
AN INVARIANT FOR SINGULAR KNOTS

J. JUYUMAYA AND S. LAMBROPOULOU

Abstract. In this paper we introduce a Jones-type invariant for singular knots, using
a Markov trace on the Yokonuma–Hecke algebras Yd,n(u) and the theory of singular
braids. The Yokonuma–Hecke algebras have a natural topological interpretation in the
context of framed knots. Yet, we show that there is a homomorphism of the singular
braid monoid SBn into the algebra Yd,n(u). Surprisingly, the trace does not normalize
directly to yield a singular link invariant, so a condition must be imposed on the trace
variables. Assuming this condition, the invariant satisfies a skein relation involving
singular crossings, which arises from a quadratic relation in the algebra Yd,n(u).

1. Introduction

A singular link on n components is the image of a smooth immersion of n copies of
the circle in S3, that has finitely many singularities, called singular crossings, which are
all ordinary double points. So, a singular link is like a classical link, but with a finite
number of transversal self-intersections permitted. A singular link on one component is a
singular knot. Some examples of singular knots and links are given in Figure 8. We shall
say ‘knots’ throughout meaning ‘knots and links’.

Two singular links K1, K2 are isotopic, that is, topologically equivalent, if there is an
orientation preserving self-homeomorphism of S3 carrying one to the other, such that it
preserves a small rigid disc around each singular crossing (rigid-vertex isotopy). In terms
of diagrams, K1, K2 are isotopic if and only if any two diagrams of theirs differ by planar
isotopy and a finite sequence of the classical and the singular Reidemeister moves. In
Figure 1 we illustrate the main two singular Reidemeister moves. The others are the
obvious variants of these, with different crossings.
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Figure 1. The singular Reidemeister moves

By their definition, singular links may admit a well-defined orientation on each com-
ponent. Then the isotopy moves are considered with all possible orientations. It is a
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well–known fact that every isotopy invariant L of classical oriented links extends to an
invariant of singular oriented links, by means of the rule:

L(L×) = L(L+)− L(L−)

where L+, L− and L× are identical diagrams, except for the place of one crossing, where
it is positive, negative or singular respectively (see Figure 7).

A singular braid on n strands is the image of a smooth immersion of n arcs in S3,
that has finitely many singularities, the singular crossings, which are all ordinary double
points, such that the ends are arranged into n collinear top endpoints and into n collinear
bottom endpoints and such that there are no local maxima or minima. So, a singular
braid is like a classical braid, but with a finite number of singular crossings allowed.

Two singular braids are isotopic if there is a rigid-vertex isotopy taking one to the other,
which fixes the endpoints of the strands and preserves the braid structure. Algebraically,
the set of singular braids on n strands, denoted SBn, forms a monoid with the usual
concatenation of braids, the so-called singular braid monoid. It was introduced in different
contexts by Baez[1], Birman[2] and Smolin[12]. SBn is generated by the unit, by the
classical elementary braids σi with their inverses, and by the corresponding elementary
singular braids τi (view Figure 2):

1, σ1, . . . , σn−1, σ
−1
1 , . . . , σ−1

n−1, τ1, . . . , τn−1

which satisfy the relations below. These reflect precisely the singular braid isotopy.

(1)

σiσ
−1
i = σ−1

i σi = 1 for all i
[σi, σj] = [σi, τj] = [τi, τj] = 0 for |i− j| > 1
[σi, τi] = 0 for all i
σiσjσi = σjσiσj for |i− j| = 1
σiσjτi = τjσiσj for |i− j| = 1.

1
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i i + 1

•

τi

i i + 1

Figure 2. The elementary braids σi and τi

The singular braid monoid SBn embeds in a group, the singular braid group, see [3].

The closure of a singular braid is defined like the ordinary closure of a classical braid,
whereby we join the endpoints of corresponding strands by simple arcs. The closure of a
singular braid ω shall be denoted ω̂. In analogy to the classical setting, oriented singular
links may be isotoped to closed singular braids. For a proof of Alexander’s theorem for
singular links see [2].

