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Abstract

In this paper we develop an invariance principle for dynamical systems possessing left-
continuous 3ows. Speci4cally, we show that left-continuity of the system trajectories in time
for each 4xed state point and continuity of the system trajectory in the state for every time in
some dense subset of the semi-in4nite interval are su6cient for establishing an invariance prin-
ciple for hybrid and impulsive dynamical systems. As a special case of this result we state and
prove new invariant set stability theorems for a class of nonlinear impulsive dynamical systems;
namely, state-dependent impulsive dynamical systems. These results provide less conservative
stability conditions for impulsive systems as compared to classical results in the literature and
allow us to address the stability of limit cycles and periodic orbits of impulsive systems.

Keywords: Left-continuous dynamical systems; Hybrid systems; Impulsive dynamical systems; Discontinu-
ous 3ows; Positive limit sets; Invariant set theorems; Stability theorems; Lyapunov functions

1. Introduction

In light of the increasingly complex nature of engineering systems such as nons-
mooth impact systems [5,7], biological systems [22], demographic systems [28], hybrid
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systems [6,36], sampled-data systems [16], discrete-event systems [30], systems with
shock eIects, and feedback systems with impulsive or resetting controls [8,14,15],
dynamical systems exhibiting discontinuous 3ows on appropriate manifolds arise natu-
rally. The mathematical descriptions of such systems can be characterized by impulsive
diIerential equations [2,3,17,22,32]. Impulsive diIerential equations consist of three el-
ements; namely, a continuous-time diIerential equation, which governs the motion of
the dynamical system between impulsive or resetting events; a diIerence equation,
which governs the way the system states are instantaneously changed when a reset-
ting event occurs; and a criterion for determining when the states of the system are
to be reset. Since impulsive systems can involve impulses at variable times, they are
in general time-varying systems wherein the resetting events are both a function of
time and the system’s state. In the case where the resetting events are de4ned by a
prescribed sequence of times which are independent of the system state, the equations
are known as time-dependent di4erential equations [2,3,8,14,15,22]. Alternatively, in
the case where the resetting events are de4ned by a manifold in the state space that is
independent of time, the equations are autonomous and are known as state-dependent
di4erential equations [2,3,8,14,15,22].
To analyze the stability of dynamical systems with impulsive eIects, Lyapunov sta-

bility results have been presented in the literature [2,20,22–24,27,32–34,37]. In particu-
lar, local and global asymptotic stability conclusions of an equilibrium point of a given
impulsive dynamical system are provided if a smooth (at least C1) positive-de4nite
function of the nonlinear system states (Lyapunov function) can be constructed for
which its time rate of change over the continuous-time dynamics is strictly negative and
its diIerence over the resetting times is negative. However, unlike dynamical systems
possessing continuous 3ows, Barbashin–Krasovskii–LaSalle-type invariant set stability
theorems [4,19,25,26] do not seem to have been addressed for impulsive dynamical
systems. This is in spite of the fact that systems theory with impulsive eIects has
dominated the Russian and Eastern European literature [2,3,17,20,22–24,32–34]. This
fact has been further substantiated by Lakshmikantham [21], Bainov [1], and Michel
[29]. There appears to be (at least) two reasons for this state of aIairs; namely, solu-
tions of impulsive dynamical systems are not continuous in time and are not continuous
functions of the system’s initial conditions, which are two key properties needed to
establish invariance of omega limit sets and hence an invariance principle.
In this paper we develop an invariance principle for a general class of dynamical

systems possessing left-continuous 3ows; that is, left-continuous dynamical systems. A
left-continuous dynamical system is de4ned on the semi-in4nite interval [0;∞) as a
mapping between vector spaces satisfying an appropriate set of axioms and includes
hybrid and impulsive dynamical systems as special cases. In particular, invariant set
theorems are derived wherein system trajectories converge to the largest invariant set
of Lyapunov level surfaces of the left-continuous dynamical system. These systems
are shown to specialize to hybrid systems and state-dependent nonlinear impulsive dif-
ferential systems. For state-dependent impulsive dynamical systems with C1 Lyapunov
functions de4ned on a compact positively invariant set (with respect to the nonlin-
ear impulsive system), the largest invariant set is contained in a hybrid level surface
composed of a union involving vanishing Lyapunov derivatives and diIerences of the
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system dynamics over the continuous-time trajectories and the resetting instants, re-
spectively. In addition, if the Lyapunov derivative along the continuous-time system
trajectories is negative semide4nite and no system trajectories can stay inde4nitely
at points where the function’s derivative or diIerence identically vanishes, then the
system’s equilibrium is asymptotically stable. These results provide less conservative
conditions for examining the stability of state-dependent impulsive dynamical systems
as compared to the classical results presented in [2,22,32,33,37]. Preliminary versions
of the results developed in this paper can be found in the conference papers by the
authors in [9,14]. Finally, the impulsive invariance principle developed in the paper
can be used to establish the existence and investigate the stability of limit cycles and
periodic orbits of impulsive systems.
The contents of the paper are as follows. In Section 2, we introduce the notion

of a left-continuous dynamical system as a precise mathematical object satisfying a
set of axioms. Furthermore, we show that hybrid dynamical systems are a specializa-
tion of left-continuous dynamical systems. Then in Section 3, we state and prove a
fundamental result (Theorem 3.1) on positive limit sets for left-continuous dynami-
cal systems. Speci4cally, it is shown that in order to establish an invariance principle
for hybrid dynamical systems all that is needed is (i) left-continuity of the system
trajectories in time for each 4xed state point and (ii) continuity of the system tra-
jectory in the state for every time in some dense subset of the semi-in4nite interval.
Using this result we generalize the Barbashin–Krasovskii–LaSalle invariance principle
to left-continuous and hybrid dynamical systems. In Section 4, we develop several
new results for state-dependent impulsive dynamical systems and provide necessary
and su6cient conditions for guaranteeing that state-dependent impulsive systems sat-
isfy the set of axioms of a left-continuous dynamical systems presented in Section 2.
In Section 5, we use the results of Section 3 to state and prove new invariant set
stability theorems for state-dependent impulsive dynamical systems. In Section 6, we
present two illustrative examples to demonstrate the results of the paper. Finally, we
draw conclusions in Section 7.

2. Left-continuous dynamical systems

In this section we establish de4nitions, notation, and introduce the notion of a
left-continuous dynamical system. 1 Here, a left-continuous dynamical system is de-
4ned as a precise mathematical object satisfying a set of axioms whereas in Section
4 we specialize this notion to nonlinear dynamical systems characterized by impul-
sive diIerential equations. The following de4nition is concerned with left-continuous
dynamical systems or, systems with left-continuous 3ows. For this de4nition D ⊆
Rn, ‖ · ‖ denotes the Euclidean norm, and Tx0 ⊆ [0;∞); x0 ∈D, is a dense subset

1 Right-continuous dynamical systems; that is, systems possessing right-continuous 3ows, can also be
analogously considered here.
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of the semi-in4nite interval [0;∞) such that [0;∞) \ Tx0 is (4nitely or in4nitely)
countable.

De�nition 2.1. A left-continuous dynamical system on D is the triple (D; [0;∞); s),
where s : [0;∞)×D → Rn is such that the following axioms hold:

(i) (Left-continuity): s(·; x0) is left-continuous in t; that is, lim�→t− s(�; x0) = s(t; x0)
for all x0 ∈D and t ∈ (0;∞).

(ii) (Consistency): s(0; x0) = x0 for all x0 ∈D.
(iii) (Semi-group property): s(�; s(t; x0)) = s(t + �; x0) for all x0 ∈D and t; �∈ [0;∞).
(iv) (Quasi-continuous dependence): For every x0 ∈D, there exists Tx0 ⊆ [0;∞)

such that [0;∞) \Tx0 is countable and for every �¿ 0 and t ∈Tx0 , there exists
	(�; x0; t)¿ 0 such that if ‖x0−y‖¡	(�; x0; t), y∈D, then ‖s(t; x0)−s(t; y)‖¡�.

