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Abstract
Sensory neurons adapt to changes in the natural statistics of their environments through
processes such as gain control and firing threshold adjustment. It has been argued that
neurons early in sensory pathways adapt according to information-theoretic criteria, perhaps
maximising their coding efficiency or information rate. Here, we draw a distinction between
how a neuron’s preferred operating point is determined and how its preferred operating point
is maintained through adaptation. We propose that a neuron’s preferred operating point can
be characterised by the probability density function (PDF) of its output spike rate, and that
adaptation maintains an invariant output PDF, regardless of how this output PDF is initially
set. Considering a sigmoidal transfer function for simplicity, we derive simple adaptation
rules for a neuron with one sensory input that permit adaptation to the lower-order statistics
of the input, independent of how the preferred operating point of the neuron is set. Thus, if
the preferred operating point is, in fact, set according to information-theoretic criteria, then
these rules nonetheless maintain a neuron at that point. Our approach generalises from the
unimodal case to the multimodal case, for a neuron with inputs from distinct sensory
channels, and we briefly consider this case too.
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Introduction

Neurons early in sensory pathways are believed to adapt their responses to the

statistics of their inputs in order to maximise their coding efficiency, output
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entropy or information rate (Atteave 1954; Barlow 1961; Laughlin 1981;

Atick, 1992; van Hatteren 1992; DeWeese 1996; Dan et al. 1996; Baddeley

et al. 1997; Smirnakis et al. 1997; Wainwright 1999; Brenner et al. 2000;

Fairhall et al. 2001; Maravall et al. 2007). Other adaptive strategies have also

been proposed for neurons later in sensory pathways (see, e.g. Carandini and

Ferster 2000; Pena and Konishi 2002; Ringach and Malone 2007). Despite the

diversity of functional roles of neurons, and however their preferred operating

points may be established over evolutionary or developmental timescales, it is

possible that there exist adaptive principles, based on input statistics, that enable

neurons to maintain their preferred operating points without explicit reference to

their functional roles.

We suggest one such principle. We define the operating point of a neuron by the

cumulative distribution function (CDF) or probability density function (PDF) of its

output spike rate. The operating point therefore embodies information about both

the input–output transfer function of the neuron and the statistics of the

environment from which the input is drawn. The operating point is not simply

the transfer function, nor simply the environment, but both, united in the PDF of

the neuron’s output spike rate. We propose, in particular, the adaptive principle that

a neuron adapts its transfer function in order to keep its output PDF invariant, or as

invariant as possible, under changes in its input statistics. Such invariance would

ensure that a neuron remains at its preferred operating point, regardless of how that

point is set. One consequence of this view is that when a neuron’s operating point is

set by a principle such as maximum information rate, if a neuron can maintain an

invariant output PDF, then it automatically remains at the point determined by that

principle.

In this article we develop a model of neuronal adaptation in which adaptation

ensures that a neuron’s output PDF remains invariant, or approximately invariant,

under changes in its input statistics. For simplicity, we consider only sigmoidal

transfer functions. We initially consider a unimodal neuron with input from a single

sensory channel, and derive rules for threshold adaptation and gain control that seek

to maintain an invariant output PDF. These rules are independent of how the

preferred operating point of the neuron is set, but we also consider how the

operating point may be set by a maximum entropy principle. The structure of our

model permits generalisation to multimodal neurons receiving input from multiple,

distinct sensory channels, and we extend our rules to this multimodal case. This

extension necessitates the introduction of separate gains for each modality. Having

developed the underlying approach to adaptation, we present several examples of

a model neuron functioning at different preferred operating points and adapting to

changing input statistics, both unimodal and bimodal. Finally, we discuss our

approach, its merits and limitations and possible future work.

An invariance principle for adaptation

We first consider a neuron with an input from only a single sensory channel. Then

we extend our approach to a neuron with inputs from multiple, distinct sensory

channels.
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Unimodal inputs

Suppose that a neuron’s unimodal input is determined by the (univariate) random

variable X with PDF fX(x) and CDF FX(x), where X, without loss of generality, also

may absorb any input noise processes. Under the assumption of certain regularity

conditions, X is uniquely determined by its moments, so that its moment generating

function, MX(t), exists and its characteristic function, �X(t), is analytic on the real

line (Feller 1967).1 We denote the moments of X by mi, with mean �¼m1, and the

central moments by �i, with variance �2
¼�2. We denote the transfer or output

function of the neuron by r¼ r(x) for input x drawn from the distribution X.

The output is then a random variable, denoted by R, and its CDF and PDF are

given by

FRðrÞ ¼ FX ðxðrÞÞ, ð1Þ

fRðrÞ ¼
dxðrÞ

dr
fX ðxðrÞÞ, ð2Þ

respectively, where x(r) is the inverse of r(x), i.e. x(r(x 0))¼ x 0. If the response is

bounded, so that r2 [0, s], and if r(x)¼ sFX(x), then fR(r)¼ 1/s, so that R is uniform

on [0, s], and hence has maximum entropy, corresponding to Laughlin’s result

(Laughlin 1981).

Popular choices of response function in the visual processing literature are the

hyperbolic ratio function,

rðxÞ ¼ s
x4��=s

�4��=s þ x4��=s
, ð3Þ

where � determines the point of semi-saturation, r(�)¼ s/2, and � the gain at

semi-saturation; and the linear model with rectification,

rðxÞ ¼ �½x� ��þ, ð4Þ

where [ ]þ denotes the positive part, � is here the threshold for response onset, and �
the gain. For simplicity, however, we will instead use the sigmoidal response

function,

rðxÞ ¼
s

2
1þ tanh

2�

s
x� �ð Þ

� �
, ð5Þ

where � and � are, as for the hyperbolic ratio function, the semi-saturation constant

and the gain, respectively. For � large, � determines the transition from no response

to saturated response, so we refer to it as the threshold. We employ the sigmoidal

response function because it is defined for x50 (unlike the hyperbolic ratio function

for most parameter choices) and everywhere differentiable (unlike the linear

rectified response).

We shall regard the saturation value s as fixed, since it is determined by the

maximum firing rate of a neuron, which is limited by a neuron’s refractory period.

The sigmoidal response function thus endows a neuron with two parameters, the

threshold and the gain, which it can change in an attempt to keep a neuron’s output

PDF invariant, or as invariant as possible. Clearly, then, for an arbitrary input

distribution X, perfect adaptation is in general impossible, since a sigmoidal
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response r(x) lacks the potentially infinite number of degrees of freedom required to

adapt to the potentially infinite number of independent degrees of freedom in all the

moments, mi, of X. Furthermore, R cannot adopt the uniform, maximum entropy

distribution, given the upper bound s on the response, except in the particular

case that X obeys the logistic distribution, with CDF FX ðxÞ ¼ ð1=2Þ �
½1þ tanhð2�=sÞðx� �Þ�, satisfying Laughlin’s condition, r(x)¼ sFX(x). The choice

of a two-parameter response function thus imposes limitations on the extent to

which a model neuron can adapt to its input statistics. Although this may appear

unsatisfactory, of course any finite-parameter response function will be so limited.

