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Abstract We study conditions under which an invariance property holds for the

class of selection distributions. First, we consider selection distributions arising from

two uncorrelated random vectors. In that setting, the invariance holds for the so-called

C-class and for elliptical distributions. Second, we describe the invariance property

for selection distributions arising from two correlated random vectors. The particular

case of the distribution of quadratic forms and its invariance, under various selection

distributions, is investigated in more details. We describe the application of our invari-

ance results to sample variogram and covariogram estimators used in spatial statistics

and provide a small simulation study for illustration. We end with a discussion about

other applications, for example such as linear models and indices of temporal/spatial

dependence.
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1 Introduction

In time series analysis, the autocovariance function is an important characteristic of

a stationary stochastic process and is used for modeling the data and for forecasting.

Similarly, in spatial analysis, the variogram and the covariogram (a spatial analogue of

the autocovariance function) of a stationary random field are crucial for spatial inter-

polation of data. The sample moment estimators of the variogram and covariogram

are quadratic forms in the vector of data. Genton et al. (2001) have proved an invari-

ance property of these estimators. Specifically, for the class of skew-normal random

vectors introduced by Azzalini and Dalla Valle (1996), the joint distribution of the

sample variogram (respectively, sample covariogram) at various spatial lags does not

depend on the skewness. That is, this joint distribution is the same as for normal vec-

tors. This invariance property has been extended to a wider class of skew-symmetric

random vectors by Wang et al. (2004a). This is an important robustness property of

these estimators with respect to skewness in the data for those classes of distributions.

The main goal of this paper is to identify and characterize multivariate distributions

for which this invariance property holds.

Multivariate distributions that arise from certain selection mechanisms play an

important role in our investigation. Let U ∈ R
q and V ∈ R

p be two random vectors,

and denote by C a measurable subset of R
q . Arellano-Valle et al. (2006) have defined

a selection distribution as the conditional distribution of V given U ∈ C , that is, as the

distribution of X
d= (V|U ∈ C). If V has a probability density function (pdf), fV say,

then X has a pdf fX given by

fX(x) = fV(x)
P(U ∈ C |V = x)

P(U ∈ C)
, (1)

which is determined by the marginal distribution of V, the conditional distribution of

U given V and the form of the subset C. Moreover, the cumulative distribution function

(cdf) FX of X can be computed easily from the joint distribution of (UT , VT )T as

FX(x) = P(V ≤ x|U ∈ C) = P(U ∈ C, V ≤ x)

P(U ∈ C)
. (2)

The most common specification of C is C = {u ∈ R
q : u > 0}, where the inequality

between vectors is meant component-wise. In such case, the distribution correspond-

ing to (1) is called fundamental skew (FUS). It is called fundamental skew-symmetric

(FUSS), fundamental skew-elliptical (FUSE), and fundamental skew-normal (FUSN)

when the parent pdf fV is symmetric, elliptical, and normal, respectively; see Arellano-

Valle and Genton (2005). If the distribution of V and the conditional distribution of

U|V are both elliptical or both normal, then the resulting FUS selection distribution is

called unified skew-elliptical (SUE) and unified skew-normal (SUN), respectively, by

Arellano-Valle and Azzalini (2006); see also Genton (2004) for various particular dis-

tributions with pdf of the form (1). Table 1 summarizes the aforementioned selection

distributions.
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Invariance of quadratic forms 365

Table 1 Some selection

distributions
Distribution of:

X V U|V

FUSS Symmetric Arbitrary

FUSE Elliptical Arbitrary

FUSN Normal Arbitrary

SUE Elliptical Elliptical

SUN Normal Normal

Although most distributions can be represented by (1), our main interest here lies

in situations where fV is symmetric, i.e., fV(−x) = fV(x) for all x ∈ R
p, for

which the pdf (1) is generally skewed, unless the conditional probabilities satisfy

P(U ∈ C |V = x) = P(U ∈ C |V = −x) for all x ∈ R
p. We note, however, that if

P(U ∈ C |V = x) = P(U ∈ C) for all x ∈ R
p, then fX = fV, i.e., X

d= V, and

so ψ(X)
d= ψ(V) for all Borel functions ψ. This invariance property holds trivially

when U and V are independent random vectors, but it can hold as well under weaker

conditions when U and V are uncorrelated random vectors. Moreover, this property

can also hold without the condition P(U ∈ C |V = x) = P(U ∈ C) for some types

of functions ψ. For example, it is a well known result that any even function ψ, i.e.,

ψ(−x) = ψ(x) for all x ∈ R
p, satisfies such an invariance property for the FUSS

subclass of distributions corresponding to q = 1 and with pdf of the form

fX(x) = 2 fV(x)QU (x),

where fV is a symmetric pdf satisfying fV(−x) = fV(x) for all x ∈ R
p and QU is a

skewing function satisfying QU (x) ≥ 0 and QU (−x) = 1 − QU (x) for all x ∈ R
p.

Specifically, we have ψ(X)
d= ψ(V) in this case. The proof of this result can be found

in Wang et al. (2004a) and in Azzalini and Capitanio (2003) for the equivalent param-

eterization QU (x) = FU (w(x)), where FU is the cdf of U and w(−x) = −w(x) for

all x ∈ R
p. Similar results have been derived for particular cases by Azzalini (1985),

Azzalini and Capitanio (1999), Wang et al. (2004b), and Genton and Loperfido (2005).

However, we do not know the conditions under which this invariance property holds

for the more general case with q > 1. In this paper, we explore the invariance property

ψ(X)
d= ψ(V) for quadratic forms ψ when P(U ∈ C |V = x) �= P(U ∈ C).