Henceforth, we denote the left-continuous dynamical system (D; [0;∞); s) by G. Fur-
thermore, we refer to s(t; x0), t¿ 0, as the trajectory of G corresponding to x0 ∈D, and
for a given trajectory s(t; x0), t¿ 0, we refer to x0 ∈D as an initial condition of G. The
trajectory s(t; x0), t¿ 0, of G is bounded if there exists �¿ 0 such that ‖s(t; x0)‖¡�,
t¿ 0. Finally, for the remainder of the paper we refer to the left-continuous dynamical
system G as the dynamical system G.
The quasi-continuous dependence property (iv) is a generalization of the standard

continuous dependence property for dynamical systems with continuous 3ows to dy-
namical systems with left-continuous 3ows. Speci4cally, by letting Tx0 = QTx0 =[0;∞),
where QTx0 denotes the closure of the set Tx0 , the quasi-continuous dependence property
specializes to the classical continuous dependence of solutions of a given dynamical
system with respect to the system’s initial conditions x0 ∈D [35]. If, in addition, x0=0,
s(t; 0) = 0, t¿ 0, and 	(�; 0; t) can be chosen independent of t then continuous depen-
dence implies the classical Lyapunov stability of the zero trajectory s(t; 0) = 0, t¿ 0.
Hence, Lyapunov stability of motion can be interpreted as continuous dependence of
solutions uniformly in t for all t¿ 0. Conversely, continuous dependence of solutions
can be interpreted as Lyapunov stability of motion for every 4xed time t [35]. Anal-
ogously, Lyapunov stability of impulsive dynamical systems as de4ned in [22] can be
interpreted as quasi-continuous dependence of solutions uniformly in t for all t ∈Tx0 .
In applying De4nition 2.1 it may be convenient to replace Axiom (iv) with a stronger
condition which may be easier to verify in practice. The following proposition provides
su6cient conditions for G to be a left-continuous dynamical system.

Proposition 2.1. Let the triple (D; [0;∞); s), where s : [0;∞)×D → D, be such that
Axioms (i)–(iii) hold and:

(iv)′ For every x0 ∈D, �; ¿ 0, and T ∈Tx0 , there exists 	(�; x0; T )¿ 0 such that
if ‖x0 − y‖¡	(�; x0; T ), y∈D, then for every t ∈Tx0 ∩ [0; T ] such that |t −
�|¿, for all �∈ [0; T ] \Tx0 , ‖s(t; x0)− s(t; y)‖¡�. Furthermore, if t ∈Tx0 is
an accumulation point of [0;∞) \Tx0 , then s(t; ·) is continuous at x0.

Then G is a left-continuous dynamical system.
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Proof. Let x0 ∈D, T ∈Tx0 be such that T is not an accumulation point of [0;∞)\Tx0 .
Furthermore, let (T )¿ 0 be such that |T − �|¿, for every �∈ [0; T ] \ Tx0 . Then
it follows from (iv)′ that for every �¿ 0 there exists 	(�; x0; T )¿ 0, such that if
‖x0 − y‖¡	(�; x0; T ), y∈D, then ‖s(T; x0) − s(T; y)‖¡�, which implies (iv) with
t = T . Now, the result is immediate since T is arbitrary in the set of all times such
that T is not an accumulation point of [0;∞) \Tx0 and, by assumption, if t ∈Tx0 is
an accumulation point of [0;∞) \Tx0 , then s(t; x0) is continuous in x0.

De�nition 2.2. A strong left-continuous dynamical system on D is a left-continuous
dynamical system on D and the triple (D; [0;∞); s) is such that Axiom (iv)′ holds.

The next result shows that G is a strong left-continuous dynamical system if and
only if the trajectory of G is jointly continuous between resetting events; that is, for
every �¿ 0 and k ∈N, where N denotes the set of nonnegative integers, there exists
	= 	(�; k)¿ 0 such that if |t − t′|+ ‖x0 − y‖¡	, then ‖s(t; x0)− s(t′; y)‖¡�, where
x0; y∈D, t ∈ (�k(x0); �k+1(x0)], and t′ ∈ (�k(y); �k+1(y)]. For this result we assume that
Tx0 in De4nition 2.1 is given by Tx0 , {t ∈ [0;∞): s(t; x0) = s(t+; x0)} so that
[0;∞) \Tx0 corresponds to the (countable) set of resetting times where the trajectory
s(·; x0) is discontinuous. Furthermore, we let �i(x0), i=1; 2; : : : ; where �0(x0), 0 and
�1(x0)¡�2(x0)¡ · · ·, denote the resetting times; that is, {�1(x0); �2(x0); : : :}= [0;∞) \
Tx0 . Finally, we assume that for every i = 1; 2; : : :, �i(·) is continuous.

Proposition 2.2. Consider the dynamical system G satisfying Axioms (i)–(iii). Then
G is a strong left-continuous dynamical system if and only if the trajectory s(t; x0);
t¿ 0, of G is jointly continuous between resetting events.

Proof. Assume G is a strong left-continuous dynamical system, let �¿ 0, and let
k ∈N. Since, by assumption, �k(·) is continuous, it follows that for su6ciently small
	1 ¿ 0, �k(x) and �k+1(x); x∈B	1 (x0), where B	1 (x0) denotes the open ball centered
at x0 with radius 	1, are well de4ned and 4nite. Hence, it follows from the strong
quasi-continuity property (iv)′ that s(t; ·); t ∈ (�k(·); �k+1(·)], is uniformly bounded on
B	1 (x0). Now, since G is continuous between resetting events it follows that for �¿ 0
and k ∈N there exists 	̂= 	̂(�; k)¿ 0 such that if |t − t′|¡	̂, then

‖s(t; x)− s(t′; x)‖¡ �
3
; x∈B	1 (x0); t; t′ ∈ (�k(x); �k+1(x)]: (1)

Next, it follows from the continuity of �k(·) that for every su6ciently small �¿ 0 and
k ∈N, �k(�; x0) , inf x∈B�(x0)�k(x) and Q�k(�; x0) , supx∈B�(x0) �k(x) are well de4ned
and lim�→0�k(�; x0)= lim�→0 Q�k(�; x0)= �k(x0). (Note that �k(�; x0)6 �k(x)6 Q�k(�; x0),
for all x∈B�(x0).) Hence, there exists 	′=	′(	̂)¿ 0 such that Q�k(	′; x0)−�k(	′; x0)¡	̂
and Q�k+1(	′; x0)− �k+1(	′; x0)¡	̂. Next, let ¿ 0 be such that

Q�k(	′; x0)− �k(	′; x0)¡�k(x0)− �k(	′; x0) + ¡ 	̂; (2)

Q�k+1(	′; x0)− �k+1(	′; x0)¡+ Q�k+1(	′; x0)− �k+1(x0)¡	̂: (3)
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Then, it follows from the strong quasi-continuity of G that there exists 	′′=	′′(�; ; k)¿0
such that

‖s(t; x0)− s(t; y)‖¡ �
3
; y∈B	′′(x0); t ∈ (�k(x0) + ; �k+1(x0)− ): (4)

Now, if |t− t′|+‖x0−y‖¡	, where 	=min{	1; 	′; 	′′; 	̂}, t ∈ (�k(x0)+; �k+1(x0)−),
and t′ ∈ (�k(y); �k+1(y)], then it follows from (1), (4), and triangular inequality for
vector norms that

‖s(t; x0)− s(t′; y)‖6 ‖s(t; x0)− s(t; y)‖+ ‖s(t; y)− s(t′; y)‖¡ 2
3
�¡ �: (5)

Finally, if |t− t′|+‖x0−y‖¡	, where t ∈ (�k(x0); �k+1(x0)]\ (�k(x0)+; �k+1(x0)−)
and t′ ∈ (�k(y); �k+1(y)], then conditions (2), (3) imply that there exists t′′ ∈ (�k(x0) +
; �k+1(x0)−) such that |t− t′′|¡	̂ and |t′− t′′|¡	̂. Hence, by (1) and (4) it follows
that

‖s(t; x0)− s(t′; y)‖6 ‖s(t; x0)− s(t′′; x0)‖+ ‖s(t′′; x0)− s(t′′; y)‖
+‖s(t′′; y)− s(t′; y)‖¡�; (6)

which establishes that G is jointly continuous between resetting events.
To show that joint continuity of s(t; x0); t¿ 0, between resetting events implies

strong left-continuity of G, let �; ¿ 0, T ∈Tx0 , and suppose �k(x0)¡T ¡�k+1(x0).
Then, it follows from the joint continuity of G that there exists 	′ = 	′(�; k)¿ 0
such that if |t − t′| + ‖x0 − y‖¡	′, then ‖s(t; x0) − s(t′; y)‖¡�, where x0; y∈D,
t ∈ (�k(x0); �k+1(x0)], and t′ ∈ (�k(y); �k+1(y)]. Now, it follows that there exists 	′′ =
	′′(x0; ; k)¿ 0 such that Q�k(	′′; x0)− �k(x0)¡ and �k+1(x0)− �k+1(	′′; x0)¡. Note
that the above inequalities guarantee that if t = t′ ∈ (�k(x0) + ; �k+1(x0) − ), then
t ∈ (�k(x0); �k+1(x0)] and t′ ∈ (�k(y); �k+1(y)], y∈B	′′(x0). Furthermore, letting 	k =
	k(�; ; x0; k) = min{	′; 	′′}, it follows from the joint continuity of G that for t =
t′ ∈ (�k(x0) + ; �k+1(x0) − ), ‖s(t; x0) − s(t; y)‖¡�, y∈B	k (x0). Similarly, we can
obtain 	k−1 = 	k−1(�; ; x0; k)¿ 0 such that an analogous inequality can be constructed
for all y∈B	k−1 (x0) and t ∈ (�k−1(x0)+; �k(x0)−). Recursively repeating this proce-
dure for m=k−2; : : : ; 1, and choosing 	=	(�; ; x0; k)=	(�; ; x0; T )=min{	1; : : : ; 	k}, it
follows that ‖s(t; x0)−s(t; y)‖¡�, y∈B	(x0), t ∈ [0; T ], and |t−�l(x0)|¿; l=1; : : : ; k,
which implies that G is a strong left-continuous dynamical system.