Unless we hold to the view that a neuron’s response function may be set arbitrarily,

which seems unlikely, then such limitations are unavoidable. We could improve the

adaptability of a model neuron by considering more complicated, multi-parameter

response functions, but we have selected the two-parameter, sigmoidal function

precisely because of its simplicity, so that the underlying approach, of adaptation to

input statistics, is not obscured by unnecessary complexity.

Suppose that a neuron’s initial response is defined by the parameter set {�, �},

giving rise to the random output variable R with PDF fR(r) for the initial random

input variable X. Suppose that the input statistics then change, giving a new input

random variable X0, inducing a new response parameter set {�0, � 0} and output

random variable R0 with PDF fR0(r). Since we wish to make the output PDF as

invariant as possible under the change X!X0, an obvious strategy would be to

define a functional metric or distance D and explicitly find �0 and � 0 such that

D( fR, fR0) is minimised. A popular candidate for D would be the relative entropy or

Kullback–Leibler divergence between fR and fR0. Although explicit minimisation of

D( fR, fR0) is, mathematically speaking, a natural approach, it is potentially very

expensive, computationally speaking. Therefore, we prefer to seek an alternative

approach for determining �0 and � 0, one that may be computationally simpler for

a neuron to implement, but accept that it may not be statistically optimal under all

circumstances.

Since our model neuron possesses only two degrees of freedom in � and �, it is

reasonable to assume that these two parameters are modified in order to

accommodate the most significant variations in X. Defining the Z-score as usual

by Z¼ (X��)/�, the Chebyshev inequality,

P ½jZj�k� �
1

k2
, ð6Þ

where k is any positive number, suggests that the lowest two moments represent

good targets for adaptive processes. We therefore propose that the parameters � and

� should thus be adapted to accommodate changes in the mean, � (Barlow and

Mollon 1982) and the standard deviation, � (Meister and Berry 1999; Smirnakis

et al. 1997; Brenner et al. 2000; Fairhall et al. 2001), with the higher-order moments

m3, . . . playing second fiddle to m1 and m2 (Bonin et al. 2006; but see Kvale and

Schreiner 2004). More degrees of freedom in the response function would allow

adaptation to moments higher than the second.

Consider an input PDF of the particular form

fX ðxÞ ¼
1

�
g

x� �

�

� �
, ð7Þ
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where, by this, we mean that the dependence of fX on � and � appears only through

the combination (x��)/� in fX, together with the overall scale factor of 1/�, and that

g does not depend on any other parameters. The normal distribution is an example

of such a PDF. Since

xðrÞ ¼ � �
s

2�
log

s� r

r

� �
, ð8Þ

and

dxðrÞ

dr
¼

1

4�

s2

rðs� rÞ
, ð9Þ

we then have

fRðrÞ ¼
1

4��

s2

rðs� rÞ
g
� � �

�
�

s

4��
log

s� r

r

� �� �
: ð10Þ

We see immediately that fR(r)¼ fR0(r) 8r2 [0, s], and hence D( fR, fR0)� 0 for any

metric D, provided that

� � �

�
¼
�0 � �0

�0
, ð11Þ

�� ¼ � 0�0: ð12Þ

Equation 11 implies that a neuron adjusts the threshold � to keep the Z-score of �
invariant with respect to the input statistics. This ensures that a neuron’s mean

output is independent of its mean input, where this mean output is determined by

a neuron’s preferred operating point. Equation 12 then sets the output gain in

inverse proportion to the input standard deviation, so that larger (smaller) standard

deviations correspond to smaller (larger) gains. This ensures that the dynamic range

of a neuron’s input is mapped onto an invariant dynamic range of its output, where

this output dynamic range is again set by a neuron’s preferred operating point,

keeping the output dynamic range constant. This relationship between the gain of

a neuron and the standard deviation of the input is a well-established experimental

observation (see, e.g. Kvale and Schreiner 2004; Bonin et al. 2006; Maravall et al.

2007; and references therein).

Many standard distributions may be written in the form defined by Equation 7,

including the normal distribution, the exponential, Laplace, doubly exponential

distributions and the logistic distribution, and in general an infinity of forms for the

function g is available. For this class of input distributions, if a neuron sets � and �
according to

� ¼ �þ��, ð13Þ

� ¼ �
s

�
, ð14Þ

where the constants � and � determine the preferred operating point of a neuron,

then a neuron remains at this operating point, with fR(r) exactly invariant in

response to changes in the mean and variance of the input distribution X. We have

made explicit a factor of s in Equation 14 since scaling the response range s will scale
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the response gain � by the same factor. With s made explicit, � will then be

independent of s and scale-free.

For a completely general form of input distribution fX(x), Equations 13 and 14

will not suffice to maintain response PDF invariance. However, we propose that

a neuron nonetheless sets � and � according to Equations 13 and 14. First, these

rules are simple to implement. Second, they result in exact invariance for a large

class of input distributions including the normal distribution. Third, they ensure

adaptation to the lowest-order moments, � and �, of a distribution, albeit at the

price of possible non-invariance due to the higher-order moments of completely

general distributions. We might expect, in any event, that a neuron should not adapt

perfectly to higher-order moments (but see Kvale and Schreiner 2004), since such

moments contain information of importance to learning algorithms such as

independent component analysis (Hyvarinen et al. 2001).

The confounding influence of the higher-order moments m3, . . . on the invariance

of fR(r) in the presence of a general input distribution fX(x) can be confirmed by

transforming to the Z variable,

fRðrÞ ¼
dzðrÞ

dr
fZ ðzðrÞÞ

¼
1

4��

s2

rðs� rÞ
fZ

� � �

�
�

s

4��
log

s� r

r

� �� �
: ð15Þ

Of course, Equation 15 is identical to Equation 10 with the PDF of

the Z-transformed input fZ replacing g. However, for a general form of fZ,

Equation 15 is not invariant under Equations 13 and 14 because the higher-order

moments of Z are not invariant under changes in � and �. To see this, we write fZ(z)

to exhibit explicitly all its moments,

fZ ðzÞ ¼ fZðz; 0, 1, ~m3, ~m4, . . .Þ, ð16Þ

where 0 and 1 are the first and second moments of Z, by definition, and the ith

moment of Z, ~mi, is just the ith central moment of X divided by �i, ~mi ¼ �i=�
i.

Making explicit the dependence of fR on � and �, we may then write

fRðr; �, �Þ ¼
1

4��

s2

rðs� rÞ
fZ

� � �

�
�

s

4��
log

s� r

r

� �
; 0, 1, ~m3, . . .