The structure of the article is the following. In Sect. 2, we describe some basic

properties of selection distributions in order to derive our main results. In Sect. 3,

we present two examples with uncorrelated random vectors U and V for which the

invariance property holds. Those are based on the so-called C-class and on ellipti-

cal distributions. Examples with correlated random vectors U and V are described

in Sect. 4. The particular case of the distribution of quadratic forms and its invari-

ance, under various selection distributions, is investigated in Sect. 5. Application of

our invariance results to sample variogram and covariogram estimators is reported in

Sect. 6 along with a small simulation study for illustration. We end the paper with a

discussion in Sect. 7.
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2 Some basic properties of selection distributions

Many properties of a selection random vector X
d= (V|U ∈ C) can be studied directly

from its definition, see Arellano-Valle et al. (2006) for details. Here, we describe some

particular properties of direct relevance to our paper.

(P1) If the conditional distribution of (V|U = u) has a moment generating function

(mgf), MV|U=u(t) say, then the mgf of X
d= (V|U ∈ C) can be computed by

MX(t) =
∫

u∈C
MV|U=u(t)dFU(u)

P(U ∈ C)
, (3)

where FU denotes the cdf of U.

(P2) We have ψ(X)
d= (ψ(V)|U ∈ C) for any Borel function ψ. Moreover, since

(ψ(V)|U ∈ C) is determined by the transformation (U, V) → (U, ψ(V)), then

when ψ(V) has a pdf fψ(V), we have that ψ(X) has also a pdf of the form

fψ(X)(y) = fψ(V)(y)
P(U ∈ C |ψ(V) = y)

P(U ∈ C)
, (4)

and its mgf can be computed by

Mψ(X)(t) =
∫

u∈C
Mψ(V)|U=u(t)dFU(u)

P(U ∈ C)
. (5)

As a direct consequence of (P2), we have:

(P2a) ψ(X)
d= ψ(V) if and only if P(U ∈ C |ψ(V) = y) = P(U ∈ C)

for all y. It is trivial that this condition holds when ψ(V) and U are

independent, but it can hold also when ψ(V) and U are uncorrelated.

(P2b) If ψ(X) = BX + b is a non-singular linear function, then (4) and (5)

reduce to

fBX+b(y) = fBV+b(y)
P(U ∈ C |BV + b = y)

P(U ∈ C)
, (6)

and

MBX+b(t) = exp{tT b}
∫

u∈C
MV|U=u(BT t)dFU(u)

P(U ∈ C)
, (7)

respectively, for any (rectangular) matrix B and vector b fixed. Note

also from (6) (or (7)) that any selection random vector X
d= (V|U ∈ C)

is closed under linear transformations and, in particular, under margi-

nalizations, when the original vector V has such a property.

(P3) If X
d= (V|U > 0) is a FUS random vector, then X

d= (V|DU > 0) for any diag-

onal matrix D > 0, i.e., P(DU > 0) = P(U > 0) and P(DU > 0|V = x) =
P(U > 0|V = x). Thus, the FUS distribution is unaffected by rescaling of the

constraints U > 0.
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Invariance of quadratic forms 367

3 Two examples with uncorrelated U and V

We give next two examples where P(U ∈ C |V = x) = P(U ∈ C) holds for all

x ∈ R
p, and therefore X

d= (V|U ∈ C)
d= V, without the condition that U and V are

independent.

3.1 C-class

Suppose that the random vectors U = (U1, . . . , Uq)T and V = (V1, . . . , Vp)
T satisfy

the following conditions:

(i) U is such that P(U = 0) = 0 and sgn(U) = (S1, . . . , Sq)T , with Si = −1, if

Ui < 0, and Si = 1, if Ui > 0, and |U| = (|U1|, . . . , |Uq |)T are independent;

and

(ii) V is independent of sgn(U) given |U|.
Note that condition (i) is equivalent to

U
d= D(S)T = D(T)S, (8)

where S, T ∈ R
q are independent random vectors with S

d= sgn(U) and T
d= |U|,

and for any vector w = (w1, . . . , wq)T , D(w) is the q × q diagonal matrix with

diagonal entries w1, . . . , wq . Moreover, if S has a uniform distribution on {−1, 1}q ,

say S ∼ Uq , then P(S = 1q) = 2−q , where 1q is the vector of q ones, and so U

has a symmetric (around zero) distribution. In such case, we say that U is a C-random

vector, see Arellano-Valle et al. (2002) and Arellano-Valle and del Pino (2004) for

more details. Note that spherical random vectors and also all those with independent

symmetric (around zero) components are C-random vectors.

Under conditions (i) and (ii) we have P(U > 0|V = x) = P(U > 0) = P(S =
1q), for all x ∈ R

p, implying that the FUS random vector X
d= (V|U > 0) has the

same distribution as V. Indeed, note first by (8) that

P(U > 0) = E[P(D(T)S > 0|T)] = E[P(S = 1q |T)] = P(S = 1q).

Now, considering again (8), we have by condition (ii) that

P(U > 0|V = x) = E[P(D(T)S > 0|V = x, T)] = E[P(S = 1q |T)] = P(S=1q),

for all x ∈ R
p.

Note finally that condition (ii) holds when the full random vector (UT , VT )T sat-

isfies condition (i), which holds in particular when (UT , VT )T is a C-random vector.

3.2 Elliptical distributions

Suppose that (UT , VT )T has an elliptical distribution, say ECq+p(µ, �, h(q+p)), with

µ = (0T ,µT
V)T and � = diag{�U, �V}, where h(q+p) is a density generator function
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(see Fang et al. 1990), i.e., with joint pdf of the form

fU,V(x, y) = (|�U||�V|)−1/2h(q+p)(xT �−1
U x + (y − µV)T �−1

V (y − µV)),

x ∈ R
q , y ∈ R

p.

Then, P(U > 0|V = y) = P(U > 0) = �q(0; 0, �U) (see Fang et al. 1990, p.

