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Abstract. We introduce a distribution center (DC) location model that incorporates working inventory and
safety stock inventory costs at the distribution centers. In addition, the model incorporates transport costs
from the suppliers to the DCs that explicitly reflect economies of scale through the use of a fixed cost term.
The model is formulated as a non-linear integer-programming problem. Model properties are outlined.
A Lagrangian relaxation solution algorithm is proposed. By exploiting the structure of the problem we
can find a low-order polynomial algorithm for the non-linear integer programming problem that must be
solved in solving the Lagrangian relaxation subproblems. A number of heuristics are outlined for finding
good feasible solutions. In addition, we describe two variable forcing rules that prove to be very effective at
forcing candidate sites into and out of the solution. The algorithms are tested on problems with 88 and 150
retailers. Computation times are consistently below one minute and compare favorably with those of an
earlier proposed set partitioning approach for this model (Shen, 2000; Shen, Coullard and Daskin, 2000).
Finally, we discuss the sensitivity of the results to changes in key parameters including the fixed cost of
placing orders. Significant reductions in these costs might be expected from e-commerce technologies. The
model suggests that as these costs decrease it is optimal to locate additional facilities.

1. Introduction

Managing inventory has become a major challenge for firms as they simultaneously
try to reduce costs and improve customer service in today’s increasingly competitive
business environment. Managing inventory consist of two critical tasks. First, we must
determine the number of stocking locations or distribution centers to have. Second, we
must determine the amount of inventory to maintain at each of the centers. Often these
tasks are undertaken separately, resulting in a degree of suboptimization. In this paper,
we outline an integrated approach to determining the number of distribution centers to
establish and the magnitude of inventory to maintain at each center.

We argue that the importance of inventory management as outlined above has, if
anything, been heightened by e-commerce. Whether it is business to consumer (B2C)
or business to business (B2B), e-commerce end customers expect high levels of service
and speedy deliveries. At the same time, many of the inputs to traditional inventory
management decision-making are changing rapidly. E-commerce offers the hope of sig-
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nificantly reducing order costs thereby allowing smaller more frequent shipments. The
model we propose below explicitly includes order shipment costs. As a result it is capa-
ble of estimating the impacts of sharply reduced ordering costs on the number of distri-
butions centers, their locations, and the optimal inventory ordering policy. E-commerce
can also reduce variability across the supply chain by making end customer orders vis-
ible throughout the chain. This visibility should reduce the bullwhip effect [25,26,33].
Our model does not directly account for these effects of e-commerce though the model
does explicitly consider safety stock inventories at the distribution centers which are a
function of the variability of customer demand.

This work was motivated by a study at a local blood bank conducted by two of the
authors. The blood bank supplied roughly 30 hospitals in the greater Chicago area. Our
focus was on the production and distribution of platelets, the most expensive and most
perishable of all blood products. If a unit of platelets is not used within 5 days of the
time it is produced from whole blood, it must be destroyed. The demand for platelets is
highly variable as they are needed in only a limited number of medical contexts. When
they are used, however, multiple units are often needed. The hospitals supplied by the
blood bank collectively owned the blood bank and set prices. As a result they could
return a unit of platelets up to the time it outdated and not be charged for it. Thus, there
was little incentive to manage inventories in an efficient manner. Many of the larger
hospitals ordered almost twice the number of platelet units that they used each year
resulting in the need to destroy thousands of units of this expensive blood product. Other
hospitals ordered almost all of their needed platelets on a STAT or emergency basis. The
blood bank often had to ship the units to these hospitals using a taxi or express courier at
significant expense to the system. Clearly an improved system was needed. We proposed
a revision to their pricing policies along with a system in which selected hospitals would
maintain an inventory of platelets for use in neighboring hospitals. This would allow
the system to take advantage of the risk-pooling effect. We selected the hospitals at
which inventory would be maintained using a P -median model [7,18,19]. The model
did not account directly for the working inventory or safety stock (risk-pooling) effects,
for the transport costs from the blood bank to the selected hospitals or the fixed costs
of establishing the facilities. Clearly, this was only a first-cut approach. The research
outlined below is aimed, in part, at developing a more comprehensive and more accurate
model of such a situation.

The remainder of this paper is organized as follows. In section 2 we review relevant
related literature. The model we propose is formulated in section 3. The formulation
we obtain is a mixed integer non-linear programming problem which can be viewed as
an extension of the traditional uncapacitated fixed charge facility location problem. In
addition to the standard facility location and local distribution costs, the model includes
cost components representing working and safety stock inventories at the distribution
centers as well as transport costs from the supplier(s) to the distribution centers. These
inventory and supplier-to-DC transport costs introduce significant non-linearities into
the model. Section 4 outlines a number of key properties of the model we propose and
introduces an additional assumption on the demand distributions that we use to develop
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a solution algorithm for the problem. Section 5 outlines our solution procedure for the
problem. Computational results are presented in section 6. In section 7, we present our
conclusions and outline directions for future work.

2. Literature review

Inventory theory literature tends to focus on finding optimal inventory replenishment
strategies at the DCs and the retailer outlets. This work usually assumes that the number
and locations of the DCs are given. See, for example, Graves et al. [17], Nahmias [29]
and Zipkin [38]. On the other hand, location theory tends to focus on developing models
for determining the number of DCs and their locations, as well as the DC-retailer assign-
ments. This work usually includes fixed facility setup costs and transportation costs, but
the operational inventory and shortage costs are typically ignored. Daskin and Owen [8]
provide an overview of facility location modeling as do the recent texts by Daskin [7]
and Drezner [9].

Eppen [10] studied the so-called “risk pooling effects”, namely the effects of
inventory-cost savings achieved by grouping retailers. Assume customer demands are
normally distributed with a mean µi and a standard deviation σi for customer i. Then the
expected total inventory cost under the decentralized mode for n retailers is K

∑n
i=1 σi .