� �
, ð17Þ

and under a change of statistics, �!�0, �! �0, ~mi ! ~m 0i and adaptive changes

�! �0, �! � 0, we have

fR0 ðr; �
0, � 0Þ ¼

1

4� 0�0
s2

rðs� rÞ
fZ

�0 � �0

�0
�

s

4� 0�0
log

s� r

r

� �
; 0, 1, ~m03, . . .

� �
: ð18Þ

Now, if a neuron implements Equations 13 and 14 in an attempt to maintain an

invariant output PDF, we have

fRðr; �, �Þ ¼
1

4�

s

rðs� rÞ
fZ ��

1

4�
log

s� r

r

� �
; 0, 1, ~m3, . . .

� �
, ð19Þ

fR0 ðr; �
0, � 0Þ ¼

1

4�

s

rðs� rÞ
fZ ��

1

4�
log

s� r

r

� �
; 0, 1, ~m03, . . .

� �
, ð20Þ
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where � and � are constants as shown above, so that

fRðr; �, �Þ � fR0 ðr; �
0, � 0Þ

¼
1

4�

s

rðs� rÞ

X1
i¼3

~mi � ~m0i
� 	 @fZ

@ ~mi

��
1

4�
log

s� r

r

� �
; 0, 1, �3, �4, . . .

� �
, ð21Þ

for some values of �i 2 ð ~mi, ~m0iÞ. Hence, the attempt to maintain the invariance of fR
is contaminated by the possible changes in the higher-order moments of the

Z-transformed input distribution.

This contamination may arise from a number of sources. For a general

distribution fZ, the higher-order moments ~m3, . . . will in general change when �
and � are changed. Although Equations 13 and 14 attempt to accommodate

changes in � and �, these changes will leak into the higher-order moments.

However, for the specific form of distribution fZ(z)¼ g(z) discussed above, the

higher-order moments ~m3, . . . are independent of � and � and hence are constants.

Thus, for the form fZ¼ g, the invariance of fR is exact precisely because the

higher-order moments are, by construction, also invariant. Another source of

‘‘contamination’’ could arise from distributions in which some of the higher-order

moments are independent degrees of freedom that may be freely changed in an

attempt to probe a neuron’s ability to adapt to higher-order moments (Kvale and

Schreiner 2004; Bonin et al. 2006). In this case, of course, the non-invariance of fR
is explicit and direct, rather than implicit and indirect.

Despite the breakdown in exact invariance of fR(r) in the case of a completely

general input distribution fX(x), we see from Equation 21 that the magnitude of

the change in the output PDF is controlled by the magnitude of the change in the

higher-order moments. Unless an input distribution exhibits a high degree

of sensitivity to its higher-order moments, we would thus not expect the

non-invariance of fR to be too severe. Of course, it is always possible to construct

counter-examples to such arguments, but we might expect naturally-occurring input

statistics to be reasonably well-behaved (Simoncelli and Olshausen 2001).

In the foregoing, we have allowed the possibility that X may contain noise

from the environment, from signal transduction processes, and from neuronal

transmission, but we have not considered the possibility that the output PDF could

be contaminated by noise. In fact, under a simple additive model of output noise, in

which the actual output distribution R is the sum of the noiseless output R0 and

a noise source N, R¼R0þN, so that

fRðrÞ ¼

Z
dr0fR0

ðr0ÞfN ðr � r0Þ

¼

Z
dxfX ðxÞfN ðr � rðxÞÞ, ð22Þ

where fN is the PDF of the noise process, it is a simple matter to show that the rules

in Equations 13 and 14 follow directly from a Z-transformation under the integral

sign. The adaptation rules in Equations 13 and 14 are therefore also valid under the

assumption of additive output noise.

So far, we have been concerned with how a neuron maintains its preferred

operating point in the face of changing input statistics by adapting its threshold �
and gain � so as to keep its output PDF fR invariant, or approximately invariant.
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In our approach, the operating point of a neuron is set by the two constants � and �

in Equations 13 and 14. Thus, we have not been concerned with how � and � are

set by a neuron. We now consider the possibility that � and � are set so as to

maximise the entropy of the output distribution R, given the sigmoidal transfer

function in Equation 5.

The output entropy S[R] is defined by

S½R� ¼ �

Z
dr fRðrÞ log fRðrÞ, ð23Þ

from which we have

S½R� ¼ �

Z
dx fX ðxÞ log

dx

drðxÞ
fX ðxÞ

� �
: ð24Þ

Writing

�ðxÞ ¼
drðxÞ

dx
, ð25Þ

the instantaneous gain of the neuronal response r(x) for input x, with �(�)� � at

semi-saturation, we then have

S½R� ¼ S½X � þ log �ðxÞ

 �

X
, ð26Þ

where S[X] is the entropy of the input distribution and hiX means an average over

the distribution X. If the response function is characterised by a set of adjustable

parameters pi, so that r(x)¼ r(x; pi), then we maximise the entropy S[R] with respect

to these parameters by evaluating the derivatives

@S½R�

@pi

¼
1

�ðxÞ

@�

@pi

ðx; pjÞ

� 
X

ð27Þ

and setting them to zero. The derivative @�(x; pj)/@pi is the sensitivity of the

instantaneous gain of the response function to the parameter pi. For the sigmoidal

function in Equation 5, we have

�ðxÞ ¼ � sech2 2�

s
ðx� �Þ, ð28Þ

depending on the two parameters � and �, from which we obtain the two conditions

@S½R�

@�
¼

4�

s

Z
dx fX ðxÞ tanh

2�

s
ðx� �Þ ¼ 0, ð29Þ

@S½R�

@�
¼

1

�
�

4

s

Z
dx x fX ðxÞ tanh

2�

s
ðx� �Þ ¼ 0, ð30Þ

and hence values of � and � that maximise S[R]. For the given values of � and �
associated with input X, we can then fix � and � from Equations 13 and 14.

Of course, in principle adaptation could take the form of determining � and � directly

from Equations 29 and 30, and thus of always being optimal, in the sense of achieving

maximum output entropy. However, if � and � are fixed once, perhaps

over evolutionary or developmental timescales, Equations 13 and 14 then afford

an arguably computationally easier method of remaining at, or near, maximum

output entropy.
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Multimodal inputs

Many neurons, both subcortical and cortical, receive input not from just one

sensory modality, but often from two or three distinct sensory modalities. For

example, neurons in the deep layers of the superior colliculus can receive and

integrate visual, auditory and somatosensory input. Each modality will be

associated with its own intrinsic statistical parameters, and these may vary

independently of those in other modalities. Moreover, different input sources

may exhibit time-dependent correlations. A multimodal neuron may therefore be

expected to exhibit adaptation to all its various input sources. Then, it is natural

to consider extending the principles of adaptation in unimodal neurons to

multimodal neurons.