53), for any y ∈ R
p and density generator h(q+p), where �p(·;µ, �) denotes the

cdf of the Np(µ, �) distribution, and X
d= (V|U > 0)

d= V ∼ EC p(µV, �V, h(p)).

In fact, since U ∼ ECq(0, �U, h(q)) and (U|V = y) ∼ ECq(0, �U, h
(q)

q(y)
), where

q(y) = (y − µV)T �−1
V (y − µV) and h

(q)
u (v) = h(q+p)(u + v)/h(p)(u), we have

P(U > 0|V = y) = P(U > 0) = �q(0; 0, �U),

for any y ∈ R
p and density generator h(q+p); i.e., in (1) we have

fX(y) = fV(y) = |�V|−1/2h(p)((y − µV)T �−1
V (y − µV)),

for all y ∈ R
p, so that X

d= (V|U > 0)
d= V ∼ EC p(µV, �V, h(p)).

4 Correlated U and V

In the construction of the selection pdf (1) we need to assume that U and V are associ-

ated (correlated) random vectors, in order to alter the original pdf fV. There are many

ways to introduce a relation between U and V, for example such as:

(a) Assuming that V = g(U, V0) for some Borel function g and for a (symmetric)

random vector V0 which is independent of (or uncorrelated with) U. Thus, linear

functions like V = AU + BV0 can be explored. For instance, by independence

between U and V0,

X
d= (AU + BV0|U ∈ C)

d= AU(C) + BV0,

where U(C)
d= (U|U ∈ C) and is independent of V0.

(b) Assuming that U = h(U0, V) for some Borel function h and for a (symmetric)

random vector U0 which is independent of (or uncorrelated with) V. Under this

situation, functions of the form U = w(V) − U0, with w(−v) = −w(v) for

all v ∈ R
p can be studied by noting that P(U ∈ C |V = x) = FU0|V=x(w(x)),

which reduces to FU0(w(x)) when U0 is independent of V given w(V).

(c) Assuming that V = AW and U = BW, where W ∈ R
n is a (symmetric) random

vector with dimension n ≥ p, q.

In (a) and (b) the independence restriction (between U0 and U or V0 and V, respec-

tively) can be replaced by a weaker condition similar to the assumption (ii) given in

Sect. 3.1. Also, the symmetric condition given in parenthesis above is required only

to obtain a pdf of FUSS type.
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5 Distribution of quadratic forms under selection distributions

In many situations, for example such as sample variogram and covariogram estimators,

we are interested in the distribution of a quadratic form

ψ(X − a) = (X − a)T A(X − a), (9)

for any symmetric matrix A and vector a, where the random vector X has a selection

distribution, i.e., X
d= (V|U ∈ C). In this section, we derive the moment generat-

ing function of ψ(X − a) and we explore the conditions under which the invariance

property ψ(X − a)
d= ψ(V − a) holds.

5.1 Selection normal distributions

Suppose that X
d= (V|U ∈ C), where

(

U

V

)

∼ Nq+p

(

ξ∗ =
(

γ

ξ

)

,�∗ =
(

Ŵ �T

� �

))

, (10)

with �∗ a non-singular covariance matrix. From (1), the pdf of the selection normal

distribution of X is

fX(x) = φp(x; ξ ,�)

∫

u∈C
φq(u; γ + �T �−1(x − ξ), Ŵ − �T �−1�)du

∫

u∈C
φq(u; γ , Ŵ)du

. (11)

Here, the notation X ∼ SLCT-Np,q(ξ∗,�∗, C) or more explicitly X ∼ SLCT-

Np,q(ξ , γ ,�, Ŵ,�, C) will be used to say that a random vector X has the selec-

tion normal pdf (11). Considering the latter notation, the following basic properties

follow directly from the genesis of X:

(N1) If � = O, the zero matrix, then the SLCT-Np,q(ξ , γ ,�, Ŵ,�, C) distribution

reduces to the Np(ξ ,�) one, whatever the selection set C and the value of

(γ , Ŵ).

(N2) SLCT-Np,q(ξ , γ ,�, Ŵ,�, C)=SLCT-Np,q(ξ , 0,�, Ŵ,�, C − γ ).

(N3) If C = {u ∈ R
q : u > γ }, then C − γ = {u ∈ R

q : u > 0}, and by (P3) and

(N2) we have SLCT-Np,q(ξ , γ ,�, Ŵ,�, C) = SLCT -Np,q(ξ , 0,�, DŴD,

�D, C − γ ) for any diagonal matrix D > 0.

(N4) If X ∼ SLCT -Np,q(ξ , γ ,�, Ŵ,�, C), then for any r × p matrix B and vector

b ∈ R
p, we have BX+b ∼ SLCT -Nr,q(Bξ +b, γ , B�BT , Ŵ, B�, C), which

by (N1) reduces to the Nr (Bξ + b, B�BT ) distribution when B� = O.

When C = {u ∈ R
q : u > 0}, (11) reduces to the SUN pdf of Arellano-Valle and

Azzalini (2006) given by

fX(x) = φp(x; ξ ,�)
�q(γ + �T �−1(x − ξ);Ŵ − �T �−1�)

�q(γ ; 0, Ŵ)
.
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Under this SUN distribution, Arellano-Valle and Azzalini (2006) showed that for any

p × p symmetric matrix A, the quadratic form ψ(X − ξ) = (X − ξ)T A(X − ξ) has

mgf given by

Mψ(X−ξ)(t) = |Ip − 2t A�|−1/2 �q(γ ; 0, Ŵ + 2t�T (Ip − 2t A�)−1 A�)

�q(γ ; 0, Ŵ)
,

from which it follows that ψ(X − ξ)
d= ψ(V − ξ), where V ∼ Np(ξ ,�), i.e.,

Mψ(X−ξ)(t) = Mψ(V−ξ)(t) = |Ip − 2t A�|−1/2, ∀ t : Ip − 2t A� > 0,

under each of the following situations:

1. A� = O. Moreover, if A has rank r and A�A = A, then |Ip − 2t A�|−1/2 =
(1 − 2t)−r/2, i.e., ψ(X − ξ) ∼ χ2

r .