Next, we show that hybrid dynamical systems [6,36] are a specialization of left-
continuous dynamical systems. To see this, we recall the de4nition of an uncontrolled
hybrid dynamical system given in [6]. For this de4nition let Q ⊆ N.

De�nition 2.3. A hybrid dynamical system GH is the septuple (D;Q; q; x; sc; fd ;S),
where q : [0;∞)×D×Q → Q, x : [0;∞)×D×Q → Rn, sc={scq}q∈Q, scq : [0;∞)×D →
Rn, S= {Sq}q∈Q, Sq ⊂ D, fd = {fdq}q∈Q, and fdq :Sq → D×Q are such that the
following axioms hold:

(i) For every q∈Q, scq(·; ·) is jointly continuous on [0;∞)×D.
(ii) For every q∈Q and x0 ∈D, scq(0; x0) = x0.
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(iii) For every q∈Q, t1; t2 ∈ [0;∞), t16 t2, and x0 ∈D, scq(t2; x0)=scq(t2−t1; scq(t1; x0)).
(iv) For every q0 ∈Q and x0 ∈D, q(·) and x(·) are such that q(t; x0; q0) = q0 and

x(t; x0; q0)=scq0 (t; x0), for all 06 t6 �1, where �1 , min{t¿ 0: scq0 (t; x0) �∈ Sq0}
exists. Furthermore, [xT(�+1 ; x0; q0); q

T(�+1 ; x0; q0)]
T = fdq0 (x(�1)) + [xT(�1; x0; q0);

qT(�1; x0; q0)]T and for (x1; q1) , (x(�+1 ; x0; q0); q(�
+
1 ; x0; q0)), q(·) and x(·) are

such that q(t; x0; q0) = q1 and x(t; x0; q0) = scq1 (�1; x1), for all �1 ¡t6 �2, where
�2 , min{t ¿ �1: scq1 (t; x1) �∈ Sq1} exists, and so on.

In the above de4nition we assume that sc, S, and fd are such that �1, �2; : : :,
are well de4ned. Next, to show that GH is a left-continuous dynamical system, let
s : [0;∞) × (D × Q) → Rn × Q be such that s(0; (x0; q0)) = (x0; q0) and for every
k = 1; 2; : : : ;

s(t; (x0; q0)) = (scqk−1 (t; xk−1); qk−1); �k−1 ¡t6 �k ; (7)

s(�+k ; (x0; q0)) = fdqk−1 (xk) + [xTk ; qTk ]
T: (8)

Note that s satis4es Axioms (i)–(iii) of De4nition 4.1. Furthermore, if the resetting
times �k are well posed (see Proposition 4.1 below), then the hybrid dynamical system
GH generates a left-continuous dynamical system on D × Q given by the triple (D ×
Q; [0;∞); s).

3. An invariance principle for left-continuous dynamical systems

In this section we develop an invariance principle for left-continuous dynamical
systems. First, however, the following de4nitions are necessary for the main results of
the paper. For the next de4nition let the map st :D → Rn be de4ned by st(x), s(t; x0),
x0 ∈D, for a given t¿ 0.

De�nition 3.1. A set M ⊆ D is a positively invariant set for the dynamical system
G if st(M) ⊆ M, for all t¿ 0, where st(M) , {st(x): x∈M}. A set M ⊆ D is an
invariant set for the dynamical system G if st(M) =M for all t¿ 0.

De�nition 3.2. p∈D is a positive limit point of the trajectory s(t; x0), t¿ 0, if there
exists a monotonic sequence {tn}∞n=0 of nonnegative real numbers, with tn → ∞ as
n → ∞, such that s(tn; x0) → p as n → ∞. The set of all positive limit points of
s(t; x0), t¿ 0, is the positive limit set !(x0) of s(t; x0), t¿ 0.

Note that p∈!(x0) if and only if there exists a monotonic sequence {tn}∞n=0 ⊂
Tx0 , with tn → ∞ as n → ∞, such that s(tn; x0) → p as n → ∞. To see this,
let p∈!(x0) and let Tx0 be a dense subset of the semi-in4nite interval [0;∞).
In this case, it follows that there exists an unbounded sequence {tn}∞n=0, such that
limn→∞ s(tn; x0) = p. Hence, for every �¿ 0, there exists n¿ 0 such that ‖s(tn; x0)−
p‖¡�=2. Furthermore, since s(·; x0) is left-continuous and Tx0 is a dense subset of
[0;∞), there exists t̂n ∈Tx0 ; t̂n6 tn, such that ‖s(t̂n; x0) − s(tn; x0)‖¡�=2 and hence
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‖s(t̂n; x0)−p‖6 ‖s(tn; x0)−p‖+ ‖s(t̂n; x0)− s(tn; x0)‖¡�. Using this procedure, with
�=1; 1=2; 1=3; : : : ; we can construct an unbounded sequence {t̂k}∞k=1 ⊂ Tx0 , such that
limk→∞ s(t̂k ; x0)=p. Hence, p∈!(x0) if and only if there exists a monotonic sequence
{tn}∞n=0 ⊂ Tx0 , with tn → ∞ as n → ∞, such that s(tn; x0) → p as n → ∞.

Next, we state and prove a fundamental result on positive limit sets for left-continuous
dynamical systems which forms the basis for all later developments. The result gener-
alizes the classical results on positive limit sets to systems with left-continuous 3ows.
For the remainder of the paper the notation s(t; x0) → M ⊆ D as t → ∞ denotes the
fact that limt→∞ s(t; x0) evolves in M; that is, for each �¿ 0 there exists T ¿ 0 such
that dist(s(t; x0);M)¡� for all t ¿T , where dist(p;M), inf x∈M ‖p− x‖.

Theorem 3.1. Suppose the trajectory s(t; x0) of the left-continuous dynamical system
G is bounded for all t¿ 0. Then the positive limit set !(x0) of s(t; x0), t¿ 0, is a
nonempty, compact invariant set. Furthermore, s(t; x0) → !(x0) as t → ∞.

Proof. Since s(t; x0) is bounded for all t¿ 0, it follows from the Bolzano–Weierstrass
theorem [31] that every sequence in the positive orbit �+(x0) , {s(t; x0): t ∈ [0;∞)}
has at least one accumulation point y∈D as t → ∞ and hence !(x0) is nonempty.
Furthermore, since s(t; x0), t¿ 0, is bounded it follows that !(x0) is bounded. To
show that !(x0) is closed let {yi}∞i=0 be a sequence contained in !(x0) such that
limi→∞ yi = y. Now, since yi → y as i → ∞ it follows that for every �¿ 0 there
exists i such that ‖y−yi‖¡�=2. Next, since yi ∈!(x0) it follows that for every T ¿ 0
there exists t¿T such that ‖s(t; x0)−yi‖¡�=2. Hence, it follows that for every �¿ 0
and T ¿ 0 there exists t¿T such that ‖s(t; x0)− y‖6 ‖s(t; x0)− yi‖+ ‖yi − y‖¡�
which implies that y∈!(x0) and hence !(x0) is closed. Thus, since !(x0) is closed
and bounded, !(x0) is compact.
Next, to show positive invariance of !(x0) let y∈!(x0) so that there exists an

increasing unbounded sequence {tn}∞n=0 ⊂ Tx0 such that s(tn; x0) → y as n → ∞.
Now, it follows from the quasi-continuous dependence property (iv) that for every
�¿ 0 and t ∈Ty there exists 	(�; y; t)¿ 0 such that ‖y − z‖¡	(�; y; t), z ∈D, im-
plies ‖s(t; y) − s(t; z)‖¡� or, equivalently, for every sequence {yi}∞i=1 converging
to y and t ∈Ty, limi→∞ s(t; yi) = s(t; y). Now, since s(tn; x0) → y as n → ∞,
it follows from the semi-group property (iii) that s(t; y) = s(t; limn→∞ s(tn; x0)) =
limn→∞ s(t + tn; x0)∈!(x0) for all t ∈Ty. Hence, s(t; y)∈!(x0) for all t ∈Ty. Next,
let t ∈ [0;∞) \Ty and note that, since Ty is dense in [0;∞), there exists a se-
quence {�n}∞n=0 such that �n6 t, �n ∈Ty, and limn→∞�n = t. Now, since s(·; y) is
left-continuous it follows that limn→∞ s(�n; y) = s(t; y). Finally, since !(x0) is closed
and s(�n; y)∈!(x0), n=1; 2; : : :, it follows that s(t; y)=limn→∞ s(�n; y)∈!(x0). Hence,
st(!(x0)) ⊆ !(x0), t¿ 0, establishing positive invariance of !(x0).
Now, to show invariance of !(x0) let y∈!(x0) so that there exists an increasing