Therefore, we now turn to the case in which a neuron receives input from at least

two different sensory channels. For simplicity, we restrict to bimodal neurons, but

our results generalise to the full, multimodal case. We therefore consider two input

channel distributions, X1 and X2 with PDFs fX1
ðx1Þ and fX2

ðx2Þ and means �1 and

�2 and variances �2
1 and �2

2, respectively. The correlation coefficient between the

two channels X1 and X2 is defined to be �. In general, of course, a joint PDF

fX1X2
ðx1, x2Þ defines the joint input distribution, with fX1

ðx1Þ and fX2
ðx2Þ being the

marginal distributions.

For a unimodal input, we defined the response function in Equation 5 so that the

argument of the tanh function is, up to factors, just �(x� �). We then derived rules

for adapting � and � to the input statistics based on the invariance of the output

PDF fR(r). We have not discussed how a neuron instantiates its threshold � and gain

�, and we have also not discussed the implementation mechanism leading to

adaptive changes in � and �. Many mechanisms are implicated in adaptation to

input statistics, both at the single neuron level and the circuit level (Sanchez-Vives

et al. 2000; Rieke 2001; Baccus and Meister 2002; Chance et al. 2002; Kim and

Rieke 2003; Shu et al. 2003; Dean et al. 2005; Ingham and McAlpine 2005;

Arganda et al. 2007). If adaptation occurs at the single neuron level, then

information about the stimulus mean and standard deviation must be available

locally. If adaptation to stimulus statistics occurs for a neuron with multimodal

inputs, then locality demands that the statistics pertaining to a single input channel

are available only at that channel’s synapses onto the neuron, or at least at the

local dendritic level, rather than the whole neuron level, at which presumably all

the separate statistics for the individual input channels become merged and

therefore lost.

Since we now wish to discuss the possibility of adaptation of a multimodal neuron

to the separate statistics of its different input channels, we will therefore write the

response function r(x1, x2), for a bimodal neuron, in the form

rðx1, x2Þ ¼
s

2
1þ tanh

2

s
�1ðx1 � �1Þ þ �2ðx2 � �2Þ½ �

� �
, ð31Þ

where the ‘‘thresholds’’ �1 and �2 and the ‘‘gains’’ �1 and �2 are now specific to

each input distribution X1 and X2 and permit adaptation according to only

locally-available information about each input. Of course, �i and � i are no longer

neuronal thresholds and gains in the conventional, unimodal sense, but we retain

this nomenclature because of the clear analogy with the unimodal case.
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Writing U¼ �1X1þ �2X2, �U� 1 and �U¼ �1�1þ �2�2, the bimodal response

function in Equation 31 can be reduced to an effective unimodal response function,

rðuÞ ¼
s

2
1þ tanh

2�U

s
u� �Uð Þ

� �
, ð32Þ

where the effective neuronal input u takes values from the effective input

distribution U. The mean and variance of U are given by

�U ¼ �1�1 þ �2�2, ð33Þ

�2
U ¼ �

2
1�

2
1 þ �

2
2�

2
2 þ 2�1�1�2�2�, ð34Þ

respectively, where the correlation coefficient � appears in the expression for �2
U .

The output PDF fR(r) is therefore given by

fRðrÞ ¼
duðrÞ

dr
fU ðuðrÞÞ, ð35Þ

where u(r) is the inverse function of r(u), given by an equation analogous to

Equation 8 under the replacements �! �U and �! �U, and fU(u) is the PDF of the

effective unimodal input U, determined from the joint PDF fX1X2
ðx1, x2Þ. Since

�U� 1, fR(r) can be written simply as

fRðrÞ ¼
s2

4rðs� rÞ
fU �U �

s

4
log

s� r

r

� �
: ð36Þ

This reduction allows us to write down, by analogy, the rules according to which the

separate channel thresholds and gains should be set to ensure the (perhaps

approximate) invariance of fR(r) according to our previous results.

Adapting to the effective, unimodal input distribution U, and hence to the actual,

bimodal input distributions X1 and X2 is then achieved, according to our earlier

rules in Equations 13 and 14, by setting

�U ¼ �U þ��U , ð37Þ

�U ¼ �
s

�U

, ð38Þ

where the constants � and � determine, as usual, the preferred operating point of

a neuron. We therefore have

�1ð�1 � �1Þ þ �2ð�2 � �2Þ ¼ ��s, ð39Þ

�2
1�

2
1 þ �

2
2�

2
2 þ 2�1�1�2�2� ¼ �2s2: ð40Þ

Equation 40 defines, in general, an ellipse (or ellipsoid for the multimodal case)

on which solutions �1 and �2 of this equation exist. The semi-major and semi-

minor axes of this ellipse are set by �1 and �2, as well as by �. Thus, a general

point on the ellipse will be influenced by both �1 and �2, and hence the solution

for �1, say, will be influenced by �2. However, we have argued that information

about the �i should only be available locally, at or near the site of the

synapses associated with the inputs Xi. Hence, the gain associated with, say,
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input X1, �1, should not be influenced, non-locally, by the statistics of X2.

We can achieve this by insisting that

�i�i ¼ �i s, ð41Þ

where the �i are constants and, as usual, an overall scale is made explicit. In order to

ensure that each modality is mapped onto the same output dynamic range, we set all

these constants equal, so that �i¼�0, 8i. Then, from Equation 40, we have

�0 ¼ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ �Þ

p
. Thus, the separate channel gains should be set according to

�i ¼
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ �Þ
p s

�i

, ð42Þ

providing solutions of Equation 40 satisfying the principle of locality. The channel-

specific gains � i are therefore fixed locally, by the factor of 1/�i, but the overall

scaling also depends on the correlation coefficient �. For the possible influence of

correlations on gain control, although not in a multimodal context, see Sharpee

et al. (2006) and Lesica et al. (2007). For the general, multimodal case, with n

distinct channels, a sum of all ð1=2Þnðn� 1Þ separate correlation coefficients

between all distinct pairs of channels appear in the denominator in Equation 42.

The overall scaling is a global factor affecting all gains equally, and this global

modification of the local gains could be achieved at the whole neuron level, rather

than at the local input level. Nonetheless, Equation 42 does require knowledge of

the correlation coefficients. We shall discuss this later.

Turning to Equation 39, since �U� �1�1þ �2�2, we have

�U ¼ �1�1 þ �2�2 þ��s: ð43Þ

This equation defines the combined threshold �U and not �1 and �2 separately.

However, we defined the �i separately only for convenience, for the analogy to the

unimodal case. We see from Equation 31 that only the combination �U is real, with

�1 and �2 having no independent meaning. �U may be regarded as the actual

threshold of the neuron, although in the multimodal case it does not specify the

semi-saturation point, and Equation 43 sets this threshold uniquely.