2. γ = 0, A = �−1 and Ŵ and �T �−1� are diagonal matrices. In this case,

ψ(X − ξ) ∼ χ2
p.

3. γ = 0, with q = 1.

Remark 1 The invariance result under the condition A� = O is actually a direct

consequence of (N4), since we can write A = BT B, for some r × p matrix B of

rank r, and so A� = O ⇔ B� = O. However, a more formal proof follows

by noting that ψ(X − a) = ‖B(X − a)‖2, where by definition (see also (P2b))

BX
d= (BV|U ∈ C)

d= BV, since Cov(BV, U) = B� = O, i.e., BV and U are

independent. Hence ‖B(X − a)‖2 d= ‖B(V − a)‖2, where V ∼ Np(ξ ,�).

We consider next the more general selection normal distribution (11) to study the

distribution of the quadratic form (9). For this we need some preliminary results on

the mgf of quadratic forms in normal random vectors (see also Khatri 1980, Eq. 3.4).

Lemma 1 Let ψ(Y − a) = (Y − a)T A(Y − a), where Y ∼ Nd(µ, �). Then

Mψ(Y−a)(t) = exp{t (a − µ)T (Ip − 2t A�)−1 A(a − µ)}
|Id − 2t A�|1/2

.

Proof Since Mψ(Y−a)(t) =
∫

Rd exp{t (y − a)T A(y − a)}φd(y;µ, �)dy, the proof

follows by considering the identities:

(y − a)T A(y−a) = (y−µ)T A(y − µ) + 2(a−µ)T A(y − µ) + (a − µ)T A(a − µ)

and

t (y − a)T A(y − a) − 1

2
(y − µ)T �−1(y − µ)

= −1

2

(

y − µ − 2t (�−1 − 2t A)−1 A(a − µ)
)T

×(�−1 − 2t A)(y − µ − 2t (�−1 − 2t A)−1 A(a − µ))

+ t (a − µ)T [A + 2t A(�−1 − 2t A)−1 A](a − µ),
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Invariance of quadratic forms 371

and so

exp{t (y − a)T A(y − a)}φd(y;µ, �)

= exp{t (a − µ)T [A + 2t A(�−1 − 2t A)−1 A](a − µ)}
|Id − 2t A�|1/2

×φd(y;µ + 2t (�−1 − 2t A)−1 A(a − µ), (�−1 − 2t A)−1),

from where the proof follows by noting that A + 2t A(�−1 − 2t A)−1 A = (Ip −
2t A�)−1 A. ⊓⊔

Proposition 1 Let ψ(X − a) = (X − a)T A(X − a), where X ∼ SLCT -Np,q

(ξ∗,�∗, C). Then,

Mψ(X−a)(t)

= exp{t (a − ξ)T (Ip − 2t A�)−1 A(a − ξ)}
|Ip − 2t A�|1/2

×
∫

u∈C
φq(u; γ + 2t�T (Ip − 2t A�)−1 A(a − ξ), Ŵ + 2t�T (Ip − 2t A�)−1 A�)du

∫

u∈C
φq(u; γ , Ŵ)du

.

Proof Note first by (10) that (V|U = u) ∼ Np(ξ + �Ŵ−1(u − γ ),� − �Ŵ−1�T )

and U ∼ Nq(γ , Ŵ). Thus, by applying (5) in (P2) we have

Mψ(X−a)(t) =
∫

u∈C
Mψ(V−a)|U=u(t)φq(u; γ , Ŵ)du

∫

u∈C
φq(u; γ , Ŵ)du

, (12)

where by Lemma 1, with µ = ξ + �Ŵ−1(u − γ ) and � = � − �Ŵ−1�T ,

Mψ(V−a)|U=u(t) = exp{t (By + b)T G(By + b)}
|Ip − 2t A(� − �Ŵ−1�T )|1/2

,

where y = u − γ , b = ξ − a, B = �Ŵ−1 and G = A + 2t A[(� − �Ŵ−1�T )−1 −
2t A]−1 A, which can be re-written as G = [Ip − 2t A(� − �Ŵ−1�T )]−1 A. Consid-

ering now the identities

(By + b)T G(By + b) = yT BT G By + 2yT BT Gb + bT Gb

and

t (By + b)T G(By + b) − 1

2
yT Ŵ−1y = −1

2
(y − 2t H BT Gb)T H−1(y − 2t H BT Gb)

+ tbT (G + 2tG B H BT G)b,
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where H = (Ŵ−1 − 2t BT G B)−1, we have in (12) that

Mψ(V−a)|U=u(t)φq(u; γ , Ŵ) = exp{t (By + b)T G(By + b)}
|Ip − 2t A(� − �Ŵ−1�T )|1/2

φq(y; 0, Ŵ)

= exp{tbT [G + 2tG B H BT G]b}
|Ip − 2t A(� − �Ŵ−1�T )|1/2|Iq − 2t BT G BŴ|1/2

×φq(y; 2t H BT Gb, H).

From the facts that BŴBT = �Ŵ−1�T and G = [Ip − 2t A(� − �Ŵ−1�T )]−1 A, it

follows that

|Iq − 2t BT G BŴ| = |Ip − 2t A�|
|Ip − 2t A(� − �Ŵ−1�T )| .