If the demands of the n retailers are independent, the optimal cost under a centralized

mode can be expressed by K
√∑n

i=1 σ
2
i , which is less than K

∑n
i=1 σi , where K is a

constant depending on the holding and penalty costs and the standard normal loss func-
tion.

Recently, there are several new studies that combine inventory management and
routing decisions. For example, Federgruen and Zipkin [14], Federgruen and Simchi-
Levi [13], Viswanathan and Mathur [36], Chan, Federgruen, and Simchi-Levi [5] and
Kleywegt, Nori, and Savelsbergh [21].

Also, several models combine location and routing decisions; for instance, Laporte
[23], Min, Jayaraman and Srivastava [27], Laporte and Dejax [24], Berman, Jaillet and
Simchi-Levi [4], and Berger, Coullard and Daskin [3].

Shen, Coullard and Daskin [32] studied model presented below, but they use a
set partitioning approach. We compare our computational results with theirs. Teo, Ou
and Goh [35] studied the impact on inventory costs with consolidation of distribution
centers. They also propose an algorithm that solves for a distribution system with the
total fixed facility location cost and inventory costs within

√
2 of the optimal. But they

ignore the costs to ship from the supplier to the DCs and from the DCs to the retailers
in their model. Finally, Erlebacher and Meller [11] formulate a highly non-linear integer
location-inventory model. They attack the problem by using a continuous approximation
as well as a number of construction and bounding heuristics. For problems with 16
customers, they obtained solutions that were between 3.78% and nearly 36% of a lower
bound. An exchange heuristic improved the solution considerably. Computation times
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on a 600 node problem using the exchange heuristic averaged 117 hours on a Sun Ultra
Sparcstation.

3. Model formulation

We consider a three-tiered system consisting of one or more suppliers, distribution cen-
ters and retailers. We assume that the locations of the suppliers and the retailers are
known and that the suppliers have infinite capacity at least from the perspective of the
system being modeled. The problem is to determine the optimal number of distribution
centers, their locations, the retailers assigned to each distribution center, and the opti-
mal ordering policy at the distribution centers. We do not explicitly model the inventory
maintained by the retailers themselves. A key problem is that the demand that is seen
by each distribution center is a function of the demands at the retailers assigned to the
distribution center. Thus, the inventory policy – the reorder interval, reorder size, and
safety stock – at the distribution center is a function of the assignment of retailers to the
distribution center. Since these assignments are not known a priori, the inventory policy
must also be endogenously determined.

The formulation allows for multiple production plants but assumes that the unca-
pacitated distribution centers receive the product from the (uncapacitated) plant with the
smallest total shipping cost to the DC. Since we will be further assuming that the ship-
ping costs to the DC depend only on the DC and possibly on the distance between the
DC and the plant and not on the plant per se, the identity of the best plant for each DC
can readily be identified a priori. We also will assume that the plant to DC lead time is
the same for all plant/DC combinations and so the choice of the plant to supply each DC
will not affect the required level of safety stock at the DCs. With these assumptions, the
model is mathematically equivalent to assuming that there is only a single plant.

In what follows, we will model the inventory problem faced by the DC using
a (Q, r) inventory model with type I service [20,29]. Axsater [1] notes that it is common
to approximate the (Q, r) model using two steps with the order quantity determined by
an EOQ model in which the mean demand is used to represent the stochastic demand
process and the reorder point is determined in a second step. Zheng [38] showed that
the maximum relative error introduced by using the EOQ quantity instead of the opti-
mal (Q, r) quantity is 0.125. Axsater [1] later showed that this bound can be tightened
slightly to 0.118. Zheng notes (p. 99) that, in most cases, the relative increase in total
costs will be much less than these worst-case bounds. Thus, this is the approach we
adopt. Specifically, we will approximate the (Q, r) model by assuming that the DC or-
ders inventory from the plant using an EOQ model. The reorder point, and hence the
safety stock, will be determined to ensure that the probability of a stockout at the DC is
less than or equal to some specified value.

To begin modeling the problem, let us assume for the moment that we know which
customers are to be assigned to a specific distribution center. Assume that the demand at
each retailer is Normally distributed with a daily mean of µi and a daily variance of σ 2

i

and let S be the set of customers assigned to the distribution center. Let L be the lead
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time in days for deliveries from the supplier to the distribution center. Assuming that the
daily demands at each retailer are uncorrelated over time and across retailers, the lead
time demand at the distribution center is Normally distributed with a mean of L

∑
i∈S µi

and a variance of L
∑
i∈S σ

2
i . The safety stock required to ensure that stockouts occur

with a probability of α or less is

zα

√
L
∑
i∈S

σ 2
i (1)

where zα is a standard Normal deviate such that P(z � zα) = α.
For the moment, let D be the expected annual demand (i.e., D = χ

∑
i∈S µi),

where χ is a constant used to convert daily demand into annual demand (e.g., 365 if
demands occur every day of the year), let h be the holding cost per item per year and
let F be the fixed cost of placing an order from the distribution center to the supplier.
Then the annual cost of ordering inventory from the supplier at the distribution center is
approximated by

Fn+ βv
(
D

n

)
n+ θ hD

2n
(2)

where n is the (unknown) number of orders per year, v(x) is the cost of shipping an order
of size x from the supplier, and β and θ are weights that we assign to transportation and
inventory costs respectively so that we can later test the effects of varying the importance
of these costs relative to the fixed facility costs.

