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AN INVARIANCE PRINCIPLE FOR MARTINGALES!

By RicHARD DRroGIN?
University of California, Berkeley

Many discrete martingales with increments in L; can be normalized
so that the resulting trajectory isdistributed approximately like Brownian
motion. This paper will find all such martingales, subject to a natural
side condition. Two techniques of normalization are possible: The usual
one involving the partial sums of conditional variances of the increments
given the past, and the analogous method using the partial sums of
squares of the increments. This result is applied to obtain a central limit
theorem and an arc sin law for dependent random variables.

0. Introdaction. Many discrete martingales with increments in L, can be
normalised so that the resulting trajectory is distributed approximately like
Brownian motion. This paper will find all such martingales, subject to a natu-
ral side condition. Two techniques of normalization are possible: The usual
one involving the partial sums of conditional variances of the increments given
the past, and the analogous method using the partial sums of squares of the
increments. The main result is stated by (2). Itisapplied to obtain a central
limit Theorem (16) and an arc sin law (17) for dependent random varijables.

Formally, let X;, X,, - - - be a sequence of random variables on (Q, .27, P).
Let .97, .57, - - - be an increasing sequence of sub g¢-ficlds of .%7 such that X;

is 7 -measurable. Sets,’= >* X and v, = >, E(X;?|.%7;_,). Assume
only

(D E(X, 11

) =0, EX,) < oo, and v,, — 00 a.8.

Define 7, = inf {m: v,, = n}. Form the continuous (random) function S on
[0, co) by the requirements that S(0) =0, S(v,) = X, + --- +X,,and S'is
linear on [v,,, ¥,,4]. In the same way form S, except use s5,° in place of v,,.
Let 5" and $™ be the two continuous functions on [0, 1] defined at ¢ by S*(f) =
S(nt)/nt and S*(t) = S(nt)/nt.

Let 7 be an interval of the real line. For Theorem 1 just think of 7 = [0, 1],
the case I = [0, o) will be needed in Section 2. Let C(I) be the space of
real-valued continuous functions on /' with the sup metric d and the Borel o-
field Z(I) generated by the d-open sets. For te 7, let B(t, -), or simply B(?),
be the function on C(I) whose value at fis f{r). Let 7, be the probability on
(C(I), (1)) which makes {B(t) : t € I} standard Brownian motion starting from
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0 on I. Abbreviate m,,; by 7, and 7, ., by =. Denote by ® the set of real-
valued functions on C[0, 1] which are bounded and continuous =,-a.s.

Take 1, to be the indicator of the set 4, and —, to mean convergence in
L,-norm with respect to the probability distribution of the random variables
involved.

The main result is

(2) THEOREM 1. Suppose (1) holds. Then (a), (b), and (c) are equivalent. If they
are true, so is (d).

(a) (1n) 3 7m X1y 250y =1, 0 as n— oo, forall ¢>0
(b) SUPigicr, |87 — Vl/n—; 0 and v, [n—; 1 as n— oo

(c) foo(S")dP — {010 dr, and vp oy 1 as n— oo,

forall ¢ec®

(d)  Supyg,z, [S™(1) — S™(t)] =0 and o (S*)dP
— oo pdr, as n— oo, forall ¢e®.
When X, X,, - .. are independent, T, and v,, are nonrandom, and (a) reduces

to the classical Lindeberg condition.

The asymptotic behavior of S, has long been studied under various condi-
tions on the dependence among the X; and their growth rate. The main result
is Donsker’s invariance principle [1] which treats the case when X, X;, - - -
are i.i.d. Lévy [5] and Dvoretsky [3] have proved central limit theorems for
martingales. These are generalized and unified by Theorem 1. Strassen [6]
has showed that, under a growth condition which includes the case when
X, X,, - -+ are uniformly bounded, the weak convergence asserted in (c) can
be replaced by almost sure convergence.

S has not been investigated. The implication of (d) that the process
{Sutyimt:0 <t < 1) converges in distribution to Brownian motion, can be
thought of as the discrete time analog to a property of many continuous time
martingales. Roughly speaking, if the time scale for these martingales is
changed by mapping each f ¢ [0, co) into the squared variation of the process
up to time ¢, then a Brownian motion is obtained [2]. S is formed similarly,
with 1™, X;* playing the role of squared variation. An interesting feature of
S is that, unlike S, its construction does not involve P or any parameters of
P.

The present work presents a theory of the weak convergence of suitably
normalized discrete stochastic processes to Brownian motion based entirely
upon results about fair coin tossing. It does not involve characteristic func-
tions, or the approach of embedding a discrete martingale in a Brownian
motion.
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1. An invariance principle. The proof of Theorem 1 will be based on the fact
that for large n S* and $* cach behave approximately like a fair coin random
walk with small steps. In pinning this down there are two things to check.
First, it must be shown that for any a > 0 the sequence of changes in size of
at least a completed by the trajectory 0, X,/n?, (X, + X,)/nt, - .. are approxi-
mately i.i.d. as +a with probability  each. Then it is necessary to prove
that, for small @ > 0, the time transformations used to obtain $* and $§» make
these changes occur ata nearly uniform rate, for large n. This is stated rigor-
ously by (4). (5)-(7) will develop tools for determining when these two prop-
erties are satisfied. Their proofs are given in Section 3. The first property
will be called asymptotic fairness. A formal definition is given by (3). The
proof of Theorem 1 follows (11).

Tostate (3), letI be the set of functions y: {0, 1, - - -} — (—co, co) for which
»0) =0. ForyelIandk = 0 identify y, with y(k), and define ¢(0, m, y) =0,
let o(j, m, y) be the first time k after o(j — 1, m, y) for which [y, — y,; 1 m,| =
2", and o(j, m, y) = o(j — 1, m, y) when no such k exists, for j = 1. For
unbounded yp, think of 4(j, m, y) as the first time y completes j changes in size
of at least 2-™. Abbreviate y,; .. ,, by »,.; ... In addition, for pairs of non-
negative integers (k, m), let e¢(k, m, «): ' — {0, 1, 2, ...} be defined at y to be
the smallest nonnegative integer jfor which either ¢(j, m, y) <k < o(j+ 1, m, y)
or a(j,m,y) =oa(j+ 1,m, y) < k. Think of c(k, m, y) as the number of
changes in size of at least 2=™ completed by y up to time k.

