Lemma 4.5 we obtain that there is a constant

N(bH)-N(bT)

Kj  such that

E
™    E(H -T )k

^        K   n       n'
< K,    ¿--
*      '    *=0 hm_k

Now, since   E(H   - T )* —♦ (h - t)k tot k = 0, • • • , m, and  b   —> <*> as n —» <», therei v72 72 7.7 n

is an integer nQ, depending only on h - t, and a constant  K2  such that, for k =

0,.... m and all n > «„, F(Hn - Tnf/b™-k < K2(h - 0m.   The conclusion then
follows.

The last result has a similar proof.    D

Lemma 4.7.  // given nonnegative constants c ,,•••, c      .,

p(m+ 1 ) raaxjc, , ■ • • , c        ,i+l
Ft 1 772 + 1   T      ^

/or some p > 1, and if a   and ß ,  t > 0, are real numbers such that lim inf a   > 0,
' r t—>oo    t

lim supí—oaßt < °° and lim inf¿—00(j8í - a¿) > 0, /¿era

FE
TN\ßtt)-m

C772+l|CJ- Cl C772+l

•■rN(atí)|^atIJ   -£rl    ~'EtI

as t —> <x> (J"a     z's «s defined after Lemma 4.1).

Proof.  It is simpler and more general to prove that

[
E\E      A^(/3z)_m.-",^(/30) a tt

E/W,-",-%,+1)

is  t —> oo for a measurable function  /: Rm+    —» R such that E\fir,,. • • , r      ,' "       1' '      772+ 1
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< - and supf E|/UN(/)_OT>- - ♦ , rN^)\p < -, when Et-j < o».   The conclusion will
then follow by using the generalized Holder inequality and Lemma 4.4.

Let  K = 1/Er..   Choose e so that  0 < £ < K.   Then for t sufficiently large so

that (K - ()ß,t > 772 we have

E^TN(ßtt)-m> '"' TN(.ßtt)^at^

= T+ Et1l\N(ßit)/ßtt-K\*(]    U   [|zV(af)/<xí-K   |«]

• ^TN(ßtt)-nf'" ' TN(ßtt)^att^

where

T = [\N(ßtO/ßit-K\ <(, \N(att)/a[t-K\<e]ftTN(ßtt)-m' '"' TN(ß t)^ a t*'

which using Lemma 4.2 can be written as

T a=s" Z   B[l|jv(V).,iA,(/8|/),r]Arr.lll.....rf)|g-],

where 2   indicates summation over  |r - Kß t\ < ißt,   \s - Ka t\ < eat.   Let e be

so that (K + e)at < (K - ()ß(, with t so large that (K - e)ßtt - m> (K +■ e)a t + 1;

then in the above sum the indices of summation r and s satisfy   s + 1 < r — m in

their ranges, and therefore by Lemmas 4.3 and 4.2 we obtain

T    ■   'l[\N(ati)/att-K\<e]EfiA>--''Trn+l)

~E\-l[\N(att)/att-K\<e,  !n(/3/),'/3 í-K\ >e]^rN(cy)+ 2' " " ' TN (a t)+m + 2'^   a A'

Hence

FA E    f(r
[ N(ßtty

<E\f(rv-'- >rm+A\P\\N(att)/att- K\>e]

+ E1[|N(/3íz)/^z-K|>f]í|/(r,V(aí')+2'"',rw(oíz)+772 + 2)l

+ l/(rN(/3íz)-772'"-.^(/3íz))l!

EÏ[\N(a t)/a t-K\*fWTNlßtt)-«'**'• r/V(/3/z)'l-+ El

The proof is completed by using the Holder inequality with appropriate parameter,

and the facts that (rw(a|) + 2,. • •, 'n^tUm* 2) = (rl."-> r,7z+l)and W^J/l "
K as í —> —, to show that each of the terms on the right of the last expression con-

verges to zero as  z —> —.     D
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5. Irreducible random orthogonal matrices.   Covariance limit theorems.  Ma-

trices are real, of order d, and vectors are ¿/-dimensional column vectors  (d > 1).

