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An inventory of three-dimensional Hilbert space-filling curves

Herman Haverkort∗

September 13, 2011

Abstract

Hilbert’s two-dimensional space-filling curve is appreciated for its good locality properties
for many applications. However, it is not clear what is the best way to generalize this curve
to filling higher-dimensional spaces. We argue that the properties that make Hilbert’s curve
unique in two dimensions, are shared by 10 694 807 structurally different space-filling curves
in three dimensions. These include several curves that have, in some sense, better locality
properties than any generalized Hilbert curve that has been considered in the literature
before.

1 Introduction

A space-filling curve in d dimensions is a continuous, surjective mapping from R to Rd. In the
late 19th century Peano [9] described such mappings for d = 2 and d = 3. Since then, quite
a number of space-filling curves have appeared in the literature, and space-filling curves have
been applied in diverse areas such as spatial databases, load balancing in parallel computing,
improving cache utilization in computations on large matrices, finite element methods, image
compression, and combinatorial optimization.

Space-filling curves are usually recursive constructions that map the unit interval [0, 1] to a
subset of Rd that has measure larger than zero. In the case of Peano’s two-dimensional curve,
the subset of Rd that is “filled” is the unit square. Peano’s curve is based on subdividing this
unit square into a grid of 3×3 square cells, and simultaneously subdividing the unit interval into
nine subintervals. Each subinterval is then matched to a cell; thus Peano’s curve traverses the
cells one by one in a particular order. The procedure is applied recursively to each subinterval-
cell pair, so that within each cell, the curve makes a similar traversal (see Figure 1(a)). The
result is a fully-specified mapping from the unit interval to the unit square. A mapping from
R to Rd could then be constructed by inverting the recursion, recursively considering the unit
interval and the unit square as a subinterval and a cell of a larger interval and a larger square.

It is straightforward to generalize the definition of Peano’s two-dimensional curve, based on
a subdivision of a square into nine squares, to a three-dimensional curve, based on a subdivision
of a cube into 27 cubes, or even a d-dimensional curve, based on a subdivision of a hypercube
into 3d hypercubes. Peano’s curve has been the curve of choice for certain applications. How-
ever, in many other applications preference is given to curves based on subdividing squares (or
hypercubes) into only 2d squares (or hypercubes). The cell in which a given point p lies can
then be determined by inspecting the binary representations of the coordinates of p bit by bit,
and no divisions by three need to be computed.

In response to Peano’s publication, Hilbert [5] described a two-dimensional space-filling curve
based on subdividing a square into four squares (Figure 1(b)). However, he did not describe
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(a) (b)

Figure 1: (a) A sketch of Peano’s space-filling curve. (b) A sketch of Hilbert’s space-filling
curve.

how to do something similar in higher dimensions. It is now well-established that it can be done;
in fact there are many ways to define a three-dimensional curve based on subdividing a cube
into eight octants. Which of these three-dimensional curves would be the three-dimensional
“Hilbert” curve of choice depends on what properties of a Hilbert curve are deemed essential
and what quality measures of the space-filling curve one would like to optimize.

In this paper, we consider a number of properties and quality measures. The quality mea-
sures include the L∞-, L2 and L1-locality measures studied by, among others, Gotsman and
Lindenbaum [3], Chochia et al. [2], and Niedermeier et al. [7, 8]; the surface-to-volume measure
studied by, for example, Hungershöfer and Wierum [6]; and the bounding-box quality measures
studied by Haverkort and Van Walderveen [4]. The one property which we consider to be
essential is that the curve is vertex-continuous—in effect this means that any pair of consecu-
tive intervals of [0, 1] is mapped to a pair of adjacent regions in the unit cube. (Without this
property, a curve would be infinitely bad according to most of the locality measures considered.)

The findings presented in this paper include the following:

• Suppose we define a true Hilbert space-filling curve to be a space-filling curve that satisfies
a certain minimal set of natural requirements such that the only true two-dimensional
Hilbert curve is indeed Hilbert’s curve. Under this definition there are 10 694 807 different
three-dimensional true Hilbert curves (modulo rotation, reflection, and reversal). These
include a curve that does not start and end in corners of the unit cube and has very good
locality properties, and a curve that traverses the points of many facets of the unit cube
in the same order as a two-dimensional Hilbert curve would do.

• If one also allows curves that are described by a system of multiple recursive rules, then
the number of different curves is infinite. The best previously known upper bounds on
the best achievable L∞-, L2-, and L1-locality measures of three-dimensional generalized
Hilbert curves were 29.2, 33.2, and 98.4, respectively. New curves and proofs represented
in this paper improve these bounds to 9.45, 18.3, and 75.6, respectively. We prove that
no three-dimensional generalized Hilbert curve can have better L∞-locality.

Below, we will first see how exactly we can define Hilbert-like space-filling curves, and then
we describe in detail what properties and quality measures of Hilbert-like space-filling curves
we consider in this paper. After that we explain how, for some subsets of these properties, we
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Figure 2: (a) Definition of a scanning order corresponding to a variant of the βΩ-curve. (b)
Applying the rules recursively within R. (c) The resulting order of the 8× 8-grid. (d) Order
of the 16 × 16-grid. On each level, the last cell of each quadrant shares a vertex (and even an
edge) with the first cell of the next quadrant.

can enumerate all space-filling curves that have these properties, and then we present the most
interesting three-dimensional space-filling curves found.

2 Defining and using space-filling curves

In general, we can define an order (scanning order) of points in d-dimensional space as follows.
We give a set of rules, each of which specifies (i) how to subdivide a region in d-dimensional
space into subregions; (ii) what is the order of these subregions; and (iii) for each subregion,
which rule is to be applied to establish the order within that subregion. We also specify a unit
region, and we indicate what rule is used to subdivide and order it.

Figure 2(a) shows an example (the scanning order depicted corresponds to a section of
the βΩ-curve by Wierum [11]). Each rule is identified by a letter, and pictured by showing a
unit square, its subdivision into quadrants, the scanning order of the quadrants (by a directed
curve along the outer vertices of the quadrants), and the rules applied to the quadrants (by
letters). Within each quadrant, there is a scaled copy of the base pattern: the curve along
the outer vertices of the quadrants. Variations of the rules that consist of simply rotating
or mirroring the order within quadrants are indicated by rotating or mirroring the pattern.
Variations of rules that consist of reversing the order of cells within a quadrant are indicated
by reversing the direction of the pattern and by an overscore above the letter identifying the
rule1. Figure 2(b) shows how applying these rules recursively, starting with rule R, results in

1It is necessary to do both: reversing the direction of the pattern and including the overscore. Figure 2(a)
illustrates this. Rule J is asymmetric because different rules are applied to the first and the last quadrant. It is
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an order of the subquadrants within each quadrant. Combined with the order of the quadrants,
this gives an order of all squares in a 8 × 8 grid, which is sketched by the curve shown in
Figure 2(c). By expanding the recursion further, one may order the cells of an arbitrarily
fine grid. The polygonal curve that connects the centres of these cells in order thus forms an
arbitrarily fine approximation of a space-filling curve; thus the definition of the scanning order
is also a definition of a space-filling curve.

When the scanning order is refined to an infinitely fine grid, the first and the last cell visited
shrink to points on the boundary of the unit square. We will call these points the entrance
gate and the exit gate of the curve; in Figure 2 their location is indicated by the white dots
and the black dots, respectively. Note that these dots are only shown for clarity, they are a
consequence of the definition of the scanning order, rather than a part of the definition. The
letters indicating the rules may be omitted if there are no reversals and no two rules have the
same base pattern modulo rotation and reflection.

Figures 7 to 10 show examples of definitions of three-dimensional space-filling curves.
Note that for many practical applications of space-filling curves it is not necessary to actually

draw a curve. It is often enough to be able to decide for any two given points p and q, which
of these appears first on the curve—or more precisely, which point comes first in the scanning
order. This can be decided by expanding the recursion only to the smallest depth at which p
and q lie in different quadrants or octants.2

3 Properties of generalized Hilbert curves

The space-filling curve curves studied in this paper all have the following properties:

• They are defined by a rule system as described above, in which the unit region is always
the d-dimensional unit hypercube, and all rules subdivide hypercubes into 2d smaller
hypercubes of equal size. When d = 2, the hypercubes are squares and the subcubes
are called quadrants; when d = 3, the hypercubes are cubes and the subcubes are called
octants.