Form=0,1,...and N=1,2, ..., let G, m) be the set of N-tuplets
whose entries are —2~™ or 2=™. Foreachy >0anda = (a, ---,a,)c G(N,m)
let a,(p) be the interval [—(27™ + %), —27"] or [27™, 2™ 4 7] according to
whether a; is —27™ or 27™. Leta(y) = a(5) x - -+ x ay(y), an N-dimensional
cube.

Forn=1,2,...let{§":k=0,1,.-.} be a sequence of processes on a
probability space (27, §, ). For all xe 27 assume £,°(x) = 0, and hence
§"x)el. So0¢&y; e = €%, is a random variable. Say

3) §" is asymptotically fair as n— oo if for all 7 >0, integers
m=0 and N=1, and aecG(N, m)

Z (ST Eg(z,m) - E?m,mp e & — E:(N—l,m)) ea(n)] — )"

as n— oo.

For (4),let{S,:m=0,1, ...} bea process on (Q, .7, P) with S, = 0. Set
X,=0and X; = §; — S,_,. Thelemma is completely general, it is not necessary
to assume E(X;,|X,, ---, X;) =0 or that EX, exists. Let {7,:¢>= 0} be a
time change for {S,,:m =0, 1, -..}. That is, for all w ¢ Q in a set of proba-
bility 1, T(w): [0, o) — {0, 1, -++} is a non-decreasing, unbounded, right
continuous step function with T(@) = 0. Impose the restriction thatif j — 1 =
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T, ,|X;, >0,and T has a jump at ¢ (i.e. T, < T,), then T, = j. Define the
continuous (random) function S* on {0, co) by the requirements §'(0) = 0,
S'(t) = S,, if T. has a jump at ¢, and S" is linearly interpolated between jumps
of T.. For each t [0, 1] let S*(¢) = S'(nt)/nt. Set Y,» = S,/n?, and

Upr = 2™ (Yogmym, — Youimem) s
where Y" denotes the trajectory of {¥," |k =0, 1,2, - ..}. 7, and ® are defined
in the introduction.

(4) LEmMA. (4a) and (4b) are equivalent to (4c).

(4a) Y™ is asymptotically fair as n— oo ;
(4b) SUPyeyey |UR™ — 1| 5,0 as m,n— oo,

with n = n(m), for some sequence {n(m):m =20,1, ...},
(4¢) § o(S"dP— § pdn, as n— oo, forall ¢e®.

For (5)-(7) assume a probability space (Q, .9, P) is given and that all
processes mentioned are 0 at 0, for all w € Q.

(5) gives sufficient conditions for a sequence of processes to be asymptotic-
ally fair.

(5) Lemma. If{Y,":k=0,1, ...}isamartingale with P[sup, |Y,*| = co] =1
Sfor each n, and sup, |Y,* — Y} _,| —, 0 asn— oo, then Y™ is asymptotically fair
asn— oo.

The next lemma states that the property of asymptotic fairnessis in a certain
sense continuous. Assume {Y,”:k=0,1, ...} and {$,":k=0,1, ..} are
processes on (Q, .97, P).

(6) LEMMA. If Y™ is asymptotically fair and sup, |Y,” — ¥,"| —,0 as n— oo,
then " is asymptotically fair as n — oo.

(7) will be used to show that certain time changes are asymptotically equiva-
lent. Assume{Y,*:k=0,1,-..},{4,":k=0,1,...},and{4,": k=0,1,...}
are processes on (Q, .9, P) for each n. In addition, suppose that for each n
047 and0 < A 1 as k — oo, and T, is a nonnegative integer valued
random variable such that ¥,» = 4,% — Afk" fork=0,1,..., T

(7) LEMMA. If Y" is asymptotically fair, E(A} )— 1, and E(A';en) — 1, then
SUPo<isr, |Y" = SUPysisr, |4, — A —,0 as n— oo.

Recall the setup given in the introduction. In addition, without real loss,
assume (Q, .97, P) supports Z,, Z,, - .- which are i.i.d. with P(Z, = 1) =
P(Z, = —1) =, and such that (Z,, Z,, - - -} is independent of | J,.%,. Other-
wise one could construct a cross product space with analogous properties.

In order to match up the growth condition (a) in Theorem 1 with those of
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(5) and (6) the following definition will be useful. Fix n, and recall T, is a
stopping time w.r.t. {7 : k =0,1, ...}. Let{{,: k=0, 1, ...} bea process
for which {, is .97 -measurable, and define {,* = Y% (¢, — )
(/m) 2 Z1 45y - Call{C* 1 k=0, 1, - . .} the n-extensionof {{, 1k =0,1, .. .}.
Let .%7,* be the smallest o-field containing .%7, for which {*, ..., {,* are
measurable. The following properties are easy to check:

8) If {{,:k=0,1,...} isa martingale with respect to {9 : k =0,
I, ...}, then ({{*:k=0,1,...} is a martingale with respect to
(& k=0,1,...},

(9) Ck:Ck*, for k:O,l,...’Tn’
(10) sup, JCk* - C;ck—ll - Suplgkng JCk - Ck—1| =+ l/n , and
(n sup, [£,* = oo a.s.

It is now possible to give the

ProoF oF TREOREM 1. (a)implies (b): Foreachrandklet W," = (s,2 — v,)/n,
and observe {W,*: k =0, 1, ...} is a martingale with respect to {%,: k =
0,1, ...}. For each n, denote the n-extension of {W,":k=0,1, ...} by
{(W,":k=0,1,...}. Use(a)and (8)—(11) to check the hypothesis of (5),
concluding that W™" is asymptotically fair as » — oo. This fact, together with
(a), implies the hypothesis of (7), upon identifying W,*, s,%/n, v,/n with ¥,",
A, A, of that lemma, and observing for any ¢ > 0

1 < Es} [n = Ev, Jns1+ (l/n)EmaXISiST E(X2 .57
<1+e+4 (I/mE X E(X21[X 25 et | <5 1)
=1t e+ (mE ZIm X g00mq— 1 +¢.