Let now ∪nSBn denote the inductive limit associated to the natural monomorphisms of
monoids SBn ↪→ SBn+1. In analogy to the Markov theorem for classical braids, Gemein
proved in [4] the following result (compare also with [10] for an L-move version).
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Theorem 1 (Gemein, 1997). Two singular braids in ∪nSBn have isotopic closures if and
only if they differ by singular braid relations and a finite sequence of the following moves:

(i) Real conjugation: σiω ∼ ωσi, ω, σi ∈ SBn

(ii) Singular commuting: τiω ∼ ωτi, ω, τi ∈ SBn

(iii) Real stabilization: ω ∼ ωσ±1
n , ω ∈ SBn

Moves (i) and (iii) of Theorem 1 are the two well–known moves of the classical Markov
theorem for classical braids. Move (ii) is illustrated in Figure 3.

•

•

ω ω∼

Figure 3. Singular commuting

Using the Alexander and Markov theorems for singular links and braids, it is possible
to construct singular link invariants via Markov traces on quotient algebras. Baez[1]
introduced the Vassiliev algebra as the quotient of C SBn ⊗ C(ε) by the ideal generated
by the expressions σi−σ−1

i − ε τi, which give rise to the following relations in the algebra:

gi − g−1
i = ε τi

He then showed that C-valued Vassiliev–Gussarov invariants are in one-to-one correspon-
dence with homogeneous (in ε) Markov traces on the algebra.

More recently, Paris and Rabenda[11] defined the singular Hecke algebra as the quotient
of the algebra C(q)[SBn] by the ideal generated by the well–known quadratic relations
σ2

i − (q − 1)σi − q 1 of the classical Iwahori–Hecke algebra of type A, which give rise to
the following relations in the algebra:

gi − q g−1
i = (q − 1) 1

They also constructed on these algebras singular Markov traces, from which –upon nor-
malization, according to Theorem 1– they derived the universal HOMFLYPT (2-variable
Jones polynomial) analogue for oriented singular links. Kauffman and Vogel[9] con-
structed analogues of the HOMFLYPT and the Kauffman polynomial for singular links
by using diagrammatic methods. For their HOMFLYPT analogue it is shown in [11] that
it is a specialization of the universal HOMFLYPT for singular links (but, as observed in
[11], this specialization does not make much difference).

In the present paper we construct an invariant for singular links using the Yokonuma–
Hecke algebras and Markov traces defined on them. The Yokonuma–Hecke algebra Yd,n(u)
can be defined as a quotient of the modular framed braid group algebra CFd,n (classical
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framed braids with framings modulo d) by the quadratic relations g2
i = 1+(u−1)ei(1−gi)

(here also σi corresponds to gi). The elements ei are certain idempotents in CFd,n and
they are expressions of the framing generators ti, ti+1, see (4). Further, in [6] Juyumaya
constructed a linear Markov trace on the Yokonuma–Hecke algebra Yd,n(u), that is, a
linear trace which supports the Markov property: tr(agn) = z tr(a) for z ∈ C and for any
a ∈ Yd,n(u), see Theorem 3. For details and topological interpretations of the above we
refer the reader to [7] and [8], where the algebras Yd,n(u) and the traces in [6] are used in
the context of classical and p-adic framed braids and framed links.

Here, we first map homomorphically the singular braid monoid SBn into the algebra
Yd,n(u) via the map:

δ : SBn −→ Yd,n(u)
σi 7→ gi

τi 7→ pi = ei(1− gi)

In the image δ(SBn) the following relations hold:

(2) gi − g−1
i = (u−1 − 1)pi

For an illustration of the corresponding quadratic relations (Eq. 7) see Figure 4. We
then consider the Markov trace on Yd,n(u) constructed in [6]. So, we obtain a map from
the singular braid monoid SBn to the complex numbers. A normalization of this trace
according to the singular braid equivalence of Theorem 1 should yield a singular link
invariant. But this turns out not to be the case (not even for the restriction to classical
braids and links). In fact, we need to impose a condition on the variables of the trace,
the ‘E–condition’, see Definition 1. Surprisingly, there are non-trivial sets of complex
numbers satisfying the E–condition. Given now the E–condition we normalize the trace
to obtain an invariant ∆ of singular links (Theorem 5).

