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This paper considers a stochastic inventory model in which supply availability is subject to random fluctuations that may arise due to
machine breakdowns, strikes, embargoes, etc. It is assumed that the inventory manager deals with two suppliers who may be either
individually ON (available) or OFF (unavailable). Each supplier’s availability is modeled as a semi-Markov (alternating renewal)
process. We assume that the durations of the ON periods for the two suppliers are distributed as Erlang random variables. The OFF
periods for each supplier have a general distribution. In analogy with queuing notation, we call this an E, [E, J/G,[G,] system. Since
the resulting stochastic process is non-Markovian, we employ the “method of stages” to transform the process into a Markovian one,
albeit at the cost of enlarging the state space. We identify the regenerative cycles of the inventory level process and use the renewal
reward theorem to form the long-run average cost objective function. Finite time transition functions for the semi-Markov process
are computed numerically using a direct method of solving a system of integral equations representing these functions. A detailed
numerical example is presented for the E,[E,[/M[M] case. Analytic solutions are obtained for the particular case of “large”
(asymptotic) order quantity, in which case the objective function assumes a very simple form that can be used to analyze the
optimality conditions. The paper concludes with the discussion of an alternative inventory policy for modeling the random supply

availability problem.

One of the unstated assumptions in almost every in-
ventory model is the continuous availability of the
supply at any time an order is placed. Even if there is a
(possibly random) lead time, it is assumed that the sup-
plier will immediately start working on the order and will
deliver the required quantity when the lead time ends.

However, supply of products may be disrupted due to
several reasons, as we will discuss below. Thus, in a general
setup the supplier could be considered to have ON and
OFF times with random durations. Such disruptions could
be induced by various factors, depending on the underlying
structure of the model, and the interpretation of the ON/
OFF times would follow accordingly.

As a general example, we may consider the supplier with
its own inventory process, and we could say that the sup-
plier is ON if our order quantity g is available in its inven-
tory, and is OFF otherwise. As another example that could
be encountered frequently, consider a supplier as a pro-
duction process that is under statistical process control.
From time to time, the process starts to produce items out
of specification limits beyond an acceptable proportion,
and the process is halted to reach the desired capability.
The OFF times of the supplier would then correspond to
the termination of production for system inspection. Ma-
chine breakdowns or preventive maintenance policies
could also result in disruptions in the production process,
which in turn could induce supplier unavailability for the
inventory process under study.

As in the above examples, when the supply may be cut
off at random times for random durations, the implicit
assumption of continuous supply availability would no
longer be valid, and new models would be necessary to
incorporate the disruptions of supply. Especially with the
recent emphasis on the just-in-time replenishment systems
with a number of suppliers, such models may be useful for
production managers.

Silver (1981) appears to be the first author to discuss the
need for models that deal with supplier uncertainty. (For
additional comments on this type of uncertainty, see the
text by Nahmias (1993, p. 186).) In a recent paper Parlar
and Berkin (1991) consider the supplier uncertainty prob-
lem for the classical economic order quantity (EOQ)
model, assuming that there is a single supplier whose ON
and OFF periods are distributed exponentially. They fix
the reorder point at zero and, using the renewal reward
theorem (RRT), find the optimal order quantity. Parlar
and Perry (1996) extend the EOQ model to include multi-
ple unreliable suppliers whose ON/OFF periods are all
distributed exponentially with different parameters. They
assume that unplanned shortages due to supplier unavail-
ability are backordered. Probabilistic analysis of the model
is conducted using the properties of the continuous time
Markov chain (CTMC) representing the suppliers’ status.
Gupta (1996) analyzes a continuous review, order quantity/
reorder point inventory system with an unreliable supplier
whose ON/OFF periods are distributed exponentially. He
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assumes that the unit demands are generated according to
a Poisson process, and the shortages result in lost sales.
Moinzadeh and Aggarwal (1992) study a production/inven-
tory system, i.e., the classical production run size model,
subject to random disruptions, assuming constant demand
and constant production rate. In another recent paper,
Parlar (1997) considers a continuous-review problem with
an unreliable supplier whose delivery lead time (when
available) is also random. He generalizes the assumption
regarding the unreliable supplier’s ON/OFF periods, and
assumes that the ON period is distributed as E; (s-stage
Erlangian), and the OFF period has a general distribution.
(In analogy with queuing notation, this is called an E/G
system.)