Hence, sup, g, o, |W."| = SUpicir, 18 — v,//n—,0 as n— oo. Using this,
the convergence in L, follows easily, proving (b).
(b) implies (c): For each k, m, n let
(12) Y»= (X, + -+ + X,)/nt,
Umor = 2smr™ (Y0 — Yo ) and
Ukm’n = ijl (Yoimne = Yoiamar) -
In view of (4), it is enough to verify conditions (4a) and (4b). (4b) will be
checked first.
For each m, n, and k let D™ = U,™" — s.2/n, and observe {D,m": k =
0,1, ...} is a martingale with respect to{%,:k=0,1, -..}. Foreach pair
(m, n), denoteby {D,™" :k =0, 1, . . .} the n-extension of{ﬁ mrik=0,1,-..}.

(b) implies max,_;, (X; /n) —1, 0, and hence max,_,_,_ |D,m — Dpnl -, 0
asm, n — co. Therefore D™ is asymptotically fair as m, n — oo by (5). For
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each m, n, k let D™ = U™ — s5.*/n, and denote by {D,":k=0,1, ...}
the n-extension of {D,™":k =0,1,...}. Since sup,|D,~" — Dm| =
SUPicizr, O — U™ < 4™ — 0as m, n— oo, (6)applies to get that D™
is asymptotically fair as m, n — co. Now use (b) to check the hypotheses of
(7), upon identifying D™, U™", s,*/n with Y,*, 4., A, of that lemma, and
conclude

max,,., | U7 — 83, /n| = maX,cper, U™ — sl[n| = max,<i<r, D,
= max,..,, |D,™"| —,0 as m,n— co.

Finally, (b) implies max,,., |s7 /n — #|—,0, proving max,_,, |Up* — | —,0
as m, n — oo. ’

To check (4a), fix integers /and N, real numbersy, e > 0,anda = (a,, - - -,
ay) e G(N, I). Without real loss, assume / = 0. For each n, let {Y,»: k =
0,1, ...} be the n-extensionof {¥,": k=0,1, .-.}. Since {¥Y,*:k=0,1, ...}
is a martingale w.r.t. {2 :k=0,1,...}, and max,_,., |V," — Y}, =
max, .., |Xi/nt —;, 0 by (b), (5) makes Y"* asymptotically fair as n-— oo.
The inequality «(7,,, m, Y )4 S Up" < o T, m, Y)Y 27" 4 max, ;. |X;|/n),
and the facts max,_;., Xj/n—,0asn— oo and max, ., |Up? — 1] —,0 as
m, n — oo, imply there exists a sequence {n(m): m =0, 1, ...} such that
|e(T,, m, Y)4~ — Up| —, 0, and hence P[¢(T,, m, Y*) = }-47"] — 1, as
m, n— oo with n = n(m). Accordingly, Ple(N, m, Y")< T,] > lasm,n— oo
with n = n(m). Choose m,and n, such that P[H,] = | — ¢ whenever n > n,,
where H, = [o(N, m, Y*) < T,]. Since Y™ is asymptotically fair, there exists
an n, such that |P[L,] — (3)"| < ¢ whenever n = n,, where

Ly =[(Yimps = Yoivmg — Yolvoimp) €b(y - 27™)],
assuming b = (a,/2™, a,/2™, - .., a,/2™). Put n, = n, v n,. Use (9) to check
that on H,
Y2 ppny = 2m Y™ 00 (k, m,, Y407 for k=1,2,...,N.
The conclusion |P[(Y7,4, -+, Yoiwo — Yow_in) €a(n)] — (3)*] < 2¢ when-

ever n = n,now follows. ¢ isarbitrary, so Y is asymptotically fair as n — oo,
finishing off (4 a) and hence (c).

(c) implies (a): (a) will follow from
(13) max,.;., Xj?/n—,0 as n— oo, and
(14) sy n—p 1 as n-—oo.

For, (13) implies (1/n) X [» X142, —» 0 and (14) makes this sequence
uniformly integrable.

Let Y,*, U,™"yand U,™" be as in (12). The proof of (4) will show (c) implies
(13). As for (14), first use (4) to get Up:" —, 1 as m, n— oo with n = n(m), for
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some sequence {n(m): m =0, 1, - ..}. Then observe [Up:" — 0;”;"[ <4 ™0,
and EU?" = Es; [n = Ev, [n— 1 as m, n— oo, to obtain

(15) Upr—, 1 as m,n— oo with n = n(m) .

(13), (15), and the inequality max, ., Xi/n < Up" 4 (2-27")" imply
max,g;., X?/n—, 0. Thisissufficient, as the proof of (b) implies (c) showed,
to make D™ asymptotically fair as m, n — oo, where {D,"":k =0,1, ...}
isthe n-extension of {D,™" : k=0, 1, .. .}and D,™" = U,™" — s5,*/n. Remember
Es; [n'= Ev, [n— 1. Now (7) can be applied, upon identifying D,™*", U,™",
s*/n with Y,", 4,", 4,* of that lemma, to get

max, ., |D™"

= MmaX,qucy, |U™™ — 5.2[n] =50

as m, n — oo with n = n(m). Hence s} /n—,1 as n— co by (15). Finally,
Es; [n— 1 and sz [n—p 1 yield (14), since sy, = 0. (d) follows easily from
(a), (b) and (c). [J

To get the flavor of Theorem 1 two corollaries are presented. In addition
to the setup for Theorem 1 given in the introduction, let S, = X; + - - - + X,,,
and T, = inf {m:s,’ = n}.
(16) CoroLLARY (central limit theorem). If (1/n) Xl X1 2000 —, O for
all ¢ > 0, then the P-distributions of S; [n*and S, [n* each converge to the normal
distribution with mean 0 and unit variance.

ProofF. Immediate from Theorem 1.
For each n, let

L, = (1/n) 3I= E(X¢2|L%—1)1[si>o] )
and L, = (1/n) Lln X2 s on
(17) CoroLLARY (arc sin law). If (1/n) 37» X115 05,0 —, O for all ¢ > 0,

then the P-distributions of L, and L, each converge to the arc sin distribution.
The proof will be given at the end of Section 3.

2. Brownian motion. This section isolates a few properties of Brownian
motion which will be needed to prove (4)-(7).

Recall the definitions of B(f), =,, = and ® given in the introduction. In
addition, identify B, and B(f) with B(t, +), and consider Bas the identity map
on C[0, o).