To the best of our knowledge, the algebra Yd,n(u) is the first example of an algebra,
which can admit so different topological interpretations: in the context of framed braids as
well as in the context of singular braids. Also, the Markov trace in [6] is the only Markov
trace we know of that does not normalize directly to yield a link invariant. Finally,
it is worth adding that, for modulus d equal to 1, we have ei = 1 and the algebra
Y1,n(u) coincides with the classical Iwahori–Hecke algebra of type A. Also, the trace in
[6] coincides with the Ocneanu trace [5].

We would like to thank the referee of the paper for very useful comments and remarks.

2. The Yokonuma–Hecke algebra and a Markov trace

2.1. Relations in Yd,n(u). We fix a u ∈ C\{0, 1}. The Yokonuma–Hecke algebra, denoted
by Yd,n(u), is a C–associative algebra generated by the elements

1, g1, . . . , gn−1, t1, . . . , tn
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subject to the following relations:

gigj = gjgi for |i− j| > 1
gigjgi = gjgigj for |i− j| = 1

titj = tjti for all i, j
tjgi = gitsi(j) for all i, j

tdj = 1 for all j

where si(j) is the result of applying the transposition si = (i, i + 1) to j, together with
the extra quadratic relations:

(3) g2
i = 1 + (u− 1) ei − (u− 1) ei gi for all i

where

(4) ei :=
1

d

d−1∑
m=0

tmi t−m
i+1

The first four relations are defining relations for the classical framed braid group, with
the tj’s being interpreted as the ‘elementary framings’ (framing 1 on the jth strand).
The relations tdj = 1 mean that the framing of each strand is regarded modulo d. So,
the algebra Yd,n(u) arises naturally as a quotient of the modular framed braid group
algebra over the quadratic relations (3). But in the present paper we shall give a different
topological interpretation to Yd,n(u), in relation to singular knots and links.

It is easily verified that the elements ei are idempotents. Also, that the elements gi are
invertible in Yd,n(u). Indeed:

(5) g−1
i = gi − (u−1 − 1) ei + (u−1 − 1) ei gi

As noted in the Introduction, d = 1 implies ei = 1 and pi = 1−gi. So g2
i = u+(1−u)gi,

and the algebra Y1,n(u) coincides with the Iwahori–Hecke algebra of type A. For more
details on the algebra Yd,n(u) and for further topological interpretations see [7, 8] and
references therein. In Yd,n(u) we have the following relations.

Lemma 1. For the elements ei and for 1 ≤ i, j ≤ n− 1 the following relations hold:

eiej = ejei

eigi = giei

eigj = gjei for|i− j| > 1
ejgigj = gigjei for|i− j| = 1

Proof. The first three claims are easy to check (see Lemma 4 and Proposition 5 in [7]).
We will check the last one. Let j = i + 1. From the defining relations in the algebra
Yd,n(u) we have:
ti+1gigi+1 = gitigi+1 = gigi+1ti. Similarly, ti+2gigi+1 = gigi+1ti+1. Then

ei+1gigi+1 =
1

d

d−1∑
m=0

tmi+1t
−m
i+2gigi+1 =

1

d

d−1∑
m=0

gigi+1t
m
i t−m

i+1 = gigi+1ei.

The proof for j = i− 1 is completely analogous. �
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2.2. The elements pi. For 1 ≤ i ≤ n − 1 we define the elements pi ∈ Yd,n(u) by the
formula:

(6) pi = ei(1− gi)

Then, the quadratic relations (3) in the algebra Yd,n(u) may be rewritten as:

(7) g2
i = 1 + (u− 1)pi

Proposition 1. For the elements pi and for 1 ≤ i, j ≤ n− 1, we have the relations:

eipi = piei = pi

pk
i = (u + 1)k−1pi fork ∈ N

gipi = pigi = −upi

gipj = pjgi for|i− j| > 1
pipj = pjpi for|i− j| > 1

pjgigj = gigjpi for|i− j| = 1

Proof. The proofs follow from Eq. 6, from Lemma 1 and by direct computations. For
example, we shall check the second relation. For k = 2 we have p2

i = ei(1− gi)ei(1− gi) =
e2

i (1 − gi)
2 = ei(1 − 2gi + g2

i ) = ei (1− 2gi + 1 + (u− 1)pi) = 2ei(1 − gi) + (u − 1)eipi.
Then, by the first relation we have p2

i = 2pi + (u − 1)pi = (u + 1)pi. For any k > 2 we
apply induction. �

Note that the elements pi are not invertible in Yd,n(u). We now define for fixed a ∈ C
the following map.