In this paper, we generalize some of the above results in
several directions. First, we assume that the inventory
manager deals with two suppliers. Both of these suppliers
may be ON or OFF at different times for random dura-
tions. As to the application of the above ideas to a system
with two suppliers, consider the following examples: (1)
two parallel machines supplying raw material to a third
one, which processes the raw material at a constant rate.
The inventory problem here relates to the amount of the
raw material that would be kept in the buffer of the third
machine. As mentioned above, the suppliers’ OFF times
could correspond to the inadequate amount of raw mate-
rials in the buffers of the first two machines due to ma-
chine breakdowns, power cuts, etc.; and (2) A similar
approach can be adopted for a production plant operating
under JIT with two vendors. Note here that in JIT systems
the number of vendors are kept minimal, as opposed to the
traditional systems in which the number of vendors are
maximized to reduce the price by competition. Therefore,
the two-supplier assumption appears applicable. The OFF
times of the vendors again may arise due to reasons ex-
plained above. For other reasons (such as high inflation
and embargoes) that may result in supply disruptions, see
Silver (1981), Chao (1987), and Chao et al. (1989). A two-
supplier market with unreliable suppliers could be a good
model for imported goods that may be supplied mainly by
two countries, For example, the United States and Japan
are the two main suppliers for many products such as com-
puters, communications systems, etc., which require high
technological expertise. For various reasons, supply of these
products may be disrupted. A temporary shift of produc-
tion to other items, increased exports to other countries
for political reasons, reduction of production due to local
economic factors, could be cited among them.

Alternating renewal process models are conveniently
used as a framework for the representation of such disrup-
tive events for which the arrival time and duration are
uncertain. In specific applications for which the distribu-
tions of these periods are required, exponential distribu-
tion is commonly used (Meyer et al. 1979, Parlar and
Berkin 1991), which simplifies the solution. As a second
generalization of the previously mentioned results, in the
present study we allow quite general forms for the ON/
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OFF periods. In particular, the distributions of the ON
periods for suppliers 1 and 2 are assumed Erlangian with
s, and s, stages, respectively, i.e., they are E; and E,. The
distribution of the OFF periods is assumed to be general,
i.e., G; and G, for the two suppliers. Analogous to the
notation used in queuing theory, we denote this system by
E, [E, J/G:[G,]. These assumptions make the ON/OFF
stochastic process rather general, since any nonexponential
random variable with coefficient of variation (COV) less
than unity can be approximated by an Erlang random vari-
able with a proper choice of the stage parameter of the
Erlang (Kleinrock 1975).

Finally, for the two-supplier case studied in the present
paper, the superposition of two different alternating pro-
cesses further complicates the technical structure of the
model, as opposed to the single-supplier models studied in
Parlar and Berkin (1991) and Parlar (1997). This also leads
to complications in the solution of the model, as will be
seen in the numerical computations to be presented in
Section 2.1.

In Section 1, we introduce the model and discuss the
application of renewal reward theorem (RRT) in the for-
mulation of the objective function. Computation of the
expected cycle length and cycle cost requires the exact
solution of the transition functions of the semi-Markov
process (SMP) representing the ON/OFF process induced
by the two suppliers’ availability distributions. We provide
the transient (finite time) solution of the transition func-
tions of the SMP using a direct method of solving integral
equations representing these functions. In Section 2, we
consider a particular case of the model in which s; = 5, =
2. We discuss another case, assuming that the optimal
order quantity g is asymptotically “large” compared to the
demand rate. This assumption reduces the computational
requirements, since only the limiting probabilities of the
SMP are required in the analysis of the cost function. It is
shown that the objective function assumes a very simple
form that can be easily analyzed. The paper concludes with
a summary and possible extensions of the current research.

1. THE E [Es)/G,[G,] MODEL: ERLANGIAN “ON”
AND GENERAL “OFF” PERIODS

a) Assumptions

Consider the case in which the inventory manager may
place his order with either of the two suppliers in the
market. Each supplier alternates between ON/OFF inter-
vals independently of each other. The inventory policy
used is to order g units from either of the two suppliers
when the inventory level drops to a reorder point of r units
as long as at least one supplier is available. If neither of
the suppliers is available when the reorder point is
reached, the manager must wait until one of them be-
comes available again. Although one can incorporate, for
example, the price differences between the suppliers into
the model and analyze the diversification issues as in Ger-
chak and Parlar (1990), we will assume that both suppliers
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Inventory Level Cycles start whenever the inventory level is
increased to q + r and the state of the
A process is {(q) = 11.
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Figure 1. A sample realization of the inventory level process.
are identical, except for a possible difference in the distri- 7= min(7,, 73)
butions of their ON and OFF durations. In what follows, ith babili - p -
we assume that demand is deterministic and that all = { T1, With probabl %ty p=Plr <m],
T2, with probability 1 — p = P[1; > 73],

other assumptions of the EOQ model apply (Silver and
Petersen, Section 5.1). Without loss of generality, we set
the demand rate D = 1 “unit”/time. There is an order
cost of $K/order, holding cost is $4/unit/time, and the
unit backorder cost is $b/unit. Figure 1 depicts a realiza-