An underlying probability space  (ÍÍ, J, P) where random elements are defined is

assumed to exist.
For (i > 2 we define a random matrix A to be irreducible when  P[AV Ç V] < 1

for every nontrivial subspace V of P  ; otherwise, i.e. when A has an a.s. invari-

ant nontrivial subspace, we say that A is reducible; for d = 1 we define A to be

irreducible if its single entry is not a.s. nonnegative.   Some elementary properties

of this definition are:   when A is constant it implies the definition of irreducibil-

ity in the usual sense (for d > 2 if A = (ß..) is the matrix of an operator relative

to a basis of R    then none of the nontrivial subspaces generated by basis vectors

is invariant under the operator, or equivalently, there is no decomposition {M, N\

of ¡1,. ■ • , d\ such that a.. = 0 for all i £ M and / £ N, and for d = 1  the single en-
try of A is nonzero) but not conversely; if A is irreducible and T is a random non-

singular matrix independent of A (in particular if T is constant) then  T~ AT is

irreducible; if A is nonsingular then A is irreducible if and only if A ""     is; and

for d > 3 an a.s. constant orthogonal matrix is reducible.   The verifications of

these properties are straightforward and we will omit them.   Less elementary is

the following property:

Lemma 5.1.   // A z's an irreducible random contractive matrix then the matrix

I-EA  is nonsingular.

Proof.  The result is obvious for d = 1.   For d > 2 if / - EA  is singular there

is a nonzero vector x such that FAx = x, which implies that Ax   '=' x because

the point FAx is an average of points that lie in the convex set {z: ||z|| < ||x||J

and hence can be x only if A fixes x with probability one (one can also see this

by showing that if T is the projection onto the subspace spanned by x then

TAx   = ' x); but then the subspace spanned by x is a.s. invariant under A.    o

Lemma 5.2.   // A z's zzn irreducible random orthogonal matrix and S is a random

symmetric matrix satisfying the equation E\_ASA   \S]    '=' S, then S   '='  (ittS)/d)l.

Proof.  The result is obvious for d = 1.   For d > 2 it suffices to obtain the

conclusion for each point aeli for which the condition holds; thus we may assume

that 5 is a constant matrix satisfying the equation F(A5A   ) = S.   There is an or-

thogonal matrix Q and a diagonal matrix L such that QSQ   = L, and therefore L

satisfies  E(BLB  ) - L, where  B = QAQ    is ah irreducible random orthogonal ma-

trix.   Denoting L =(/.S.), where (<5..)= /, and B = (b-A, we see that the numbers

I. satisfy the equations   1.8. ■ = 1,  l,E(b .,b A and in particular, for / = i,  /.=

^llt^kE^ik''  z = 1, •••> ^> wriere we may suppose  /j < ¡2 < • • ■ < l¿.   Assuming that

/=...= /   </        <...< /.with u< d we have 1.1,      x . Eb2, = S, A.Eb2,,I iz        u+ 1 —        —    a i    k-u\ I zze k.= u+l k      ik'
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i = 1,- • • , u, because ^-kEb2k = 1; this implies that Ebj. = 0,  i = 1,.. • , u,  k =

u + 1, • • • , d, and hence  b ;fe   =S' 0,  i = 1, •.., u,  k = u + 1, • • •, d; but B is irre-

ducible.   Therefore  z\ = /,  ¿ = 1,.,., d for some /, and we conclude that this is

the solution to L8.. = 2k lkE(bikbjk).   We have shown that  L = II for some con-
stant /, whence the conclusion follows.    □

Lemma 5.3.  For each n > 1 let A     .,  z > 1, be independent and identically

distributed irreducible random orthogonal matrices, and let ç  , n > 1, be random

vectors such that, for each n, \A     .,  i > 1) and cf   are independents  Assume that

\A    ,,  72 > 1¡ has no reducible weak limit points, and that {||cfj|   , 72 > 1Î  is uni-

formly integrable and there is a random variable v such that  ||£J|    —» v as n — —.