• The scanning order is vertex-continuous: this means that if the scanning order visits a set
of hypercubes C1, ..., Ck, in that order, and we refine the scanning order in each of these
hypercubes recursively to depth m so that we obtain an order on k · 2md cells, for any
m ≥ 1, then the last cell within Ci−1 shares at least one vertex with the first cell within
Ci, for all 1 < i ≤ k (see, for example, Figures 1 and 2(d)).

The reason to require the second property will be explained at the end of the next section.
In this paper, a curve that has the above properties will be called a generalized Hilbert curve.
More specifically, such a curve will be called a mono-Hilbert curve (or mH-curve) if the defining
rule system contains only one rule, and a poly-Hilbert curve (or pH-curve) if the defining rule
system consists of more than one rule. With these definitions, in one dimension, there is no
other generalized Hilbert curve than the trivial curve that traverses the unit line segment from
one end to the other. In two dimensions, there are no mono-Hilbert curves other than Hilbert’s
original curve.

therefore important to distinguish between reflected, unreversed applications of J , as in the lower left quadrant
of rule R, and unreflected, reversed applications of J , as in the lower right quadrant. Since the base pattern of
J is symmetric, it is only the overscore that indicates which of these alternatives is meant.

2A technical problem with this is that, down from some depth of recursion, a given point p may always lie on
the boundary of two or more quadrants. This may create ambiguity about which of two points p and q comes
first. This ambiguity can easily be resolved by using a consistent tie-breaking rule, for example, always assign p
to the quadrant to its upper left, or to the quadrant that comes first in the order.

4
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Figure 3: (a) Definition of the two-dimensional Hilbert curve. Because there is only one rule
and the definition is order-preserving, the letters identifying the rule are omitted. (b) Binary
decomposition of the two-dimensional Hilbert curve.

Besides the properties described above, there are a number of other properties we may be
interested in, or which may be convenient for case distinctions when exploring the realm of
mono-Hilbert curves and poly-Hilbert curves:

• Mono-Hilbert curves may be order-preserving : this means that the curve can be described
by a defining rule that is not reversed in any octant.3

• Curves may be symmetric: this means that they are the same as their own reversed version
that is reflected in a line (in 2D) or plane (in 3D) or rotated 180 degrees around a point
(in 2D) or line (in 3D). Note that we do not require this line or plane to be parallel to any
edges or faces of the unit square/cube: it could also be diagonal. Symmetric mono-Hilbert
curves are always order-preserving.

• d-Dimensional mono-Hilbert curves may be binary-decomposable: this means that the
scanning order can be defined by d rules R0, ...,Rd−1, where each rule Ri divides a region
by an axis-parallel cutting plane into two regions of equal size, to each of which rule
R(i+1) mod d is applied. (We will not require the rules R0, ...,Rd−1 to be order-preserving,
even if the curve itself is order-preserving.) Figure 3 shows a binary decomposition of the
two-dimensional Hilbert curve.

• d-Dimensional generalized Hilbert curves may be downward-compatible (or partially down-
ward-compatible): this means that for each (or some) of the d coordinate axes the d-
dimensional unit cube has a (d − 1)-dimensional face F orthogonal to that axis, so that
the d-dimensional curve visits the points of F in the same order as the order in which
they would be visited by a (possibly rotated, reflected or reversed) (d − 1)-dimensional
downward-compatible Hilbert curve filling F ; we define the trivial one-dimensional gen-
eralized Hilbert curve (the traversal of a line segment from one end to the other) to be
downward-compatible by definition. Note that downward-compatibility cannot be verified
by only looking at the order in which the cells of a 4d grid are traversed and this may
sometimes be misleading: one needs to make sure that the (d − 1)-dimensional Hilbert
order on the face(s) is maintained also when the grid is refined recursively.

• d-Dimensional curves may be k-continuous, for 0 ≤ k < d: this means that if the scanning
order visits a set of cells C0, ..., Ck, in that order, and we refine the scanning order in
each cell recursively so that we obtain an order on k · 2md subcells, for any m ≥ 1, then
the last subcell within Ci−1 shares at least one k-dimensional face with the first subcell
within Ci, for all 1 ≤ i ≤ k. We may also describe curves that are (d − 1)-continuous as
face-continuous, and we may describe curves that are 1-continuous as edge-continuous.

3For poly-Hilbert curves we do not consider this property, since reversals can always be eliminated by using
additional rules that describe the reversed versions of the original rules.
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Figure 4: A sketch of a partially downward-compatible three-dimensional generalized Hilbert
curve.

• Curves may be vertex-gated : this means that in each rule, the gates are vertices of the
unit cube. Similarly, curves may be edge-gated (the gates lie in the interior of edges of
the unit cube), face-gated (the gates lie in the interior of faces of the unit cube), or even,
for example, vertex-edge-gated (the gate of entry lies at a vertex and the gate of exit
lies in the interior of an edge of the unit cube, or the other way around). For example,
the two-dimensional Hilbert curve is vertex-gated (Figure 3(a)), whereas the βΩ-curve is
edge-gated (Figure 2).

• Mono-Hilbert curves may be non-reflecting : this means that the curve can be described
by a defining rule that is possibly rotated and/or reversed, but never reflected in any
octant.

Hilbert’s two-dimensional curve (Figure 3(a)) is order-preserving, symmetric, binary-decom-
posable, downward-compatible, face-continuous, and vertex-gated4. We may now ask what
properties a three-dimensional space-filling curve should have to be called a true three-dimen-
sional Hilbert curve. Ultimately, the answer is a matter of taste, and I can only give some
considerations that one might want to take into account when answering this question. Re-
quiring a three-dimensional Hilbert curve to have generalizations of all properties of the two-
dimensional Hilbert curve seems too restrictive: one can always find a property that holds for the
two-dimensional curve but cannot be generalized. In fact, in three dimensions, no downward-
compatible, binary-decomposable mono-Hilbert curve exists. Thus, a more reasonable choice
of requirements for a true Hilbert curve may be a minimal set of requirements such that the
two-dimensional Hilbert curve exists and is unique (modulo rotation, reflection and reversal).
The requirements that define a mono-Hilbert curve (one rule, subdividing a square into four
squares, with vertex-continuity) are such a choice: if we drop any of these requirements, the
two-dimensional Hilbert curve would not be unique anymore. Regardless of what constitutes,
according to our taste, a true three-dimensional Hilbert curve, we may, of course, still prefer
to work with other three-dimensional curves—for example, poly-Hilbert curves—in particular
applications.

4Note that within the first (bottom left) and last (bottom right) quadrant we must make a left turn, while
the base pattern makes a right turn. A left turn can be obtained either by reflecting the base pattern, or by
reversing the base pattern. Thus we can choose to say that Hilbert’s two-dimensional curve is order-preserving,
or that Hilbert’s two-dimensional curve is non-reflecting—but it cannot be both.

6



4 Quality measures of space-filling curves

In addition to the properties mentioned above, we consider a number of curve quality measures.
To define these quality measures we need the following definitions: given two points p and q in
the unit cube, let δi(p, q) be the Li-distance between p and q, let C(p, q) be the set of points
that appear on the curve between p and q, and let vol(S), diami(S), bbox(S), bballi(S), and
surface(S) be the volume, Li-diameter, the minimum axis-parallel bounding box, the minimum
bounding Li-ball, and the measure of the boundary of the set S, respectively. We can now
define the following quality measures of a d-dimensional space-filling curve:

• Li-locality or WLi (for i ∈ {1, 2,∞}): the maximum, over all pairs of points p, q in the
unit cube, of δi(p, q)

d / vol(C(p, q));

• Li-diameter ratio or WDi (for i ∈ {1, 2,∞}): the maximum, over all pairs of points p, q
in the unit cube, of diami(C(p, q))d / vol(C(p, q));

• Li-bounding ball ratio or WBBi (for i ∈ {1, 2,∞}): the maximum, over all pairs of points
p, q in the unit cube, of vol(bballi(C(p, q))) / vol(C(p, q));

• surface ratio or WS: the maximum of (surface(C(p, q))/2d)d/(d−1) / vol(C(p, q));

• bounding-box volume ratio or WBV: the maximum of vol(bbox(C(p, q))) / vol(C(p, q));

• bounding-box surface ratio or WBS: the maximum of (surface(bbox(C(p, q)))/2d)d/(d−1)

/ vol(C(p, q)).