Being consistent with the definition of ¢(j, m, +) on I' given in Section 1,
for fe C[0, o) set o(0, m, f) = 0, and let o(j, m, f) be the first time ¢ after
o(j— 1, m, f) for which | f(¢) — flo(j— 1, m, )| = 27", and o(j, m, f) =
o(j — 1, m, f) whennosuch texists, if j = 1. Abbreviate o(j, m, B) by a(j, m),
and f(a(j, m, f)) by f(¢(j, m)). Let [¢] be the largest integer less than ¢.

(18) LEMMA. Orn a set of m-probability 1, o([4™t], m) — ¢t for all t = 0, and
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B, ims1.m) — B, uniformly for t in finite intervals, as m — oco. A short proof is
given in [2].

For (19) let B™: C[0, co) — C[0, 1] be defined at f by the requirements
B™(f)(0)=0, B™(f)k-4™)= flo(k,m, f)),and B™( f)islinearon[(k—1)-4—™,
k4], fork =1,2,...,4™ Let B': C[0, 00) — C[0, 1] be defined at f by
the requirements B'( f)(¢) = f(r) for 0 < ¢ < 1.

(19) LemMa. Forevery o @, § o(B™) dr — § ¢(BYdr = § ¢ dr, asm — co.

Proor. Use (18) and dominated convergence, and then the definition of
B. ]

The remainder of this section is concerned with establishing that o(j, m)
and B, ,, are continuous r-a.s., and other related facts. These will be needed
to derive properties of sequences of processes which converge weakly to
Brownian motion. Throughout this section continuity of real valued functions
whose domain is C[0, 1] or C[0, co] is with respect to the sup metric.

To state (20) a few definitions will be necessary. For t = 0 let ¢(¢, m, «):
C[0, ) — {0, 1,2, - - .} be defined at f to be the smallest nonnegative integer
jforwhicheithero(j, m, )< t<(j+ 1,m, fYora(j,m,  fY=0o(j+ 1,m, f)<t.
So for each f, ¢(+, m, f)4~™ is the right continuous inverse of ¢([4™.], m, f).

Fori=1,2,...,m=0,1,...,and k = m+ 2 let g, (i, m, +) and o*(i, m, +)
map C[0, o) into [0, co) be defined at fby o,(i, m, f) =inf{t: t > o(i— 1,m,
frand | f(5) — flo(i — 1,m, )] = 277 — 274}, o*(i, m, ) = inf {t: >0 (i, m, )
and | f(t) — fle(i, m, f))| = 27%}, and both equal |o(i, m, f)| if either set is
empty. Use .%7 to denote the set of nonnegative binary rationals. Let 4, be
the set of fe C[0, co) which satisfy the following 3 requirements for all i and
m:

0 < o(i,m, f) < oo, o(i,m, f) ¢ F%, and there are points arbitrarily close
to a(i, m, f) on the right at which the value of fis above and below its value

at o(i, m, f).
Let A,(i, m, k) be the set of fe C[0, co) for which

| f1t) = flow(i, m, f))] < 270 for all te [o,(i, m, f), o(i, m, f)].
Let A,(i, m, k) be the set of fe C[0, oo) for which
there are points s and ¢ in [o(i, m, f), o*(i, m, f)] satisfying f(s) =
fla(i,m, ) + 47* and f1) < flo(i, m, f)) — 47
For N = 1, take
AN, m, k) = (Yo [, m, k) 0 Ay(i, m, k)],
and

A(N, m) = lim inf,

k—oo

AN, m, k) N A,
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Finally, let
A= Nyn AN, m).
(20) LeMMa.

(20a) =(4) =1,

(20b) f— a(i, m, ) is continuous on A, forall i, m;

(20¢) f— flo(i, m, f)) is continuous on A, for all i, m;

(20d) f— 1,y mi(f) is continuous on A, for all N, m, k; and
(20€) (t, f) — c(t, m, f) is jointly continuous on .72 x A, for all m.

ProoF. (20a): The distribution function of ¢(1, 0) is absolutely continuous
with respect to Lebesgue measure, 0 < o(1, 0) < co 7-a.s., and z[max {flw):
0=su<}>0>min{f(u):0<u<)]=1forall t>0. Now use the strong
Markov property and a scale change argument to get z[4,] = 1. Again by
the strong Markov property and a scale change argument in order to show
z[A(N,m)] = 1 and hence z[A] = 1, it suffices to verify z[liminf,__ 4,(1,0,k)]=
1 = r[liminf,_,_ 4,(1,0, k)]. Thisfollows from Borel-Cantelli, upon computing
m{[4(1, 0, b)) = 27%/(27 + 27%) and ={[A,(1, 0, k)J*} = 2.47F/(4* 4 27F)
using the fairness of Brownian motion.

(20b): By the strong Markov property and a rescalingargument it isenough
to prove (1, 0) is continuous on 4. Let r = (1, 0), 7, = 0,(1,0), and =* =
o*(1,0). It is easy to check that on 4 7, 1 rand z* | r as k — co. The con-
tinuity of = now follows from the fact that if fe 4,(1, 0, k) N A, (1, 0, k) and
| f— 9l =47 thenr,(f) < (9) < 7*(f), and the relation ¢,( f) < #(f) < *(f).
This gets (20 b).

(20c): is immediate from (20b). (20d)and (20¢) follow from (20b), (20 <)
and the fact that 4 — 4,. [

(21) will adapt (20) to C[0, 1]. In order to avoid using new symbols extend
the definition of o(j, m) to C[0, 1] by taking (0, m, f) = 0, and o(}, m, f) to
be the first ¢ > o(j — 1, m, f) for which | f(#) — flo(j — 1, m, f))] = 2™ and
o(j — 1, m, f) if no such ¢ exists, at fe C[0, 1], for j = 1. Likewise, extend
the definition of ¢(¢, m, +) to C[0, 1] by letting c(¢, m, f) = inf {j: o(J, m, )<
t<o(j+ 1Lm fyora(jm f)y=0o(j+ 1,m f)y<tifor0<t<1. Let

E, ={geC[0,1]: g(® :f(t) for all te [0, 1]; for some fe A4).
Fori,m, and k = m 4 2 let

