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AN INVARIANT OF TANGLE COBORDISMS

MIKHAIL KHOVANOV

Abstract. We construct a new invariant of tangle cobordisms. The invari-
ant of a tangle is a complex of bimodules over certain rings, well-defined up
to chain homotopy equivalence. The invariant of a tangle cobordism is a ho-
momorphism between complexes of bimodules assigned to boundaries of the
cobordism.

1. Introduction

In [9] to a plane diagram D of an oriented tangle T with 2n bottom and 2m top
endpoints we associated a complex F(D) of (Hm, Hn)-bimodules, for certain rings
Hn. We proved that the isomorphism class of this complex in the homotopy category
is an invariant of T. In this paper we give a short argument that our construction
yields an invariant of tangle cobordisms. To a diagram of an oriented cobordism
between diagrams D1 and D2 of tangles T1 and T2 we assign a homomorphism of
complexes F(D1) → F(D2) and then check that (in the homotopy category) this
homomorphism depends on the choice of a diagram of the cobordism only up to
the overall minus sign. The result follows from the basic properties of rings Hn and
Hn-bimodules assigned to tangle diagrams.

For link cobordisms this result was recently obtained by Magnus Jacobsson [6]
in a different way (see also [10] for motivations).

2. 2-tangles

The analogue of Reidemeister moves for surfaces embedded in R
4 was found by

Roseman [11] and investigated in depth by Carter and Saito [3], [4].
The framework for studying 2-tangles was developed by Fischer [5], Kharlamov

and Turaev [7], Carter, Rieger, and Saito [2], and Baez and Langford [1]. We will
use a combinatorial realization of the 2-tangle 2-category described in [2], [4, Section
2.5], and [1, Section 3]. We assume familiarity with [1]. Baez and Langford [1] work
with unoriented 2-tangles, but combinatorial description can be easily modified to
the oriented case. We briefly review this description, referring the reader to [1] for
details.

We consider oriented unframed tangles with an even number of bottom endpoints
and oriented cobordisms between these tangles.

The objects of the 2-category C are even length sequences s of pluses and minuses
(indicating orientations of tangles near endpoints). Let |s| denote half the length
of s.
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316 MIKHAIL KHOVANOV

1-morphisms of C represent planar diagrams of generic tangles. The generat-
ing 1-morphisms are positive and negative crossings, U-turns, and the identity
1-morphisms. They are depicted in Figure 1. Different orientations of arcs in a
diagram lead to different 1-morphisms. We denote U-turns by ∩i,n and ∪i,n−1 and
identity morphisms by Vertn (in [9] we used Vert2n instead).

1 i 2n

Crossings:

U−turns: 

1

i

2(n−1)i−11 i 2n

1 2 2n

Identity: 

2ni1

Figure 1. Generating 1-morphisms of C

1-morphisms are products of generating 1-morphisms. Orientations of arcs
should be compatible when the diagrams are concatenated.

2-morphisms are combinatorial diagrams of tangle cobordisms, and depicted by
“movies” of Roseman and Carter-Saito. The generating 2-morphisms are birth and
death of a circle, saddle point (with compatible orientations), Reidemeister moves,
a double point arc crossing a fold line, a cusp on a fold line, shifting relative heights
of distant crossings and local extrema, and identity 2-morphisms. Generating 2-
morphisms (except for identity morphisms) are depicted in Figures 2 and 3.

Each generating 2-morphism has several versions, obtained by
(a) reading the film from bottom to top rather than from top to bottom,
(b) changing between positive and negative crossings (the third Reidemeister

move has many such versions),
(c) reflecting each frame about the x-axis,
(d) reflecting each frame about the y-axis,
(e) orienting strings in various ways.
Of course, for some moves some of these operations produce identical moves

(and, for instance, operation (a) on a birth move produces a death move).
The two-morphisms in Figure 3 will be called T-move, H-move, and N-move,

since these moves were labelled by T, H, and N in [1] (with subscripts which we
omit).
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Birth:  Death: Saddle points: 

Reidemeister moves: 

type I type II type III

Figure 2. Generating 2-morphisms

A cusp on a
fold line. 

T−move: A double point arc
crossing a fold line. 

H−move: 

Shifting relative heights
of distant crossings
and local extrema: 

N−move: 

Figure 3. Generating 2-morphisms
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The height shifting morphism (N-move) has many versions, as we are free to put
a U-turn or a crossing inside each small square of the top frame, add any number of
strings separating the two small squares, and possibly invert the order of the film.
An example is given in Figure 4.