(8)
δa : SBn −→ Yd,n(u)

σi 7→ agi

τi 7→ pi

In particular, we shall denote:

δ := δ1

Theorem 2. The map δa defines a monoid homomorphism.

Proof. The proof follows immediately by comparing relations (1) in SBn with the relations
in Proposition 1. �

2.3. Topological interpretations. We shall now give topological interpretations for the el-
ements of the subalgebra δ(SBn) of the algebra Yd,n(u). By Theorem 2, monomials in
gi, g

−1
i , pi may be viewed as singular braids, such that gi, g

−1
i correspond respectively to

σi, σ
−1
i (for a = 1) and pi corresponds to the singular crossing τi. These elementary braids

are subject to the quadratic relations in Eq. 7. These relations are illustrated in Figure 4,
where, for simplicity, we omit the identity strands. Multiplying Eq. 7 by g−1

i and using
Proposition 1 we obtain the equivalent relation (2).
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= + (u− 1) •

Figure 4. The quadratic relations involve singular crossings

Beyond relations (1), the images of the generators of SBn under the map δ are also
subject to the extra relations pk

i = (u + 1)k−1pi and pigi = −upi of Proposition 1. These
are illustrated in Figures 5 and 6, where the identity strands are also omitted.

= (u + 1)k−1

•

•

•k
...

Figure 5. The relation pk
i = (u + 1)k−1pi

= = −u
•

• •

Figure 6. The relation gipi = pigi = −upi

Note that in this topological set–up there are no obvious interpretations for the gener-
ators ti and the elements ei.

2.4. A Markov trace on Yd,n(u). Let now ∪nYd,n(u) denote the inductive limit associated
to the natural inclusions Yd,n(u) ⊂ Yd,n+1(u). In [6] the following theorem is proved.

Theorem 3 (Juyumaya, 2004). Let z, x1, . . ., xd−1 be in C. There exists a unique linear
map tr on ∪nYd,n(u) with values in C satisfying the rules:

tr(ab) = tr(ba)
tr(1) = 1

tr(agn) = z tr(a) (a ∈ Yd,n(u))
tr(atmn+1) = xmtr(a) (a ∈ Yd,n(u), 1 ≤ m ≤ d− 1).

As noted in the Introduction, for d = 1 the trace restricts to the first three rules and it
coincides with Ocneanu’s trace on the Iwahori–Hecke algebra, which was used to construct
the 2–variable Jones polynomial for classical knots and links, see [5].
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3. The E–condition and an invariant for singular knots

In view of Theorems 1, 2 and 3 we would like to construct an isotopy invariant for
singular knots and links. According to Theorem 1, such an invariant has to agree on the

singular links ω̂, ω̂σn and ω̂σ−1
n , for any ω ∈ SBn. Now, having present the recipe of

Jones[5] for constructing the (2-variable) Jones polynomial for classical knots, we will try
to define an invariant by re-scaling and normalizing the trace tr. By Eq. 5 we have:

tr(ωg−1
n ) = tr(ωgn)− (u−1 − 1)tr(ωen) + (u−1 − 1)tr(ωengn)

In order that the invariant agrees on the closures of the braids ωσn
−1 and ωσn we need

that tr(ωg−1
n ) factorizes through tr(ω). For the first term we have: tr(ωgn) = z tr(ω).

Further:

(9) tr(ωengn) =
1

d

d−1∑
m=0

tr(ωtmn t−m
n+1gn) =

1

d

d−1∑
m=0

z tr(ω) = z tr(ω)

since tr(ωtmn t−m
n+1gn) = tr(ωtmn gnt

−m
n ) = z tr(ωtmn t−m

n ) = z tr(ω).