E\(i, m, k) = {g e C[0, 1]: g(t) = f()
for all €0, 1]; for some fe A,(i, m, K},
and
Eyi, m, k) = {g e C[0, 1]: g(t) = (1)
for all £ € [0, 1]; for some fe Ay (i, m, k)} ,
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ForM=1,2, ... take
E(M, m, k) = [e(1, m) = M] OV, (B m, K) 0 Ei, m, k)],
E(m, k) = U, B(M, m, ),
E(m) = liminf,_,, E(m, k) N E,, and
E = Nn. Em) .
(21) LEMMA.
(2la) =(E) =1,
(21b) f— a(i, m, f) is continuous on E, for all i, m;
(21c) f— flo(i, m, f)) is continuous on E, for all i, m,
(21d) f— 1z, . (f) is continuous on E, for all m, k; and
(2le) (¢, f)— c(t, m, [) is jointly continuous on [0, 11 N Z X E, for all m.
Proor. Immediate from (20). []

3. Asymptotic fairness. This section contains the proofs of the lemmas sup-
porting Theorem 1, and (17). Recall (3), and the definitions preceding it. In
addition, remember {B(f): t = 0} is the coordinate function on C[0, o), =,
makes {B(f): 0 < t < 1} Brownian motionon [0, 1], z makes {B(f): 0 < t £ oo}
Brownian motion on [0, o), o(j, m, f) is the first time f undergoes j changes
of size 2~™ for unbounded fe C[0, o), and B™ is the piecewise linear con-
tinuous function on [0, 1] whose valueatk-4-"is B, ., fork=0,1, ..., 4™,
So, B™: C[0, o) — C[0, 1].

For (22) and (23) let {¥Y,»: k= 0,1, -.-} be a sequence of processes on
(Q, .57, P). Assume 9, ¢ > 0and m, N are positive integers such that 27" < e.
The Lemmas will involve = and B, , ., only in so far as {B,; ., — B4 1,m :
k=1,2,...}are i.i.d. as £2 ™ with probability 1 each. Of course, any
random variables with these properties could be used instead.

(22) LeMMaA. IfY"isasymptotically fairand zfmax, .o |B, . m| =c]=1—e¢, then
Pmax, v [ Yol £ 2] =21 — 2 for all large n .

Proor. Let » = ¢/N. For each ae G(N, m), by the asymptotic fairness of
Y", choose r, such that n = r, implies P[(¥"; s * s Yo%m — YTiy—im) €
a(n)] — $)¥| £ e})", and set ny = max,n,. Let F={a=(a, - --,ay)e
G(N,m):max,,., | 2% a;)] < ¢}, and gbserve thatifae Fandb = (b, - - - ,by) €
a(y) then max, .., |25, b, — 2k a,| < Ny < e. Since G(N, m) contains 2%
points it follows that if » = #n,, then

Plmax, oy | Yiuml = 2¢] = Xaer PI(Y7, s Yowm — Yowam) €a(y)]
Z Yoer[(D)" — (3)"]
= Zeer {7l(Byamys -5 Bow,my) = @] — €(3)"}
= a[max, oy [Bypm| €] —e =1 — 2¢,

1,m)> *

which proves the lemma.
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(23) Lemma. If Y™ isasymptotically fair and n[max {| B, ,.,— B,;.m|: lk—Jj| <
46, jand k < N} < el = 1 — ¢, then
Plmax {| Y2 ) — Yimlilk —j| <40, jand k < N} < 2] > 1 — 2¢
Jor all large n .
The proof is analogous to the one given for (22), and is omitted.

It is now possible to present a

PROOF OF (4). (4a) and (4b) imply (4c): Fix ¢ ¢ ®. Without real loss, by
[4] assume |¢| is bounded by M < oo and is uniformly continuous. Form the
continuous (random) function $™" on [0, 1] by the requirements S,™" = 0,
Stlm = Y5y m, and S™" is linearly interpolated on [(k — 1)4~™, k . 4-"], for
k=1, ...,4m It suffices to show

(24) § o(B™dr — §¢odr, as m— oo,
(25) § o(S™")dP — § ¢(B™)dr as n— oo, for all m, and
(26) |§ o(S™™) dP — § (8" dP| -0 as m,n— o

with n = n'(m), for some sequence {n'(m): m = 0, 1, -+ .}.

(24) was proved as (19). The proof of (25) follows. Fix an ¢ > 0, and a
non-negative integer m. Let / map the set of 4"-tuplets of real numbers into
C[0, 1] be defined at a = (a,, - - -, a,) by the requirements /,(a) = 0, I, ,-n(a) =
a, + --- + a,, and I(a) is linearly interpolated on [(k — 1)4—™, k.4-"], for
k=1,.-.,4" Clearly,

(27) S QD(B'") dr = S Zaea(4m,m) @(Bm)l[Bmzl(a)] dr
= Zaea(un,m) So(l(a))(%)m .

Use the asymptotic fairness of ¥”, and the finiteness of G(4™, m), to obtain a
sequence 7(n) which decreases to 0 as n — oo such that

PI(Y30mys o5 Yoummy — Yiium_1,m) € a(n(m))] — ($)™
forall ae G@™, m).

The properties of ¢ now imply

(28) ) SD(SM’”)1[“’2(1,m)‘“''Y"ub(‘;m,m)“Y::(‘ﬂﬂ—l,m))e‘””("))] dx
—o(l(@a)3)"™ as n— o, for all aeG@4™, m).
NOting that P[( ijb(l,m)’ Tt Y:wn,m) - YZ(U"—l,m)) € a(ﬁ(”)) for some ac

G(4™, m)] — 1, (25) follows from (28) by adding over a, and then using (27).

(26) follows from the fact sup,_,, [S,™" — S," »,0 as m, n— oo with
n = n'(m), for some sequence {n'(m): m = 0, 1, --.}. To prove thislet Z,» =
Yz, =S, /nt for 0 <t < oo. PlainlyZ ", or simply Z", isa right continuous
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step function on [0, o). Since S*(#) = S'(nt)/nt = S, [n* when T has a jump
at nt,

(29) SUPygy<y [S™() — Z7(1)| = max, ;. |Xi|/nt,

using the properties of 7. For each k, m, n let o(k, m, Z*) = inf {¢| T,, =
o(k, m, Y™}, and c(¢t, m, Z*) = ¢(T,,, m, Y™) for t = 0. Think of o(j, m, Z™)
as the first time Z" undergoes j changes in size of at least 2=, and c(¢, m, Z")
as the number of such changes up to time ¢, on the set where Z" is unbounded.
Plainly,

(30) Zrimamy = Yo mym forall j,m,n.