Figure 4. An example of height shifting

A complete set of defining relations on 2-morphisms is given by the 31 movie
moves (see [2], [4, Section 2.5], or [1]). The first 30 of these moves are shown in
Figures 5-9 at the end of the paper. Similar to modifications (a)-(e) of generating
morphisms, there are modifications (a)-(e) of movie moves and they should be
included in the list. See [1] for a detailed discussion.

Move 31 is not shown. It says that given horizontally composable 2-morphisms
α : f ⇒ f ′ and β : g ⇒ g′, there is an equality (α · Id)(Id · β) = (Id · β)(α · Id) of
2-morphisms from fg to f ′g′.

Figures 5-7 show local moves, while Figures 8, 9 show semi-local moves. Little
squares in semi-local moves could be U-turns or crossings.

3. Bimodule homomorphisms

For a ring A denote by K(A) the category of bounded complexes of A-bimodules
up to homotopies of complexes. The objects of K(A) are bounded complexes of A-
bimodules, and the morphisms are morphisms of complexes of bimodules quotiented
by homotopic to 0 morphisms.

We say that a complex of bimodules M ∈ K(A) is invertible if there exists
N ∈ K(A) such that N ⊗A M ∼= A and M ⊗A N ∼= A in K(A). Here A denotes the
complex 0 −→ A −→ 0 with A in cohomological degree 0 and the usual left and
right multiplication action of A on itself.

Let Z(A) be the center of A.

Proposition 1. If M is invertible, then

HomK(A)(M, M) ∼= HomA⊗Ao(A, A) ∼= Z(A).

Proof. The second isomorphism is obvious, since endomorphisms of A as an A-
bimodule are multiplications by central elements.

Consider the following sequence of ring homomorphisms:

EndK(A)(M)
f−→ EndK(A)(M ⊗A N)

g−→ EndK(A)((M ⊗A N) ⊗A M)
∼= EndK(A)(M ⊗A (N ⊗A M)) ∼= EndK(A)(M ⊗A A) ∼= EndK(A)(M),
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where f, respectively g, is tensoring with the identity endomorphism of N, respec-
tively M. The composition gf is the identity, thus f is injective. Multiplication on
the left by central elements makes each of the above rings a Z(A)-module, and f
and g are Z(A)-module homomorphisms. f and g take identity endomorphisms to
identity endomorphisms, and

EndK(A)(M ⊗A N) ∼= EndK(A)(A) = Z(A).

Therefore, f is surjective, since f(id) = id generates EndK(A)(M ⊗A N) as a Z(A)-
module. Thus, f and g are isomorphisms. �

If A is graded, denote by K(A) the category of bounded complexes of graded A-
bimodules (with grading-preserving differential) up to homotopies. The morphisms
are grading-preserving homomorphisms of complexes (modulo homotopies). If M
is an invertible complex in K(A), then HomK(A)(M, M) ∼= Z0(A), the degree 0
component of the center of A. Furthermore, the group of automorphisms of M in
K(A) is isomorphic to Z∗

0 (A), the group of invertible elements in Z0(A).
We now specialize to the rings Hn.

Proposition 2. The only invertible central elements of degree 0 in Hn are ±1:

Z∗
0 (Hn) ∼= {±1}.

Proof. A degree 0 element of Hn has the form v =
∑

vaea, where ea is the minimal
idempotent corresponding to the crossingless matching a and va ∈ Z. For any a, b
choose x ∈ a(Hn)b, x �= 0. Then vx = vax and xv = vbx. Therefore, if v is central,
va = vb for all a, b, and v = m

∑
ea = m, for some integer m, so that Z0(Hn) ∼= Z.

The proposition follows. �

Remark. We investigated the center of Hn (and not just its degree 0 component)
in [8]. It turned out to be isomorphic to the cohomology ring of the (n, n) Springer
fiber.

Corollary 1. If M is an invertible complex of graded Hn-bimodules, then Id and
−Id are the only degree 0 automorphisms of M.

We use notation Km
n from [9] for the category of bounded complexes of geometric

(Hm, Hn)-bimodules up to chain homotopies. A bimodule is geometric if it is
isomorphic to a finite direct sum of bimodules F(a){i}, for flat tangles a and i ∈ Z

(recall that {i} denotes shift in the grading by i). Morphisms in Km
n are grading-

preserving homomorphisms of complexes up to chain homotopies.
From Corollary 1 we derive

Corollary 2. If f : M → N is an isomorphism of invertible objects in Kn
n, then

the only other isomorphism of M and N is −f.