unbounded sequence {tn}∞n=0 such that s(tn; x0) → y as n → ∞. Next, let t ∈Tx0 and
note that there exists N such that tn ¿ t, n¿N . Hence, it follows from the semi-group
property (iii) that s(t; s(tn − t; x0))= s(tn; x0) → y as n → ∞. Now, it follows from the
Bolzano–Weierstass theorem [31] that there exists a subsequence znk of the sequence
zn=s(tn−t; x0), n=N; N+1; : : :, such that znk → z ∈D and, by de4nition, z ∈!(x0). Next,
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it follows from the quasi-continuous dependence property (iv) that limk→∞ s(t; znk ) =
s(t; limk→∞ znk ) and hence y = s(t; z) which implies that !(x0) ⊆ st(!(x0)), t ∈Tx0 .
Next, let t ∈ [0;∞) \Tx0 , let t̂ ∈Tx0 be such that t̂ ¿ t, and consider y∈!(x0). Now,
there exists ẑ ∈!(x0) such that y=s(t̂; ẑ), and it follows from the positive invariance of
!(x0) that z= s(t̂− t; ẑ)∈!(x0). Furthermore, it follows from the semi-group property
(iii) that s(t; z) = s(t; s(t̂ − t; z)) = s(t̂; ẑ) = y which implies that for all t ∈ [0;∞) \Tx0
and for every y∈!(x0) there exists z ∈!(x0) such that y = s(t; z). Hence, !(x0) ⊆
st(!(x0)), t¿ 0. Now, using the positive invariance of !(x0) it follows that st(!(x0))=
!(x0), t¿ 0, establishing invariance of the positive limit set !(x0).
Finally, to show s(t; x0) → !(x0) as t → ∞, suppose, ad absurdum, s(t; x0) 9 !(x0)

as t → ∞. In this case, there exists an �¿ 0 and a sequence {tn}∞n=0, with tn → ∞ as
n → ∞, such that

inf
p∈!(x0)

‖s(tn; x0)− p‖¿ �; n¿ 0:

However, since s(t; x0), t¿ 0, is bounded, the bounded sequence {s(tn; x0)}∞n=0 contains
a convergent subsequence {s(t∗n ; x0)}∞n=0 such that s(t∗n ; x0) → p∗ ∈!(x0) as n → ∞
which contradicts the original supposition. Hence, s(t; x0) → !(x0) as t → ∞.

Remark 3.1. Note that the compactness of the positive limit set !(x0) depends only
on the boundedness of the trajectory s(t; x0), t¿ 0, whereas the left-continuity and
quasi-dependence properties are key in proving invariance of the positive limit set
!(x0). In classical dynamical systems where the trajectory s(·; ·) is assumed to be
continuous in both its arguments, both the left-continuity and the quasi-continuous
dependence properties are trivially satis4ed. Finally, we note that unlike dynamical
systems with continuous 3ows, the omega limit set of a left-continuous dynamical
system may not be connected.

Remark 3.2. To demonstrate the importance of the quasi-continuous dependence prop-
erty for the invariance of positive limit sets, consider the left-continuous dynamical
system characterized by the state-dependent impulsive diIerential equation (see Sec-
tion 4 for details)

ẋ(t) =−x(t); x(t) �= 0; (9)

Tx(t) = 1; x(t) = 0; (10)

where t¿ 0, x(t)∈R, x(0)= x0, and Tx(t), x(t+)− x(t). In this case, the trajectory
s(·; ·) is given by s(0; x0) = x0, x0 ∈R, and for all t ¿ 0,

s(t; x0) =

{
e−tx0; x0 �= 0;

e−t ; x0 = 0;
(11)

which shows that for every x0 ∈R, the trajectory s(t; x0) is left-continuous in t and
approaches the positive limit set containing only the origin. However, note that the
dynamical system does not satisfy the quasi-continuous property and the origin is not
an invariant set.
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Next, we present a generalization of the Barbashin–Krasovskii–LaSalle invariance
principle [4,18,19,25,26] to left-continuous dynamical systems. For the remainder of
the paper de4ne the notation

V−1(�), {x∈Dc: V (x) = �};
where �∈R, Dc ⊆ D, and V :Dc → R is a C0 function, and let M� denote the largest
invariant set (with respect to the dynamical system G) contained in V−1(�).

Theorem 3.2. Let s(t; x0), t¿ 0, denote a trajectory of a left-continuous dynamical
system G and let Dc ⊂ D be a compact positively invariant set with respect to G.
Assume there exists a C0 function V :Dc → R such that V (s(t; x0))6V (s(�; x0)),
06 �6 t, for all x0 ∈Dc. If x0 ∈Dc, then s(t; x0) → M,

⋃
�∈R M� as t → ∞.

Proof. Since V (·) is continuous on the compact set Dc, there exists �∈R such that
V (x)¿ �, x∈Dc. Hence, since V (s(t; x0)), t¿ 0, is nonincreasing, �x0 , limt→∞
V (s(t; x0)), x0 ∈Dc, exists. Now, for every y∈!(x0) there exists an increasing un-
bounded sequence {tn}∞n=0 such that s(tn; x0) → y as n → ∞, and, since V (·) is
continuous, it follows that V (y) = V (limn→∞ s(tn; x0)) = limn→∞ V (s(tn; x0)) = �x0 .
Hence, y∈V−1(�x0 ) for all y∈!(x0), or, equivalently, !(x0) ⊆ V−1(�x0 ). Now, since
Dc is compact and positively invariant, it follows that s(t; x0), t¿ 0, is bounded for
all x0 ∈Dc and hence it follows from Theorem 3.1 that !(x0) is a nonempty, com-
pact invariant set. Thus, !(x0) is a subset of the largest invariant set contained in
V−1(�x0 ); that is, !(x0) ⊆ M�x0

. Hence, for all x0 ∈Dc, !(x0) ⊆ M. Finally, since
s(t; x0) → !(x0) as t → ∞ it follows that x(t) → M as t → ∞.

Remark 3.3. Since V :Dc → R is a continuous function, it follows from the proof
of Theorem 3.2 that for every x0 ∈Dc there exists �x0 6V (x0) such that !(x0) ⊆
M�x0

⊆ M.

Remark 3.4. If V :Dc → R is a lower semicontinuous function such that all the con-
ditions of Theorem 3.2 are satis4ed then, for all x0 ∈Dc, !(x0) ⊆ M̂ ,

⋃
�∈R M̂�,

where M̂� denotes the largest invariant set contained in the set

R� ,
⋂
c¿�

{x∈Dc: �6V (x)6 c}:

For further details on invariant set theorems for dynamical systems with lower semi-
continuous Lyapunov functions see [10].
Finally, we close this section by noting that Theorems 3.1 and 3.2 can be easily ex-

tended to in4nite-dimensional dynamical systems. Speci4cally, let D ⊆ X, where X de-
notes a metric space with metric d :X×X → [0;∞). Now, let the triple (D; [0;∞); s),
where s : [0;∞)×D →  , be such that Axioms (i)–(iii) hold and (iv) is replaced by

(iv)′′ (Quasi-continuous dependence): For every x0 ∈D, there exists Tx0 ⊆ [0;∞)
such that [0;∞) \Tx0 is countable and for every �¿ 0 and t ∈Tx0 , there exists
	(�; x0; t)¿ 0 such that if d(x0; y)¡	(�; x0; t), y∈D, then d(s(t; x0); s(t; y))¡�.
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In this case, it can be shown that if the closure of the positive orbit

�+(x0) = {s(t; x0): t ∈ [0;∞)}
is compact in X, then the positive limit set !(x0) of s(t; x0), t¿ 0, is a nonempty,
compact invariant set. Furthermore, d(s(t; x0); !(x0)) → 0 as t → ∞. Now, if Dc ⊆
D is a positively invariant set with respect to G, every positive orbit �+(x0) in Dc

is contained in a compact set, and there exists a C0 function V :Dc → R such that
V (s(t; x0))6V (s(�; x0)), 06 �6 t, for all x0 ∈Dc, then for every x0 ∈Dc,
d(s(t; x0);M) → 0 as t → ∞. Of course, in this case the notions of openness, conver-
gence, continuity, and compactness used in Theorems 3.1 and 3.2 refer to the topology
generated on X by the metric d(·; ·).