In summary, in the bimodal case, the response function of the neuron is given by

rðx1, x2Þ ¼
s

2
1þ tanh

2

s
�1x1 þ �2x2 � �Uð Þ

� �
, ð44Þ

and if the separate channel gains � i are adapted locally according to Equation 42 and

the pseudo-threshold �U is adapted according to Equation 43, then the output PDF

fR(r) remains invariant, or approximately so. Thus, Equations 42 and 43 provide

a means for a bimodal neuron to adapt to the changing input statistics of two distinct

input channels, when these channels’ statistics vary either separately or simulta-

neously. These results generalise directly to a multimodal neuron with more than

two separate input channels.

Examples of adaptation in model neurons

First, we consider the application of our adaptation rules to the case of a purely

unimodal neuron and show examples of adaptation, both perfect and imperfect,
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to changes in the input mean and standard deviation. We then consider a bimodal

neuron and discuss, in particular, adaptation to changes in the correlation

coefficient, which is not an available form of adaptation in the unimodal case.

Unimodal inputs

We demonstrate the ability of the adaptation rules in Equations 13 and 14 to

accommodate changes in the input statistics. We consider one example of an input

distribution that allows perfect adaptation, and one example demonstrating only

approximate invariance of fR(r).

Logistic distribution. We first consider the logistic or sech-squared distribution,

defined by the PDF

fX ðxÞ ¼
	

4�
ffiffiffi
3
p sech2 	

2
ffiffiffi
3
p

x� �

�

� �
, ð45Þ

where � and �2 are its mean and variance, respectively. Clearly fX(x) has a form for

which fZ(z)¼ g(z), with gðzÞ ¼ ð	=4
ffiffiffi
3
p
Þ sech2 ð	=2

ffiffiffi
3
p
Þz, so perfect adaptation of �

and � to changing � and � is possible. We consider the logistic distribution for two

reasons. First, it is frequently employed as an alternative to the normal distribution,

in order to simplify analysis (Johnson et al. 1995). Second, as mentioned above, it is

the only input distribution for which it is possible, in the presence of the sigmoidal

response function in Equation 5, to generate an output distribution R that is

uniform on [0, s], and hence has the maximum entropy distribution, given the

saturation constraint.

Since fR(r)¼ 1/s has maximum entropy on the bounded interval [0, s], we deduce

that Equations 29 and 30 are satisfied when

� ¼ �, ð46Þ

� ¼
	

4
ffiffiffi
3
p

s

�
, ð47Þ

from which we see that the constants � and � satisfy �¼ 0 and

� ¼ ð	=4
ffiffiffi
3
p
Þ � 0:4534. The scaling of the gain � with the range of the response s

was anticipated earlier, giving rise to the scale-free definition of the constant �. This

can be seen directly from Equations 29 and 30.

In Figure 1, we consider two different operating points. The first corresponds

to the maximum entropy operating point, defined by �¼ 0 and � ¼ 	=4
ffiffiffi
3
p

(Figure 1A), and the second corresponds to a representative example of an

operating point away from maximum entropy, which we take to be defined by

�¼�0.5 and �¼ 0.4 (Figure 1B). In both cases, we assume that the neuron has

adapted to an input mean �¼ 10 and standard deviation �¼ 2, and use Equations

13 and 14 to determine the induced thresholds and gains. In Figure 1(A), we have

a threshold �¼ 10 and gain �¼ s�/2. We set s¼ 10 without loss of generality

throughout. In Figure 1(B), we have threshold �¼ 9 and gain �¼ 2. The PDFs of

the corresponding output distributions are shown, defining the preferred operating

points of the neuron in both cases. When the input standard deviation is changed

from �¼ 2 to �¼ 1 without any concomitant neuronal adaption, the output PDFs
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move away from the preferred operating point. To return the PDFs back to the

preferred operating points, we must set � and � according to Equations 13 and 14.

Incrementing � and � from their initial values at �¼ 2 to their target values at �¼ 1

shows how the output PDFs return to the preferred operating points. We see that

adaptation is in this case perfect, and, crucially, does not depend on the details of

how the preferred operating point is set. In particular, when the preferred

operating point is initially set according to a maximum entropy principle, as

shown in Figure 1(A), adaptation restores the output PDF to the maximum entropy
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Figure 1. Adaptation of a unimodal neuron with input defined by a logistic distribution. Two
different operating points are considered, defined by (A) �¼ 0 and � ¼ 	=4

ffiffiffi
3
p

,
corresponding to a maximum entropy output PDF, and (B) �¼�0.5 and �¼ 0.4,
corresponding to an operating point away from maximum entropy. In each case, the
neuron is initially adapted to an input mean �¼ 10 and standard deviation �¼ 2 (PDF a).
The standard deviation is then changed to �¼ 1 (PDFs b–e). Output PDFs are shown
without any concomitant changes in � and �, showing how the output PDFs moves away from
their preferred operating points (PDF b). Output PDFs are also shown as � and � are moved
to their target values for �¼ 1 (PDFs c–e). (A) The values of � are: �¼ 2.27 (PDF a);
�¼ 2.27 (PDF b); �¼ 2.83 (PDF c); �¼ 3.40 (PDF d); �¼ 3.97 (PDF e). In all cases, �¼ 10,
a constant independent of � because �¼ 0. The PDF corresponding to the target value of
�¼ 4.53 for �¼ 1 is not shown, because it is identical to PDF a. (B) The values of � and � are:
�¼ 9, �¼ 2 (PDF a); �¼ 9, �¼ 2 (PDF b); �¼ 9.125, �¼ 2.5 (PDF c); �¼ 9.25, �¼ 3
(PDF d); �¼ 9.375, �¼ 3.5 (PDF e). The PDF for �¼ 9.5, �¼ 4, the target values for �¼ 1,
is again not shown.

Maintaining the operating point of a neuron 225



distribution in precisely the same manner that it returns the output PDF to

a non-optimal preferred operating point, as shown in Figure 1(B). The use of

Equations 13 and 14 thus avoids an explicit recomputation of the maximum entropy

point following a change in the input statistics.

Convolved exponential distribution. We now consider an input distribution for which

perfect adaptation is not possible, defined by the PDF

fX ðxÞ ¼
expð�x=
þÞ � expð�x=
�Þ


þ � 
�
, x � 0: ð48Þ

This is the distribution of a variable X defined as the sum of two independent,

exponentially-distributed variables X	 with different means 
	, respectively, so that

X¼XþþX�. The mean and variance of X are given by �¼ 
þþ 
� and

�2 ¼ 
2
þ þ 


2
�, respectively. Regarding � and � as the fundamental parameters, we

invert these relations to obtain


	 ¼
1

2
�	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 � �2

p� �
: ð49Þ

For this distribution to exist, we must have �5�5
ffiffiffi
2
p
�, so that the mean can only

take values defined in a range set by the standard deviation, and vice versa. Writing

q¼� / �, so that 15q5
ffiffiffi
2
p

, and transforming to the Z variable, we have

fZðzÞ ¼

exp
�2ðzþ qÞ

qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� q2

p
" #

� exp
�2ðzþ qÞ

q�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� q2

p
" #

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� q2

p :
ð50Þ

We see that fZ(z) does not take the form g(z) considered earlier, because the ratio q,

depending on � and �, appears in fZ(z). Therefore, adapting � and � according

to Equations 13 and 14 will not, in general, result in an exactly invariant output

PDF fR(r).