3.1. The E–condition. From the above analysis it is clear that tr needs to satisfy also the
following multiplicative property:

(10) tr(ωen) = tr(en) tr(ω)

Unfortunately, we do not have such a nice formula for tr(ω en). The underlying reason on
the framed braid level (that is, for the natural interpretation for elements in Yd,n(u)) is
that en involves the nth strand of ω. Yet, by imposing some conditions on the indetermi-
nates xi it is possible to have property (10). Before giving these conditions let us define
the following elements in Yd,n(u):

e
(m)
i :=

1

d

d−1∑
s=0

tm+s
i t−s

i+1 and ei := e
(0)
i

Also, the corresponding elements in C[z, x1, . . . , xd−1]:

ζ(m) :=
1

d

d−1∑
s=0

xs+mxd−s = tr(e
(m)
i ) and ζ := ζ(0) = tr(ei)

where the sub-indices of the indeterminates are regarded modulo d.

Definition 1. We shall say that the set Xd := {x1, . . . , xd−1} of complex numbers satisfies
the E–condition if it satisfies the following system of d− 1 non–linear equations in C:

ζ(m) = xmζ (1 ≤ m ≤ d− 1)

Or, equivalently:

(11)
d−1∑
s=0

xm+sxd−s = xm

d−1∑
s=0

xsxd−s (1 ≤ m ≤ d− 1)

where the sub-indices on the xj’s are regarded modulo d and x0 = xd := 1.
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Surprisingly, there exist non–trivial sets Xd satisfying the E–condition. For example,
taking xi = θi, where θ is a primitive dth root of unity. We note that for this solution
we have ζ = tr(ej) = 1 and tr(pj) = 1 − z. For d = 3, 4 and 5 we run the Mathematica
program and we found other solutions of the E–system, for which:

tr(ej) 6= 1.

For example in the case d = 3, where we have the E–system:

x1 + x2
2 = 2x2

1x2

x2
1 + x2 = 2x1x

2
2

we have the non-trivial solutions:

x1 = x2 = −1

2
or x1 =

1

3

(
1

3
− 3i

√
3

4

)
, x2 =

1

4

(
1 + i

√
3
)

Also, the solution where we take the conjugates in the previous one. Another more
interesting example is the set formed by the elements

xi :=
−(−1)i(d−1)

d− 1
(1 ≤ i ≤ d− 1)

We then have ζ = tr(ej) = 1/(d− 1). For explanations about the somewhat ‘mysterious’
E–condition and for a thorough discussion on the solutions of the E–system we refer the
reader to [8].

3.2. A singular link invariant. We are now close to our aim. Indeed, assuming the E–
condition we have the following.

Theorem 4. If Xd satisfies the E–condition, then for all ω ∈ Yd,n(u) we have

tr(ωen) = tr(en) tr(ω) = ζ tr(ω).

Proof. See [8]. �

Corollary 1. If Xd satisfies the E–condition, then for all ω ∈ Yd,n(u) we have

tr(ωpn) = tr(pn) tr(ω) = (ζ − z) tr(ω).

Proof. By (10) we have: tr(ωpn) = tr(ωen(1 − gn)) = tr(ωen) − tr(ωengn). So, by Theo-
rem 4 and by (9): tr(ωpn) = (ζ − z) tr(ω) = tr(pn) tr(ω). �

We now proceed with the construction of our invariant. From the definition of SBn,
any element ω in SBn can be written as

ωε1
1 ωε2

2 . . . ωεm
m ,

where ωj ∈ {σi, τi ; 1 ≤ i ≤ n− 1} and εi = +1 or −1. If ωj = τj we set εj := +1.

Definition 2. The exponent ε(ω) of ω is defined as the sum ε1 + . . . + εm. Since SBn

embeds in a group [3], ε(ω) is well–defined.

Let now Xd = {x1, . . . , xd−1} be a set satisfying the E–condition and let S be the set
of oriented singular links. We define the following map on the set S.
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Definition 3. Let ω ∈ SBn. We define the map ∆ on the closure ω̂ of ω as follows:

∆(ω̂) :=

(
1− λu√
λ(1− u)ζ

)n−1 (
tr ◦ δ√λ

)
(ω)

where:

λ :=
z − (1− u)ζ

uz
Equivalently, setting

D :=
1− λu√
λ(1− u)ζ

we can write:

∆(ω̂) = Dn−1(
√

λ)ε(ω)tr(δ(ω))

For the definitions of δ√λ and δ recall (8).