In fact, the Li-locality and the Li-diameter ratio of a space-filling curve are always equal5. For
i =∞ and i = 1, the Li-diameter ratio and the Li-bounding ball ratio are always equal as well,
modulo a fixed constant factor6. I conjecture that the same holds for i = 2: we can prove this
for two-dimensional space-filling curves7, but I have not found a proof for three-dimensional
space-filling curves yet.

5Consider two points p, q, and let r, s be two points of C(p, q) that determine the diameter of C(p, q) and are
as close to each other as possible along the curve. Since C(r, s) ⊆ C(p, q) and δi(r, s) ≥ δi(p, q), reducing the
curve section under consideration from C(p, q) to C(r, s) can only increase its locality ratio δi(p, q)

d/vol(C(p, q))
and its diameter ratio diami(C(p, q))d/vol(C(p, q)); when C(p, q) shrinks to C(r, s) both will rise to the same
value δi(r, s)

d/vol(C(r, s)). Therefore, WLi and WDi are determined by the same point pairs and have the same
value.

6This is shown by similar arguments as for the equality of Li-locality and Li-diameter ratio, using the obser-
vation that for i = ∞ and i = 1, the diameter of the minimum bounding Li-ball of any set S is equal to the
Li-diameter of S.

7Consider two points p and q, and let B be a minimal set of points of C(p, q) such that bball2(B) =
bball2(C(p, q)). Suppose B consists of three points r, s, and t, in the order in which they occur along the
space-filling curve between p and q. Let ρ, σ and τ be the angles of the triangle 4rst at r, s, and t, respectively.
Note that ρ, σ, τ < π/2, and the diameter of bball2(C(p, q)) is δ2(r, s)/ sin τ = δ2(s, t)/ sin ρ.

Now, suppose for the sake of contradiction, that neither C(r, s) nor C(s, t) has a L2-bounding ball ratio
that is worse than that of C(p, q). Thus vol(bball2(C(r, s)))/vol(C(r, s)) ≤ vol(bball2(C(p, q)))/vol(C(p, q)),
which implies δ2(r, s)2/vol(C(r, s)) ≤ (δ2(r, s)2/ sin2 τ)/vol(C(p, q)), and thus sin2 τ ≤ vol(C(r, s))/vol(C(p, q));
similarly: sin2 ρ ≤ vol(C(s, t))/vol(C(p, q)); adding these up yields: sin2 τ + sin2 ρ ≤ 1. However, since all angles
of 4rst are acute angles, we have ρ = π − σ − τ > π/2 − τ and sin2 τ + sin2 ρ > sin2 τ + sin2(π/2 − τ) = 1.
Therefore p and q cannot determine the L2-bounding ball ratio.

Furthermore, suppose that neither C(r, s) nor C(s, t) has a L2-diameter ratio that is worse than that of C(p, q).
Thus diam2(C(r, s))2/vol(C(r, s)) ≤ diam2(C(p, q))2/vol(C(p, q)), which again implies δ2(r, s)2/vol(C(r, s)) ≤
(δ2(r, s)2/ sin2 τ)/vol(C(p, q)); proceeding in the same way as for the L2-bounding ball ratio, we find that p and
q cannot determine the L2-diameter ratio either.

Hence both the L2-bounding ball ratio and the L2-diameter ratio must be determined by a pair of points p, q
for which B consists of only two points r and s, in which case the L2-diameter of C(p, q) is also the diameter of
bball2(C(p, q)).
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In a previous publication on two-dimensional space-filling curves we described algorithms to
compute bounds on WLi, WBV, and WBS for any given curve [4]. We have now implemented
higher-dimensional versions of these algorithms, including an algorithm to compute WS, and
used these algorithms to analyse the curves discussed in the next sections of this paper.

Note that a curve that is not vertex-continuous would, at some level of recursion, visit two
cells C1 and C2 that are consecutive in the order but not adjacent in space. One could say
the curve jumps from C1 to C2. It is generally assumed that jumps cause bad performance
in many applications. This also shows in the quality measures described above. To see this,
consider refining the recursion, and consider the last subcell C ′1 in C1 and the first subcell
C ′2 in C2. These, too, are consecutive in the order, but not adjacent in space: the distance
δi(p, q) between any pair of points p ∈ C ′1, q ∈ C ′2 is at least the distance between C1 and
C2, while the size of the set of points C(p, q) between p and q along the curve is at most
vol(C ′1) + vol(C ′2). By refining the recursion, getting smaller cells C ′1 and C ′2, we can make the
ratio δi(p, q)

d/vol(C(p, q)) arbitrarily big. Hence, a curve that is not vertex-continuous would
have an infinitely bad score on the Li-locality measures mentioned above. Similarly, it would
have an infinitely bad score on the bounding box quality measures. This is why we restrict our
attention to vertex-continuous curves.

5 Previous results on the quality of three-dimensional general-
ized Hilbert curves

Many authors have studied locality measures for two-dimensional space-filling curves (for an
overview, see Haverkort and Van Walderveen [4]), but for three-dimensional curves results are
few. Gotsman and Lindenbaum [3] proved that a three-dimensional Hilbert curve has WL2

at most 48
√

6 ≈ 117.6, and reported to have found that WL2 is at most 23 by computer
simulation. From their publication it is not clear which curve or which curves exactly they
evaluated, but their results are confirmed by our computations: the curve which we will identify
as A26.0010 1011.1011 0011 (see Figure 8) fits the scope of their publication and we found that
its WL2-value is 22.9.

Niedermeier et al. [7] proved lower bounds of WL∞ ≥ 8.25, WL2 ≥ 11.1 and WL1 ≥ 42.625
for space-filling curves that fill a cube, and conjectured that stronger lower bounds of WL∞ ≥ 9,
WL2 ≥ 12.39 and WL1 ≥ 54 would hold—they could prove the stronger lower bounds only for
curves that fill a cube such that the exit gate coincides with the entrance gate. They also anal-
ysed the three symmetric, non-reflecting, face-continuous three-dimensional order-preserving
mono-Hilbert curves; in the numbering scheme described in Section 6 below, these curves will
be identified as A16.00.00, A18.00.00, and A26.00.00. In particular, for A26.00.00 (Figure 5(b))
they found WL∞ ≤ 29.2, WL2 ≤ 33.2, and WL1 ≤ 98.4; we now obtain the following more
precise bounds for this curve: WL∞ = 24.22; WL2 = 26.23; and WL1 = 98.34. For A16.00.00
and A18.00.00 the numbers are higher.

Chochia and Cole [2] prove that all face-continuous three-dimensional order-preserving
mono-Hilbert curves have WL1 at least 851

3 and at most 128. They present a new face-
continuous three-dimensional poly-Hilbert curve, the H∗-curve, which they compared to the
non-reflecting, face-continuous three-dimensional order-preserving mono-Hilbert curves by esti-
mating their WL1-values for pairs of points in a 32× 32× 32 grid. Chochia and Cole describe
their curve by giving four rules in which the first and the last octant are left open, together with
a table with 24 entries that specifies how to choose one out of three possibilities for each end,
depending on the context. In effect they thus describe 4 · 3 · 3 = 36 combinations; however, ex-
panding the recursion one would find that only ten of these are actually used; thus the H∗-curve
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(a) (b) (c)

Figure 5: (a) An example of a connection scheme (A26). (b) A curve (A26.00.0000 0000)
that matches the connection scheme: it is a symmetric, non-reflecting curve with optimal
WBV among order-preserving mono-Hilbert curves. (c) Another curve (A26.00.1101 1011) that
matches the connection scheme: it is a downward-compatible mono-Hilbert curve that shows
two-dimensional Hilbert orders on all faces except the back face of the cube.

is a poly-Hilbert curve with ten rules. With our algorithm we found that it has WL1 = 84.0,
which is indeed better than any mono-Hilbert curve.