4. State-dependent impulsive dynamical systems

A state-dependent impulsive dynamical system has the form

ẋ(t) = fc(x(t)); x(0) = x0; x(t) �∈ S; (12)

Tx(t) = fd(x(t)); x(t)∈S; (13)

where t¿ 0, x(t)∈D ⊆ Rn, D is an open set with 0∈D, Tx(t) , x(t+) − x(t),
fc :D → Rn is such that fc(0)=0, fd :S → Rn is continuous, and S ⊂ D is the re-
setting set. We refer to the diIerential equation (12) as the continuous-time dynamics,
and we refer to the diIerence equation (13) as the resetting law. We assume that the
continuous-time dynamics fc(·) are such that the solution to (12) is jointly continuous
in t and x0 between resetting events. A su6cient condition ensuring this is Lipschitz
continuity of fc(·). Alternatively, uniqueness of solutions in forward time along with
the continuity of fc(·) ensure that solutions to (12) between resetting events are con-
tinuous functions of the initial conditions x0 ∈D even when fc(·) is not Lipschitz
continuous on D (see [11, Theorem 4.3, p. 59]). More generally, fc(·) need not be
continuous. In particular, if fc(·) is discontinuous but bounded and x(·) is the unique
solution to (12) between resetting events in the sense of Filippov [12], then continuous
dependence of solutions with respect to the initial conditions hold [12]. Finally, note
that since the resetting set S is a subset of the state space D and is independent of
time, state-dependent impulsive dynamical systems are time-invariant.
For a particular trajectory x(t), we let �k(x0) denote the kth instant of time at which

x(t) intersects S, and we call the times �k(x0) the resetting times. Thus the trajectory
of the system (12), (13) from the initial condition x(0) = x0 is given by  (t; x0) for
0¡t6 �1(x0) where  (t; x0) denotes the solution to the continuous-time dynamics
(12). If and when the trajectory reaches a state x1 , x(�1(x0)) satisfying x1 ∈S, then
the state is instantaneously transferred to x+1 , x1 + fd(x1) according to the resetting
law (13). The solution x(t), �1(x0)¡t6 �2(x0), is then given by  (t − �1(x0); x+1 ),
and so on. Note that the solution x(t) of (12), (13) is left-continuous; that is, it is
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continuous everywhere except at the resetting times �k(x0), and

xk , x(�k(x0)) = lim
�→0+

x(�k(x0)− �); (14)

x+k , x(�k(x0)) + fd(x(�k(x0))) (15)

for k = 1; 2; : : : :
We make the following additional assumptions:

A1. If x(t)∈ QS \S, then there exists �¿ 0 such that, for all 0¡	¡�, s(	; x(t)) �∈ S.
A2. If x∈S, then x + fd(x) �∈ S.

Assumption A1 ensures that if a trajectory reaches the closure of S at a point that
does not belong to S, then the trajectory must be directed away from S; that is, a
trajectory cannot enter S through a point that belongs to the closure of S but not to
S. Furthermore, A2 ensures that when a trajectory intersects the resetting set S, it
instantaneously exists S. Finally, we note that if x0 ∈S, then the system initially resets
to x+0 = x0 + fd(x0) �∈ S which serves as the initial condition for the continuous-time
dynamics (12).

Remark 4.1. It follows from A2 that resetting removes x(�k(x0))=xk from the resetting
set S. Thus, immediately after resetting occurs, the continuous-time dynamics (12),
and not the resetting law (13), becomes the active element of the impulsive dynamical
system.

Remark 4.2. It follows from A1 and A2 that no trajectory starting outside of S can
intersect the interior of S. Speci4cally, it follows from A1 that a trajectory can only
reach S through a point belonging to both S and its boundary. And from A2, it
follows that if a trajectory reaches a point in S that is on the boundary of S, then the
trajectory is instantaneously removed from S. Since a continuous trajectory starting
outside of S and intersecting the interior of S must 4rst intersect the boundary of S,
it follows that no trajectory can reach the interior of S.

Remark 4.3. Let x∗ ∈D satisfy fd(x∗)=0. Then x∗ �∈ S. To see this, suppose x∗ ∈S.
Then x∗ + fd(x∗) = x∗ ∈S, contradicting A2. Speci4cally, we note that 0 �∈ S.

Remark 4.4. Note that it follows from the de4nition of �k(·) that �1(x)¿ 0, x �∈ S,
and �1(x) = 0, x∈S. Furthermore, since for every x∈S, x + fd(x) �∈ S, it follows
that �2(x) = �1(x) + �1(x + fd(x))¿ 0.

To show that the resetting times �k(x0) are well de4ned and distinct, assume T =
inf{t:  (t; x0)∈S}¡∞. Now, ad absurdum, suppose �1(x0) is not well de4ned; that
is, min{t:  (t; x0)∈S} does not exist. Since  (·; x0) is continuous, it follows that
 (T; x0)∈ @S and since, by assumption, min{t:  (t; x0)∈S} does not exist it follows
that  (T; x0)∈ QS \S. Note that  (t; x0) = s(t; x0), for every t such that  (�; x) �∈ S
for all 06 �6 t. Now, it follows from A1 that there exists �¿ 0 such that s(T +
	; x0) =  (T + 	; x0), 	∈ (0; �), which implies that inf{t:  (t; x0)∈S}¿T which is a
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contradiction. Hence,  (T; x0)∈ @S∩S and inf{t:  (t; x0)∈S}=min{t:  (t; x0)∈D}
which implies that the 4rst resetting time �1(x0) is well de4ned for all initial conditions
x0 ∈D. Next, it follows from A2 that �2(x0) is also well de4ned and �2(x0) �= �1(x0).
Repeating the above arguments it follows that the resetting times �k(x0) are well de4ned
and distinct.
Since the resetting times are well de4ned and distinct, and since the solution to (12)

exists and is unique, it follows that the solution of the impulsive dynamical system (12),
(13) also exists and is unique over a forward time interval. However, it is important
to note that the analysis of impulsive dynamical systems can be quite involved. In
particular, such systems can exhibit Zenoness, beating, as well as con3uence wherein
solutions exhibit in4nitely many resettings in a 4nite-time, encounter the same resetting
surface a 4nite or in4nite number of times in zero time, and coincide after a given point
in time. In this paper we allow for the possibility of con3uence and Zeno solutions,
however, A2 precludes the possibility of beating. Furthermore, since not every bounded
solution of an impulsive dynamical system over a forward time interval can be extended
to in4nity due to Zeno solutions, we assume that existence and uniqueness of solutions
are satis4ed in forward time. For details see [2,3,22].
Next, we show that the dynamical system G given by (12), (13) under an additional

set of assumptions is a left-continuous dynamical system. To show that state-dependent
impulsive dynamical systems 2 satisfy Axioms (i)–(iii) of a left-continuous dynamical
system, note that s(0; x0) = x0 for all x0 ∈D and

s(t; x0) =




 (t; x0); 06 t6 �1(x0);

 (t − �k(x0); s(�k(x0); x0)

+fd(s(�k(x0); x0))); �k(x0)¡t6 �k+1(x0);

 (t − �(x0); s(�(x0); x0)); t¿ �(x0);

(16)

where �(x0) , supk¿0 �k(x0) which implies that s(·; x0) is left-continuous. Further-
more, uniqueness of the solutions implies that s(t; x0) satis4es the semi-group property
s(�; s(t; x0)) = s(t + �; x0) for all x0 ∈D and t; �∈ [0;∞). The following result provides
su6cient conditions that guarantee that the dynamical system G given by (12), (13)
satis4es the quasi-continuous dependence property.

Proposition 4.1. Consider the nonlinear impulsive dynamical system G given by (12),
(13). Assume A1 and A2 hold, and assume that either of the following statements
holds:

(i) For all x0 �∈ S, 0¡�1(x0)¡∞, �1(·) is continuous, and limk→∞ �k(x0) → ∞.
(ii) For all x0 �∈ QS, 0¡�1(x0)¡∞, �1(·) is continuous, limk→∞ �k(x0) → ∞, and

QS \S is a positively invariant set with respect to the dynamical system G given
by (12), (13).

Then G satis:es the quasi-continuous dependence property given by Axiom (iv).

