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Abstract

The accountant Nigrini remarked that in tables of data distributed according to
Benford’s Law, the sum of all elements with first digit d (d =1,2,..,9) is approxi-
mately constant. In this note, a mathematical formulation of Nigrini’s observation
is given and it is shown that Benford’s Law is the unique probability distribution
such that the expected sum of all elements with first digits dy, .., dy is constant for
every fixed k.
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1 Introduction

The main goal of this article is to give a mathematical proof of an empirical observation
of the accountant M. Nigrini. In his Ph.D. thesis (1992), Nigrini observed that tables of
unmanipulated accounting data closely follow Benford’s Law (see §2 below), and that
in sufficiently long lists of data for which Benford’s Law holds,

the sum of all entries with leading digit d is constant for various d.

(cf. Nigrini, 1992, pp. 70/71).

This paper introduces a natural extension of the above observation to constancy
of sums of all k-tuples of leading digits (called sum-invariance below), and the main
result (Theorem 4.1 below) establishes both the corresponding generalization of Nigrini’s
observation and its converse:

A distribution is sum-invariant if and only if it is the Benford distribution
((2) below).
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2 Benford’s Law

Benford’s Law is an empirical law saying that in tables of physical constants and sta-
tistical data the first significant digit is distributed not uniformly, but logarithmically,
ie.

Prob(first significant digit = d) = log;o(1+d '), d=1,2,..,9 (1)
In its more general form, Benford’s Law is a statement about mantissa distributions:
Prob(mantissa < z) = log;pz, = € [1,10), (2)

where the mantissa of a real number z is the number obtained from z by shifting the
decimal point to the place immediately after the first significant (non-zero) digit. It is
easily seen that (2) implies (1).

For an historical survey of Benford’s Law, see for example Raimi (1976) or Schatte
(1988). Hill (1994) has a brief discussion of attempts to explain the empirically induced
law, and adds to them a new explanation assuming base-invariance. Interesting applica-
tions of Benford’s Law can be found, among others, in Hamming (1960), Varian (1972)
and Nigrini (1992).

3 Sum-invariance

While Nigrini states his findings in a number-theoretic setting, in this note a precise
probabilistic formulation of his observation is given.

In order to arrive at a suitable formulation, the following three points are essential:
First, observe that it is the mantissae of the numbers in the tables, not the numbers
themselves, which are to be added. (Otherwise, for example, a single astronomically
large number in a table would dominate all other sums; adding numbers of different
orders of magnitude does not seem to lead to any meaningful conclusion).

Second, the word ‘constant’ in Nigrini’s statement is translated to be ‘constant in
expectation’. One reason is that for any finite random sample from Benford’s distribu-
tion, the sums are almost surely not constant. And demanding equality in distribution
is far too much: it can be seen that, in case of the Benford distribution (2), assuming
independent entries, the nine sums have different second moments. The first moment,
however, suits the problem perfectly well, as will be made clear.

Finally, to establish uniqueness, it is necessary to consider also second and third
significant digits, and so on. For example, the (expected) sum of all entries starting
with 1.2 is equal to the sum of all entries starting with 7.4, the sum of entries starting
with 2.7182 equals that of entries starting with 3.1415, etcetera.

With these points in mind, sum-invariance can be defined informally as

A distribution is sum-invariant if for any natural number k, the expected
sum of the mantissae of all entries starting with a fized k-tuple of leading
significant digits is the same as that for any other k-tuple.



To formalize this definition, the following preliminaries are needed. Let IR™ denote
the positive real numbers (0, 00), Z the integers and IN the natural numbers; B the Borel
o-algebra on IR' and B(A) the Borel subsets of A. Let ¥ signify union of disjoint sets.
For E C IR and a € R, aF is the set {ae : e € E}; and for a random variable X, [EX
is the expectation of X.

In what follows, only the familiar decimal case (base 10) will be considered. However,
the base value is not essential and all results and definitions carry over easily to other
bases.

Definition 3.1 The mantissa function M is the function M : RT — [1,10) such that
M (z) = r, where r is the unique number in [1,10) with z = r- 10" for some n € Z. For
example, M (9) = M (0.09) = M (90) = 9.

Definition 3.2 For k € IN, d; € {1,...,9} and da,...,d; € {0,1,...,9}, A(d1,...,d) is
the set of all positive real numbers whose first k significant digits are dy, ..., dj, respec-
tively, and A(dy, ...,dg) is the restriction of this set to [1,10).

The next definition is convenient to reduce the problem to measures on [1, 10).