The first term of (2) represents the total fixed cost of placing n orders per year. The
second term represents the shipment cost v(D/n) per shipment multiplied by the number
of shipments per year and the weight, β, associated with transport. D/n is the expected
shipment size per shipment. The third term is cost of the average working inventory. On
average, there will beD/(2n) items of working inventory on hand at a cost of h per item
per year. Taking the derivative of this expression with respect to n, the number of orders
per year, and setting the derivative to zero, we obtain

F +βv
(
D

n

)
−βnv′

(
D

n

)
D

n2
−θ hD

2n2
= F +βv

(
D

n

)
−βv′

(
D

n

)
D

n
−θ hD

2n2
= 0. (3)

If v(x) is linear in x (e.g., if v(x) = g + ax) then v′(x) is a constant (e.g., a) and the
expression above becomes

F + βg + βaD
n

− βaD
n

− θ hD
2n2

= F + βg − θ hD
2n2

= 0. (4)

In this case, g is the fixed cost of a shipment from the plant to the DC and a is the
volume dependent cost of a shipment from the plant to the DC. Solving for n, we obtain
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n = √
θhD/(2(F + βg)). Substituting this into the cost function (2) we obtain an

annual working inventory cost of

F

√
θhD

2(F + βg) + βg
√

θhD

2(F + βg) + βaD + θ hD
2

√
2(F + βg)
θhD

=
√
θhD(F + βg)

2
+ βaD +

√
θhD(F + βg)

2
= √

2θhD(F + βg)+ βaD. (5)

Recall that this cost includes the costs of placing orders at the distribution center, trans-
porting goods from the supplier to the distribution center and holding the working in-
ventory at the DC.

Unfortunately, the derivation of the safety stock (1) and the working inventory
cost (5) assumes that we know the assignment of retailers to the distribution center as
denoted by the set S. The identity of this set is not known a priori and must be determined
endogenously.

To simultaneously determine the locations of the DCs, assignments of the retailers
to the DCs, and working and safety stock inventory costs, let us define the following
additional inputs and sets:

I set of retailers indexed by i,
J set of candidate DC sites indexed by j ,
fj fixed (annual) cost of locating a distribution center at candidate site j , for each

j ∈ J ,
dij cost per unit to ship between retailer i and candidate DC site j , for each i ∈ I and

j ∈ J ,
χ days per year (used to convert daily demand and variance values to annual values).

In addition, we define the following decision variables:

Xj =
{

1 if we locate at candidate site j ,
0 if not,

Yij =
{

1 if demands at retailer i are assigned to a DC at candidate site j ,
0 if not.

With this notation, we can formulate the problem as follows:

Minimize
∑
j∈J

fjXj +
(
β
∑
j∈J

∑
i∈I

χdijµiYij

)

+
(∑
j∈J

√
2θh(Fj + βgj )

∑
i∈I

χµiYij + β
∑
j∈J

aj
∑
i∈I

χµiYij

)

+ θhzα
∑
j∈J

√∑
i∈I

Lσ 2
i Yij (6)
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subject to
∑
j∈J

Yij = 1, ∀i ∈ I , (7)

Yij � Xj, ∀i ∈ I , ∀j ∈ J , (8)

Xj ∈ {0, 1}, ∀j ∈ J , (9)

Yij ∈ {0, 1}, ∀i ∈ I , ∀j ∈ J . (10)

The first term of the objective function (6) is the fixed cost of locating facilities. The
second term represents the local delivery cost. Note that

∑
i∈I χµiYij represents the

total annual demand assigned to distribution center j . Thus, the third term represents
the total working inventory cost (5) where we have added the obvious subscripts j to the
fixed and unit shipping costs g and a respectively obtaining gj and aj . In addition, the
fixed cost of placing an order, F , has been made DC-specific, obtaining Fj . The fourth
term represents the safety stock inventory cost. Constraint (7) states that each demand
node must be assigned to a DC. Constraint (8) stipulates that the assignments can only be
made to open DCs. Finally, constraints (9) and (10) are standard integrality constraints,
with (10) representing single-sourcing constraints, meaning that all of the demand at a
retailer must be assigned to the same DC.

The objective function can be rearranged as follows:

Minimize
∑
j∈J

fjXj +
(
β
∑
j∈J

∑
i∈I

χµi(dij + aj )Yij
)

+
(∑
j∈J

√
2θh(Fj + βgj )

∑
i∈I

χµiYij

)

+ θhzα
∑
j∈J

√∑
i∈I

Lσ 2
i Yij

=
∑
j∈J

{
fjXj +

∑
i∈I

d̂ij Yij +Kj
√∑
i∈I

µiYij + 
√∑
i∈I

σ̂ 2
i Yij

}
(11)

where

d̂ij = βχµi(dij + aj ),
Kj =√

2θhχ(Fj + βgj ),
 = θhzα,
σ̂ 2
i =Lσ 2

i .

In (11) we have grouped the linear term representing the marginal transport costs from
the supplier to the distribution center (represented by terms in aj ) with the local delivery
costs (represented by terms in dij ). Thus, d̂ij captures local delivery costs from the DCs
to the retailers as well as the marginal cost of shipping a unit from a supplier to a DC;
Kj captures the working inventory effects due to the fixed ordering costs at the DC as
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well as the fixed transport costs from a supplier to a DC. Finally,  captures the safety
stock costs at the distribution centers.

The constraints (7)–(10) are identical to those of the traditional uncapacitated fixed
charge facility location problem [2,12,22]. Thus, the solution approach that we propose
below mirrors some of the solution approaches used for that problem. However, these
approaches must be modified significantly to account for the final two non-linear terms
in the objective function (11).

4. Model properties

Before outlining the solution approach, it is worth noting a number of properties of the
model. First, unlike the traditional uncapacitated fixed charge location model in which
it is always optimal to assign demands to the facility that can serve the demands at least
cost (i.e., the facility j with the smallest value of dij for retailer i), in this problem it may
be optimal to assign retailers to a more remote distribution center. Doing so may reduce
the working inventory, safety stock inventory and transport costs from the supplier to the
DC sufficiently to offset the increased local delivery costs. Figure 1 illustrates a small
example in which this occurs. Table 1 provides the input data and parameters for the
problem while table 2 compares the total costs for different DC locations and different
customer assignments for the problem. The first column gives the DC locations; the next
three give the retailer assignments to DCs; the next three give the facility, local delivery
and inventory cost terms; and the last two columns give the total cost and the difference
between the optimal total cost and the cost of the solution indicated in that row. In this
example, it is optimal to assign demands at retailer B to a facility at A with a cost per unit
shipped of 101 despite the fact that there is a facility at C with a smaller unit shipping
cost for the B to C channel.