6 Generating three-dimensional mono-Hilbert curves

There are only a finite number of different three-dimensional mono-Hilbert curves, so one may
try to generate all of them.

The recursive definitions of space-filling curves as shown in Figures 7 to 10 focus on describing
the order in which octants within cubes are visited. The number of different ways to order eight
octants is 840, so we could consider generating all of them, and then generating all possibilities
to rotate, reflect and/or reverse the order within each octant such that a vertex-continuous
curve results.8 However, if we would take this approach, it would be quite complicated to figure
out if, in recursion, the exit gate of each octant matches the entrance gate of the next octant.

Therefore we take an alternative approach, generalizing the approach taken by Alber and
Niedermeier [1]. Instead of first generating only the order in which octants are visited, we
first fix the entrance and exit gates of the unit cube, and then generate possible sequences of,
alternatingly, octants and gates between them. While doing so, we make sure that every triple
of an octant with its entrance gate and its exit gate can be obtained by a transformation of the
unit cube with its entrance and exit gates. Thus we find a set of possible connection schemes. A
connection scheme is not a space-filling curve definition yet: this is because for each octant C,
there may be multiple transformations that map the unit cube and its gates to octant C and its
gates; for a full definition of a space-filling curve we have to choose, for each octant, which of
these transformation to use. Thus a connection scheme may give rise to a number of different
actual space-filling curves. Figure 5 shows such a connection scheme, with two examples of
space-filling curve definitions that match the scheme.

Of course the viability of this approach depends on the ease with which we can generate all
realizable combinations of entrance and exit gates for the unit cube. Fortunately the number
of possible combinations is fairly limited. We will adopt a coordinate system in which the lower

8We can identify the octants by coordinate triples from {0, 1}3. Modulo reflections and rotations, we may
assume that the traversal starts with (0, 0, 0), that (0, 0, 1) appears before (0, 1, 0), and that (0, 1, 0) appears
before (1, 0, 0). The remaining four octants could be ordered in 4! ways, and they could be mixed in with the
sequence (0, 0, 1), (0, 1, 0), (1, 0, 0) in 7!/3!4! ways. Thus there are 7!/3! = 840 different orders.
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left front vertex of the unit cube has coordinates (0, 0, 0), the lower right front vertex is at
(1, 0, 0), the lower left back vertex is at (0, 1, 0), and the upper left front vertex is at (0, 0, 1).
We can prove that for order-preserving mono-Hilbert curves, we do not need to consider any
other combinations than the following:

• For gates at vertices, we may assume that the entrance gate is at (0, 0, 0) and the exit
gate is either at (1, 0, 0) or at (0, 1, 1) (proof in the appendix, Lemma 1).

• For gates in the interior of edges, we may assume that the entrance gate is at (13 , 0, 0) and
the exit gate is at (1, 13 , 1) (proof in the appendix, Lemma 2);

• For gates in the interior of faces, we may assume that the entrance gate is at (0, 13 ,
1
3) and

the exit gate is at (23 ,
1
3 , 0) (proof in the appendix, Lemma 3);

Obviously, in order-preserving mono-Hilbert curves, both gates must be of the same type (at
a vertex, in the interior of an edge, or in the interior of a face). For non-order-preserving
mono-Hilbert curves this is not necessarily the case and we need to consider the following
combinations:

• For one gate at a vertex and one gate in the interior of an edge: entrance at (0, 0, 0), exit
at (1, 12 , 0) (proof in the appendix, Lemma 4);

• For one gate at a vertex and one gate in the interior of a face: entrance at (0, 0, 0), exit
at (1, 12 ,

1
2) (proof in the appendix, Lemma 5);

• For one gate in the interior of an edge and one gate in the interior of a face: no combination
possible (proof in the appendix, Lemma 6);

Below we will discuss the number of curves of each type. In total, we find that there are
10 694 807 three-dimensional mono-Hilbert curves.

Type A and B: vertex-gated curves There are two types of vertex-gated curves: with the
exit gate at (1, 0, 0) (type A) and with the exit gate at (0, 1, 1) (type B). Both types have the
entrance gate at (0, 0, 0).

Connection schemes of type A and B can easily be enumerated by exhaustive search: there
are 29 connection schemes of type A and 149 connection schemes of type B (Figure 6 shows
some of them).

With vertex-gated curves, one can tell from the connection scheme alone whether the curve
is face-continuous, edge-continuous, or only vertex-continuous. The 29 connection schemes of
type A include include 5 schemes for face-continuous curves (3 symmetric and 2 asymmetric)9,
21 schemes for edge-continuous curves (7 symmetric and 14 asymmetric), and 3 schemes for
vertex-continuous curves (all asymmetric); the 149 connection schemes of type B (18 symmetric
and 131 asymmetric) are all only edge-continuous.

We will now analyse the number of different curves (modulo rotation, reflection and reversal)
that we can make from these connection schemes. For each octant in any given scheme, we may
choose whether to use a forward copy of the curve, or a reversed-and-reflected copy (where the
reflection is in the plane containing the gates and the centrepoint of the octant). Given this
choice, the location of the gates determines how the curve should be rotated within the octant.

9The five schemes for face-continuous curves (A6, A16, A17, A18, A26 in Figure 6) were also described by
Alber and Niedermeier. They also described a sixth scheme, version (b) of Hil31.B in their paper; however this
is the same as version (a) of Hil31.B (A6) rotated 180 degrees around a line through the midpoints of the lower
front and the upper back edge.
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A6 A9 A16 A17 A18

A26 B6 B7 B15 B22

B86 B88 B89 D1 D2

D3 D4 E1 E2 E3

E4 E5 E6 E7 E8

E9 E10 E11 E12 E13

E14 E15 E16 F

Figure 6: Connection schemes for mono-Hilbert curves: a selection of schemes of type A and B
mentioned in this paper, and all schemes of type D, E, and F. Figures of the complete set of
schemes of type A and B can be requested from the author.
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Then we still have the choice whether or not to reflect it (that is, whether or not to apply
reflection to a forward copy, or to undo the reflection of a reversed copy). In total, there are
two choices to make for each octant, which makes 16 choices for the full curve. Thus we get:

• asymmetric curves from asymmetric schemes: 216 = 65 536 curves from each scheme;

• symmetric curves from symmetric schemes: symmetric curves are invariant under reversal-
and-reflection, which renders eight choices meaningless; moreover, the reflections of the
first four octants should match those of the last four octants, so that there are only four
choices left to make; thus we get 24 = 16 symmetric curves from each scheme;

• asymmetric curves from symmetric schemes: in this case, reversal-and-reflection does have
an effect: although it does not change the order in which the suboctants of any octant
are traversed (because the connection scheme is symmetric), it reverses the sequence of
decisions whether or not to apply reflection when we traverse the octants in order. This
sequence should be asymmetrical, otherwise we end up with a symmetric curve after all.
Thus we get 28 = 256 combinations of choices which octants to reverse-and-reflect, times
256 − 16 = 240 asymmetric combinations of choices which octants to reflect. However,
since the connection scheme is symmetric, every curve is generated twice in this way:
for every curve we also generate a reversed-and-reflected copy. Hence, in total, we get
256 · 240/2 = 30 720 asymmetric curves from each asymmetric connection scheme.

In total, the number of curves of type A is (3+7)(16+30 720)+(2+14+3)(65 536) = 1 552 544
and the total number of curves of type B is 18 · (16 + 30 720) + 131 · 65 536 = 9 138 464. We will
identify these curves by names that consist of:

• their type (A or B);

• their base-10 connection scheme number (see Figure 6);

• a dash;

• an eight-digit binary number indicating which octants are reversed (this number has a
one for the i-th digit from the right if and only if the i-th octant is reversed);

• an eight-digit binary number indicating which octants are reflected (this number has a
one for the i-th digit from the right if and only if the i-th octant is reflected).