Asusualabbreviate Zj,; , ;», by Z7; ... Since (4b) implies max, ;.. |X;|/nt— .0
as n— oo, and supyg,., [S,™" — Zjgmym| = 27" 4+ max,g;o, |X;l/nt by the
definition of S™" and (30), in view of (29), (26) will be established once it is
shown that

(31) SUPp<i<1 | L pumeymy — Zy"| 0 as m,n— oo
with n = n'(m), for some sequence {n'(m):m=20,1, - --}.
(31) is a consequence of (32) and (33):
(32) SUPocs<r |0([4™t], m, Z™) — t] -, 0 as m,rn— oo
with n > n'(m) for some sequence {n'(m):m =0,1, -..};and

(33) limsup, .. Plsup{|Z," — Z"|:|r —s|<0,0<r,s< 1) >¢] -0
as 0—0, forall ¢>0.
To prove (32) fix ¢ > 0. Let
H, ., = [SUPssi IUann»/: — 1t <el,

and

Lo =255 (Z3Gm — Zogam) — 2] <477
The relation ¢(1, m, Z")4 " < U’T";L” implies
(34) ol,m,Z"y<2.4~ on H,,.

For all m, by the asymptotic fairness of ¥* as n — co, one may choose n,(m)

such that P[L,, ,] > 1 — m™* for all n > n,(m). Then using (4b),

(35) P[H, ,]—1 and P[L, ]—1 as mnr—oo with n=n'(m),
where n'(m) = n(m) Vv n(m).

If m is large enough to satisfy 4™ < ¢ then, in view of (34), on the set H,, , N
L,,, for all te[0,1 —¢], the two relations t — ¢ < U <t4 e and
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e(t, m, Z"y4=™ < Upn < [e(t, m, Z™) + 114 hold, and hence
o([4"(t — 2¢)], m, Z™) < o(c(t, m, Z™), m, Z") < ¢
Zo(e(t,m, Z™) + 1, m, Z™) < o([4™(t + 2¢)], m, Z™) .

Accordingly, t — 4e < o([4™t], m,Z") < t + 4eforallte[0,1 —¢]Jon H,, , N
L, ., when mis large. This fact, along with (35), implies (32).

Verification of (33) remains. Actually, (33) follows from (4a) and (32). To
see this fix ¢ > 0, and use (18) to choose ¢ such that

sup,, 7[SUp {|B,u,m) — Bojm|: |k —jl £ 4m0,j and k <247} > el < e.
Then use (4a), (23) and (30) to choose, for each m, an n,(m) such that
(36) Plsup{|Z%m— Z k—jl£4m0,j and k<2-4m) > 2] < 2
for all n = ny(m).

a(j,’m)|

Use (32) to choose m, such that 2=™~1 < ¢ and
37) if nz=n'(m), then P[sup,,,|o([4™1], m, Z") — t] > 43] < e.
Put n, = n'(m,) V ny(m,). Now combine (36) and (37) to check if n = n,, then

Plsup{|Z* — Z :|r— 5| £36,0 < r, s < 1} > 3¢]

= Psup {|Z30my — Zimpl [k —Jl S 4™0, k and  j = 2.4m} = 2]
+e¢ < 3.
This proves (33), finishing off (26), and hence (4c).

(4c) implies (4a) and (4b): (4a) will be proved first. Fix a positive integer
N, a nonnegative integer ', an a = (a,, -- -, ay) € G(N, m'), and 2 > 0.
Without real loss assume 0 < 7 < 1 and m' = 0. For each m, let b, =
(a,-27™, - -+, ay-27™) e G(N, m). For each m and n, let

Km,n = [(Y:(l,m)’ R} Y;L(N,m) - YZ(N—l,m)) € bm(v : z—m)]
K’r,n,n = [(S;Lu,m)’ Tt SZL(N,m) - S:?(N»—Lm)) =b,].
Let P = P(Km,n) and p;n,n = P(K',m,n)' Since Y;Lu,o,Y") = 2" Yf&’fm,yﬂ”") for

all i, m, n, p,, = p, . Thus, in order to show p,, — ()" as n — oo it suffices
to show

and

(38) P > @)Y,
and
(39)  |Pwin — Pmal =0 as m,n— oo with n=di(m),

for some sequence {A(m):m =20,1, ---}.
— B

o(t—1,m) :

By (18) m)[o(N, m) < 1] - 1 as m — oo. Since r makes {B,; ..,
i=1,2,...}ii.d. as £27™ with probability } each, for all m,

n[{f: (fo(l, m)), - - -, flo(N, m)) — flo(N — 1, m))) = b,}] — (})"
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as m — oo. Hence by (21c), there exists a sequence {A,(m):m =0,1, ---}
for which (38) holds.
To prove (39), it is enough to verify that there exists a set R,, , such that

(40) K,,NR,,=K, . NR, .,
and
(41) P(R,,)—1 as mn— oo with n=d(m),
for some sequence {A(m):m =20,1,...}.

The construction of R,, , follows.
Recall the definitions preceding (21). Since E(m, k)1 E(m) on E, and
m[E(m)] = 1, it is possible to choose, for each m, a k,, such that

(42) m[E(m, k,)]—1 and mfk, -0 as m— oco.

For each m and n, let R, , be the set on which ¢(N 4 1, m, §") < 1, S*¢
E(m, k,), and sup,; ., |Y," — Y&, < 7/(N-2"-4Fm).

R, , satisfies (40). To see this use induction on i = 1, - .-, N to show that
the following 3 relations hold on R, ,, keeping (29) and (30) in mind:

Z350.20 — Siosml < (B-)/[(N-27-4km)
o, (i, 0, 8% < a(i, 0, Z") < a*n(i, 0, §*)
and
SUPyz, <, S — Z,*| < 7f(N-2m-4Fm) .
(40) now follows easily from the first of these relations, noting that
(- (N-2™4¥fn) < .27 for i=1,.--,N.
For (41), upon examining the proof of (38), it is easy to see that
(43) Plo(N+1,m Sy < 1]—>1 as mn— oo with n = #A,(m) .
Use (21d), (42), and (4c) to obtain

(44) P[S*c E(m,k,)] —>1 as m,n— co with »n = A,(m),

for some sequence {A,(m):m=0,1, ...},
Also,
(45) (4c) implies  max, g r, | X;|/nt = max, ;o [Y* — Yi,|—,0
as n—oo.
Hence,

(46) Psup,g;cr |Yi" — Y| < 7/(N-2™-4*m)] > 1 as m,n— oo
with n > Ay(m), for some sequence {A,(m):m =20,1, ...},
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To verify (45), for each fe C[0, 1], and positive integer m, let
2(f) = SUPogir—piss | 1) — f9)], and ¢, (f)

= sup {k/m: f is strictly monotone on k successive points in
{0, I/m, - - -, m{m}}.