Not only does this phenomenon occur in small (contrived) cases, but we have found
that it occurs in our computational results using realistic national demand data, partic-
ularly when the inventory-related costs are large relative to the other costs (i.e., when
θ is large relative to β). Typically we find this behavior associated with small retail
nodes that are almost equidistant to two different DCs. We also can construct examples

Figure 1. Sample figure for non-closest assignment.

Figure 2. Small network for proof of theorem 1.
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Table 1a
Data for network in figure 1.

Node
A B C

Fixed cost 10 1000 10
Mean 100 1 1

Table 1b
Parameters for network in figure 1.

F Fixed order cost 10
gj , ∀j ∈ J Fixed shipping cost from supplier to DC 1
aj , ∀j ∈ J Unit shipping cost from supplier to DC 1

β Transport weight 1
zα Service level parameter 1.96
θ Inventory weight 1
L Lead time 1
h Unit holding cost 2
χ Days per year 1

Table 2
Costs of different DC locations and retailer assignments.

Facilities Retailer Assignments Facility Local Inventory Total cost Cost – min cost
A B C cost delivery cost

cost

A A A A 10 304 106.58 420.58 181.97
B B B B 1,000 10,301 106.58 11,407.58 11,168.97
C C C C 10 20,301 106.58 20,417.58 20,178.97

A,C A C C 20 101 120.46 241.46 2.84
A,C A A C 20 102 116.61 238.61 0.00
A,B A B B 1,010 101 120.46 1,231.46 992.84

A,B,C A B C 1,020 0 126.64 1,146.64 908.03

in which it is optimal to locate a DC at a particular node, but for demands from that
node to be assigned to a different DC. In other words, it is conceivable that the optimal
solution would locate a facility in Chicago, for example, but would assign demands from
Chicago to a facility in Minneapolis. Again, the intuitive reason for this is that the re-
duction in inventory and supplier-to-DC transport costs (all of which entail risk-pooling
terms) more than offset the increased local delivery costs from the DC to the retailers.
The reader is referred to Shen [31] or Shen, Coullard and Daskin [32] for a simple ex-
ample in which this occurs. In practice, it is unlikely that a supply chain manager would
organize her distribution system in this way even if doing so would result in small cost
savings. Fortunately, we will be able to prove that this does not occur once we make one
additional assumption.
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To simplify the model somewhat further, we assume that the variance-to-mean
ratio at each retailer is identical for all retailers. In other words, we assume that
σ 2
i /µi = γ, ∀i ∈ I . While this may seem like a restrictive assumption, if demands

arise from a Poisson process, then this assumption is exact and we are merely approx-
imating a Poisson demand process by Normally distributed demands, which is a good
approximation for sufficiently large demand values [28]. Also, in many other contexts
(e.g., transportation planning with random travel times) it is common to assume a sin-
gle variance-to-mean ratio [30]. With this assumption, the objective function can be
rewritten as

Minimize
∑
j∈J

{
fjXj +

∑
i∈I

d̂ij Yij +Kj
√∑
i∈I

µiYij + 
√∑
i∈I

σ̂ 2
i Yij

}

=
∑
j∈J

{
fjXj +

∑
i∈I

d̂ij Yij +Kj
√∑
i∈I

µiYij + 
√∑
i∈I

LγµiYij

}

=
∑
j∈J

{
fjXj +

∑
i∈I

d̂ij Yij + K̂j
√∑
i∈I

µiYij

}
(12)

where K̂j = Kj + √
Lγ .

This assumption does two things. First, it reduces the number of non-linear terms
from two to one. This will facilitate the solution approach outlined below in section 5.
Second, as shown in the following theorem, under this assumption it is never optimal to
open a DC at a node and to then serve the demands from that node from another DC.

Before stating the theorem, we note that if customer c is optimally assigned to a
distribution center at k, then for any other open DC j ,

µcd̃cj + K̂j
[
(Hj + µc)1/2 −H 1/2

j

]
� µcd̃ck + K̂k

⌊
H

1/2
k − (Hk − µc)1/2

⌋
, ∀j �= k,

where d̃cj = βχ(dcj + aj ) = d̂cj /µc and Hj is the total demand assigned to a facility
at j . In other words, the incremental cost of assigning customer c to DC k is less than
or equal to the incremental cost of assigning c to any other DC j . We now have the
following theorem.

Theorem. If (dck + ak) − (dcj + aj ) � (dek + ak) − (dej + aj ) (or equivalently, if
dck − dcj � dek − dej ) for all DCs j (j �= k), σ 2

i /µi = γ, ∀i ∈ I , all mean demands are
positive, and if customer c is optimally assigned to distribution center k, then customer e
is also optimally assigned to DC k.1

1 The authors gratefully acknowledge Ann Chan who suggested this theorem as a replacement for a weaker
theorem in an earlier draft of the paper that simply showed that if the variance to mean ratio is the same
for all customers then demands at a DC node must be assigned to that DC.
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Proof. Assume that customer e is optimally assigned to some DC j other than k. Then

µed̃ej + K̂j
[
H 0.5
j − (Hj − µe)0.5

]
= µed̃ej + K̂j

[
H 0.5
j − (Hj − µe)0.5

]
− µe
µc

{
µcd̃cj + K̂j

[
(Hj + µc)0.5 −H 0.5

j

]}
+ µe
µc

{
µcd̃cj + K̂j

[
(Hj + µc)0.5 −H 0.5

j

]}
(13)

= µe
[
d̃ej − d̃cj

]+ K̂j
{[
H 0.5
j − (Hj − µe)0.5

]
− µe

µc

[
(Hj + µc)0.5 −H 0.5

j

]}

+ µe
µc

{
µcd̃cj + K̂j

[
(Hj + µc)0.5 −H 0.5

j

]}
(14)

> µe
[
d̃ek − d̃ck

]
+ µe
µc

{
µcd̃ck + K̂k

[
H 0.5
k − (Hk − µc)0.5

]}
(15)