Alternatively, the binary numbers may be given in hexadecimal notation. Note that a reverse-
and-reflect operation as described above affects two digits in the curve identifier.

From the type-A curves, 223 280 are face-continuous; 920 are face-continuous and order-
preserving10.

Type C: vertex-edge-gated curves An exhaustive search brought up 2 758 connection
schemes with the entrance gate at vertex (0, 0, 0) and the exit gate half-way an edge at (1, 12 , 0).
The location of the gates leaves no freedom with respect to reversals and reflections, so each
scheme generates exactly one curve. None of these curves is face-continuous and none of these
curves is order-preserving.

10These are the 1 536 curves from Alber and Niedermeier [1] with symmetric copies removed.
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Figure 7: The three-dimensional binary-decomposable generalized Hilbert curves. From each
of these curves variations can be made by reflecting all of the 1st, 4th, 5th and the 8th octants,
and/or all of the 2nd, 3rd, 6th and 7th octants.

Type D: vertex-face-gated curves An exhaustive search brought up 4 connection schemes
with the entrance gate at vertex (0, 0, 0) and the exit gate in the middle of a face at (1, 12 ,

1
2),

see Figure 6. The location of the gates leaves freedom with respect to reflections, but not with
respect to reversals, so each scheme generates exactly 28 = 256 curves. Thus there are 1024
curves of type D in total. None of them is face-, or even edge-continuous, and none of them is
order-preserving.

Type E: edge-gated curves An exhaustive search brought up 16 connection schemes with
the entrance gate at (13 , 0, 0) and the exit gate at (1, 13 , 1), see Figure 6. The location of the gates
leaves no freedom with respect to reversals and reflections, so each scheme generates exactly
one curve. None of these curves is face-continuous and none of them is order-preserving.

Type F: face-gated curves An exhaustive search brought up exactly one connection scheme
with the entrance gate at (0, 13 ,

1
3) and the exit gate at (23 ,

1
3 , 0), see Figure 6. The location of

the gates leaves no freedom with respect to reversals and reflections, so there is, in fact, only
one curve of type F. Since it is face-gated, it is also face-continuous. It is not order-preserving.

7 Noteworthy three-dimensional mono-Hilbert curves

Binary-decomposable curves There are 16 binary-decomposable mono-Hilbert curves. Four
of these curves are A9.00.0000 0000, A16.00.0011 1100, B15.00.1100 0011, and B22.00.0000 0000,
shown in Figure 7. From each of them three variations can be made by reflecting all of the 1st,
4th, 5th and the 8th octants, and/or all of the 2nd, 3rd, 6th and 7th octants. Thus there are 16
binary-decomposable order-preserving mono-Hilbert curves in total. All binary-decomposable
curves are symmetric, and therefore, order-preserving.
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number of curves face-continuous vertex-gated order-preserving

920 • • •
1 •

41 288 • •
222 360 • •

10 426 440 •
3 798

0 • •
0 •

Table 1: Numbers of mono-Hilbert curves with different combinations of properties.

measure best face-continuous best vertex-continuous
value value some example curves

WL∞ 18.7 15.6 B86.00.2c, B86.00.6c
WL2 24.6 23.6 B6.00.42, B88.00.81, B89.00.41
WL1 90.5 see ← A26.00.36
WS 1.74 see ← A16.00.3c
WBV 3.11 see ← A26.00.00, A26.00.99
WBS 5.17 4.82 B7.00.6e

Table 2: Locality properties of the best order-preserving mono-Hilbert curves.

Downward-compatible curves There are ten downward-compatible mono-Hilbert curves;
all are based on connection scheme A26. Curve A26.00.1101 1011 (Figure 5(c)) is an order-
preserving mono-Hilbert curve with two-dimensional Hilbert orders on the left, right, top, bot-
tom and front face of the cube. A26.00.1001 1001 is similar but sacrifices the bottom face for
better locality measures on most aspects. The other eight downward-compatible mono-Hilbert
curves are not order-preserving, and show two-dimensional Hilbert orders on only three faces
(right, front, and top).

Hilbert curves are often associated with face-continuous, vertex-gated, and maybe even
order-preserving mono-Hilbert curves: above we saw that there are 920 such curves in three
dimensions. However, we argued that there are more than 10 000 as many other mono-Hilbert
curves that could also be considered to be three-dimensional generalizations of Hilbert’s curve,
see Table 1. What do these extra curves bring us? In the following paragraphs, we will refer
to tables with locality and bounding-box quality measures. The bounds are rounded numbers;
the last digits may be off by one.

Non-face-continuous curves From an implementation point of view, order-preserving curves
are arguably simpler than non-order-preserving curves. Within the realm of order-preserving
curves, there are 920 face-continuous curves and 41 288 non-face-continuous curves—all order-
preserving curves are vertex-gated. Although conventional wisdom holds that face-continuity
is good for locality, the flexibility gained by letting go of face-contuinity in fact allows us to
achieve slightly better locality bounds on some measures—see Table 2.

However, as soon as one is willing to give up on order-preservation, the face-continuous
curves win again (see Table 3), and no advantages of non-face-continuous curves were found.

Non-vertex-gated curves Hilbert curves are often said to start and end in a vertex, because
this is what the two-dimensional Hilbert curve does. However, this may merely be a consequence
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measure best order-pres. best vertex-gated best of all
value value value some example curves

WL∞ 15.6 12.4 see ← A26.2b.b3
WL2 23.6 21.3 18.6 F
WL1 90.5 89.7 see ← many A26-curves; F has 89.8
WS 1.74 see ← see ← many A16-, A17-, A18-curves
WBV 3.11 see ← see ← A26.2b.b3, A26.00.00
WBS 4.82 4.40 4.05 F

Table 3: Locality properties of the best mono-Hilbert curves.

a

a

a
a

a

a

a

a

a
b

b

b

b

b

b

b

b

b

1/3

1/3

1/3 1/3

Figure 8: (a) A26.0010 1011.1011 0011, a curve with optimal WL∞ and WBV among mono-
Hilbert curves. (b) Curve F, the curve with the best-known WL2-value among mono-Hilbert
curves.

of the fact that in two dimensions, there is only one mono-Hilbert curve and it happens to be
vertex-gated. In higher dimensions it is possible to construct mono-Hilbert curves that are not
vertex-gated, although in three dimensions, no order-preserving non-vertex-gated mono-Hilbert
curve exists. Non-order-preserving, non-vertex-gated three-dimensional mono-Hilbert curves do
exist; most of these curves have bad locality properties (according to the measures discussed
in Section 4), but one of them is special. The face-gated type-F curve has the best WL2-value
and the best WBS-value of all mono-Hilbert curves. It is one of the two most strongly bending
mono-Hilbert curves—see below.

Non-order-preserving curves and bend size Allowing non-order-preserving curves results
in improved measured locality on WL∞, WL2, and WBS (see Table 3). This is due to two special
curves in particular.

Consider, at any level refinement, three cubic cells a, b and c of equal size that are consecutive
in the scanning order. The size of the bend at b could be expressed as the Euclidean distance
between the centres of a to c, divided by the width of one of these cells. If the curve is
face-continuous, then all bends have size

√
2 or 2; if the curve is only edge-continuous or vertex-

continuous, then it must contain bends larger than
√

2 (consider a set of three consecutive cells
that are octants of two larger consecutive cells that do not share a face).

There are only two mono-Hilbert curves that do not contain any bends larger
√

2: the curves
A26.2b.b3 and F (Figure 8). These two curves could thus be considered the most strongly
bending mono-Hilbert curves, and it is indeed these two curves that hold the records for best
measured locality properties on WL∞, WL2, WL1, WBV and WBS among mono-Hilbert curves.
Neither of these curves is order-preserving.
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(a)

(b)

Figure 9: (a) The Neptunus curve, a curve with optimal WL∞, the best known WBS, and
within 1% of the best known WL2 among poly-Hilbert curves. (b) The Luna curve, a partially
downward-compatible curve within 1% of the best known WL2, WL1, and WS among poly-
Hilbert curves.