Definition 3.3 For a probability measure P on (IR', B), its corresponding mantissa
distribution is defined to be the measure Py on B([1,10)) given by

Py(E) = P(|lH 10"E) (3)
neZ

In other words, if P is the distribution of a random variable X, then Py is the distri-
bution of its mantissa M (X).

Example 3.4 Suppose that P is the uniform distribution on (0,1). Then by (3), for z €
[1,10), Pyr([1,2)) = Spes, P07, 10%)) = S22, P(10°7,10-"2)) = S22, 107" (z —
1) = $(z — 1). In this case Py is the uniform distribution on [1,10), which has its first
significant digit uniformly distributed on the integers 1,2, ..,9, and therefore clearly does
not satisfy Benford’s Law.

Example 3.5 For m € IN, let P be the distribution with probability density function
gm on IR given by

[ (2mIn(10) - z)"1 if z € [107™,10™)
gm () = { 0 otherwise

Then, using a calculation as above, it follows that Py/([1,z)) = log;qz,1 < z < 10, so
P satisfies Benford’s Law for every m € IN.

The following definition is the formal restatement of (2).
Definition 3.6 Py, is called Benford’s Law if it satisfies

Py ([1,2)) = logy, =, 1 <z <10. (4)



After these preparations, a formal definition of sum-invariance can now be given.

Definition 3.7 A probability measure P on (IR™, B) is said to be sum-invariant, if for
any random variable X with distribution P, the expectations

IE [M(X)lA(dl,...,dk)(X)] ’ di € {la -'-ag}adZa ey dy € {Oa L, 59} (5)

are constant for every fixed k£ € IN.

4 The main theorem
The following theorem is the main result of this article.

Theorem 4.1 A probability measure P on (R™, B) is sum-invariant if and only if its
corresponding mantissa distribution Py is Benford’s Law (4).

Corollary 4.2 Let Xy, Xo,..., X, be random variables with a common distribution P.
Then the expected sums

B [Z{M(Xl) 1 X € A(dla 7dk)} ) dl € {17 "79}7d27 "7dk € {07 ]-7 79} (6)
are constant for every fized k € IN if and only if Py is Benford’s Law (4).

Proof: observe that the expression in (6) equals

D B [MXi) 1oy, a0 (X5)]
i=1

and apply Theorem 4.1. O

Proof of Theorem 4.1:
It is easy to check that a Borel probability measure P on IR is sum-invariant if and
only if Py; satisfies

/A sdPy (z) = %A(A) / 5dPy () (7)

[1,10)

for all A of the form A(dy, ...,d;). Here A denotes Lebesgue measure on [1,10).

That Py in (4) satisfies (7) is an easy substitution. Conversely, suppose that (7)
holds for all A = A(dy, ...,dy). Using countable additivity and Carathéodory’s extension
theorem (cf. Royden, 1988, p.295), it follows that (7) holds for every Borel measurable
A. In other words, A is absolutely continuous with respect to Py, with a strictly positive
density proportional to x. This implies that, conversely, Py; is absolutely continuous
with respect to A with density proportional to 1/z. O



Remark 4.3 The essential feature of a probability distribution used here seems to be its
density function (when continuous). Since for fixed k¥ € IN the intervals A(dy, ..., dx) have
constant length, the integrals in (7) are constant only if, after substitution, a constant
function is integrated. This means that the density must cancel the multiplying factor
z, and therefore can only be (z1n10) 1.

Acknowledgement

The author wishes to thank Prof. T.P. Hill for his extensive support and several
useful conversations; Prof. P.J. Holewijn for some useful suggestions and corrections;
Professors M.J. Nigrini and P. Schatte for their interest and for sending some references;
and the referee for his suggestions, which led to a considerably shorter proof of Theorem
4.1.

References

Hamming, R.W. (1970), On the distribution of numbers. Bell System Tech. J.
49, 1609-1625.

Schatte, P. (1988), On mantissa distributions in computing and Benford’s Law.
J. Inf. Process. Cybern. EIK 24, 443-455.

Raimi, R. (1976), The first digit problem. Amer. Math. Monthly 83, 521-538.

Hill, T.P. (1994), Base-invariance implies Benford’s Law. Proc. Amer. Math. Soc.
123, 887-895.

Varian, H. (1972), Benford’s Law. Amer. Statistician 26, 65-66.
Nigrini, M. (1992) The detection of income evasion through an analysis of digital
distributions. Ph.D. Thesis, Department of Accounting, University of

Cincinatti.

Royden, H.L. (1988) Real Analysis (MacMillan, New York, 3rd ed.)