Thus, since y = u − γ , we have for the numerator in (12) that

∫

u∈C

Mψ(V−a)|U=u(t)φq(u; γ , Ŵ)du = exp{tbT [G + 2tG B H BT G]b}
|Ip − 2t A�|1/2

×
∫

u∈C

φq(u; γ + 2t H BT Gb, H)du,

which concludes the proof, by noting that H = Ŵ + 2t�T (Ip − 2t A�)−1 A�, and so

H BT G = �T (Ip − 2t A�)−1 A = �T A(Ip − 2t�A)−1 and G + 2tG B H BT G =
(Ip − 2t A�)−1 A. ⊓⊔

Proposition 2 Let ψ(X − a) = (X − a)T A(X − a), where X ∼ SLCT -Np,q

(ξ∗,�∗, C), and let V ∼ Np(ξ ,�). Then, ψ(X − a)
d= ψ(V − a) under each of

the following conditions:

(i) C = {u ∈ R
q : u > γ }, a = ξ , A = �−1, and Ŵ and �T �−1� are diagonal

matrices.

(ii) C = {u ∈ R
q : u > γ }, A(a − ξ) = 0 and q = 1.

(iii) A� = O.

Proof By Proposition 1 and Lemma 1, with Y = V,µ = ξ and � = �, we have that

Mψ(X−a)(t) = Mψ(V−a)(t) for all t where they are defined if and only if the following

identity holds:

∫

u∈C
φq(u; γ +2t�T (Ip−2t A�)−1 A(a−ξ), Ŵ+2t�T (Ip−2t A�)−1 A�)du

∫

u∈C
φq(u; γ , Ŵ)du

= 1.

From the latter, the proofs of (i)–(iii) follow easily, considering, in particular, that

condition (iii) implies �T (Ip − 2t A�)−1 A = [(Ip − 2t�A)−1 A�]T = O. ⊓⊔
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Remark 2 In (i)–(ii), we note by the condition ξ − a = 0 or A(ξ − a) = 0 that

ψ(X − a) = ψ(X − ξ). Moreover, the conditions on C and on Ŵ are equivalent to

assuming (without loss of generality) that γ = 0 and Ŵ = Iq , respectively (see (N3)).

In the case (iii), we note that the condition A� = O has sense when p > 1, which

holds for any matrix A of the form A = P − P�(�T P�)−1�T P, where P is a p× p

symmetric matrix. Moreover, when the matrix P has rank r and P�P = P, we have

that A has rank r and A�A = A.

Corollary 1 Letψ(X−a) = (X−a)T A(X−a),where X ∼ SLCT -Np,q(ξ∗,�∗, C),

a ∈ R
p is a fixed column vector and A is a symmetric p × p fixed matrix of rank r . If a

and A are such that A(a − ξ) = 0 and A�A = A, then ψ(X − a) = ψ(X − ξ) ∼ χ2
r

under each of the conditions (i)–(iii) of Proposition 2.

Proof Since A(ξ − a) = 0, it is clear that ψ(X − a) = ψ(X − ξ). Now, note by

applying the condition A(ξ − a) = 0 in Proposition 1 that

Mψ(X−a)(t) = |Ip − 2t A�|−1/2

∫

u∈C
φq(u; γ , Ŵ + 2t�T (Ip − 2t A�)−1 A�)du

∫

u∈C
φq(u; γ , Ŵ)du

,

where, from the conditions that A has rank r and A�A = A, |Ip − 2t A�|−1/2 =
(1 − 2t)−r/2. Thus, the proof follows by noting that under each of the conditions

(i)–(iii) we have

∫

u∈C
φq(u; γ , Ŵ + 2t�T (Ip − 2t A�)−1 A�)du

∫

u∈C
φq(u; γ , Ŵ)du

= 1,

and so Mψ(X−a)(t) = (1 − 2t)−r/2. ⊓⊔

Remark 3 Since (V|U) ∼ Np(ξ + �Ŵ−1(U − γ ),� − �Ŵ−1�T ) by (10), we have

that the condition A� = O implies that ψ(V−a) = (V−a)T A(V−a) is independent

of U, hence ψ(X −a)
d= (ψ(V −a)|U ∈ C)

d= ψ(V −a) by (P2), see also Remark 1.

5.2 Selection elliptical distributions

We consider now a selection elliptical random vector X
d= (V|U ∈ C), where

(

U

V

)

∼ ECq+p

(

ξ∗ =
(

γ

ξ

)

, �∗ =
(

Ŵ �T

� �

)

, h(q+p)

)

, (13)

with �∗ a positive definite dispersion matrix. By (1), it has a selection pdf given by

fX(x) = f p(x; ξ ,�, h(p))

×
∫

u∈C
fq(u; γ + �T �−1(x − ξ), Ŵ − �T �−1�, h

(q)

w(x)
)du

∫

u∈C
fq(u; γ , Ŵ, h(q))du

, (14)
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where fk(y;µ, �, h(k)) = |�|−1/2h(k)[(y −µ)T �−1(y −µ)], w(x) = (x − ξ)T �−1

(x − ξ) and h
(p)
w (u) = h(q+p)(u + w)/h(q)(w). Here, the notation X ∼ SLCT -

EC p,q(ξ∗,�∗, h(q+p), C) or, more explicitly, X ∼ SLCT -EC p,q(ξ , γ ,�, Ŵ,�,

h(q+p), C), will be used to say that a random vector X has the selection elliptical pdf

(14). From the latter notation, the basic properties (N1)–(N4) of the selection normal

distribution can also be extended easily to this case. When C = {u ∈ R
q : u > 0},

(14) reduces to the SUE pdf introduced by Arellano-Valle and Azzalini (2006) given

by

fX(x) = f p(x; ξ ,�, h(p))
Fq

(

γ + �T �−1(x − ξ); 0, Ŵ − �T �−1�, h
(q)

w(x)

)

Fq(γ ; 0, Ŵ, h(q))
.