8 Poly-Hilbert curves

The number of possible poly-Hilbert curves is unbounded, so we cannot enumerate all of them.
The curves presented below are the result of a search by hand, and are not necessarily optimal.

L∞-locality and bounding-box surface ratio Figure 9(a) shows my Neptunus curve, a
poly-Hilbert curve of two rules with WL∞ = 9.45, WL2 = 18.33, and WBS = 3.53. In the
appendix we prove that the WL∞-value is optimal for poly-Hilbert curves (Theorem 1). The
WBS-value is the best known among poly-Hilbert curves, and the WL2-value is within 1% of
the best known among poly-Hilbert curves. Like curves A26.2b.b3 and F, the Neptunus curve
is maximally bending: it does not contain bends larger than

√
2.

L2-locality, L1-locality, and surface ratio Figure 9(b) shows my Luna curve, a poly-Hilbert
curve of two rules with WL2 = 18.33,WL1 = 75.60, and WS = 1.70. This is only slightly worse
than the best poly-Hilbert curves with three rules I found, which have WL2 = 18.11 and
WL1 = 75.39, respectively. The Luna curve is maximally bending: it does not contain bends
larger than

√
2. It is also partially downward-compatible: it has two-dimensional Hilbert orders

on the top and the front face.

Bounding-box volume ratio The five-rule, face-continuous, face-gated Iupiter curve in Fig-
ure 10 is my current attempt at a scanning order with optimal worst-case bounding box volume
ratio. With a value of 2.89 this ratio must be quite close to optimal: a lower bound of 2.76
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Figure 10: The Iupiter curve: a curve with the best-known WBV-value among poly-Hilbert
curves. The octants that are left unspecified should be filled in as in rule a.

for poly-Hilbert curves was found by exhaustively searching all octant-wise traversals of a cube
down to the third level of recursion (a 8× 8× 8 grid). The Iupiter curve was designed by deriv-
ing necessary structural properties for scanning orders with bounding box volume ratios below
84/29 ≈ 2.90 and 448/155 ≈ 2.89, respectively, and then designing a curve that has the first set
of properties but, unfortunately, failing to guarantee the second set of properties. Therefore, if
I did not overlook some cases in the tedious manual design process, the bounding box volume
ratio of this scanning order must actually be optimal for poly-Hilbert curves.

9 Conclusions

Hilbert curves can be generalized to three dimensions in multiple ways. In this paper we
have seen that interesting generalized Hilbert curves exist that had not been considered in the
literature before, including a curve that traverses most faces of the unit cube in the order of
two-dimensional Hilbert curves.

We saw curves that are not face-continuous, curves that are not vertex-gated, and curves
that use reversed and/or multiple recursive rules. Especially the use of multiple recursive rules,
sometimes in combination with gates on faces, results in improved quality measures—see Table 9
for an overview. Compared to symmetric, non-reflecting, face-continuous, order-preserving
mono-Hilbert curves, poly-Hilbert curves with two recursive rules can bring down WL∞ from
24.2 to 9.45, WL2 from 26.2 to 18.3, and WBS from 5.56 to 3.53. All of these results are due
to maximally bending curves: curves without bends larger than

√
2. Our calculations on this

extended set of curves have reduced the gaps between lower bounds and upper bounds on the
locality measures of the best cube-filling curves: the gap for WL∞ by 94%, for WL2 by 68%,
and for WL1 by 41%. For WS, WBV and WBS we now have upper bounds of 1.70, 2.89 and
3.53, respectively.

In fact, we saw that we have found a poly-Hilbert curve of which the L∞-locality (9.45) is
optimal among all poly-Hilbert curves. Unfortunately, proofs of optimality or near-optimality
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for WL2 and WL1 seem much harder to get; the necessary case analysis quickly becomes too
complicated to be informative, especially when curves that are not vertex-gated are taken into
account.
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A Possible locations of gates in mono-Hilbert curves

The following lemmas hold for all three-dimensional mono-Hilbert curves, regardless whether
they are order-preserving or not.

Lemma 1 For gates at vertices, we may assume that the entrance gate is at (0, 0, 0) and the
exit gate is either at (1, 0, 0) or at (0, 1, 1).

Proof: The unit cube can always be rotated and/or reflected so that the above assumptions
hold, unless the entrance and exit gates are at vertices of the unit cube that are opposite of
each other with respect to the centrepoint of the cube. However, in that case the gate from the
first to the second octant would be at the centrepoint of the unit cube, and the exit gate of
the second octant, no matter which octant it is, would be at a vertex of the unit cube, where
no connection to a third octant would be possible. Hence no connection scheme with gates at
opposite vertices could be completed. ut

Lemma 2 For gates in the interior of edges, we may assume that the entrance gate is at (13 , 0, 0)
and the exit gate is at (1, 13 , 1).

Proof: Assume the unit cube has been rotated and/or reflected so that the entrance gate lies
on the lower front edge, and the lower left front octant is the first octant in the scanning order.
Let a be the distance of the entrance gate to the lower left front vertex of the unit cube, and
let z be the distance of the exit gate to the closest vertex of the unit cube. Note that we must
have 0 < a ≤ 1/2 and 0 < z ≤ 1/2. Let the gates of the octants be g0, ..., g8, where the entrance
gate of the i-th octant in the order is gi−1, and its exit gate is gi. Let pi be the vertex of the
unit cube or one of its octants that lies closest to gi.

We will first prove that a = z. To prove this, assume, for the sake of contradiction, that
a 6= z. Then the entrance and exit gates of the octants can only be matched up if the order is
reversed either (i) in every odd or (ii) in every even octant. We first analyse the second case. In
this case, gate g0 is the entrance gate of the unit cube, at distance a from a vertex of the unit
cube, and it is the entrance gate of the first octant, so it must be at distance a/2 from one of
the vertices of the first octant. Therefore we must have either a = a/2 (which has no solutions
satisfying a > 0) or a = 1/2− a/2, which solves to a = 1/3. The last octant is reversed, so gate
g8 was originally an entrance gate, and this gate is the exit gate of the unit cube. Therefore we
must have z = 1

2 −
1
2a = 1/3 or z = 1

2a = 1/6. Under the assumption a 6= z, the latter must be
the case.Now consider the length of a shortest path π from g0 to p8 along the edges of the unit
cube and its octants. The length of π is k/3, for some k ∈ N. From g0 to p1 we could follow a
scaled-down version of π, of length k/6. From p1 to g2 takes another k/6. We could continue
our path in a similar manner to p3, g4, p5, g6, p7 and g8, and finally add a section of length z
to get to p8. The total length of this path from g0 to p8 is (8k+ 1)/6. If this is not the shortest
path from g0 to p8, we can shorten it by removing cycles and rerouting sections of it, but these
operations will maintain that the path has length m/6 for an odd number m. This contradicts
the observation that π has length k/3, that is, m/6 for an even number m. Hence we cannot
have a 6= z and we must have a = z. In case (i), when every odd octant is reversed, we can
argue in a symmetric way, following the curve from gate g8 to g0 instead of from g0 to g8, again
finding that we must have a = z.

Now, with a = z, to match the entrance gate of the unit cube to the entrance gate of its first
octant, we must have either a = a/2 (which has no solutions satisfying a > 0) or a = 1/2−a/2,
that is, a = 1/3. Thus we get a = z = 1/3, and the entrance gate of the unit cube is at
(13 , 0, 0). The exit gate cannot be in the same octant, and by similar arguments as in the proof
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of Lemma 1, the exit gate cannot be in the opposite octant with respect to the centrepoint of the
unit cube. The exit gate cannot lie on one of the edges that share vertex (0, 0, 0), because then
the L∞-distance between the entrance and the exit gate would be at most 2/3; the L∞-distance
between g7 and g8 would thus have to be half of that (at most 1/3), but the L∞-distance between
the seventh octant and g8 would be 1/2: a contradiction. By a symmetric argument, the exit
gate cannot lie at (1, 13 , 0) or (1, 0, 13); one would get a contradiction regarding the distance
between g0 and the second octant. The exit gate cannot lie on an edge parallel to the edge that
contains the entrance gate, because then the curve could never make a connection from the left
half to the right half of the unit cube. Note that none of the gates g1, ..., g7 can lie on an edge
of the unit cube, because there they could not be an exit gate of one octant and an entrance
gate of another. Therefore the exit gate cannot lie at (1, 23 , 0) or (1, 0, 23): g1 would then lie at
(0, 13 , 0) (modulo swapping y and z), which is on an edge of the unit cube. The exit gate cannot
lie at (0, 13 , 1) or (0, 1, 13), because then g1 would have to lie at (12 ,

1
2 ,

1
6) (modulo swapping the

y- and z-coordinates) and g2 would have to lie at (12 ±
1
6 ,

1
2 ±

1
2 , 0) (modulo swapping the x- and

y-coordinates), which is on an edge of the unit cube. With the entrance gate at (13 , 0, 0), the
only remaining places for the exit gate are therefore at (1, 13 , 1), (1, 1, 13), (0, 23 , 1) or (0, 23 , 1);
these cases are all the same modulo rotation, reflection and/or reversal. ut

Lemma 3 For gates in the interior of faces, we may assume that the entrance gate is at (0, 13 ,
1
3)

and the exit gate is at (23 ,
1
3 , 0).