We set �¼ 10 and take a value �¼ 8.5 [approximately midway in the allowed

range of � of ð5
ffiffiffi
2
p

, 10Þ] and use Equations 29 and 30 to determine the values of �
and � corresponding to the maximum entropy output PDF for the convolved

exponential input PDF. For this input distribution, Equations 29 and 30 cannot be

solved analytically, so we perform direct numerical searches for the values of � and �
that induce the maximum entropy output distribution for given input mean and

standard deviation. For �¼ 10 and �¼ 8.5, we find �� 8.68 and �� 0.60,

corresponding to values ���0.16 and �� 0.51. In Figure 2, we again consider

two operating points, one defined by this maximum entropy distribution, and the

second, as for the logistic distribution, defined by �¼�0.5 and �¼ 0.4. We show

the induced output PDFs when the thresholds and gains are set according to the

input statistics, defining the preferred operating point. Also shown are how these

PDFs move away from the preferred operating points when � changes to �¼ 7.5

without compensating neuronal adaptation. However, we see that the PDFs do not

return to the preferred operating points when the thresholds and gains are restored

to the target values induced by Equations 13 and 14 when �¼ 7.5.

Despite this expected, general non-invariance of the output PDF fR(r) for

convolved exponential input, it is natural to wonder whether adaptation
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according to Equations 13 and 14 is better than not adapting � and � at all. To

this end, we determine the extent to which adaptation according to Equations 13

and 14 is able to track the maximum entropy distribution governed by the

solutions of Equations 29 and 30, and compare this to the deviation induced in

the absence of adaptation of � and � to changes in � and �. Thus, here, we

regard the maximum entropy distribution as the preferred operating point of

a neuron, and determine the deviations from this preferred operating point when

either � and � are imperfectly adapted according to Equations 13 and 14 or �
and � are not adapted at all. For �¼ 10 and �¼ 7.2, the maximum entropy

operating point, from the solution of Equations 29 and 30 is set by �� 9.10 and
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Figure 2. Attempted adaptation of a unimodal neuron with input defined by a convolved
exponential distribution. (A) Fixing �¼ 10 and �¼ 8.5 results in �¼ 8.68 and � ¼ 0.60 for
a maximum entropy output distribution, inducing the values �¼�0.16 and �¼ 0.51, which
we take as defining the preferred operating point. The second operating point is defined by:
(B) �¼�0.5 and �¼ 0.4, corresponding to a preferred operating point away from maximum
entropy when �¼ 10 and �¼ 8.5. The format of this figure is otherwise identical to Figure 1,
except that we change � from �¼ 8.5 (PDF a) to �¼ 7.5 (PDFs b–e). (A) The values of � and
� are: �¼ 8.68 and �¼ 0.60 (PDF a, the preferred operating point); �¼ 8.68, �¼ 0.60 (PDF
b); �¼ 8.73, �¼ 0.63 (PDF c); �¼ 8.79, � ¼ 0.65 (PDF d); �¼ 8.84, �¼ 0.68, the target
values for �¼ 7.5 (PDF e). (B) The values of � and � are: �¼ 5.75 and �¼ 0.47 (PDF a, the
preferred operating point); �¼ 5.75, � ¼ 0.47 (PDF b); �¼ 5.92, �¼ 0.49 (PDF c); �¼ 6.08,
�¼ 0.51 (PDF d); �¼ 6.25, � ¼ 0.53, the target values for �¼ 7.5 (PDF e).
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�� 0.66, inducing values ���0.13 and �� 0.48. We increase � up to its upper

limit of �¼ 10 and for each value of �, we compute three different output

entropies. First, we determine the new, maximum output entropy values of � and

� from Equations 29 and 30, and the associated value of Smax[R]. In this case, �
and � are not fixed, but determined functionally. Second, we determine the

entropy, Sadapt[R], of the output PDF when � and � are instead adapted

according to Equations 13 and 14, so that � and � are held constant. Finally,

we calculate the output PDF entropy, Sno[R] when � and � are held constant, so

that there is no adaptation to the changing standard deviation. The results are

shown in Figure 3. We see that adapting � and � according to Equations 13 and

14, although not perfect, tracks the maximum entropy distribution very closely,

while the non-adapted distribution deviates from the target distribution to

a greater extent. It is worthwhile commenting that the maximum output entropy

here is not constant precisely because the output distribution cannot be made

exactly invariant. It we were to display a similar graph to this for the logistic

distribution, however, Smax[R] would remain constant as � is varied, and the

perfect adaptation present in that case would ensure that Sadapt[R]¼Smax[R] for

all values of � provided that equality is established for any one value of �.

Multimodal inputs

We have seen that the multimodal input case can be reduced, mathematically-

speaking, to the unimodal input case by considering the effective input

U¼ �1X1þ �2X2 and adapting the channel-specific gains � i and the pseudo-

threshold �U according to Equations 42 and 43, respectively. Our presentation of

the above results for the unimodal case therefore, in general, completely

characterises the multimodal results too. We thus discuss only one example of the
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Figure 3. Tracking the maximum entropy output PDF by adaptation according to Equations
13 and 14, as � varies, for a unimodal neuron with input drawn from a convolved exponential
distribution. Here the preferred operating point of the neuron is defined functionally, as the
maximum entropy output PDF. Adaptation according to Equations 13 and 14 in this case is
imperfect, but tracks the maximum entropy distribution closely. In contrast, not adapting the
output PDF quickly shifts the output PDF away from the preferred, maximum entropy
operating point.
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invariance of fR(r) in the presence of multimodal inputs for illustrative purposes.

Novel to the multimodal case is the possibility of adaptation to the correlation

coefficients between different modalities, so we focus on this case specifically.

As perhaps the simplest, non-trivial example of a bivariate distribution, we

suppose that the two channel inputs are drawn from a bivariate normal distribution

with joint PDF fX1X2
ðx1, x2Þ given by

fX1X2
ðx1, x2Þ ¼

1

2	

1ffiffiffiffiffiffiffiffiffiffiffiffi
det �
p exp �

1

2
ðx� �ÞT ��1ðx� �Þ

� �
, ð51Þ

where xT
¼ (x1, x2), the superscript T denoting the transpose, �T

¼ (�1,�2) and � is

the covariance matrix,

� ¼
�2

1 �1�2�

�1�2� �2
2

 !
, ð52Þ

where det � is its determinant. It is easy to see that the distribution of the effective,

unimodal input U is normal, with mean and variance given by Equations 33 and 34,

respectively. In order to determine the operating point corresponding to the

maximum entropy output distribution in the presence of a bivariate normal input

distribution, we must calculate the values of � and � determining this point for

a univariate normal input distribution.