Then

m
-   Z   E[(A    ....A    ,f)U    ■•••A      t)'\n^vi    asn,m->™,
m _. 72,1 77,1^72 72,Z 72,1^72      "72 ¿

and if v is constant and [||cf H2*, 72 > 1 \  is uniformly integrable for given p>l,

then

I 7?2 P

E\^L   Ei{An,r--AnJn^An,i---An^r)'\0-f ' ~+*    as 72, 772 ^-.

Proof.  Let us denote
m

^'") = Í   h   EUnA--AnAQ{AnA--An,xQ'\Q-

cfÁm, n) exists because ||(An). • • • Anl Q (AnJ. ■ • n^, ÇJ '\\ < ||£J2, and has

the properties
(1) cp(m, n) is a random symmetric matrix bounded a.s. by VáMI^JI   » with

tr06(772, 72)= ||fj2, and
(2) 0(772, 72) -  E[An>1 Ç6(Z22,  72)A^j 10(722,   Tz)]    -. 0 as   272,  72   — -.

The verification ot (1) is elementary.   We will prove (2): By the independence

°f    A„,l'---''4,2,7"^WehaVe(WÍth'472,0=/)

m

<fim,n) = ±-   Z   FÍAnXEÍAn>j_l...An^XA'ní0...A'niJQA'n>l\Q

= E[A     , 0(ttz, n)A'  A¿] + if/(m, 72),
ß j 1 Tí ( 1 7Z

where

0(272,72) = -! FUnAQ(AnJ)l-(An^x...AnJn)(An^...An^\Q,

andsince  \\ifj(m, n)\\ < (2 Vd/m)UJ 2 a.s. and ,||ifj 2S is uniformly integrable,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1973] ¿-DIMENSIONAL POLYGONAL RANDOM FUNCTIONS 441

F||i/z(z77, n)|| —► 0 as 772, n —. 00, and therefore F||FLz/f(?7z, n)\cpim, n)]|| —» 0 as m,

n —♦ <*>, so that E[if/im, n)\cbim, n)]  —> 0 as ttz, n —> <*>; but since  cbim, n)  is a mea-

surable function of (the elements of) f ,

F[(/>(t7z, n)|oi(7?z, n)]   = 'cbim, n) - E\An lcf>im, n)A' y\cpim, n)],

and the conclusion follows.

The first assertion of the lemma will be proved if we show that for every pair

of sequences {rn\ and {sn\ of positive integers converging to infinity there is a

subsequence  {nk\ of \n\ such that cpir    , s    ) Â vl/d as  k —► 00.   Both {cbim, n)\
. k       k

and [A    jj are relatively compact; hence for each pair of sequences  ¡r  I and [s   \

as above there is a subsequence {n,| of [n! such that éir    , s    ) ^L and A        .
"fe     nk Sn   '3) ...73) k

—» A as k —» °©, where the random matrix L is symmetric with  tr L = zv, because of

(1) and the fact that the trace is a continuous function, and the random orthogonal

matrix A is irreducible by hypothesis.   Since A is independent of cbir    ,sn )
S"k' "k      k

and {A ,! is uniformly bounded, the elements of the matrix
"k

<bir    ,s    )-E[A        .cbir    ,s    )A '      Achir    ,s    )]

ate linear combinations of the elements of cbir    , s     ) with coefficients which

converge as  k —> <x, and therefore converge jointly in distribution as  k —>•• to

the same linear combinations of the elements of L with the corresponding limits

of the coefficients as coefficients; thus

cbir      s)-E{As      !0(7n,s)A'        \cbir    , s    )] ^ L - FÍALA' | L]    as * - ~.
k        k n, k        k      n. «'      k

a.s.
From property (2) it follows that F[ALA 'II]   = ' L, so that, by Lemma 5.2, L =