Proof: We argue in a similar manner as for gates on edges. Let a1 > 0 and a2 > 0 be the
distance of the entrance gate to the closest edge and to the second-closest edge, respectively.
Similarly let z1 > 0 and z2 > 0 be the distance of the exit gate to the closest edge and to the
second-closest edge, respectively. Note that we have a1, a2, z1, z2 <

1
2 , otherwise gates would

have to lie on edges of octants.
We first make some general observations. Because the gates between octants are in the

interior of faces, each octant must share a face with the previous one, and so each octant differs
from the previous in only one coordinate. Therefore the last octant differs from the first one
in an odd number of coordinates, that is, the last octant shares a face with the first one, or it
is opposite to the first octant with respect to the centrepoint of the unit cube. The latter case
cannot happen, by a similar argument as in the proof of Lemma 1, so the last octant must share
a face with the first octant. Furthermore, the exit gate cannot lie on a face parallel to the face
that contains the entrance gate, because then g2 would have to lie on the same face as g1, or
on the outside of the unit cube opposite to the face containing g0: in both cases g2 could not
connect to any other octant than the first and the second.

We will now show that (a1, a2) = (z1, z2). For the sake of contradiction, suppose (a1, a2) 6=
(z1, z2). Then we can again argue that the entrance gate of the unit cube is also the entrance
gate of the first octant, and therefore we must have either:

• a1 ∈ {12a1,
1
2 −

1
2a1} and a2 ∈ {12a2,

1
2 −

1
2a2}, which solves to a1 = a2 = 1/3;

• or a1 ∈ {12a2,
1
2 −

1
2a2} and a2 ∈ {12a1,

1
2 −

1
2a1}, which solves to a1 = 1/5, a2 = 2/5.

Now observe that g1 is the exit gate of the unit cube as it is scaled down and possibly rotated
and reflected to fit in the first octant. At the same time it is the exit gate of the unit cube
that is scaled down, reversed, and possibly rotated and reflected to fit in the second octant. If
z1 6= z2, the rotations and reflections can only match in one way, so that g2 must be on a face
of the second octant parallel to the face of the first octant that contains g0. Continuing this
reasoning, we would find that g0, g2, g4, g6 and g8 are all on parallel faces. But if g0 and g8 are
on parallel faces, then we could only connect octants in a single row and never connect eight
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octants in a block of 2 × 2 × 2. Therefore, if (a1, a2) 6= (z1, z2), we must have z1 = z2. Since
the exit gate of the unit cube is also the exit gate of the last octant (which is really a reversed
entrance gate), we now must have z1 = z2 ∈ {12a1,

1
2 −

1
2a1} ∩ {

1
2a2,

1
2 −

1
2a2}. This only has a

solution if a1 = a2 = 1/3; then z1 = z2 = 1/6. Without loss of generality, assume the entrance
gate g0 is at (0, 13 ,

1
3). By the observations made above, g1 must now lie on a suboctant of the

first octant which is face-adjacent to the suboctant that contains g0, but not on a face of the
first octant opposite to g0; the gate g1 must lie at a distance of z/2 = 1/12 from the edges of the
first octant. This leaves four possible positions for g1: ( 1

12 ,
1
2 ,

1
12) and ( 5

12 ,
1
2 ,

5
12), and the same

with y- and z-coordinates swapped. One may now verify that in both cases, the exit point of
the second octant would now have to lie on the outside of the unit cube, where no connection
to the third octant is possible. Hence we must have (a1, a2) = (z1, z2).

Now, with (a1, a2) = (z1, z2), to match the entrance gate of the unit cube to the entrance
gate of its first octant, we must have either (a1, a2) = (15 ,

2
5) or (a1, a2) = (13 ,

1
3). We will now

analyse these cases one by one.
The case of (a1, a2) = (15 ,

2
5): assume without loss of generality that g0 is at (0, 25 ,

1
5), which

is in the lower left back suboctant of the lower left front octant. By the observations made
above, g1 must now be on the back face of the upper left back suboctant, the back face of the
lower right back suboctant, or the top face of the upper left back suboctant. More precisely,
g1 must be one of: ( 3

10 ,
1
2 ,

1
10), (25 ,

1
2 ,

1
5), ( 1

10 ,
1
2 ,

3
10), (15 ,

1
2

2
5), ( 1

10 ,
3
10 ,

1
2), (15 ,

2
5 ,

1
2). None of these

cases work out: in the first, third and fifth case, g2 is forced onto the outside of the unit cube;
in the second case, the sequence of gates g0, g1, ... is forced to remain in the plane z = 1

5 and
the upper half of the unit cube cannot be reached; in the sixth case, the sequence of gates
g0, g1, ... is forced to remain in the plane y = 2

5 and the back half of the unit cube cannot be
reached; in the fourth case, if the first octant is not reversed, the transformation that maps
the first octant and its entrance gate to the unit cube and its entrance gate, will map the exit
gate g1 at (15 ,

1
2 ,

2
5) to g8 at (25 ,

4
5 , 0), but then the curve would have to visit the lower left back

octant twice (once reaching it through g1; once leaving it through g8); if, in the fourth case, the
first octant is reversed, the transformation that maps the first octant and its exit gate to the
unit cube and its entrance gate, will map the entrance gate g0 at (0, 25 ,

1
5) to g8 in the upper

left front octant at (15 , 0,
3
5); however, the only way of connecting transformations of the first

octant up such that the traversal ends in the upper left front octant, leads over g2 = (25 ,
7
10 ,

1
2),

g3 = (12 ,
9
10 ,

7
10), g4 = (35 ,

7
10 ,

1
2), g5 = (45 ,

1
2 ,

2
5), g6 = (35 ,

3
10 ,

1
2) and g7 = (12 ,

1
10 ,

7
10) to g8 at

( 3
10 , 0,

9
10), contradicting g8 = (15 , 0,

3
5).

The case of (a1, a2) = (13 ,
1
3): assume without loss of generality that g0 is at (0, 13 ,

1
3). By the

observations made above, g1 must be on the top face or the back face of the lower left octant;
these are equivalent modulo a swap of the x- and y-coordinates, so we may assume g1 is on the
back face of the lower left octant; more precisely g1 must be at (16 ,

1
2 ,

1
6) or (13 ,

1
2 ,

1
3). In the first

case, the L∞-distance between the entrance and exit gates of an octant is only 1
6 , and thus g2

cannot lie on the boundary of any octant other than the first and the second; any possible third
octant is out of reach. Hence g1 must be at (13 ,

1
2 ,

1
3). Considering the possible transformations

of the first octant (similar to our analysis of the fourth case with (a1, a2) = (15 ,
2
5)), we now find

that g8 must be at (23 ,
1
3 , 0) or (23 , 0,

1
3); by swapping the y- and z-coordinates we can ensure

that g0 is at (0, 13 ,
1
3) and g8 is at (23 ,

1
3 , 0). ut

Lemma 4 For one gate at a vertex and one gate in the interior of an edge, we may assume
that the entrance gate is at (0, 0, 0) and the exit gate is at (1, 12 , 0).