A, is continuous. Although ¢, is not continuous on C[0, 1], it is continuous
at those [ satisfying f(k/m) # f(j/m) for 0 < k #j=<mandm =1,2, ..., 2
set of x,-probability 1. Observe that for each 6, ¢ > 0,
[SUPzicr, [ Xil/nt > €] C [4(S™) > €] U [pa(S™) > 0] .
Clearly, (4c) implies P[1,(S"™) > ¢]—m[4; > ¢], and P[g,(S") > AR
as n— oo. Since x,[4; > ¢] — 0 as 6 — 0 for each ¢, and 7, > 0] — 0 as
m — oo for each 8, (45) now follows by a routine argument. Finally, put
A(m) = A(m) v Aym) v Ay(m) and combine (43) and (44), and (46) to check
(41), finishing off (39) and hence (4a).
For (4b) it is enough to show

47) SUPo<i< | UR™ — e(t, m, ZM)47™ —, 0,

(48) SUPg<ezy |C(t, M, ZM4™™ — c(t, m, SMA™"| =, 0,

and

(49) SUPy<, <y |€(t, M, S — 1] =, 0, as m,n— oo with n = n(m),
for some sequence {n(m):m =0,1,---}.

(49) will be proved first, then (48), and (47) last.

(18) implies ,[c(t, m)4™ —tasm—o0, 0 =t =< 1]=1. This together
with (21e), the hypotheses (4c), and the fact that ¢(¢, m) is non-decreasing in
t for each m, implies the existence of a sequence {A,(m):m =0, 1, ..} for
which (49) holds.

For (48), recall the meaning of {k,:m =0, 1, --.} from (42). Now use
(45) to choose {A(m):m =0, 1, --.} such that P[sup, ., |¥;" — Yrl <
1/(2-4™.4kn)] — 1 as m, n — oo with n > A(m). Recall (44), and the fact that
(49) holds for {Ai(m) : m = 0,1, - - -}. Upon putting A,(m) = f,(m) V n(m) v fAiy(m)
it follows that

(30) P[Q,.]— 1 "as mn— oo with nr > A(m),
where Q,, , is the set on which ¢(1, m, §*) < 2-4™, S*¢ E(m, k,,), and
SUPy<isr, |Y;n — Yr| < 1/(2-4m-4Fm)

Now, by an induction argument analogous to the proof of (40), it is easy to
show that on Q,, ,0(i — 1, m, S") < (i, m, Z") < a(i + 1, m, §*). Hence,
SUPy<,<1 |c(t, m, Z7) — c(t, m, S")| < 1on @, . This fact, combined with (50)
implies (48) for the sequence {fi(m): m =0, 1, - --}.
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To get (47), since the asymptotic fairness of Y™ has already been established,

one can choose a sequence {A,(m): m = 0, 1, ...} such that
P23 (Yogm — YVigrm)' — 2] <47 > 1,

as m, n— oo with n > A,(m). Use this fact, along with (48) and (49), to
verify

Ple(t, m, ZMA~™ < Upn < (c(t, m, Z%) + 1)4= forall te[0, 1] — 1
as m, n — oo with n > Ai(m) Vv fifm) v A (m). This implies (47), and hence
(4b) upon letting n(m) = A,(m) v A(m) v A,(m), concluding the proof of (4).

Proor of (5). Fix nonnegative integers m and N, an 7 > 0, and a =
(ay, -+, ay) e G@A™, m). LetV,» = Y7, Yr yfori=1,..., N. It must
be shown that

im) i—1l,m
PN [Vt ea(n]] — ()Y
as n — oo. By induction this reduces to showing that

PINL [V ea(]} — $PINS Vit e ai(n)]} — 0
as n— oo. Only the case of N =2 and m = 0 with a,(y) = [1,1 4 5] will
be considered, the general case being analogous.
By the optional sampling theorem, the hypothesis implies Y7, ,, Y7, ,,, is
a martingale, for large n. Let 4, = {V"ea(y)}, B, = {Vy"e[l, 1 + 7]},
C,={Vy,e[—( 4+ n), —1]}, and D {|V;"] > 1 + n}. Since 4, is measurable
w.r.t. the o-field generated by Y7, ,, the martingale property says

0=19, V*dP =\ V"1, np1dP + § V"1, o, 4P + § Virlpy np, 1 4P .

The hypothesis forces § V,"1j, o, ,dP — 0, and hence § V"1, ., ,dP +
§ V"l no,1dP — 0 as n — co. Considering the range of values possible for
v, on the sets B, and C,, standard argumentation yields P[4, N B,] —
P[4, N C,]— 0 and P[4, N B,] + P[4, N C,] — P[4,] >0 as n— co. It
now follows that P[4, N B,] — {P[A,] > 0asn— oco.
PRroor of (6): Fix 5 > 0, nonnegative integers m and N, and ae G(N, m).
Without real loss assume m = 0, and N > 1. It is enough to show
(51) (Y:(l,ow Tt Y:uv,m - Y:(N—I,O')) € a(r;) iff (Y:u,on Tt Y:w,m -
P y_10) €a(n) ona set of arbitrarily large probability, for all
sufficiently large n.
Informally, the asymptotic fairness of Y entails that, like Brownian motion,
it makes its changes of size 1, or does not make them, with room to spare, for
large n. This forces Y™ and P to complete their successive changes of size 1

at about the same time, since they are close for large n. The first job is to
construct the set where (51) holds.
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Fix ¢ > 0. Recall the definition of = given in the introduction and that of
A(N, m, k) preceding (20). Use (20) to choose k, such that 4=*s < (3/2) A ¢ and

(52) a[AN,0, k)] > 1 —¢.
Using (18), choose M, and m, to satisfy M, > N, 27™0%® < 4~*, and
(53) rlo(My,my) > o(N+ 1,00 >1 —¢.
For each r and b € G(M,, m,), let
F,(0) = [(Youmps * s Yoingmg — Yourg-img) € D(1/My-270)] .