(15)

Under (15) we have ψ(X − ξ) = (X − ξ)T �−1(X − ξ) has the same distribution

as ψ(V − ξ) = (V − ξ)T �−1(V − ξ), where V ∼ EC p(ξ ,�, h(p)), when γ = 0

and q = 1. In fact, under such conditions, (15) is in the generalized skew-elliptical

class of pdf’s introduced by Genton and Loperfido (2005), with skewing function

F1(δ
T �−1(x − ξ); 0, 1 − δT �−1δ, h

(1)
w(x)

), for which the invariance property holds

for any even function of �−1/2(X−ξ). It is not clear if this fact can be extended to the

full SUE class when q > 1, and thus to the selection elliptical distributions. However,

under the latter class we can give the following result.

Proposition 3 Let ψ(X−a) = (X−a)T A(X−a), where X ∼ SLCT-EC p,q(ξ∗,�∗,
h(q+p), C), a ∈ R

p is a fixed column vector and A is a symmetric p × p fixed matrix

of rank r . If A� = O, and C = {u ∈ R
q : u > γ }, then ψ(X − a)

d= ψ(V − a) =
(V − a)T A(V − a), where V ∼ EC p(ξ ,�, h(p)).

Proof Note first that the condition on C implies that C−γ = {u ∈ R
q : u > 0}, so that

without loss of generality we can assume that γ = 0. Now, let B be a r × p matrix of

rank r such that BT B = A. Without loss of generality assume that a = ξ = 0. Thus we

need to show, under the above conditions, that ψ(X) = ‖BX‖2 and ψ(V) = ‖BV‖2

are equally distributed. By (P2), BX
d= (BV|U > 0), where from (13)

(

U

BV

)

∼ ECq+r

((

0

0

)

,

(

Ŵ (B�)T

B� B�BT

)

, h(q+r)

)

. (16)

Thus, to prove the result, we note that the condition A� = O is equivalent to B� = O,

i.e., in (16), U and BV are uncorrelated elliptical random vectors. Hence, BX
d= BV

(see Sect. 3.2) and ψ(X)
d= ψ(V) by (P2). ⊓⊔
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5.3 Scale mixtures of selection normal distributions

An important subclass of selection elliptical distributions is obtained when the joint

distribution of U and V is such that

[(

U

V

)
∣
∣
∣W = w

]

∼ Nq+p

(

ξ∗ =
(

γ

ξ

)

, w�∗ =
(

wŴ w�T

w� w�

))

, (17)

for some non-negative random variable W with cdf G. Some properties and examples
of the resulting selection elliptical subfamily are considered in Arellano-Valle et al.

(2006). For instance, we note that any selection random vector X
d= (V|U ∈ C) that

follows from (17) can be represented as (X|W = w) ∼ SLCT -Np,q(ξ∗, w�∗, C),

where W ∼ G. In particular, for the pdf of X we have fX(x) =
∫ ∞

0 fX|W=w(x)dG(w),
where fX|W=w(x) is the selection normal pdf (11) with �∗ replaced by w�∗, i.e.,

fX(x) =
∫ ∞

0
φp(x; ξ , w�)

∫

u∈C �q (u; γ + �T �−1(x − ξ), w{Ŵ − �T �−1�})du
∫

u∈C �q (u; γ , wŴ)du
dG(w).

Similarly, the mgf of ψ(X − a) = (X − a)T A(X − a) can be computed as

Mψ(X−a)(t) =
∫ ∞

0

Mψ(X−a)|W=w(t)dG(w),

where, by Proposition 1, with (Ŵ,�,�) replaced by (wŴ,w�,w�), we obtain for
the conditional mgf Mψ(X−a)|W=w(t) that

Mψ(X−a)|W=w(t) = Mψ(V−a)|W=w(t)

×
∫

u∈C
φq (u; γ +2tw�T (Ip −2twA�)−1 A(a−ξ), wŴ+2tw2�T (Ip −2twA�)−1 A�)du

∫

u∈C
φq (u; γ , wŴ)du

,

(18)

and, by Lemma 1,

Mψ(V−a)|W=w(t) = exp{t (a − ξ)T (Ip − 2twA�)−1 A(a − ξ)}
|Ip − 2twA�|1/2

since (V|W = w) ∼ Np(ξ , w�).

Thus, we can extend the results given in Proposition 2 for the selection normal

distribution to the more general subclass of selection elliptical distributions defined

above.

Proposition 4 Let ψ(X − a) = (X − a)T A(X − a), where (X|W = w) ∼ SLCT-

Np,q(0, w�∗, C) for some non-negative random variable W ∼ G, fixed column vec-

tor a ∈ R
p, and fixed symmetric p× p matrix A of rank r. Then, ψ(X−a)

d= ψ(V−a),

where (V|W = w) ∼ Np(ξ , w�), under each of the conditions (i)–(iii) of Proposi-

tion 2.
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Proof Under each of the conditions (i)–(iii) given in Proposition 2 we have in (18) that

Mψ(X−a)|W=w(t) = Mψ(V−a)|W=w(t) for all t and each w > 0. Thus, ψ(X − a)
d=

ψ(V − a), where V is such that (V|W = w) ∼ Np(ξ , w�). ⊓⊔

From Proposition 4 , we can also extend the result in Corollary 1 as follows.

Corollary 2 Let ψ(X − a) = (X − a)T A(X − a), where (X|W = w) ∼ SLCT-

Np,q(ξ∗, w�∗, C), for some non-negative random variable W ∼ G, fixed column

vector a ∈ R
p, and fixed symmetric p × p matrix A of rank r. If a and A are such that

A(a − ξ) = 0 and A�A = A, then, under each of the conditions (i)–(iii) of Propo-

sition 2, we have ψ(X − a) = ψ(X − ξ)
d= W S, where S ∼ χ2

r and is independent

of W .