vl/d, as desired.
The second assertion follows from the fact that cbim, n) A-> vl/d as n, 772 —> =•

and {\cbim, n)\\p\ is uniformly integrable.    G

Lemma 5.4.  Let A     . and £    be as in Lemma 5.3 but with ||£ ||2 not neces-
n,l 72 72"

sarily convergent in distribution.   Then
772

JL  ^i(EAn<ir+1-!EliAnt,..An^n)iAn<i...AnJny\^]^0   asn,m^~,

and if \\\¿¡ \\2p> n > li  is uniformly integrable for given p > 1, then

m p

^^i(EAniir^E[(An<i...AnJJiAni,..AnJnY\Q     -0   asn,m^~.
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Proof.  Since
777

i.   Z   (EA    ,)m+1-¿E[(A     ....A    .¿MA      '--A    ,«f )'|f ]
»72      ,•_ 1 71,1 72,2 72,1^7272,2 72,1^72       "72

777

(A ,...A    ,r5)(A ,.../!    ,zf)'J-    Za ,...A    .   ,72,772+1 »2,1^72    v     72,772+1 72, 1 372 ^        .__ j       72,772+1 72,2+1 6.

and   1|U«.«+r • • A72,l L)(An,m+ r--An,l V'W < UJ'¿>  « S^«S to show that
(I/772) 2. _ j An^m+ j . . .As jt j  -£ 0 as 72, 772 —>  -, or equivalently,  that

(1/»Z2)S     ,A      ..-A       -»Oas 72, 272-♦-.  Since |(l/77i)Sm     A       ••■A     } is rela- •
1 - "• ' "■' 2=1       72, 1 72,2

lively compact, for each pair of sequences |rj and Is   |  of positive integers con-

verging to infinity there is a subsequence \nA oí \n\ and a random matrix M such that

Za
72k       !=1

M    as k —» —.

To obtain the desired result it is enough to show that  M   =* 0, and for this we

need only to prove that EMM  = 0.   By direct computation we obtain

72,1

,   -\ßGAnil-(EAn>ir-^Hl-EAnl)-l

+ (ea^]-(ea;i)—>1)(/-ea;i)-X,-"<,,)'

where (/ - EA    , )~ ' and (/ - EA    , )       exist by Lemma 5.1.   Now, the terms of72,1 v 72,1' ' '

the sum are bounded uniformly in 72, for if not it would be because [(/ - EA^ j)~ ¡

became unbounded, but if  ||(/- EAn j)~   || = Kn can become arbitrarily large,

since there are  vectors   x   and y    such that   ||x  II = 1   II y  II = K     and
77 ' 72 72" '    "J 72 " 72

(l-EA    ,)~Xx   = y, or EA     z   = z   -w   where z   = y JK „and w   = x ¡K     and
72,1 72        J ri1 72,1    72 72 72 72 J 72 72 72 72 72 '

since there is a subsequence \n A oí \n\ such that, as  k —* °», A      ,   —» A and
h,1

hence EA      . —> EA, and z     —» z with ||z|| = 1, it follows that EAz = z, so that
"fe' "fe

/ - EA  is singular, which by Lemma 5.1 contradicts the hypothesis that !^nl!

has no reducible weak limit points.   Therefore

= 0(772)      as 72, 772 —> —,
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which implies the result we need because

The first conclusion is thus proved.

The second conclusion is obtained as in Lemma 5.3.    G

The following covariance limit theorem derives from Lemmas 5.3 and 5.4 by

elementary computations (similar to part of the proof of Lemma 3.7), and therefore

we omit the proof.