2 Here we assume that if the solution is Zeno, then it is convergent.
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Proof. To show that (i) implies the quasi-continuous dependence property, assume that
for all x0 �∈ S, 0¡�1(x0)¡∞, �1(·) is continuous, and limk→∞ �k(x0) → ∞. In this
case, it follows from the de4nition of �k(x0) that for every x0 ∈D and k ∈{1; 2; : : : ; },

�k(x0) = �k−j(x0) + �j[s(�k−j(x0); x0) + fd(s(�k−j(x0); x0))]; j = 1; : : : ; k; (17)

where �0(x0) , 0. Since fc(·) is such that the solutions to (12) are continuous with
respect to the initial conditions between resetting events, it follows that for every
k=0; 1; : : :, and t ∈ (�k(x0); �k+1(x0)],  (·; ·) is continuous in both its arguments. Specif-
ically, note that since �1(x0) is continuous it follows that 1(x0) , s(�1(x0); x0) =
 (�1(x0); x0) is continuous on D. Hence, it follows from (17) and the continuity of
fd(·) that �2(x0)=�1(x0)+�1[s(�1(x0); x0)+fd(s(�1(x0); x0))] is also continuous which
implies that 2(x0), s(�2(x0); x0)= (�2(x0)−�1(x0); 1(x0)+fd(1(x0)) is continuous
on D. By recursively repeating this procedure for k=3; 4; : : :, it follows that �k(x0) and
k(x0) , s(�k(x0); x0) are continuous on D. Next, let Tx0 = {t ∈ [0;∞); t �= �k(x0)}
and let t ∈Tx0 be such that �k(x0)¡t¡�k+1(x0). Now, noting that s(t; x0) =  (t −
�k(x0); s(�k(x0); x0))+fd(s(�k(x0); x0)), it follows from the continuity of fd(·) and �k(·)
that s(t; x0) is a continuous function of x0 for all t ∈Tx0 such that �k(x0)¡t¡�k+1(x0)
for some k. Hence, since limk→∞ �k(x0) → ∞, G satis4es the quasi-continuous depen-
dence property given by Axiom (iv). Next, consider the case in which x0 ∈S. Note
that in this case �1(x0) = 0 and �2(x0) = �1(x0 + fd(x0)). Since x0 ∈S, it follows that
x0 + fd(x0) �∈ S and since �1(·) is continuous on D \S and fd(·) is continuous on
S it follows that �2(·) is continuous on S. Now the quasi-continuous dependence
property given by Axiom (iv) for all x0 ∈S can be shown as above.
Alternatively, if (ii) is satis4ed then as in the proof of (i) it can be shown that for all

x0 ∈D, x0 �∈ QS \S, s(t; x0) is a continuous function of x0 for all t ∈Tx0 . Next, if QS \S
is a positively invariant set with respect to G, then for all x0 ∈ QS \S, Tx0 = [0;∞).
Now, the continuity of s(t; x0) for all t ∈ [0;∞) follows from the fact that fc(·) is such
that the solutions to (12) are continuous with respect to the initial conditions between
resetting events, and hence G satis4es the quasi-continuous dependence property given
by Axiom (iv).

Remark 4.5. If, for every x0 ∈D, the solution s(t; x0) to (12), (13) is a Zeno so-
lution; that is, limk→∞ �k(x0) → �(x0)¡∞, and the resetting sequence {�k(x0)}∞k=0
is uniformly convergent in x0, then Condition (ii) of Proposition 4.1 implies that G
satis4es the quasi-continuous dependence property (iv). To see this, note that since
{�k(·)}∞k=1 is a uniformly convergent sequence of continuous functions, it follows that
�(·) is a continuous function. Now, noting that for all t ¿ �(x0), t ∈Tx0 , s(t; x0) =
 (t − �(x0); s(�+(x0); x0)), it follows that s(t; x0) is a continuous function of x0 for all
t ∈Tx0 which proves that G satis4es the quasi-continuous dependence property given
by Axiom (iv).

Proposition 4.1 requires that the 4rst resetting time �1(·) be continuous at x0 ∈D.
The following result proven in [13] provides su6cient conditions for establishing the
continuity of �1(·) at x0 ∈D.
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Proposition 4.2 (Grizzle et al. [13]). Consider the nonlinear impulsive dynamical sys-
tem G given by (12), (13). Assume there exists a continuously di4erentiable function
X :D → R such that the resetting set is given by S={x: X(x)=0} and X′(x)fc(x) �=
0, x∈S. Then �1(·) is continuous at x0 ∈D, where 0¡�1(x0)¡∞.

Remark 4.6. The 4rst assumption in Proposition 4.2 implies that the resetting set S
is an embedded submanifold while the second assumption assures that the solution of
G is not tangent to the resetting set S.

The next result provides a partial converse to Proposition 4.1. For this result, we
introduce the following assumption in place of A1 and A2.

A3. fc(·) is locally Lipschitz, S is closed, and fd(x) �= 0, x∈S \@S. If x∈ @S such
that fd(x)=0, then fc(x)=0. If x∈S such that fd(x) �= 0, then x+fd(x) �∈ S.

Proposition 4.3. Consider the nonlinear impulsive dynamical system G given by (12),
(13) and assume A3 holds. If G satis:es the quasi-continuous dependence property
given by Axiom (iv), then �1(·) is lower-semicontinuous at every x �∈ S. Furthermore,
for every x �∈ S such that �1(x)¡∞, �1(·) is continuous at x. Finally, for every x �∈
S such that �1(x) =∞, �1(xn) → ∞ for every sequence {xn}∞n=1 such that xn → x.

Proof. Assume G satis4es the quasi-continuous dependence property iv). Let x �∈ S
and {xn}∞n=1 �∈ S be such that xn→x and �1(x1)¿�1(x2)¿ · · ·¿ �− , limn→∞ �1(xn).
First, assume �1(x1)¡∞ so that �−; �1(x2); : : :¡∞. Since fc(·) is locally Lipschitz
it follows that  (·; ·) is jointly continuous and hence it follows that  (�1(xn); xn) →
 (�−; x). Next, since S is closed and  (�1(xn); xn)∈S for every n=1; 2; : : : ; it follows
that  (�−; x)∈S which implies that �−¿ �1(x)= inf{t:  (t; x)∈S}, establishing the
lower semicontinuity of �1(·) at x. Alternatively, if �− =∞ so that �1(x1) = �1(x2) =
· · ·=∞, lower semicontinuity follows trivially since �1(x)6 �− =∞.
Next, note that since fc(·) is locally Lipschitz it follows that  (t; x), t¿ 0, can-

not converge to any equilibrium in a 4nite time and hence fc( (�1(x); x)) �= 0,
which implies that fd( (�1(x); x)) �= 0. Let {xn}∞n=1 �∈ S be such that xn → x and
�1(x1)6 �1(x2)6 · · ·6 �+ , limn→∞ �1(xn). Suppose, ad absurdum, �+ ¿�1(x), let
�¿ 0 be such that �1(x)¡�+− �¡�2(x), and let M ¿ 0 be such that �+− �¡�1(xn),
n¿M . Now, since G satis4es the quasi-continuous dependence property (iv) it follows
that s(�+ − �; xn) → s(�+ − �; x) as n → ∞, and for every n¿M , s(�+ − �; xn) =  (�+
−�; xn). Furthermore, limn→∞ s(�+−�; xn)=limn→∞  (�+−�; xn)= (�+−�; x). Hence,

 (�+ − �− �1(x);  (�1(x); x) + fd( (�1(x); x)) = s(�+ − �; x)

= lim
n→∞ s(�+ − �; xn)

=  (�+ − �; x)

=  (�+ − �− �1(x);  (�1(x); x)):

Now, since fc(·) is locally Lipschitz it follows that the solution  (t; x), t ∈R, is unique
both forward and backward in time and hence it follows that  (�1(x); x)= (�1(x); x) +
fd( (�1(x); x)), or, equivalently, fd( (�1(x); x)) = 0, which is a contradiction. Hence,
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�+6 �1(x) and thus �1(·) is upper semicontinuous at x. Hence, �1(·) is continuous
at x.
Finally, let x �∈ S be such that �1(x) =∞ and let {xn}∞n=1 ∈S be such that xn →

x. Suppose, ad absurdum, that {�1(xn)}∞n=1 has a bounded subsequence {�1(xnj)}∞j=1.
Let � , limj→∞ �1(xnj)¡∞. Now, since  (·; ·) is jointly continuous it follows that
limj→∞  (�1(xnj); xnj) =  (�; x). Next, since S is closed and  (�1(xnj); xnj)∈S,
j = 1; 2; : : :, it follows that  (�; x)∈S which implies that �1(x) = inf{t:  (t; x) �∈
S}6 �¡∞ which is a contradiction. Hence, limn→∞ �1(xn) =∞.

The following result shows that all convergent Zeno solutions to (12), (13) converge
to QS \S if A1 and A2 hold while all convergent Zeno solutions converge to an
equilibrium point if A3 holds.

Proposition 4.4. Consider the nonlinear impulsive dynamical system G given by (12),
(13). If the trajectory s(t; x0), t¿ 0, to (12), (13) is convergent, bounded and Zeno;
that is, there exists �(x0)¡∞ such that �k(x0) → �(x0) as k → ∞ and limk→∞
s(�k(x0)) = s(�(x0); x0), then the following statements hold:

(i) If A1 and A2 hold and �2(·) is continuous on S, then s(�(x0); x0)∈ QS \S.
(ii) If A3 holds, then s(�(x0); x0) is an equilibrium point.