Proof: Without loss of generality, assume the entrance gate is at a vertex and the exit gate is
in the interior of an edge. This implies that the rule must be reversed in every second octant
to be able to match the gates between the octants. Thus the traversal ends at a vertex of the
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eighth octant that lies in the interior of an edge of the unit cube—thus it actually lies in the
middle of that edge. The exit gate cannot lie on an edge incident on the entrance gate, because
then, after traversing the first octant within a cube, it would be impossible to connect to the
second octant. The exit gate cannot lie at (1, 12 , 1): the sequences of gates g0, g1, ... that can
be made by composing transformations of the unit cube with its gates are fairly limited and it
is easy to verify by hand that they cannot be completed to end at (1, 12 , 1). Therefore the exit
gate must lie at (1, 12 , 0) (modulo reflections and rotations). ut

Lemma 5 For one gate at a vertex and one gate in the interior of a face, we may assume that
the entrance is at (0, 0, 0) and the exit gate is at (1, 12 ,

1
2).

Proof: Without loss of generality, assume the entrance gate is at a vertex and the exit gate is
in the interior of a face. By a similar reasoning as in Lemma 4, this implies that the exit gate
lies right in the middle of that face. The exit gate cannot lie in a face incident on the entrance
gate, because then, after traversing the first octant within a cube, it would be impossible to
connect to the second octant. Therefore the exit gate must lie at (1, 12 ,

1
2) (modulo reflections

and rotations). ut

Lemma 6 There is no generalized simple Hilbert curve with one gate in the interior of an edge
and one gate in the interior of a face.

Proof: Assume the entrance gate is in the interior of an edge; the exit gate is in the interior
of a face. This implies that the rule must be reversed in every second octant, and we end on
a centreline of the face of the unit cube, but not in the centrepoint of the face. Without loss
of generality, assume we end on the back face, in the top half of the vertical centreline. Then
the first and the second octant must be connected back to back, possibly reflected but with
matching rotations. Thus g0 and g2 must lie on parallel edges. Continuing this reasoning, we
would find that g0, g2, g4, g6 and g8 are all on parallel edges, hence g0, the entrance gate of
the unit cube, is on a vertical edge, parallel with the face that contains the exit gate. But
then, tracing the sequence of octants back from the end, we find that we can never reach the
horizontal faces and edges on which we could connect to the lower octants. Therefore it is
impossible to realize a connection scheme with one gate in the interior of an edge and the other
gate in the interior of a face. ut

B Proving WL∞-optimality of the Neptunus curve among poly-
Hilbert curves

Theorem 1 No poly-Hilbert curve has WL∞ < 189/20 = 9.45.

Proof: To prove the theorem, we will analyse what properties a curve with WL∞ ≤ 9.45 should
have.

First observe that, after entering any cell, the curve traverses at most 1/2+1/8 ·1/2+1/82 ·
1/2 + ... = 4/7 of it before having hit all sides of the cell. Hence, the bounding box of any
three consecutive cells of the grid, at any level of recursion, should have size at most twice a
cell’s width in each dimension (we call this the always-turn rule), otherwise the curve would be
subject to a WL∞ lower bound of 33/(4/7 + 1 + 4/7) = 63/5 = 12.6 (see Figure 11(a)).

Consider a curve traversing the cells C1, ..., Ck of a grid of k cubes of equal size. For
1 ≤ i < k, let hi be an axis-parallel plane that separates Ci from Ci+1. Define tailhi

(Ci) as the
set of octants of Ci that appear along the curve before the first octant that does not touch hi−1.
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(a) (b) (c)

Figure 11: (a) If the bounding box of three consecutive cells is as long as three times a cell’s
width, then a L∞-distance of 3 cell widths would be realized by a curve section filling at most
4/7 + 1 + 4/7 cells. (b) A cell Ci with its predecessor and successor in the scanning order,
the octants that constitute its head, and the octants that constitute its tail. (c) If one cell’s
head and the next cell’s tail occupy only five octants, a L∞-distance of 4 octant widths would
be realized by a curve section filling at most 4/7 + 5 + 4/7 octants.

Symmetrically, define headhi
(Ci) as the set of octants of Ci that appear along the curve after

the last octant that does not touch hi. (When it is not relevant which plane is taken for hi, or
when it is unique, we may omit the subscripts.) Note that as a result of the always-turn rule,
hi+1 can never be parallel to hi. This implies that every cell Ci contains at least two octants
that touch neither hi nor hi+1; hence |tail(Ci)|+ |head(Ci)| ≤ 6 (see Figure 11(b)).

For WL∞ ≤ 9.45 we need |head(Ci)| + |tail(Ci+1)| ≥ 6 for all 1 ≤ i < k (we call this the
stick-six rule), because if |head(Ci)| + |tail(Ci+1)| ≤ 5, the section of the curve that traverses
the octant of Ci before head(Ci), the octants in head(Ci) and tail(Ci+1), and the octant of Ci+1

after tail(Ci+1), results in a WL∞ lower bound of 43/(4/7 + 5 + 4/7) = 448/43 ≈ 10.42 (see
Figure 11(c)). Together with the observation that |tail(Ci)|+ |head(Ci)| ≤ 6, this implies that
there is a section of the curve (we call this a regular section) where for each level of recursion it
holds that either all heads contain two octants and all tails contain four, all heads and all tails
contain three octants, or all heads contain four octants and all tails contain two.

We will now argue that in a regular section, consecutive cells always share a face. For the
sake of contradiction, suppose there are two consecutive cells Ci and Ci+1 that do not share a
face. Let f and g be two axis-parallel planes that separate these cells. Note that the conditions
on the sizes of heads and tails derived above must hold regardless of whether f or g is taken
to be hi. Assume we have |headf (Ci)| ≥ 3 (if not, the proof goes through in a symmetric way,
starting from |tailf (Ci+1)| ≥ 3). Then at least one octant of headf (Ci) is not adjacent to g,
so we have |headg(Ci)| = 2 and |tailg(Ci+1)| = 4; then exactly two octants of tailg(Ci+1) are
adjacent to f so we get |tailf (Ci+1| = 2 and |headf (Ci)| = 4. Because |headf (Ci)| = 4 we
have |tail(Ci)| = 2 (regardless of hi−1), and because |tailg(Ci+1)| = 4 we have |head(Ci+1)| = 2
(regardless of hi+1). But in a regular section, either the heads or the tails must be bigger than
two octants. So in regular sections, consecutive cells always share a face.

Consider composing a traversal of a grid of 23 cells, with 43 octants in total, such that in
each cell, all heads and tails contain three octants. Then the traversal of the octants in each cell
must be an appropriately rotated and/or reflected version of the pattern shown in Figure 12(a),
and such patterns can be composed to traverse all 43 octants in only one way (modulo rotations
and reflections), see Figure 12(b), resulting in a larger pattern of which the head and the tail
contain three octants. However, these cannot be combined again into a traversal of a grid of
size 83: at the marked spot in Figure 12(c), consecutive cells would not share a face. Hence,
from the second level of recursion down, no regular section can contain heads and tails of three
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(a) (b) (c)

Figure 12: (a) The base pattern for heads and tails of three octants. (b) The only way in
which eight of these patterns can be combined to traverse a block of eight cells. (c) Combining
these traverals recursively would result in mismatched gates.

(a) (b) (c)

Figure 13: An example of the unavoidable configuration that results in a WL∞ lower bound of
9.45.

octants, and either the heads or the tails contain only two octants.
Now consider such a head (or tail) of two octants, together with the previous and the next

octant in the scanning order (Figure 13(a)). In such a section of the curve, a L∞-distance
of 3 is realized by the two central octants, plus the head of the first octant and the tail of
the second octant, together occupying six suboctants (see Figure 13(b)), plus the preceding
head and the following tail within the suboctants (See Figure 13(c)), etc. This adds up to
2 + 6/81 + 6/82 + ... = 20/7 octants. Thus WL∞ must be at least 33/(20/7) = 189/20 = 9.45,
and no poly-Hilbert curve can have WL∞ < 189/20 = 9.45. ut
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