> µe
[
d̃ek − d̃ck

]+ K̂k
{[
(Hk + µe)0.5 −H 0.5

k

]
− µe

µc

[
H 0.5
k − (Hk − µc)0.5

]}

+ µe
µc

{
µcd̃ck + K̂k

[
H 0.5
k − (Hk − µc)0.5

]}
(16)

= µe
(
d̃ek
)+ K̂k

[
(Hk + µe)0.5 −H 0.5

k

]
− µe
µc

{
µcd̃ck + K̂k

[
H 0.5
k − (Hk − µc)0.5

]}
+ µe
µc

{
µcd̃ck + K̂k

[
H 0.5
k − (Hk − µc)0.5

]}
(17)

= µed̃ek + K̂k
[
(Hk + µe)0.5 −H 0.5

k

]
. (18)

Equality (13) holds by simple addition and subtraction of the second and third (identical)
terms. Equality (14) holds by regrouping of terms. Inequality (15) holds because

(a) d̃ck − d̃cj � d̃ek − d̃ej or d̃ej − d̃cj � d̃ek − d̃ck ,
(b) the assumed optimality of assigning c to k means that

µcd̃cj + K̂j
[
(Hj + µc)1/2 −H 1/2

j

]
� µcd̃ck + K̂k

[
H

1/2
k − (Hk − µc)1/2

]
and
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(c) concavity of the square root term, meaning{[
H 0.5
j − (Hj − µe)0.5

]− µe

µc

[
(Hj + µc)0.5 −H 0.5

j

]}

can be rewritten as follows after multiplying both sides by µc:

µc
[
H 0.5
j − (Hj − µe)0.5

]− µe
[
(Hj + µc)0.5 −H 0.5

j

]
= µcH 0.5

j + µeH 0.5
j − µc(Hj − µe)0.5 − µe(Hj + µc)0.5

= (µc + µe)H 0.5
j − µc(Hj − µe)0.5 − µe(Hj + µc)0.5

= (µc + µe)
{
H 0.5
j − α(Hj − µe)0.5 − (1 − α)(Hj + µc)0.5

}
> 0

where α = µc/(µc + µe) and the inequality follows from concavity of the square
root operator since

Hj = µc

(µc + µe)(Hj − µe)+ µe

(µc + µe)(Hj + µc).

Inequality (16) holds because of concavity of square root term meaning[
(Hk + µe)0.5 −H 0.5

k

]− µe

µc

[
H 0.5
k − (Hk − µc)0.5

]
can be rewritten as follows after multiplying both sides by µc:

µc(Hk + µe)0.5 − µcH 0.5
k − µeH 0.5

k + µe(Hk − µc)0.5
= µc(Hk + µe)0.5 + µe(Hk − µc)0.5 − (µc + µe)H 0.5

k

= (µc + µe)
{
α(Hk + µe)0.5 + (1 − α)(Hk − µc)0.5 −H 0.5

k

}
< 0.

Finally, equality (17) holds by regrouping of terms and equality (18) holds by the elimi-
nation of the second and third terms of (17) which are identical.

But, µed̃ej + K̂j [H 0.5
j − (Hj −µe)0.5] > µed̃ek + K̂k[(Hk +µe)0.5 −H 0.5

k ] violates
the assumed optimality of assigning customer e to a DC at j . Thus, we have that if
(dck − ak) − (dcj + aj ) � (dek + ak) − (dej + aj ), then assigning customer c to DC k
implies that customer e has to be assigned to DC k as well. �

This theorem has two important implications. First, if we let e = k in the distance
condition above ((dck+ak)−(dcj+aj ) � (dkk+ak)−(dkj+aj )) then we get dck−dcj �
−dkj or dck+dkj � dcj which is true by the triangle inequality. Thus, for distance metrics
for which the triangle inequality holds, it is always optimal to assign demands at a node
that has a distribution center to itself. Second, each distribution center has a region of
service. In other words, if we have network distances, then if customer c is optimally
assigned to distribution center k then it is optimal to assign all customers e which are on
the path from c to k to the distribution center at k.
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5. Solution approach

5.1. Finding a lower bound

The model formulated in section 3, which accounts for the fixed DC location costs, local
distribution costs from the DCs to the retailers, working and safety stock inventory at the
DCs and transport costs from the supplier(s) to the DCs, is a variant of the uncapaciated
fixed charge location problem. To solve this problem, we will use Lagrangian relaxation
[15,16] embedded in branch and bound. In particular, we will relax constraint (7) to
obtain the following Lagrangian Dual problem.

Max
λ

Min
X,Y

∑
j∈J

{
fjXj +

∑
i∈I

d̂ij Yij + K̂j
√∑
i∈I

µiYij

}
+
∑
i∈I

λi

(
1 −

∑
j∈J

Yij

)

=
∑
j∈J

{
fjXj +

∑
i∈I

(d̂ij − λi)Yij + K̂j
√∑
i∈I

µiYij

}
+
∑
i∈I

λi (19)

subject to Yij � Xj, ∀i ∈ I , ∀j ∈ J , (8)

Xj ∈ {0, 1}, ∀j ∈ J , (9)

Yij ∈ {0, 1}, ∀i ∈ I , ∀j ∈ J . (10)

For fixed values of the Lagrange multipliers, λi , we want to minimize (19) over the
location variables, Xj , and the assignment variables, Yij . In the absence of the non-linear
term in the assignment variables, solving the problem is simply a matter of computing,
Vj = fj + ∑

i∈I min(0, d̂ij − λi) for each candidate site j ∈ J , and setting Xj = 1
for those candidate sites for which Vj � 0. (If all Vj values are positive, we identify
the smallest positive Vj and set the corresponding Xj = 1.) The assignment variables
are then easy to determine. One simply sets Yij = 1 if d̂ij − λi � 0 and Xj = 1,
and Yij = 0 otherwise. However, the presence of the non-linear term makes finding an
appropriate value of Vj , the value of including candidate site j in the solution, more
difficult. To do so, we need to be able to solve a subproblem of the following form for
each candidate DC:

SP(j) Ṽj = min
∑
i∈I

biZi +
√∑
i∈I

ciZi (20)

subject to Zi ∈ {0, 1}, ∀i ∈ I , (21)

where bi = d̂ij − λi and ci = K̂2
j µi � 0. In (20)–(21) we have replaced the assignment

variables Yij by Zi to simplify the notation since SP(j) is specific to DC j . Note that the
fixed facility cost is not included in Ṽj and will be added later.