Theorem.   For each n > 1 let A     .,  i > 1, be independent and identically dis-

tributed irreducible random orthogonal matrices, and let fn,  n > 1, be random vec-

tors such that, for each n, {A    .,  z > 1 ! and Çn are independent.   Assume that

{A    j, n> lS has no reducible weak limit points and \itan^ae (/- EAn^)~

exists, and that {||£ ||2, n > l[ z's uniformly integrable and there is a random vari-

able v such that  ||<fj 2 -^ v as n —> <=».   Then if

.   Ô  T.A    ...-A    ,<f■_-y        n,l 72, 1= 72
X        = (1/yjm)n,m

we have

EUX       -EX      )(X        -FX      )'\£]2*—M     asn, i» -* «,
72,772 72,772 »2,772 72,772        <^n , '

where

M = lira     lil-EA    1)-1 + il-EA'n y)-1]- I,
72   —«oo ' '

and if v is constant and ¡||tf ||     , n > 1 !  is uniformly integrable for given p > 1,

then

v     I p
F[(X       _EX      )(X        - FX      )'|rf]-M       -^  0    as n, m -. ~.

72,772 72,772 72,772 72,772        '^72 ^ '

The matrix M has the following properties. It is clearly symmetric and non-

negative definite. If d > 3 then rank M > 2, but if d = 1 or 2 then M can be zero,

which is possible only if all the weak limit points of [A     A ate a.s. constant
72 , J-

(-1 for d = 1) (in this case it is enough for the theorem that î||(f ||   1 be tight).

If the A       = (a[n^) satisfy Condition (A) of §2, then
72 , 1 2/

l-ld  , (Ea{n))2
7=1 72

M = lim      -■-/,
n~°°    l-2Ez7(."> + ld  , (EaW

11 7=1 11

where i is arbitrary.

Let us prove these properties.   Let A be a weak limit point of {A    A; then
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M = (I- EA)-1 +(/- EAA-1 - I, or equivalently  /- EAEA ' = (/ -EA)MÍ¡- EA '),
and from this expression we see that M = 0 if and only if EAEA   = /, that is

A   = ' EA, and that rank(/ - EAEA ' ) = tank M; now if rank(7 - EAEA ') = 1 then
EAEA   has d - 1  characteristic values equal to 1, which can be shown to imply

that the other characteristic value must also be 1, but then rank(/ - EAEA   ) = 0,

a contradiction; furthermore for d> 3, A cannot be a.s. constant because by as-

sumption it is irreducible.   If d = 1 or 2 then A can be a.s. constant.   If the A

satisfy Condition (A) we have  EA'EA     , = a / and (/ - FA ',)(/- FA    ,) =' 72, 1 72,1 72 72, 1 72, 1

ß / with ß   > 0, and therefore'72 '72 '

(/-FAnl)-] +il-EA'nA)~l - I

= ß-lil-EA' , +Î-EA    ,-il-EA'Ail-EA    A)"H 72,1 72,1 72,1 72,1

= /3-1(/-EA' ,EA     ) = /3-](l- a )/,>« 72, 1 77, 1 "72 72       '

where

d d

a   =   Z   (Efl(.n))2    and    ß   = 1 - 2Ea{n) +  Z iEa{n))2
n y=1 ;2 "« 22 ■_ x 11

for any   i = 1, • • • , d.
Finally, we remark that Lemmas 5.3 and 5.4 and the theorem admit the possi-

bility that {||EA    j||j have 1 as a limit point.   However, if the A    ,   satisfy Con-

dition (A) this is possible only for d = 1 or 2, for if A is a weak limit point of

{An j} and ||EA|| = 1, there are vectors x and y such that  ||x|| =  ||y||  = 1 and EAx =

y, hence Ax   =   y and therefore Ay    '-' x and EA  y = x, so that EAEA  y = y; on

the other hand A satisfies Condition (A), in particular EA  EA = a/; we conclude

that a= 1, so that A    = ' EA, which is possible only for d = 1 or 2.
Acknowledgement.  The author would like to thank the referee for an improve-

ment in the proof of Lemma 5.2.

Added in proof. S. Watanabe and T. Watanabe, Convergence of Isotropie

scattering transport process to Brownian motion, Nagoya Math. J. 40 (1970), 161 —

171, have extended the result and method of proof of [9] to any dimension, under

the same hypothesis.   This result is still a special case of our theorem.
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