A univariate normal input is defined by the standard PDF

fX ðxÞ ¼
1

�
ffiffiffiffiffiffi
2	
p exp �

1

2

x� �

�

� �2
� �

, ð53Þ

with mean � and variance �2, respectively. As with the logistic distribution, the

normal distribution can clearly be written in the form fZ(z)¼ g(z), permitting perfect

adaptation. Unlike the logistic distribution, the maximum entropy output

distribution R, given the sigmoidal response function in Equation 5, must be

determined explicitly from the evaluation of the integrals in Equations 29 and 30.

For the first integral, we have that

@S½R�

@�
¼

1ffiffiffiffiffiffi
2	
p

4�

s

Z 1
�1

dz e�z2=2 tanh
2��

s
z�

� � �

�

� �
: ð54Þ

Since exp(�z2/2) is even around z¼ 0, the integral can be made to vanish when

we choose the argument of the tanh function so that the tanh function is odd

around z¼ 0. This is possible only if �¼�. Indeed, it is clear that for any input

distribution that is symmetric about its mean, we must set �¼� in order to satisfy

Equation 29, which implies that �� 0. With Equation 29 satisfied, Equation 30

reduces to

�

Z 1
�1

dz z e�z2=2 tanh 2�z ¼

ffiffiffi
	

8

r
, ð55Þ

from which we must determine the solution for � numerically, resulting

in �� 0.4372 for the maximum entropy output PDF. Notice the similarity

between this value of � for the normal distribution and the value

� ¼ ð	=4
ffiffiffi
3
p
Þ � 0:4534 for the logistic distribution, confirming the utility of
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replacing a normal distribution by a logistic distribution for the purposes of

analytical tractability (Johnson et al. 1995).

This examination of the unimodal, univariate normal input case suffices to

understand the bimodal, bivariate normal input case. In the bimodal case,

adaptation of �1 and �2 according to Equation 42 and �U according to

Equation 43 leads to the exact invariance of fR(r) under changes in all the bivariate

input statistics, including the correlation coefficient �. Since the correlation

coefficient does not appear in the unimodal case studied earlier, we examine, in

particular, adaptation to changes in � only, with the means �1 and �2 and the

variances �2
1 and �2

2 held constant.

In Figure 4, we as usual consider two different operating points, the first

(Figure 4A) corresponding to the maximum entropy distribution, with �� 0 and

�� 0.4372 for a univariate normal distribution, and the second (Figure 4B) defined

as usual by �¼�0.5 and �¼ 0.4. We fix �1¼ 10, �1¼ 2 as for the logistic

distribution above, and then fix �2¼ 8 and �2¼ 4 as representative values. We select

an initial correlation coefficient of �¼�0.5. The preferred operating points

then determine �1, �2 and �U via Equations 42 and 43. We then decrease � to

�¼�0.9. Without adaptive changes in the � i and �U, the output PDFs moves away

from the preferred operating points. As the � i and �U are restored to their induced

values according to Equations 42 and 43, the output PDFs fR(r) return to the

preferred operating points. Adaptation to changes in the correlation coefficient in

this bivariate normal input case is perfect.

For the general multivariate normal input case with n inputs, there are n means, n

variances, and ð1=2Þnðn� 1Þ correlation coefficients. Adaptation to all n first-order

moments is accomplished through just one parameter, the pseudo-threshold �U.

The n gains � i permit adaptation to the variances of the n inputs. Although it is an

immediate consequence of the form of Equation 42 in the general case, in which

a sum of all the correlation coefficients appears in the denominator, it is nonetheless

remarkable that adaptation to all ð1=2Þnðnþ 1Þ second-order moments, consisting of

n variances and ð1=2Þnðn� 1Þ correlation coefficients, is possible with just n gain

parameters.

Discussion

We first discuss the general issues surrounding our approach to adaptation, then

briefly examine the specific issues regarding adaptation in neurons receiving input

from multiple sources.

General considerations

In this article we have proposed an invariance principle for neuronal adaptation to

changing input statistics. We have suggested that a neuron seeks to maintain an

invariant output spike rate PDF by adjusting its threshold and gain to accommodate

changes in the lowest-order moments of an input distribution. For simplicity, we

have considered only a sigmoidal transfer function, although the linear region of

such a function also provides a fair approximation to the linear, rectified transfer
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function popular in the visual processing literature. For a class of input

distributions, including the normal distribution, we have shown that exact

invariance is achieved. For completely general input distributions, however,

changes in higher-order moments can contaminate the invariance of the output

PDF, resulting in only approximate invariance. We have examined an example of
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Figure 4. Adaptation of a bimodal neuron to changes in the correlation coefficient for inputs
drawn from a bivariate normal distribution. The input means and standard deviations are set
as �1¼ 10, �2¼ 8, �1¼ 2 and �2¼ 4. (A) The preferred operating point is set by �� 0 and
�¼ 0.4372, corresponding to a maximum entropy distribution. For an initial correlation
coefficient �¼�0.5, the induced pseudo-threshold and gains are set as �U¼ 30.60, �1¼ 2.19,
�2¼ 1.09 (PDF a), defining the preferred PDF. Changing the correlation coefficient to
�¼�0.9 while keeping the pseudo-threshold and gains constant shifts the neuron from its
preferred PDF (PDF b). Moving the pseudo-threshold and gains to their target values for
�¼�0.9 restores the neuron’s output PDF to its preferred point: �U¼ 40.07, �1¼ 2.86,
�2¼ 1.43 (PDF c); �U¼ 49.52, �1¼ 3.54, �2¼ 1.77 (PDF d); �U¼ 58.98, �1¼ 4.21, �2¼ 2.11
(PDF e). (B) The preferred operating point of the neuron is set by �¼�0.5 and �¼ 0.4,
moving the neuron away from a maximum entropy distribution. For an initial correlation
coefficient �¼�0.5, the induced pseudo-threshold and gains are set as �U¼ 26, �1¼ 2, �2¼ 1
(PDF a), defining the preferred PDF. Changing the correlation coefficient to �¼�0.9 while
keeping the pseudo-threshold and gains constant shifts the neuron from its preferred PDF
(PDF b). Moving the pseudo-threshold and gains to their target values for �¼�0.9 restores
the neuron’s output PDF to its preferred point: �U¼ 34.65, �1¼ 2.62, �2¼ 1.31 (PDF c);
�U¼ 43.31, �1¼ 3.24, �2¼ 1.62 (PDF d); �U¼ 51.96, �1¼ 3.85, �2¼ 1.93 (PDF e).
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non-invariance, and shown that adaption according to the lowest-order moments

nonetheless tracks the maximum output entropy distribution (assuming response

saturation) closely. More generally, given that the output spiking process and any

downstream processing will be noisy, maintaining precise invariance is perhaps

neither required nor realistic. It likely suffices, for noisy neuronal systems, to

maintain the preferred operating point of a neuron only within acceptable bounds,

rather than precisely.