In [32], we show that this subproblem can be solved by the following procedure.

Step 1. Partition the set I into three sets: I+ = {i: bi � 0}, I 0 = {i: bi < 0 and
ci = 0} and I− = {i: bi < 0 and ci > 0}. (We note that under our assumption of
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the variance being proportional to the mean, the set I 0 will generally be empty. We
include it below for completeness.)

Step 2. Sort the elements of I− so that b1/c1 � b2/c2 � · · · � bn/cn, where n = |I−|.
Step 3. Compute the partial sums

Sm =
∑
i∈I 0

biZi +
√∑
i∈I 0

ciZi +
m∑

i=1, i∈I−
biZi +

√√√√ m∑
i=1, i∈I−

ciZi.

Step 4. Select the value of m that results in the minimum value of Sm.

Since the major step in this algorithm is the sorting of the elements of I− in step 2,
the algorithm has complexity O(|I | log |I |). This problem must be solved for each
j ∈ J , so solving (19) for given values of the Lagrange multipliers has complexity
O(|J ||I | log |I |). The proof of the optimality of this procedure relies on the concavity
of the square root function. The interested reader is referred to [32] or [31].

Solving subproblem SP(j) for each j enables us to solve the Lagrangian prob-
lem (19) and (8)–(10) for fixed values of the Lagrange multipliers in a manner identical
to that used for the uncapacitated fixed charge problem. We add fj to the optimal objec-
tive function value of SP(j) to obtain the value of using a DC at candidate site j in the
Lagrangian solution. We then select all DCs with negative values. In the case in which all
DCs have non-negative values, we select the DC with the smallest non-negative (gener-
ally positive) value. This is equivalent to adding the redundant constraint (to the original
problem) that

∑
j∈J Xj � 1 meaning that we have to select at least one DC to enable

flow from the plant(s) to the retailers. For each opened DC, the corresponding values of
the assignment variables are identical to the optimal Zi values in subproblem SP(j); for
unopened DCs (those for which Xj = 0 in the Lagrangian solution), Yij = 0, ∀i ∈ I .

Having solved the Lagrangian problem, we need to find the optimal Lagrange mul-
tipliers. We do so using a standard subgradient optimization procedure [15,16]. The
optimal value of (19) is a lower bound on the objective function (12).

5.2. Finding an upper bound

At each iteration of the Lagrangian procedure, we find an upper bound as follows. We
initially fix the DC locations at those sites for which Xj = 1 in the current Lagrangian
solution. Then we assign retailers to DCs in a two-phased process. First, for each
retailer i for which

∑
j∈J Yij � 1 (each retailer assigned to at least one open DC in

the Lagrangian solution), we assign the retailer i to the DC j for which Yij = 1 and
that increases the cost the least based on the assignments made so far. In the test cases
reported below, retailers are processed in order of non-increasing mean demand. In the
second phase, we process retailers i for which

∑
j∈J Yij = 0 (retailers that were not

assigned to any open DC in the Lagrangian solution). We assign each such retailer to
the open DC which increases the total cost the least based on the assignments made so
far. Note that the key difference between phases 1 and 2 is that in phase 1 we limit the
possible assignments of a retailer to those to which the retailer was tentatively assigned
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in the Lagrangian procedure thereby utilizing information provided by the Lagrangian
solution. In phase 2, however, we are dealing with retailers that were unassigned in the
Lagrangian solution. Hence, for these retailers, we consider all possible assignments to
open DCs.

We note that the Theorem indicates that there is a service region around each DC.
In particular, if node c is optimally assigned to DC k then any customer j on the path
from k to c is also assigned to k. This property could be exploited to develop an improved
heuristic algorithm. However, given the strong computational results outlined below,
we have not implemented such an algorithm. Instead, we leave the development and
implementation of such an algorithm for future work.

5.3. Retailer reassignments

If the value of the upper bound that we compute using the procedure outlined above
is better than the best known upper bound, we try to improve the bound further by
considering all possible single retailer moves from the DC to which a retailer is currently
assigned to another DC. The value of the reassignment is generally equal to the sum of
the changes in the second and third terms of (12). However, if reasigning retailer i from
a DC at site j to another DC will remove all of the assigned demand at site j , then the
value of the move is augmented by the fixed cost, fj , of that DC (since we can remove
the site). If the DC is forced into the solution by an additional constraint imposed by the
branch and bound algorithm in which the Lagrangian procedure is embedded, the DC
cannot be removed from the solution and we do not add the fixed cost into the value of
the proposed retailer reassignment. We do not, however, actually remove an open DC
from consideration until no improving reassignments can be found. Thus, the value of
reassigning retailer i to an open DC with no currently assigned demand equals the sum
of the changes in the second and third terms of (12) minus the fixed cost for the DC since
we would need to re-open the site.

For each retailer, the best possible reassignment is found and performed before
finding reassignments for the next retailer. We continue looping through all retailers
until we complete one entire loop without finding an improving reassignment. At that
point, an open DC with no assigned demand is removed and its fixed cost is actually
subtracted from the upper bound on the solution.

5.4. DC exchange algorithm improvements

After the termination of the Lagrangian procedure, we apply a variant of the exchange
algorithm proposed by Teitz and Bart [34] for the P -median problem. For each DC in
the current solution, we find the best substitute DC that is not in the current solution. For
each such potential exchange, retailers are assigned in a greedy manner to the DC which
increases the cost the least based on the assignments made so far. Thus, this process is
like the second phase assignment process in obtaining the upper bound at each iteration
of the Lagrangian procedure in that a retailer can be assigned to any open DC. If a
DC exchange is found that improves the solution, we make the exchange; otherwise we
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proceed to the next open DC to try to find an improving exchange involving that DC. If
any improving exchanges are found, we try single retailer reassignments (as discussed
in section 5.3) to the best DC configuration we have found and then restart the search for
improving exchanges. If a pass through all possible exchanges is made without finding
an improving exchange, the exchange algorithm terminates.