until one of the suppliers becomes available. It can easily
be shown that the distribution A(w) = P[r < w] of 7 is
given in terms of the distributions of 7; and 7, as:

tion of the inventory level process with the above as- Aw)=1-[1-A;W)][1 - A,(W)], (1)
sumptions. The decision problem requires finding the
optimal value of the order quantity g and the reorder point since P[1 < w] = P[min(m,, 7,) <w] =1 — P[1; > w]P[1,
r so that the expected long-run average cost of the system > w]. Here, we make the assumption that once the supply
is minimized. disruption is over, all the required quantity to bring the
We now discuss our initial assumptions regarding the inventory level back up to g + r is ordered and delivered
ON/OFF periods of the two suppliers. The duration X, immediately. This is a somewhat limiting assumption, since
(X,) of the ON period of supplier 1 (2) is assumed to be a it may take some time for the supplier to return to full
random variable with distribution function F,(x) [F,(x)] production speed after a period of inactivity; hence, deliv-
and with density f,(x) [f»(x)]. Similarly, the duration Y, eries may initially be gradual. However, relaxing this as-
(Y,) of the OFF period of supplier 1 (2) has distribution sumption would bring us into the realm of the production
function G(y) [G,(y)] with density g,(y) [g.(y)]. When run size model with gradual deliveries where delivery rate
the inventory drops to r and both suppliers are OFF, would be a nonlinear function of time measured from the
then the manager must wait (and possibly incur backorder start of the ON period. Although we do not do it here, it
costs) until either one of the suppliers becomes available. may be possible to model this scenario by an approxima-
We let 7, and 7, be the random time until the availability tion where initial delivery delays can be incorporated into
of the first and the second supplier, respectively, from the the OFF periods by a suitable adjustment of their
time the inventory drops to r and both suppliers are found distributions.
in the OFF state. Since we are analyzing an infinite hori- We can optimize the stochastic inventory system under
zon problem, these random variables are the limiting re- consideration by making use of the renewal reward theo-
sidual lifetimes (forward recurrence times) of the OFF rem (Ross 1983). Using this theorem we identify the re-
states, and they have distributions 4,(w) = P[r, < w] = [ generative cycles of the inventory process (where the cycle
[1 — G()]dyE(Y,),i=1,2 (Ross 1983, p. 68). When times and cycle costs must all be i.i.d.) and divide the
the inventory drops to r and both suppliers are OFF, the expected cycle cost by the expected cycle length, which
manager waits a random amount of time given by: gives the average cost objective function.
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b) Simple Case of Exponential ON Periods

Consider first the simple case of exponential ON periods
for both suppliers with parameters A, ie., F,(x) = 1 —
e ™ x = 0,i =1, 2 and general OFF periods. For this
M [M,)/G[G,] model, let {(z) denote SMP representing
the status of supplier i = 1, 2. Hence, the vector stochastic
process {(t) = [{1(?), {»(?)] representing the availability
status of both suppliers will have four states, i.e., the state
space & of {{(t), t = 0} will be & = {(i, )|, /) € {1, 0} x
{1, 0}} = {(1, 1), (1, 0), (0, 1), (O, 0)}, where we use 1 to
denote the ON state and 0 to denote the OFF state for a
particular supplier. (For notational convenience, we will
shorten (i, j) to ij in the subsequent discussion.) i

Let P, ;.. (t) = P{{(t) = km|{(0) = ij}, ij, km € & be
the transition function of the stochastic process represent-
ing the joint status of the suppliers. Referring to Figure 1,
we observe that a cycle starts whenever the inventory is
raised to ¢ + r and both suppliers are ON, ie., when
{(t) = 11. Now, if T,(q) is the random cycle length, con-
ditioning on the state observed when inventory drops to r,
we have:

q, if £(g) = 11
. )= [with probability Py 11(g)],
@ =144 T,(), ifeq) =ij#11

[with probability Py, (¢)],

where T;(q), §j # 11 is the time necessary to complete the
cycle if the state is j when inventory drops to r.
We also have, for ij = 00:

T+ Tl()’
Ty = |
00 T+T01,

[with probability p],
[with probability 1 — p],

and, for ijj = 10, 01,

7, if {(g) = 11
T - [with probability P, 11 (g)],
971 q+ Tim> if £(g) = km € {10, 01}

[with probability P, s, (g)].

Taking expectations and using the results for the finite
time solution of transition functions P, 4,,(g) which will be
discussed in Section 2, one can, in principle, compute the
expected cycle length T,(q) = E[T,,(g)] for this relatively
simple problem. (Expected cycle cost can also be com-
puted in a similar manner.)