Put F, = U {F,(b): b e G(M,, m;)}. For each b, choose n, such that
(54) n=n, implies |P[F,(b)] — (3)"| < e(})*, and setting

n, = max,m, n > n, implies P[F,]=1—c¢.
Let H, = [sup, | Y, — ¥,*| < 1/M,-(2m")], and choose n, such that
(55) P[H]>1—¢ whenever n > n,.
Setn,=n vn. Fork=1land yel let

r(y) = 21 27700 ot mgy 2]
= T 270 g et mg 5200 ¢

For y ¢ I such that sup a(k, m,, y) = oo, let 7.(y), or simply y(y), be the con-
tinuous function satisfying the requirements yo(¥) = 0, 7,4, mp.i (V) = r:(»), and
7(p) is linearly interpolated on [a(k, m,, ), o(k + 1, m,p)] for k = 0,1, - ...
For other y e I', define y(y) as above except make 7,(y) constant for all ¢ after
the final change in size of at least 2=™ completed by y. Let

Q, = [r(Y") e 4N, 0, k)],
and
R, = [o(My, my, 7(Y")) > o(N + 1,0, 7(¥7))] .
Since = makes B, ms s Boutgmg — Botg-1my 1-1.d. as £27m0 with proba-
bility 1 each, (52) and (53) imply that there are at least (1 — 2¢)2¥c — 1 points
a among the 2% points in G(M,, m,) such that if
(Tottmp(P)s = s Totugme (V) — Totrg-1,mp(Y)) = @

for some y e I', then 7(y) € A(N, 0, k,) and o(M,, my, 7(y)) > o(N + 1,0,7(p))-
In view of (54) and the choice of M,, it now follows that

P[Q, N R,] = [(1 — 22" — 1][(3)"0 — e(3)"™0] = 1 — 4e,
for n = n,. This, together with (54) and (55), forces
(56) PIW,]=1— 6¢, whenever n>=n,,
where W, =F, N H, N Q, N R,.
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(51) holds on W,. To see this first observe that W, C F,, soon W,
sup {[r(¥") — Yry|: 0 < ¢ < o(My, my, Y*)} < 27070
Then use induction on i = 1, - - ., N to verify that on W,
70,0 (XY") — Y5 ol S i[(My:2m0) < 4750 < /2,
and
Tl 0, 7(¥™) £ 03, 0, ¥*) < a™(i, 0, (¥™)) -
It follows that on W, the first N successive changes in size of at least 1 com-
pleted by y(Y") and Y™ are of the same sign, and by similar argument using
the fact
sup {|7.(¥") — ?Ft]| 10 2t < o(My, my, Y7)} < 270t
so are those of y(Y") and P*. This implies (51), in view of W, c F, n H,
and (56).

Proor oF (8). For each k> 0 and yeT, let Vi(y) = 25|y, — vl
Think of ¥V,(y) as the variation of y up to time k. For each n, V, (¥Y") is a
random variable. Plainly

Ve (Y S Vo (A" + Vo (A7) = A3 + Az,
using the monotonicity of 4,” and A, as k increases. Therefore for any K > 0,
P[V, (Y") > K] < P[V; (A") > K[2] 4 P[V, (4") > K|2]
< 2/K + 2/K = 4/K,

for large n, by Chebychev.
Fix ¢ > 0, and choose K, such that 4/K; < ¢. So

(57) PV, (Y S K]>1—¢, for all large n.
Since {o(1, m, Y"), -+, o(e(T,, m, Y*), m, Y*)} is a subset of (0, 1,2, ..., T,}

it follows from the triangle inequality and the definition of ¢(j, m) that, for
all m and »,

Vo (X") 2 ZsGmm ™ | X
This, together with (57), implies
(58) Pl(T,,m, Y*) < 2"K)] > 1 — ¢, for large n.

— Y| = T, m, Y7)2

im) i—1,m

Use (18) to choose m, such that
almax, g comig) [Bypmpl S €] =1 —¢ and 27™ L.

Finally, use (22), (58), and the asymptotic fairness of ¥*, to get

P[supigisr, | V" = 3¢] = Plmax {| Yy, n,|:J=1, -, &T,, m, Y} < 2¢]
= P[max {| Yy, ol ij=1, -+, 2mK]} < 2¢] — ¢
=1— 3¢, for large n.
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ProoF oF (17). Only the case of L, will be proved, L, is analogous. Let /
be Lebesgue measure on [0, 1], with the Borel s-field. Let

Af) = 1t f{t) > 0} for feco,1].

Observe 4 is continuous on E, (defined just prior to (21)), and 7,[E] = 1 by
(21). So, Theorem 1 implies the P-distribution of A(S") converges to the =-
distribution of 4. Since the r-distribution of 2 is arc sin, it suffices to show
AS" — L, —,0asnrn— oo. Foreachn, |2(S") — L,| < U,, where

U, = (1/n) X E(X?| L%—l)l[si<o<si,1 or§;>0>8;_41*

The fact that U, —, 0 as » — oo completes the proof.

To see this last point, for each m > 0 let &, (f) be the Lebesgue measure
of allintervals[o(j — 1, m, f), o(j, m, £)]in [0, 1] for which either f(a(j, m, f})
or fla(j — 1,m, f))is 0, at fe C[0, 1]. When max,;., X’[n < 27", anevent
having arbitrarily high probability as n — oo for each m by (45), A,,(S™) > U,.
Hence, P[4,(S") > U,] — 1 asn — oo, for each m. Now, £, is bounded, and
is r,-continuous since o(j, m) is by (21b). So, for each m § #,,(S™) dP — § h,, dr,
as n— oo. Use the fact § 2, dr, — 0 as m — oo to choose a sequence {n(m):
m=20,1, ...} for which P[#,(S") > U,]— 1and %,(S") —>,0asm,n—
with n = n(m).

Acknowledgment. This paper is based on the author’s doctoral thesis written
under the guidance of David Freedman. Some ideas from [2] are adapted
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