5.5. Variable fixing

In addition to the DC exchange heuristic outlined above, at the end of the Lagrangian
procedure at the root node, we employ a variable fixing technique. In essence, this can be
thought of as performing branch and bound on all of the DC locations, without revising
any of the Lagrange multipliers. It uses the following rules:

Node exclusion rule. If candidate DC j is not currently part of the solution to the
Lagrangian problem (i.e., Xj = 0 in the optimal solution to (19) at some iteration) and
if LB+fj+Ṽj > UB, then candidate DC j cannot be part of the optimal solution, where
LB and UB are the current lower and upper bounds on the solution, respectively.

Node inclusion rule. If candidate DC j is part of the solution to the Lagrangian problem
(i.e.,Xj = 1 in the optimal solution to (19) at some iteration) and if LB−(fj+Ṽj ) > UB,
then candidate DC j must be part of the optimal solution. Note that when node j is part
of the best-known solution, fj + Ṽj will generally be negative so that the left hand side
of the inequality above will generally be greater than LB.2

5.6. Branch and bound

It may be that after the exchange algorithm and the variable forcing routine, either the
lower bound equals the upper bound or there are no unforced DC location variables. In
that case, the solution corresponding to the upper bound is optimal, so the lower bound is
set to the upper bound and the algorithm terminates. In our experience this often occurs
as indicated below. If, however, the lower bound is less than the upper bound and some
candidate DC locations are not forced in or out of the solution, we employ branch and
bound. Note that we have implemented branch and bound only on the location variables
and not on the assignment variables. In all our computational experience with the model
we have never found a case in which there was a need to branch on the assignment
variables.

At each node of the branch and bound tree, we first try to branch on a location
variable corresponding to a facility that is in the best-known feasible solution (i.e., the
solution corresponding to the best-known upper bound). From among these locations,
we select the DC (free) location with the largest assigned demand. If all DC locations in
the solution corresponding to the best upper bound are forced into the solution, then we

2 The authors gratefully acknowledge Larry Snyder for pointing out a minor error in the statement of the
node exclusion and inclusion rules in an earlier version of the paper.
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branch on the first un-forced candidate location in the list of candidate locations. Once a
location has been identified for branching, we first force the site out of the solution and
then force the site into the solution. Node selection is done in a depth-first manner.

6. Computational results

In this section, we outline computational results from two experiments. The first was
designed to test the algorithm’s computational capabilities and to compare the algorithm
with a set partitioning approach to the same problem proposed by Shen [31] and Shen,
Coullard and Daskin [32]. For that experiment we employed two datasets: one had 88
retail locations and the other had 150 retail locations. The second experiment was based
on a modification of the 150-node data set and was designed to assess the sensitivity
of the results with respect to changes in the relative importance of the transport and
inventory terms. We also used this dataset to assess the impacts of significant reductions
in the fixed order costs as might result from the use of e-commerce technologies. In all
cases, each retail location was also a candidate DC location. Also, in all cases, we set
dij , the unit cost of shipping from candidate DC j to retailer i, to the great circle distance
between these locations.

For all cases, the parameters for the Lagrangian procedure are shown in table 3.
Two datasets were used for the initial set of tests. They are minor modifications of

the 88 and 150-node datasets given in [7]. For the 88-node dataset – representing the 50
largest cities in the 1990 U.S. census along with the 48 capitals of the continental U.S.
– the mean demand was obtained by dividing the population data by 1000 and rounding
the result to the nearest integer. Fixed facility location costs were obtained by dividing
the facility location costs in [7] by 100. For the 150-node dataset – representing the 150
largest cities in the continental U.S. for the 1990 census – the mean demand was obtained
in the same manner. The fixed facility costs were all set to 100, one-one-thousandth of
the value in the dataset given by Daskin [7]. These changes were made to allow us to
deal with smaller numbers.

Table 4 presents the coefficients used in all the runs for both datasets.
Table 5 presents the results for the two datasets. As the transport costs increase

(as β goes up), the number of DCs goes up. Conversely, as inventory costs increase
(as θ goes up), the number of DCs goes down. Also, when inventory considerations
dominate (θ is very large relative to β), it is sometimes optimal to assign one or more

Table 3
Parameters for Lagrangian relaxation runs.

Parameter Value

Maximum number of iterations 400
Minimum alpha multiplier 0.00000001
Maximum number of iterations before halving alpha 12
Crowder’s damping factor 0.3
Initial Lagrange multiplier value 10µ̄ + 10fj
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Table 4
Model coefficients for 88 and 150-node test problems.

F Fixed order cost 10
gj , ∀j ∈ J Fixed shipping cost from supplier to DC 10
aj , ∀j ∈ J Unit shipping cost from supplier to DC 5

γ Variance to mean ratio 1.00
zα Service level parameter 1.96
L Lead time 1
h Unit holding cost 1
χ Days per year 1

retailers to a DC that is other than the least cost DC in terms of local delivery cost (dij ).
For example, for the final case (150 nodes, β = 0.001 and θ = 1), three retailers were
assigned to DCs other than the one with the smallest local delivery cost. Reassigning
each to the least local delivery cost DC would increase the cost by $3.37 or 0.027%. The
local delivery costs decrease by almost $11 out of roughly $4,870 (0.22%), while the
safety stock, fixed order costs, and working inventory costs each increase by about $4.7
or 0.245%. Thus, while it is optimal to assign these three retailers to DCs other than
the ones that could provide the least cost local delivery service, reassigning them to the
least-cost DCs would not increase the total cost very much.