For now on we assume that the reader is familiar with the construction of [9,
Section 2], which to a surface S embedded in R

3 and viewed as a cobordism between
flat tangles a and b assigns a bimodule homomorphism F(S) : F(a) −→ F(b).
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Standard cobordisms in R
3 (the first is a birth move, the second and third are

saddle points, the fourth is a death move)

Vertn−1 =⇒ ∩i,n∪i,n−1,

∪i,n−1∩i,n =⇒ Vertn,

Vertn =⇒ ∪i,n−1∩i,n,

∩i,n∪i,n−1 =⇒ Vertn−1

induce grading-preserving bimodule homomorphisms

Hn−1 −→ F(∩i,n) ⊗Hn F(∪i,n−1){1},(1)
F(∪i,n−1) ⊗Hn−1 F(∩i,n){1} −→ Hn,(2)
Hn −→ F(∪i,n−1) ⊗Hn−1 F(∩i,n){−1},(3)

F(∩i,n) ⊗Hn F(∪i,n−1){−1} −→ Hn−1(4)

(we used that F(Vertn) ∼= Hn,F(∪i,n−1∩i,n) ∼= F(∪i,n−1) ⊗Hn−1 F(∩i,n), etc.).
Isotopies between compositions of these cobordisms translate into relations between
homomorphisms. These relations imply that the functors of tensoring with F(∩i,n)
and F(∪i,n−1) are biadjoint, up to grading shifts. Precisely, let F∪ be the functor
of tensoring with F(∪i,n−1) and F∩ the functor of tensoring with F(∩i,n) (viewed
as functors between categories of Hn and Hn−1-modules).

Proposition 3. F∪{1} is left adjoint to F∩, and F∩{−1} is left adjoint to F∪.

Corollary 3. The only grading-preserving endomorphisms of bimodules F(∩i,n)
and F(∪i,n−1) are multiplications by integers. The only grading-preserving auto-
morphisms of bimodules F(∩i,n) and F(∪i,n−1) are Id and −Id. Moreover, these
bimodules have no graded endomorphisms of negative degree.

Proof of Corollary 3. From adjointness,

Hom(n,n−1)(F(∪i,n−1),F(∪i,n−1)) ∼= Hom(n−1,n−1)(Hn−1,F(∩i,n∪i,n−1){1})
∼= Hom(n−1,n−1)(Hn−1, Hn−1 ⊕ Hn−1{2})
∼= Hom(n−1,n−1)(Hn−1, Hn−1)
∼= Z.

Subscripts of the form (m, n) in the above formula mean that the homomorphisms
considered are those of graded (Hm, Hn)-bimodules. We used that

Hom(n−1,n−1)(Hn−1, Hn−1{k}) = 0

for any positive k, since the ring Hn−1 is Z+-graded. Similar computations establish
the result for F(∩i,n) and the last claim of the corollary. �
Corollary 4. If M is a tensor product of F(∩i,n) and invertible complexes of
bimodules, and if f : M → N is an isomorphism in Kn−1

n , then the only other
isomorphism from M to N is −f. The same with ∪i,n−1 instead of ∩i,n.

More generally, let b be a flat tangle without closed components, (circles), with
k arcs connecting bottom endpoints, l arcs connecting top endpoints, and some
number of arcs connecting a top endpoint with a bottom endpoint. Let W (b) be
the reflection of b about the x-axis. Representing b as a product of U -turns and
using Proposition 3 repeatedly we obtain the following.
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Proposition 4. The functor of tensoring with the bimodule F(W (b)){k− l} is left
adjoint to tensoring with F(b) and the functor of tensoring with F(W (b)){l− k} is
right adjoint to tensoring with F(b).

Corollary 5. If b is a flat tangle without closed components, then the only grading-
preserving endomorphisms of the bimodule F(b) are multiplications by integers, the
only grading-preserving automorphisms are Id and −Id, and F(b) has no endomor-
phisms of negative degree. If f : M → F(b) is an isomorphism in Km

n , then the
only other isomorphism between M and F(b) is −f.

4. The 2-functor

We introduce two 2-categories K and K̂.
Objects of K are non-negative integers, 1-morphisms from n to m are objects of

Km
n , and 2-morphisms between M, N ∈ Km

n are HomKm
n

(M, N), grading-preserving
morphisms of complexes of bimodules up to chain homotopies. Composition of
1-morphisms is given by tensor product of complexes.