Proof. If the trajectory s(t; x0), t¿ 0, is Zeno then there exists �(x0)¡∞ such that
�k(x0) → �(x0) as k → ∞ and, since �1(x0)¡�2(x0)¡ · · ·¡�(x0), it follows that
�1(x0)¡∞. Next, note that there exists y1 ∈S such that s(�1(x0); x0) = y1 and hence
it follows that �2(x0) = �1(x0) + �1(y1 + fd(y1)) = �1(x0) + �2(y1). By recursively
repeating this procedure for k = 3; 4; : : : ; it follows that

�k(x0) = �1(x0) +
k−1∑
i=1

�2(yi);

where yi , s(�i(x0); x0), i = 1; 2; : : : : Now, since �(x0) = limk→∞ �k(x0) it follows
that �(x0) = �1(x0) +

∑∞
k=1 �2(yk). Hence, it follows that �2(yk) → 0 as k → ∞.

Now, if the trajectory s(t; x0), t¿ 0, is bounded then the sequence {yk}∞k=0 is also
bounded and it follows from the Bolzano–Weierstrass theorem [31] that there ex-
ists a convergent subsequence {yki}∞i=1 such that limi→∞ yki = y∈ QS. Hence, since
s(·; x0) is left-continuous, it follows that y = limi→∞ yki = limi→∞ s(�ki(x0); x0) =
s(limi→∞ �ki(x0); x0) = s(�(x0); x0).

(i) Now, assume A1, A2 hold and �2(·) is continuous on S. Next, ad absurdum,
suppose y∈S. Since �2(·) is continuous on S it follows that �2(y)=�2(limi→∞ yki)=
limi→∞ �2(yki)=0, which contradicts the fact that �2(x)¿ 0, x∈S (see Remark 4.4).
Thus y∈ QS \S or, equivalently, s(�(x0); x0)∈ QS \S.
(ii) Finally, assume A3 holds. Furthermore, note that yk =  (�2(yk−1); yk−1 +

fd(yk−1)), k=2; 3; : : :, and since  (·; ·) is jointly continuous and �2(yk) → 0 as k → ∞
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it follows that

y= lim
k→∞

yk =  
(

lim
k→∞

�2(yk); lim
k→∞

yk + fd(yk)
)

=  (0; y + fd(y)) = y + fd(y);

which implies that fd(y)= 0. Now, since S is closed it follows that y∈S and since
fd(y) = 0 it follows from A3 that fc(y) = 0 which proves the result.

5. Invariant set theorems for state-dependent impulsive dynamical systems

In this section we use the results on left-continuous dynamical systems to state and
prove new invariant set stability theorems for a class of nonlinear impulsive dynamical
systems; namely, state-dependent impulsive dynamical systems [2,3,8,14,15,22]. Our
main result characterizes impulsive dynamical system limit sets in terms of C1 func-
tions. In particular, we show that the system trajectories converge to an invariant set
contained in a union of level surfaces characterized by the continuous-time dynamics
and the resetting system dynamics. In this section, we assume that fc(·), fd(·), and S
are such that the dynamical system G given by (12), (13) satis4es the quasi-continuous
dependence property (iv) so that G is a left-continuous dynamical system.

Theorem 5.1. Consider the nonlinear impulsive dynamical system (12), (13), assume
Dc ⊂ D is a compact positively invariant set with respect to (12), (13), and assume
that there exists a C1 function V :Dc → R such that

V ′(x)fc(x)6 0; x∈Dc; x �∈ S; (18)

V (x + fd(x))− V (x)6 0; x∈Dc; x∈S: (19)

Let R , {x∈Dc: x �∈ S; V ′(x)fc(x) = 0} ∪ {x∈Dc: x∈S; V (x + fd(x)) = V (x)}
and let M denote the largest invariant set contained in R. If x0 ∈Dc, then x(t) → M
as t → ∞.

Proof. The result follows from Theorem 3.2. Speci4cally, prior to the 4rst resetting
time, we can determine the value of V (x(t)) as

V (x(t)) = V (x(0)) +
∫ t

0
V ′(x(�))fc(x(�)) d�; t ∈ [0; �1(x0)]: (20)

Between consecutive resetting times �k(x0) and �k+1(x0), we can determine the value
of V (x(t)) as its initial value plus the integral of its rate of change along the trajectory
x(t), that is,

V (x(t)) = V (x(�k(x0)) + fd(x(�k(x0)))) +
∫ t

�k (x0)
V ′(x(�))fc(x(�)) d�;

t ∈ (�k(x0); �k+1(x0)] (21)
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for k = 1; 2; : : : : Adding and subtracting V (x(�k(x0))) to and from the right-hand side
of (21) yields

V (x(t)) = V (x(�k(x0))) + [V (x(�k(x0)) + fd(x(�k(x0)))− V (x(�k(x0)))]

+
∫ t

�k (x0)
V ′(x(�))fc(x(�)) d�; t ∈ (�k(x0); �k+1(x0)] (22)

and in particular at time �k+1(x0),

V (x(�k+1(x0))) = V (x(�k(x0)) + fd(x(�k(x0))))

+
∫ �k+1(x0)

�k (x0)
V ′(x(�))fc(x(�)) d�: (23)

By recursively substituting (23) into (22) and ultimately into (20), we obtain for all
t ∈ (�k(x0); �k+1(x0)],

V (x(t))− V (x(0)) =
∫ t

0
V ′(x(�))fc(x(�)) d�+

k∑
i=1

[V (x(�i(x0))

+fd(x(�i(x0)))− V (x(�i(x0))]: (24)

Now, it follows from (18) and (19) that V (x(t))6V (x(0)), t¿ 0. Using a similar
argument it follows that V (x(t))6V (x(�)), t¿ �. Hence, it follows from Theorem
3.2 that for every x0 ∈Dc there exists �x0 ∈R such that !(x0) ⊆ M�x0

, where M�x0
is the largest invariant set contained in V−1(�x0 ). Hence, V (x) = �x0 , x∈!(x0). Now,
since M�x0

is an invariant set it follows that for all x(0)∈M�x0
, x(t)∈M�x0

, t¿ 0,
and thus V̇ (x(t)), dV (x(t))=dt=V ′(x(t))fc(x(t))=0, for all x(t) �∈ S, and V (x(t)+
fd(x(t)))=V (x(t)), for all x(t)∈S. Thus, M�x0

is contained in M which is the largest
invariant set contained in R. Hence, x(t) → M as t → ∞.

The following corollaries to Theorem 5.1 present su6cient conditions that guarantee
local asymptotic stability of the nonlinear impulsive dynamical system (12), (13). Note
that for addressing the stability of the zero solution of an impulsive dynamical system
the usual stability de4nitions are valid.

Corollary 5.1. Consider the nonlinear impulsive dynamical system (12), (13), assume
Dc ⊂ D is a compact positively invariant set with respect to (12), (13) such that

0∈ ◦
Dc, and assume there exists a C1 function V :Dc → R such that V (0) = 0,

V (x)¿ 0, x �= 0, and (18), (19) are satis:ed. Furthermore, assume that the set
R , {x∈Dc: x �∈ S; V ′(x)fc(x) = 0} ∪ {x∈Dc: x∈S; V (x + fd(x)) = V (x)}
contains no invariant set other than the set {0}. Then the zero solution x(t) ≡ 0 to
(12), (13) is asymptotically stable and Dc is a subset of the domain of attraction of
(12), (13).

Proof. Lyapunov stability of the zero solution x(t) ≡ 0 to (12), (13) follows from the
fact that V (x(t))6V (x(�)), t¿ �, using standard arguments. For details see [8,14].
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Next, it follows from Theorem 5.1 that if x0 ∈Dc, then !(x0) ⊆ M, where M denotes
the largest invariant set contained in R, which implies that M = {0}. Hence, x(t) →
M = {0} as t → ∞ establishing asymptotic stability of the zero solution x(t) ≡ 0 to
(12), (13).

Remark 5.1. Setting D=Rn and requiring V (x) → ∞ as ‖x‖ → ∞ in Corollary 5.1, it
follows that the zero solution x(t) ≡ 0 to (12), (13) is globally asymptotically stable.
Similar remarks hold for Corollaries 5.2 and 5.3 below.

Corollary 5.2. Consider the nonlinear impulsive dynamical system (12), (13), assume
Dc ⊂ D is a compact positively invariant set with respect to (12), (13) such that

0∈ ◦
Dc, and assume there exists a C1 function V :Dc → R such that V (0)=0, V (x)¿ 0,

x �= 0,

V ′(x)fc(x)¡ 0; x∈Dc; x �∈ S; x �= 0; (25)

and (19) is satis:ed. Then the zero solution x(t) ≡ 0 to (12), (13) is asymptotically
stable and Dc is a subset of the domain of attraction of (12), (13).

Proof. It follows from (25) that V ′(x)fc(x)=0 for all x∈Dc \S if and only if x=0.
Hence, R={0}∪{x∈Dc: x∈S; V (x+fd(x))=V (x)} which contains no invariant set
other than {0}. Now, the result follows as a direct consequence of Corollary 5.1.