Theorem 5. Assuming the E–condition, ∆ is an isotopy invariant for oriented singular
links.

Proof. We need to show that ∆ is well–defined on isotopy classes of oriented singular
links. According to Theorem 1, it suffices to prove that ∆ is consistent with moves (i),
(ii) and (iii). From the facts that ε(ωω′) = ε(ω′ω) and tr(ab) = tr(ba), it follows that ∆
respects moves (i) and (ii). Let now ω ∈ SBn. Then ωσn ∈ SBn+1 and ε(ωσn) = ε(ω)+1.
Hence:

∆(ω̂σn) = Dn(
√

λ)ε(ωσn) tr(δ(ωσn)) = Dn(
√

λ)ε(ω)+1 tr(δ(ω)gn) = D
√

λ z ∆(ω̂)

where we used that tr(δ(ω)gn) = z tr(δ(ω)). Now z = (1−u)ζ
1−λu

, so D
√

λ z = 1. Therefore,

∆(ω̂σn) = ∆(ω̂). Finally, we will prove that ∆(ω̂σ−1
n ) = ∆(ω̂). Indeed:

∆(ω̂σ−1
n ) = Dn(

√
λ)ε(ωσ−1

n )tr(δ(ωσ−1
n )) = Dn(

√
λ)ε(ω)−1 tr(δ(ω)g−1

n )

Resolving g−1
n from Eq. 5 we obtain:

∆(ω̂σ−1
n ) = Dn(

√
λ)ε(ω)−1

[
z − (u−1 − 1)ζ + (u−1 − 1)z

]
tr(δ(ω))

Also, from Theorem 4 and Eq. 9 we have:

tr(δ(ω)en) = ζ tr(δ(ω)) and tr(δ(ω)engn) = z tr(δ(ω)).

Therefore:

∆(ω̂σ−1
n ) = Dn(

√
λ)ε(ω)−1 z + (u− 1)ζ

u
tr(δ(ω)) =

D√
λ

z + (u− 1)ζ

u
∆(ω̂) = ∆(ω̂)

Move (iii) of Theorem 1 is now checked and the proof is concluded. �

Remark 1. The invariant ∆ is not of finite type. Indeed, take for example the link τ̂ k
1 ,

which contains k singular crossings. By the second relation of Proposition 1, we have:

∆(τ̂ k
1 ) = (

√
λ)k(u+1)k−1(ζ−z), which is not equal to zero for all k. Of course, it would be

interesting to consider an exponential variable change, and see if the coefficients become
invariants of finite type as, for example, in the case of the Jones polynomial.
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3.3. Skein relations. Let L+, L− and L× be diagrams of three oriented singular links,
which are identical, except near one crossing, where they are as follows:
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L+ L− L×

Figure 7. L+, L− and L×

Then we have the following result.

Proposition 2. The invariant ∆ satisfies the following skein relation:

(12)
1√
λ

∆(L+)−
√

λ ∆(L−) =
u−1 − 1√

λ
∆(L×)

Proof. The proof is standard. By the Alexander theorem for singular braids we may

assume that L+ is in braided form and that L+ = β̂σi for some β ∈ SBn. Also that

L− = β̂σ−1
i and L× = β̂τi. From the definition of ∆ and by Theorem 5 we have:

1√
λ

∆(L+)−
√

λ ∆(L−) = Dn−1(
√

λ)ε(β)
(
tr(δ(βσi))− tr(δ(βσ−1

i ))
)

Now,

tr(δ(βσi))− tr(δ(βσ−1
i )) = tr(δ(β)gi)− tr(δ1(β)g−1

i )

= tr(δ(β)(gi − g−1
i ))

= (u−1 − 1) tr(δ(β)pi) (from Eq. 2)

= (u−1 − 1) tr(δ(βτi))

Finally, substituting (
√

λ)ε(β) = (
√

λ)−1(
√

λ)ε(βτi) we deduce:

1√
λ

∆(L+)−
√

λ ∆(L−) =
Dn−1

√
λ

(
√

λ)ε(βτi)(u−1 − 1)tr(δ(β)pi) =
u−1 − 1√

λ
∆(L×)

Thus the proof is concluded. �

3.4. Computations. In this subsection we compute the values of the invariant ∆ on some
basic classical and singular knots, assuming always the E–condition. The singular ones are
illustrated in Figure 8. We shall first give some formulas that are useful for computations.
For powers of gi we can easily deduce by induction the following formulae.