Table 5 also compares the computation times for the algorithm presented above
with those obtained in [32] using a set partitioning approach. Times obtained for our
model are on a Dell Latitude CPx computer running at 650 MHz using Windows 98.
The program was written in Delphi 5. The Shen, Coullard, and Daskin times are on
a Sun Spark Station running the SunOS 4.1.3u5 operating system. Our computation
times are consistently lower than those obtained using the column generation approach.
However, our times tend to grow with β while the column generation times decrease
with β. Thus, for very large values of β relative to θ , it might be better to use the column
generation approach. In many cases, we did not need to use branch and bound at all;
when we did very few nodes needed to be evaluated. Finally, the variable forcing rules
were exceptionally effective, forcing almost all nodes in or out of the solution at the root
node. This is in part due to the very tight bounds obtained at the root node.

Finally, we consider a different variant of the 150-node dataset given in [7]. In this
case, we divided the demands by 250 and truncated the result to obtain the mean daily
demand. Table 6 gives the model coefficients for this set of runs, which were designed to
better replicate real-world conditions. Two supplier locations were considered – Chicago
and Phoenix – and the fixed shipping cost from the supplier to a candidate DC was taken
to be function of the distance from the closer supplier to the candidate DC site as shown
in table 6.

Figure 3 shows the optimal solution for a base case of β = 0.00025 and θ = 0.1.
The supplier in Chicago serves 6 of the 10 DCs and about 73% of the total demand.
Figure 4 breaks down the total cost of approximately $4.49 million into its constituent
parts. Note that in this case, the transport costs from the suppliers to the DCs as well
as the safety stock costs – all buried in the “other” category – are negligible. Figures 5
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Table 6
Model coefficients for final set of test problems.

F Fixed order cost 1000
gj , ∀j ∈ J Fixed shipping cost from supplier to DC 40 + 0.1(distance)
aj , ∀j ∈ J Unit shipping cost from supplier to DC 0.5

γ Variance to mean ratio 1.00
zα Service level parameter 1.96
L Lead time (days) 7
h Unit holding cost 25
χ Days per year 250

Figure 3. Solution for base case.

Figure 4. Distribution of costs for base case.

and 6 show the sensitivity of the cost and number of facilities to changes in the transport
and inventory cost weights. As the relative importance of inventory costs goes up, the
number of DCs located goes down and as the importance of transport costs goes up,
the number of DCs increases. The figures also compare this model with the traditional
uncapacitated fixed charge (UFC) location model. Not surprisingly, the total cost for the
UFC model is always below that of the model presented above which includes additional
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Figure 5. Sensitivity of cost to changes in transport and inventory weights.

Figure 6. Sensitivity of number of DCs to changes in transport and inventory weights.

cost components. Also, due to the concavity of the additional cost terms, the UFC
consistently locates more DCs than does the model above.

Finally, we consider how the solution might change if the fixed cost of placing
an order decreased significantly from $1000 per order to $10 per order as might be
the case with e-commerce technologies. The total cost decreases from $4.49 million to
$2.9 million. Interestingly, it is now optimal to open 14 DCs instead of the 10 found
in the base case. This is reassuring since the demand-weighted average local delivery
distance to a retailer from a DC will decrease from 127.1 to 88.8 miles. It is reassuring
that the average distance decreases in this case, since e-commerce is often associated
with expectations of improved customer service. Figure 7 shows the new solution. The
supplier in Chicago serves 9 of the DCs and about 71% of the demand. Compared to the
cost breakdown in the base case (figure 4), in this case, 48% of the total cost is in facility
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Figure 7. Solution with reduced fixed ordering costs.

costs and another 44.3% is in local delivery costs. Order costs and working inventory
costs each constitute 3.3% of the total costs while safety stock costs and shipment costs
from the supplier to the DCs are again negligible.

If we could not relocate or add to the set of open DCs used in the base case, but
could simply reoptimize the retailer assignments and inventory management policies,
the costs would be 4.1% higher than those for the solution shown in figure 7. If we were
constrained to using the 10 DCs in the base case, but could add DCs, it would be optimal
to use 3 additional DCs located in Cleveland, OH, Denver, CO, and Richmond, VA. The
total cost in this case is only 1.1% greater than that of the optimal solution in figure 7.

7. Conclusions and directions for future work

We have presented a facility location model that incorporates working and safety stock
inventory costs at the distribution centers as well as the economies of scale that exist in
the transport costs from suppliers to DCs. The model is identical to that proposed by
Shen [31] and Shen, Coulard and Daskin [32]. Both references solve the problem by
first recasting it as a set partitioning problem and then solving the resulting model using
column generation. In this paper, we presented a Lagrangian solution algorithm for the
case in which the ratio of the variance of demand at the retailers to the mean demand
is the same for all retailers. A number of improvement heuristics were outlined for the
problem. Also, two variable forcing rules that are applied at the root node of the branch
and bound tree were discussed.

The algorithm was tested on two datasets consisting of 88 and 150 nodes, respec-
tively. The computational results compare favorably with those of the set partitioning
approach proposed by Shen [31] and Shen, Coullard and Daskin [32]. In many cases,
branch and bound was not needed because the bounds at the root node proved the op-
timality of the solution and/or because we could force all of the candidate DCs into or
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out of the solution. In a final set of tests, we included explicit supplier locations and
modified the inputs to better reflect actual conditions. When fixed order costs are sig-
nificantly reduced, the number of facilities located increases. Despite our best efforts to
reflect realistic conditions, it is important to test the data with actual corporate data to
confirm that the model is accurately capturing the relevant costs.

A number of extensions should be considered. First, we need to develop ways of
solving the problem when the ratio of the variance to the mean is not identical for all re-
tailers. Second, we hope to consider the cases with multiple items as well as a constraint
on the maximum allowable inventory at a DC and a constraint on the maximum demand
that can be served by a supplier. Third, it might be possible to incorporate local delivery
cost estimates that better reflect less-than-truckload routing since such approximations
often involve the square root of demand [6]. Finally, we would like to extend the model
to account for different future demand or travel cost scenarios. We are working in all of
these areas.
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