Corollary 5.3. Consider the nonlinear impulsive dynamical system (12), (13), assume
Dc ⊂ D is a compact positively invariant set with respect to (12), (13) such that

0∈ ◦
Dc, and assume that for all x0 ∈Dc, x0 �= 0, there exists �¿ 0 such that x(�)∈S,

where x(t), t¿ 0, denotes the solution to (12), (13) with the initial condition x0.
Furthermore, assume there exists a C1 function V :Dc → R such that V (0) = 0,
V (x)¿ 0, x �= 0,

V (x + fd(x))− V (x)¡ 0; x∈Dc; x∈S; (26)

and (18) is satis:ed. Then the zero solution x(t) ≡ 0 to (12), (13) is asymptotically
stable and Dc is a subset of the domain of attraction of (12), (13).

Proof. It follows from (26) that R = {x∈Dc: x �∈ S; V ′(x)fc(x) = 0}. Since for
all x0 ∈Dc, x0 �= 0, there exists �¿ 0 such that x(�)∈S it follows that the largest
invariant set contained in R is {0}. Now, the result follows as a direct consequence
of Corollary 5.1.

6. Illustrative examples

In this section we present two illustrative examples to demonstrate the results of this
paper.
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Example 6.1. Consider a bouncing ball, with coe6cient of restitution e∈ (0; 1), on a
horizontal surface under a normalized gravitational 4eld. Modeling the surface collisions
as instantaneous, it follows from Newton’s equations of motion that the bouncing ball
dynamics are characterized by the state-dependent impulsive diIerential
equations

[
ẋ1(t)

ẋ2(t)

]
=

[
x2(t)

−sgn(x1)

]
;

[
x1(0)

x2(0)

]
=

[
x10

x20

]
; (x1(t); x2(t)) �∈ S; (27)

[
Tx1(t)

Tx2(t)

]
=

[
0

−(1 + e)x2(t)

]
; (x1(t); x2(t))∈S; (28)

where t¿ 0, x1(t); x2(t)∈R, x1(t)¿ 0, sgn(x1) , x1=|x1|, x1 �= 0, sgn(0) , 0,
S= {(x1; x2)∈D: x1 = 0; x2 ¡ 0}, and D= {(x1; x2)∈R2: x1¿ 0}.

First, we use Proposition 4.1 to show that the impulsive dynamical system (27), (28)
is a left-continuous dynamical system. Note that QS = {(x1; x2)∈R2: x1 = 0; x26 0}
and hence QS \S= {(0; 0)} is an invariant set with respect to the dynamical system G
given by (27), (28). Next, it can be shown that

�1(x1; x2) =


 x2 +

√
x22 + 2x1; x1 ¿ 0;

2x2; x1 = 0; x2 ¿ 0;
(29)

which shows that �1(x1; x2) is continuous for all (x1; x2) �∈ QS. Furthermore, it can be
easily shown that for all (x1; x2)∈D, the sequence {�k(x1; x2)}∞k=1 is a uniformly con-
vergent sequence. Now, it follows from (ii) of Proposition 4.1 and Remark 4.5 that the
dynamical system G given by (27), (28) is a left-continuous dynamical
system.
Next, (27), (28) can be written in the form of (12), (13) with x , [x1 x2]T, fc(x)=

[x2;−sgn(x1)]T, and fd(x) = [0;−(1 + e)x2]T. Now, consider the function V :R2 → R
given by V (x) = x1 + 1

2x
2
2 and note that V ′(x)fc(x) = 0 for all x �∈ S. Furthermore,

since e∈ (0; 1) note that V (x + fd(x)) = V (x) if and only if x2 = 0. Hence, the set
{(x1; x2)∈S: V (x + fd(x)) = V (x)}=? and the set R= {(x1; x2)∈R2: x1¿ 0} \S.
Now, note that the largest invariant set M contained in R={(x1; x2)∈R2: x1¿ 0} \S
is {(0; 0)}, and hence since V (x) is radially unbounded it follows from Theorem 5.1 that
(x1(t); x2(t)) → (0; 0) as t → ∞. Alternatively, this can also be shown using Proposition
4.4. Speci4cally, it follows from Proposition 4.4 that (x1(t); x2(t)) → QS \S={(0; 0)} as
t → �(x0) and since QS \S= {(0; 0)} is an invariant set it follows that (x1(t); x2(t)) →
{(0; 0)} as t → ∞.
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Example 6.2. Consider the state-dependent impulsive diIerential equations




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)


=




x3(t)

x4(t)

x1(t)− 2x4(t)− x1(t)√
x21(t) + x22(t)

x2(t) + 2x3(t)− x2(t)√
x21(t) + x22(t)



;




x1(0)

x2(0)

x3(0)

x4(0)


=




x10

x20

x30

x40


 ; x(t) �∈ QS;

(30)




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)



=




−x2(t)

x1(t)

−x4(t)

x3(t)



; x(t)∈ QS \S; (31)




Tx1(t)

Tx2(t)

Tx3(t)

Tx4(t)



=




0

0

−(1 + e)(x2(t) + x3(t))

(1 + e)(x1)(t)− x4(t))



; x(t)∈S; (32)

where t¿ 0, x1(t); x2(t); x3(t); x4(t)∈R, e∈ (0; 1), S = {x∈Dc: x21 + x22 = 1; x1x3 +
x2x4 ¡ 0}, x , [x1 x2 x3 x4]T, and D=Dc={x∈R4: x21+x22¿ 1; x1x4−x2x3=x21+x22}.
First, note that QS={x∈Dc: x21+x22=1; x1x3+x2x46 0} and hence QS \S={x∈Dc: x21+
x22 = 1; x1x3 + x2x4 = 0} which can be shown to be an invariant set with respect to the
dynamical system G given by (30)–(32). Furthermore, note that Dc is an invariant set
with respect to the impulsive dynamics (30)–(32). To see this, consider the function
'(x) , x1x4 − x2x3 − x21 + x22 and note that '̇(x) along the solutions to (30) is zero
and '(x +Tx)− '(x) = 0, for all x∈Dc.

Next, we use Proposition 4.1 to show that the dynamical system (30) – (32) is a
left-continuous dynamical system. To see this, note that it can be shown that

�1(x) =


x1x3 +x2x4 +
√

2(x21 +x22)(
√

x21 +x22 − 1)+(x1x3 +x2x4)2√
x21 +x22

; x21 + x22 ¿ 1;

2(x1x3 + x2x4); x21 + x22 = 1; x1x3 + x2x4 ¿ 0;
(33)
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which shows that �1(x) is continuous for all x �∈ QS. Furthermore, it can be easily
shown that for all x∈D, the sequence {�k(x)}∞k=1 is a uniformly convergent sequence.
Now, it follows from (ii) of Proposition 4.1 and Remark 4.5 that the dynamical system
G given by (30) – (32) is a left-continuous dynamical system.
Next, (30) – (32) can be written in the form of (12),(13) with

fc(x) =




x3

x4

x1 − 2x4 − x1√
x21 + x22

x2 + 2x3 − x2√
x21 + x22



; x �∈ QS; fc(x) =




−x2

x1

−x4

x3


 ; x∈ QS \S;

and

fd(x) =




0

0

(1 + e)(x2 − x3)

(1 + e)(x1 − x4)


 :

Now, consider the function V :Dc → R given by

V (x) = (x21 + x22)
1=2 +

1
2
(x1x3 + x2x4)2

x21 + x22

and note that V ′(x)fc(x) = 0 for all x �∈ S. Furthermore, since e∈ (0; 1) note that
V (x + fd(x)) = V (x) if and only if x1x3 + x2x4 = 0. Hence, the set {x∈S: V (x +
fd(x)) = V (x)}=? and the set R=Dc \S. Now, note that the largest invariant set
M contained in R = Dc \S is {x∈Dc: x21 + x22 = 1; x1x3 + x2x4 = 0}, and hence it
follows from Theorem 5.1 that the solution x(t), t¿ 0, to (30)–(32) approaches the
invariant set {x∈Dc: x21 + x22 = 1; x1x3 + x2x4 = 0} as t → ∞ for all initial conditions
contained in Dc. Finally, Fig. 1 shows the phase portrait of the states x1 versus x2 for
the initial condition [x1(0) x2(0) x3(0) x4(0)]T = [2 0 0 2]T ∈Dc. Alternatively, this
can also be shown using Proposition 4.4. Speci4cally, it follows from Proposition 4.4
that (x1(t); x2(t)) → QS \S as t → �(x0) and since QS \S} is an invariant set it follows
that (x1(t); x2(t)) → {x∈Dc: x21 + x22 = 1; x1x3 + x2x4 = 0} as t → ∞.

7. Conclusion

An invariance principle was developed for left-continuous dynamical systems. As
a special case of this result new invariant set stability theorems were established for
nonlinear impulsive dynamical systems. These results provide generalizations to previ-
ous stability conditions developed in the literature as well as allow the investigation of
limit cycles and periodic orbits of impulsive dynamical systems.
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Fig. 1. Phase portrait of x1 versus x2.
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