The 2-category K̂ has the same objects and 1-morphisms as K but the 2-mor-
phisms are

Hom
K̂
(M, N) def=

⊕
i∈Z

HomKm
n

(M, N{i})/{±1},

that is, the morphisms are all homomorphisms (not just grading-preserving), and
each homomorphism is identified with its negative. The set of 2-morphisms between
two 1-morphisms is no longer an abelian group.

We next construct a 2-functor F : C → K̂. This 2-functor takes object s of C to
the object |s| of K̂. It takes generating 1-morphisms of C to complexes of bimodules
in the same way as in [9, Sections 2.7, 3.4]. Recall that a U-turn b (and, more
generally, any flat tangle) is taken to the complex 0 −→ F(b) −→ 0, where F(b) is
the bimodule associated to b. A crossing r gives rise to its two resolutions r(0) and
r(1) and a grading-preserving bimodule map ψ : F(r(0)) −→ F(r(1)){−1}. Then
F(r) is defined as the complex

0 −→ F(r(0))
ψ−→ F(r(1)){−1} −→ 0

with a suitable grading shift computed from the orientation of r near its crossing.
The 2-functor F takes composition of 1-morphisms to the tensor product of

complexes:
F(ab) def= F(a) ⊗Hn F(b),

where a, respectively b, has 2n bottom, respectively, 2n top endpoints.
To a Reidemeister move between diagrams a and b (see Figure 1) we assign an

isomorphism of bimodule complexes F(a)
∼=−→ F(b) constructed in [9, Section 4].

The Reidemeister III move has several versions, depending on the directions of
overcrossings. In [9] we described an isomorphism in Kn

n between complexes F(a)
and F(b) for only one version of this move. Other versions can be expressed via
compositions of this version with isotopies and type II moves. The compositions
induce isomorphisms between F(a) and F(b) which we assign to these other version
of the Reidemeister III move. Note that, since Reidemeister move diagrams in
Figure 1 are either braids or composition of a U-turn and a braid, a grading-
preserving isomorphism between F(a) and F(b) is unique up to minus sign, by
Corollaries 2, 4.
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The diagrams of birth, death, saddle point, and T-move do not involve crossings.
These movies can be viewed as presentations of surfaces embedded in R

3, and to
them we assign bimodule homomorphisms using the construction of Proposition 5
of [9]. To the birth 2-morphism we assign the unit map ι : Z → A, and to the death
2-morphism the counit map ε : A → Z. More precisely, birth and death moves
happen inside Vertn diagrams, and the maps are

ι ⊗ IdHn : Hn −→ A⊗Z Hn, ε ⊗ IdHn : A⊗Z Hn −→ Hn.

To the diagrams of saddle point cobordisms between Vertn and ∪i,n−1∩i,n we
assign bimodule maps (2), (3). These maps are, up to sign, the only maps of degree
1 between F(Vertn) ∼= Hn and F(∪i,n−1∩i,n) that generate the abelian group
(isomorphic to Z) of all degree 1 homomorphisms between these bimodules.

The natural isotopy between the two diagrams a, b in the H-move (Figure 3)
induces an isomorphism of complexes F(a) ∼= F(b), which we assign to this 2-
morphism.

A frame of an N-move between diagrams a and b contains two little squares, and
each square is either a U-turn or a crossing. The N-move is an isotopy from a to b.

This isotopy induces a canonical isomorphism of complexes F(a)
∼=−→ F(b) (see [9,

Sections 4.1, 4.2]), which we assign to the N-move.

Theorem 1. The above correspondence extends uniquely to a 2-functor

F : C → K̂.

This theorem is proved in Section 5.
C is a combinatorial realization of the 2-category T of tangle cobordisms, that is,

the natural 2-functor C → T is an equivalence of 2-categories; see [1]. This result
is also valid for oriented tangles.

As a corollary, we obtain a 2-functor, also denoted F , from the 2-category T of
even unframed oriented tangle cobordisms to K̂. The homomorphism of complexes
of graded (Hm, Hn)-bimodules assigned to the cobordism S between (m, n)-tangles
has degree n + m − χ(S), where χ(S) is the Euler characteristic of S.

5. Proof

When looking at a particular movie move we denote the top frame by b1, the
bottom frame by b2, the left movie by Sl and the right movie by Sr.

Movies Sl and Sr induce homomorphisms F(Sl) and F(Sr) from F(b1) to F(b2).
We need to show that F(Sl) = ±F(Sr) in Km

n .
Moves 1, 2, 3, 4, 5 say that composing a Reidemeister move with its inverse is

equivalent to doing nothing. The isomorphism in Km
n assigned to the inverse of

a Reidemeister move equals the inverse of the isomorphism assigned to the move.
Therefore, F(Sl) = F(Sr) for each of these moves.