Lemma 2. Let m ∈ Z, k ∈ N. (i) For m positive, define:

αm = (u− 1)
∑k−1

l=0 u2l if m = 2k and βm = u(u− 1)
∑k−1

l=0 u2l if m = 2k + 1. Then:

gm
i =

{
1 + αmpi if m = 2k
gi − βmpi if m = 2k + 1
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(ii) For m negative, define:

α′m = u−1(u−1−1)
∑k−1

l=0 u−2l if m = −2k and β′m = (u−1−1)
∑k−1

l=0 u−2l if m = −2k+1.
Then:

gm
i =

{
1 + α′mpi if m = −2k
gi − β′mpi if m = −2k + 1

• •

•

τ̂1σ1 τ̂ 2
1

• • • • •

•

τ̂1σ2
1 τ̂ 2

1 σ1 τ̂ 3
1

Figure 8. Examples of singular knots and links

We now proceed with our computations.

• Clearly, for the unknot O, ∆(O) = 1.

• Let K1 = τ̂1. Then e(τ1) = 1, so ∆(K1) = D
√

λ tr(p1) = D
√

λ [tr(e1) − tr(e1g1)] =

D
√

λ [ζ − z]. Then:

∆(K1) =
ζ − z

z

• Let H = σ̂2
1, the Hopf link. We have tr(g2

1) = tr(1 + (u + 1)p1) = 1 + (u + 1)(ζ − z) and
e(σ2

1) = 2. Then:

∆(H) =
1− λu

(1− u)ζ

√
λ (1 + (u + 1)(ζ − z)) = z−1

√
λ (1 + (u + 1)(ζ − z)) .

• Let H1 = σ̂1τ1. We have tr(g1p1) = −utr(p1) = −u(ζ − z) and e(σ1τ1) = 2. Then:

∆(H1) = − 1− λu

(1− u)ζ

√
λ u(ζ − z) = z−1

√
λu(ζ − z).

• Let H2 = τ̂ 2
1 . We have e(τ 2

1 ) = 2. Then ∆(H2) = Dλ tr(p2
1) = Dλ (u + 1)tr(p1). So:

∆(H2) =
1− λu

(1− u)ζ

√
λ(u + 1)(ζ − z) = z−1

√
λ(u + 1)(ζ − z).
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• Let T = σ̂3
1, the right-handed trefoil. We have g3

1 = g1− u(u− 1)e1 + u(u− 1)e1g1 from
(Lemma 2). Hence: tr(g3

1) = z− u(u− 1)ζ + u(u− 1)z. Moreover e(σ3
1) = 3. Then, using

that 1− λu = z−1ζ(1− u), we obtain:

∆(T) = D(
√

λ)3 [(u(u− 1) + 1)z − u(u− 1)ζ]

=
λ

z
[(u(u− 1) + 1)z − u(u− 1)ζ] .

• Let T1 = τ̂1σ2
1. We have p1g

2
1 = −up1g1 = u2p1 so, tr(p1g

2
1) = u2(ζ − z). Moreover,

e(τ1σ
2
1) = 3. Then

∆(T1) = D(
√

λ)3tr(p1g
2
1) =

u2λ

z
(ζ − z).

• Let T2 = τ̂ 2
1 σ1. We have p2

1g1 = −u(u+1)p1 so, tr(p2
1g1) = −u(u+1)(ζ − z). Moreover,

e(τ 2
1 σ1) = 3. Then:

∆(T2) = D(
√

λ)3tr(p2
1g1) =

−u(u + 1)λ

z
(ζ − z).

• Let T3 = τ̂ 3
1 . We have p3

1 = (u+1)2p1, so tr(p3
1) = (u+1)2(ζ − z). Moreover, e(τ 3

1 ) = 3.
Then:

∆(T3) = D(
√

λ)3tr(p3
1) =

(u + 1)2λ

z
(ζ − z).
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