We have considered adaption only to the input mean and variance because the

sigmoidal response function employed here provides us with two degrees of

response freedom, making changes in the input mean and variance suitable targets

for adaptive changes in those two parameters. Evidence from neurons in the inferior

colliculus suggests that neurons may be able to adapt to moments higher than the

second (Kvale and Schreiner 2004), although evidence from neurons in the lateral

geniculate nucleus suggests that contrast gain control is sensitive only to the input

mean and variance (Bonin et al. 2006). In order to admit adaptation to higher-order

moments in our approach, it would be necessary to consider a more general

response function characterised by more parameters. Of course, to allow perfect

adaptation to the potentially infinite number of independent moments of

a completely general input distribution, it would be necessary to consider an

essentially arbitrary response function.

The extent to which a neuron can modify the functional relationship between its

input spike rate and its output spike rate is, however, unclear. A neuron can modify

its threshold and gain, but the input–output mapping is presumably not arbitrarily

modifiable. It is therefore unrealistic to assume, in a moment-orientated approach

to adaptation, that adaptation to more than a few moments is possible. The same

issues, however, apply to information-theoretic approaches. Assuming, for example,

that the output response is bounded, so that maximum output entropy is achieved

with a uniform output probability distribution, optimal adaptation is achieved by

setting a neuron’s response function proportional to the CDF of the input

distribution (Laughlin 1981). Over evolutionary time, it is possible that such

a mapping has been acquired by neurons in the presence of natural stimuli. But can

such neurons adapt to a rapid, dramatic change in their input distributions? An

affirmative answer requires identical assumptions, in terms of the freedoms assumed

to be available in the response function characterisation, as a moment-based view.

A view of adaptation based on moments of course requires that a neuron, or

a circuit, can estimate the moments of its input distribution. We have not discussed

here how that could be achieved, nor the timescales on which changes in moments

would affect a neuron’s, or a circuit’s, estimates of them. It is a simple matter to

build a model based on running estimates of moments requiring access only to the

instantaneous input rate, and we will pursue this elsewhere. The higher the

moment, however, the more complicated the form for the running estimate, so it is

probably unrealistic to assume that a neuron can estimate more than a handful of

the lowest-order moments. Equally, however, in the above information-theoretic

considerations, estimation of the input CDF will be tightly constrained by the

computational resources available to a neuron, or a circuit.

In the above, we have therefore restricted to a consideration of adaptation to the

lowest-order moments, and in particular to the mean and variance, of an input

distribution, in order to maintain an invariant output distribution. Compared to the
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complexity of the full problem, requiring all the moments and an essentially arbitrary

response function, restricting to the two lowest-order moments produces results,

in terms of adapting the neuronal threshold and gain via Equations 13 and 14, that

are easy to derive and simple to implement. Despite the fact that these rules ensure

only approximate output PDF invariance for general input distributions, and

although some functional properties of neurons may then escape our analysis (e.g.

large deviation detection, for which the higher-order moments are clearly critical), we

regard this simplicity as a virtue. Under the assumption that a neuron can indeed

estimate the mean and variance of its input, Equations 13 and 14 provide an adaptive

strategy that does not require a neuron to perform elaborate computations in order to

adapt to changes in its input statistics. If we regard neurons not as perfect optimisers

but rather as devices of extremely limited computational ability and resources, then

adaptation according to Equations 13 and 14 may very well represent a solution for

suboptimal, resource-constrained computation.

Multimodal adaptation

In a purely unimodal context, firing threshold adaptation and gain control are

usually considered to be whole-neuron-level processes or circuit-level processes

affecting the whole-neuron level (Sanchez-Vives et al. 2000; Rieke 2001; Baccus and

Meister 2002; Chance et al. 2002; Kim and Rieke 2003; Shu et al. 2003; Dean et al.

2005; Ingham and McAlpine 2005; Arganda et al. 2007). Considering adaptation in

multimodal neurons, however, we have allowed the possibility that a neuron admits

separate gains for its distinct sensory inputs. We have argued that there is a local

contribution to these gains, set by the standard deviations of the local, channel-

specific inputs, and a global, common contribution to the gains, set by the

correlation coefficients. Although adaptation processes at the whole-neuron level

(for example, by changing the parameters of the spike generation mechanism) could

accommodate changes in all the input means and the global change in the gains due

to correlations, such processes are not suitable candidates for the local gain control

for adaptation to local input standard deviations. It is possible that such local gain

control could only be achieved at the circuit-level, with the circuit controlling or

modulating either specific afferent inputs or the dendrites on which these afferents

synapse. If afferents from different modalities synapse on the same dendrite,

however, then it is difficult to conceive how the circuit could control or modulate

dendritic properties in order to induce different gains associated with different

modalities. Furthermore, the estimation of correlation coefficients is, by definition,

a non-local process, since knowledge of the activities in pairs of distinct sensory

inputs is required. One way to achieve this would be through the close juxtaposition

of different modalities’ synapses on a dendrite, thus ruling out local dendritic gain

control. On balance, then, we consider that local dendritic gain control is unlikely in

a multimodal setting, and that circuit-level processes control both the overall gain of

a neuron, in order to allow adaptation to correlations (and means), and the local

gains, in order to allow adaptation to variances.

The potential for adaptation in multimodal neurons raises the possibility that

adaptation may play an important role in multisensory integration. Perhaps the best-

studied form of multisensory integration occurs in the deep layers of the superior

colliculus (DSC). Multisensory DSC neurons exhibit the properties of cross-modal

Maintaining the operating point of a neuron 233



enhancement (CME), associated with inverse effectiveness, and modality-specific

suppression (MSS). In CME, the response of a DSC neuron to simultaneous,

multimodal stimulation is greater than its response to distinct, unimodal stimulation

in only one channel (Meredith and Stein 1986). In MSS, simultaneous stimulation

of separate parts of the receptive field in a single sensory channel of a DSC neuron

can suppress the response of the neuron (Kadunce et al. 1997). If DSC neurons

undergo adaptation to the multivariate statistics of their multisensory inputs, then

these neurons could exhibit separate gains for their different sensory inputs.

Moreover, these gains should also be sensitive to the correlation coefficients

between different sensory modalities. The superior colliculus is the first sensory area

in which multiple modalities converge, and thus offers scope for adaptation to

correlation coefficients. The experimental opportunities for testing adaptation in

DSC neurons are therefore rich, and in future work we shall examine in detail the

consequences of adaptation in multisensory neurons for the dynamics of multi-

sensory integration.

Note

[1] Carleman’s condition on the moments is sufficient to ensure uniqueness (Feller

1967). The classic counter-examples to this condition are the Cauchy distribution,

which has no moments, and the log-normal distribution, for which MX(t) does not

exist despite all the moments existing.
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