Movies Sl and Sr in move 6 consist of Reidemeister moves and relative height
shifts of distant crossings. The complexes F(b1) and F(b2) are invertible (since b1

and b2 are braids), and

F(Sl),F(Sr) : F(b1) −→ F(b2)

are two isomorphisms of these complexes in Kn
n. By Corollary 2, either F(Sl) =

F(Sr) or F(Sl) = −F(Sr).
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This proof works simultaneously for all versions of move 6. Identical argument
takes care of moves 12, 13, 23a and 25 (and of moves 3, 4, 5 as well, although the
latter have already been dealt with).

Each movie in move 7 is a composition of Reidemeister moves, thus, F(Sl)
and F(Sr) are grading-preserving isomorphisms (in Kn−1

n ) of complexes F(b1) and
F(b2). Since b1 and b2 are given by composing ∩i,n with braids, F(b1) and F(b2)
are tensor products of F(∩i,n) with invertible complexes (the index i is different
for b1 and b2). By Corollary 4, F(Sl) differs from F(Sr) by at most a minus sign.
Other versions of this move follow suit.

Identical arguments takes care of moves 11, 14, and 26.
Moves 8, 9, 10, 23b, 24 do not involve any crossings and the invariance of F

follows from Proposition 6 of [9], since these moves are saying that certain surfaces
in R

3 are isotopic.
Both movies in move 21 consist of isotopies and a Reidemeister move. Therefore,

F(Sl) and F(Sr) are isomorphisms in Kn
n. The bottom diagram b2 is a flat tangle

without closed components (circles). Corollary 5 implies that any two isomorphisms
from F(b1) to F(b2) differ by sign at most. Similar arguments take care of moves
15-20 (use Corollary 5 and its generalization from b to b1bb2, where b1 and b2 are
braids). Alternatively, the invariance of F under semi-local moves 15-20, 22 follows
by observing that height shifts of U-turns and crossings do not do anything to our
complexes of bimodules and maps between them.

The first frame change in both movies in move 28 is birth, which is then followed
by a Reidemeister move and an isotopy (H-move). Decompose Sl = RlQl and
Sr = RrQr, where Ql, Qr are births. Denote by b′l, b

′
r second frames from the top in

the left and right movies. Note that F(b′l) ∼= F(b′r) ∼= A⊗Hn, and F(Rr)−1F(Rl) :
F(b′l) → F(b′r) is a grading-preserving isomorphism, while F(Ql),F(Qr) : Hn −→
A⊗ZHn have degree −1. Both F(Qr) and F(Rr)−1F(Sl) generate the abelian group
Z of degree −1 homomorphisms from Hn ∼= F(b1) to A⊗Z Hn ∼= F(b′r). Therefore,
F(Qr) and F(Rr)−1F(Sl) differ by at most a minus sign, and F(Sl),F(Sr) differ
by at most a minus sign.

Invariance of ±F under moves 22 and 27 follows from similar arguments.
Both movies in move 29 consist of a Reidemeister move followed by a saddle

point 2-morphism. Both movies induce degree 1 homomorphisms from F(b1) to
F(b2). Since the homomorphism assigned to the saddle point generates the abelian
group (isomorphic to Z) of degree 1 homomorphisms from F(∪i,n−1∩i,n) to Hn ∼=
F(Vertn), we see that both F(Sl) and F(Sr) are generators of

HomKn
n
(F(b1){1},F(b2)) ∼= Z,

and differ by at a most minus sign. Move 30 follows similarly.
Given a ring A and homomorphisms f1 : M1 → N1, resp. f2 : M2 → N2 of

complexes of right, resp. left, A-modules, the map

f1 ⊗ f2 : M1 ⊗A M2 −→ N1 ⊗A N2

can be written in two ways: as (f1 ⊗ Id)(Id ⊗ f2) and as (Id ⊗ f2)(f1 ⊗ Id). This
observation takes care of move 31. �
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1 3
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10
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Figure 5. Movie moves 1-10
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11
12

23b

23a

13

14 21

Figure 6. Movie moves 11-14, 21, 23

24 25

28

29
30

26
27

Figure 7. Movie moves 24-30
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16

17

15

Figure 8. Movie moves 15-17

18

20

19

22

Figure 9. Movie moves 18-20, 22
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