Proof Note first by applying the condition A(ξ − a) = 0 in (18) that

Mψ(X−a)|W=w(t)

= |Ip − 2twA�|−1/2

∫

u∈C
φq(u; γ , wŴ + 2tw2�T (Ip − 2twA�)−1 A�)du

∫

u∈C
φq(u; γ , wŴ)du

,

where from the conditions that A has rank r and A�A = A, |Ip − 2twA�|−1/2 =
(1 − 2wt)−r/2. Note now that for each of the conditions (i)–(iii) of Proposition 2 we

have

∫

u∈C
φq(u; γ , Ŵ + 2t�T (Ip − 2t A�)−1 A�)du

∫

u∈C
φq(u; γ , Ŵ)du

= 1,

and so Mψ(X−a)|W=w(t) = (1 − 2wt)−r/2, i.e., (ψ(X − a)|W = w)
d= wS, where

S ∼ χ2
r does not dependent on w. Hence ψ(X − a)

d= W S, where W and S are

independent. Finally, we note that the condition A(a − ξ) = 0 implies also that

ψ(X − a) = ψ(X − ξ). ⊓⊔

Additional properties of this subclass of selection elliptical models can be explored

for particular choices of C. For example, when C = {u ∈ R
q : u > γ }, we have the

stochastic representation (19) presented in Lemma 2 below. In such case, the resulting

selection distributions belong to the SUE family considered by Arellano-Valle and

Azzalini (2006). The special case of the multivariate skew-t distribution that follows

when G is the inverse Gamma I G(ν/2, ν/2) distribution is studied in some details by

these authors.

Lemma 2 Let X
d= (V|U ∈ C), where [(UT , VT )T |W = w] ∼ Nq+p(ξ∗, w�∗) for

some non-negative random variable W with cdf G. If C = {u ∈ R
q : u > γ }, then

X
d= ξ +

√
W XN , (19)

where XN ∼ SU Np,q(0,�∗) and is independent of W.
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Proof By (17), (UT , VT )T d= (γ T +
√

W UT
N , ξ T +

√
W VT

N )T , where (UT
N , VT

N )T ∼
Nq+p(0,�∗) and is independent of W. Thus, since C = {u ∈ R

q : u > γ } we have

by (P2) and the independence between W and (UT
N , VT

N )T that

X
d= (V|U > γ )

d=
(

ξ +
√

W VN |γ +
√

W UN > γ
)

d= ξ +
√

W (VN |UN > 0)
d= ξ +

√
W XN ,

where XN
d= (VN |UN > 0) ∼ SUNp,q(0,�∗) and is independent of W. ⊓⊔

For the subfamily of selection distributions defined by (19), the results in Proposi-

tion 4 and Corollary 2 are more direct, since

ψ(X − ξ)
d= Wψ(XN ),

where ψ(XN ) = XT
N AXN and is independent of W. Moreover, since XN ∼

SUNp,q(0,�∗) we have ψ(XN ) ∼ χ2
r , where r is the rank of A, under each of

the following conditions:

(a) A = �−1, and Ŵ and �T �−1� are diagonal matrices.

(b) A� = O and A�A = A.

6 Application to sample variogram and covariogram estimators

We study the application of the previous invariance results to sample variogram and

covariogram estimators in spatial statistics. Kim et al. (2004) have shown that skew-

normal processes are useful for spatial prediction of rainfall. Allard and Naveau (2007)

have proposed a spatial skew-normal random field based on the observation that skew-

ness is often present in geostatistical data. The construction of their field is made via

a selection mechanism as described in this paper. This motivates the small simulation

study reported below.

Let {X (s) : s ∈ D ⊂ R
d}, d ≥ 1, be a second-order stationary spatial process

in a region D. The estimator of the variogram of this process, based on a sample

X = (X (s1), . . . , X (sp))
T , is a quadratic form given by

ψ1(X; h) = 1

|N (h)|
∑

N (h)

(X (si ) − X (s j ))
2 = XT A(h)X, (20)

where N (h) = {(si , s j ) : si − s j = h ∈ D} and A(h) is a spatial design matrix of the

data at lag h; see Gorsich et al. (2002), and Hillier and Martellosio (2006). Similarly,

the sample covariogram estimator is a quadratic form given by

ψ2(X; h) = 1

|N (h)|
∑

N (h)

(X (si ) − X̄)(X (s j ) − X̄) = XT A(h)X, (21)
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Fig. 1 Boxplots of sample autocovariance estimates at various lags under the normal (yellow light shading)

and skew-normal (green dark shading) distributions

where X̄ = 1
p

∑p

i=1 X (si ) and A(h) is a spatial design matrix of the data at lag h.

When d = 1, the expression (21) reduces to the sample autocovariance estimator of a

second-order time series process given by the quadratic form

ψ3(X; h) = 1

p − h

p−h
∑

i=1

(X (i + h) − X̄)(X (i) − X̄) = XT A(h)X, (22)

where A(h) = M D(h)M , D(0) = Ip, D(h) = (1/[2(p − h)])(P(h) + P(h)T ),

P(h) =
∑p−1

i=h ei e
T
i , ei = (0, . . . , 0, 1i , 0, . . . , 0)T ∈ R

p, and M = Ip − Jp is the

centering matrix, Jp = (1/p)1p1T
p , M2 = M , tr{M} = p − 1.

In the definition of the above statistics, we are assuming that a = ξ , and ξ = ξ1p

due to stationarity. Because the matrix A(h) satisfies the condition A(h)1p = 0,

we have ψ(X − ξ) = ψ(X). By assumption A(h)(a − ξ) = 0. Thus, according to

Proposition 3, for the SUE class of distributions, a condition to obtain invariance for

any of the above statistics is that A(h)� = O. Since, by assumption, A(h)1p = 0,

the condition A(h)� = O holds for example when � = δ1p1T
q or, more generally,

when � = 1pδ
T , where δ = (δ1, . . . , δq)T . However, according to Proposition 4,

A(h)� = O yields invariance for the scale mixtures of the selection normal model

whatever the selection subset C .

Next, we illustrate the previous results for d = 1, i.e., in the context of time

series. We simulate 1,000 samples of size p = 100 from a normal and a skew-normal

(Azzalini and Dalla Valle 1996) distribution, i.e., X∼ Np(0, �) and X∼ SNp(0, �,α),

where � is the correlation matrix of an AR(1) process with correlation 0.5 and

α = (1 − δT �−1δ)−1�−1δ with δ = 0.15 1p . On each sample, we estimate the

autocovariance with the estimator ψ3(X; h) for h = 0, 1, 2, 3, 4. Figure 1 depicts

boxplots of the estimates at those lags under the normal (yellow light shading) and
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skew-normal (green dark shading) distributions. It can be appreciated that the distribu-

tion of the sample autocovariance estimator does not change in presence of skewness

for that class of distributions.

7 Discussion

We have studied conditions under which an invariance property holds for the class of

selection distributions. In particular, we have focused on the distribution of quadratic

forms and described the implication of the invariance on sample variogram and

covariogram estimators in spatial statistics. We have illustrated the latter situation

by means of a small simulation study.

The invariance property studied in this paper has also implications in other impor-

tant settings. For example, consider a linear model (multiple regression) X = ξ + e,

with ξ = Zβ, where Z is a p × k known matrix of rank k, β ∈ R
k is a vector of

unknown parameters and e ∈ R
p is an error random vector. For the classical normal

linear model, we have e ∼ Np(0, σ 2 Ip). Let z1, . . . , zk be the columns of Z an sup-

pose that z1 = 1p, i.e., ξ = Zβ = β11p + β2z2 + · · · + βkzk . Let also ξ̂ = PX

and ê = X − ξ̂ = (Ip − P)X, where P = Z(Z T Z)−1 Z T , be the classical linear

predictor and residual vectors, respectively, and consider the well known variance

decomposition:

p
∑

i=1

(X i − X̄)2

︸ ︷︷ ︸

SST

=
p

∑

i=1

(ξ̂i − X̄)2

︸ ︷︷ ︸

SSR

+
p

∑

i=1

ê2
i

︸ ︷︷ ︸

SSE

�
‖X − X̄1p‖2 = ‖ξ̂ − X̄1p‖2 + ‖ê‖2

�
XT (Ip − Jp)X
︸ ︷︷ ︸

ψ4(X)

= XT (P − Jp)X
︸ ︷︷ ︸

ψ5(X)

+ XT (Ip − P)X
︸ ︷︷ ︸

ψ6(X)

,

where SST, SSR, and SSE represent the total, regression, and error sums of squares,

respectively. Thus, the three statistics ψ4, ψ5 and ψ6 are quadratic forms for which

a = ξ and the associated matrix A satisfies the condition A1p = 0, since P Z = Z

and so P1p = 1p. Hence, by Proposition 4, if we consider the class of selection linear

models obtained as scale mixtures of the normal linear model defined above, with

skewness matrix of the form � = 1pδ
T , for some δ ∈ R

q , then the distribution of

ψi (X), i = 4, 5, 6, is neither affected by the skewness parameter nor by the selection

subset C. Within that class of selection linear models, we have also that the Fisher

statistic is robust (in distribution). In fact, since this statistic is given by

T (X) =
(

p − k

k − 1

)
(

XT (P − Jp)X

XT (Ip − P)X

)

=
(

p − k

k − 1

) (
ψ5(X)

ψ6(X)

)

,
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we have that it satisfies the invariance by the common rescaling condition T (ax) =
T (x), for all a > 0, and so T (X)

d= T (V)
d= T (V0), for all V ∼ EC p(Zβ, σ 2 Ip, h(p))

random vectors, where V0 ∼ Np(Zβ, σ 2 Ip), see, e.g., Fang et al. (1990). In particular,

under the null hypothesis H0 : β2 = β3 = · · · = βk = 0, we have T (X) ∼ Fk−1,p−k .

The extension of this result to the more general Fisher statistic given by

T (X) =
(

p − k

k − k0

) (
XT (P − P0)X

XT (Ip − P)X

)

,

is straightforward. Here, P0 is a p×p projection matrix, with tr(P0) = k0 (1 ≤ k0 < k)

and P0 P = P0. In fact, if we consider the condition that P0� = �, then we have

that P� = �, and so that (P − P0)� = O and (Ip − P)� = O. In particular, if

the skewness matrix has the form � = 1pδ
T , then the above invariance condition

reduces to P01p = 1p. In such situations, the distribution of T (X) will be invari-

ant within the full class of selection elliptical distributions when the selection subset

C = {u ∈ R
q : u > γ } (see Proposition 3), and within the normal scale mixtures

subclass whatever the selection subset C. In such settings, more general null hypoth-

eses of the form H0 : Bβ = 0, where B is a (k − k0) × k matrix of rank k − k0, can

be tested by using the fact that, under H0, T (X) ∼ Fk−k0,p−k . The aforementioned

invariances follow from the fact that in such a class of models all the components of

the error term have a common random scale factor (see, e.g., Breusch et al. 1997).

Another well known statistic that has the same invariance property under the con-

ditions considered above is the Durbin–Watson (DW) statistic. It is used in time series

for testing the null hypothesis that there is not serial correlation in the error terms

e1, . . . , ep and is given by

DW =
∑p

i=2(êi − êi−1)
2

∑p
i=1 ê2

i

= XT (Ip − P)DT D(Ip − P)X

XT (Ip − P)X
,

where D is the (p−1)×p difference matrix such that Dx = (x2−x1, . . . , x p−x p−1)
T .

For this, the assumption that the ei s follow an AR(1) process is incorporated in the

linear model considered above. In the spatial setting, the analogues to the Durbin–

Watson statistic are Moran’s I and Geary’s c. Both of them are defined by means of

quadratic forms and therefore will possess the invariance property described in this

paper.
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