When the ON periods are distributed exponentially and
a cycle is defined to start whenever the inventory is in-
creased to g + r and both suppliers are ON, one can use
the above procedure to compute T;(q). However, when the
ON periods are not exponential, this modeling conve-
nience disappears, and remaining length of the ON period
when inventory drops to r and at least one supplier is
available (i.e., when the state is 01, 10 or 11) is no longer
exponential. This means that the length of the new “cycle”
depends on how long the suppliers have been available,
hence the above formulas can no longer be used. This
makes the computation of the expected cycle length (and
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cost) very difficult. (The reader may recall the difficulties
encountered in modeling non-Markovian queues.)

c) Erlangian ON Periods

One way of dealing with nonexponential random variables
is to approximate them with s-stage Erlang (E,) random
variables. If the COV = 1 for a nonexponential RV X,
then one can use Erlang’s “method of stages” (see, e.g.,
Kleinrock 1975) and approximate X by an Erlang RV X’
with parameters (s, sA). Naturally, X’ is the sum of s expo-
nential RVs, each with mean 1/(sA). It can be shown that
Var(X') = 1/(sA?) and COV(X’) = 1/Vs; hence by a
judicious choice of the parameter s, one can approximate
X by X' with s stages where each stage is exponential. This
method has the advantage of transforming a nonexponen-
tial RV into one that is the sum of a finite number of
exponential RVs; therefore, the standard Markovian anal-
ysis can be used to study the stochastic process induced by
X (or equivalently, by X’). The trade-off, of course, is the
increase in the size of the state space. For example, if X
and X, are Erlang with parameters (2, 2A;) and (2, 2A,),
respectively, then we would need to consider a total of
(2 + 1)(2 + 1) = 9 states in the state space of the ON/
OFF process for both suppliers. (Such a case will be dis-
cussed in detail in Section 2.1.)

Let us then assume that X, ~ Erlang(s,, s,A,) with E(X))
= 1/A,, i = 1, 2. Using the “method of stages,” we model
the availability status of the suppliers as a semi-Markov
(alternating renewal) process. In particular, we let ¢;(¢)
and {,(¢) denote the SMPs representing the status of the
two suppliers with {{,(¢) = i, i € ¥,} corresponding to
the event that supplier 1 is in the ith stage of his ON time
Erlang(s,, s;A,) duration where ¢; = {1, 2,..., 5;}. Let-
ting state 0 correspond to the OFF status, we define &, =
&1 U {0}. Similar definitions apply to {{,(t) = j,j € ¥,},
¥, =1{1,2,...,stand ¥, = ¥, U {0} for the second
supplier having an Erlang(s,, s,A,) ON time distribution.
Hence, the overall supplier availability can be expressed as
a SMP {{(1) = [£1(), £x(2)], ¢ = O} with state space & =
{G, Dl € 1, j € F,}. In other words, {£(¢) = ij} repre-
sents the event where supplier 1 is at the ith stage and
supplier 2 is at the jth stage of their ON/OFF durations
where i € 9’1 and j € 9’2 See Figure 2 for a transition
diagram representing the state space for the process {{(¢),
t = 0} and the direction of possible movement between
states.

In the above description, we note that the state space &
of {{(¢), t = 0} has a total of N = (s; + 1)(s, + 1) states
corresponding to all possible ON/OFF combinations for
the two suppliers. In Section 1.1, when we compute the
expected cycle length and the cost, we will need to make
use of the finite time transition function P 4,.(q) = P{{(q)
= km|{(0) = §j} for ij, km € .

1.1. Objective Function

This subsection develops the objective function of the
model using the renewal reward theorem. Expected cycle
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Figure 2. Transitions between states.

length and cycle cost are computed and are then used to
form the expected long-run, average cost-objective func-
tion. In the computation of the cycle length and cost, it will
be convenient to list the N-states of the SMP in the follow-
ing order:

ey =[11,12, ..., 1s,, 1021, 22, . . ., 254, 20|
o1, 542, ..., 8152, 5,0]01, 02,
ey 0S2, 00]

a) Cycle Length

Referring to Figure 1 again, we see that a regenerative
cycle for the E; [E, ]J/G,[G,] system starts whenever the
inventory level is increased to g + r and both suppliers are
in the first stage of their Erlangian ON times, i.e., when
{(t) = 11. (We should note that there may be other alter-
native definitions of a cycle. For example, we could also
define a cycle to start when inventory is raised to g + r
units at some time point when the first supplier just com-
mences his ON period and the second supplier is still un-
available.)

Define T;,(g) as the random cycle length and let T,(q),
ij # 11 be the time required to complete the cycle if the
process is found in a state ij when the inventory drops to r.
Here we use ij # 11 as a shorthand notation for jj €
$\{11}. Now, let T, = E[T,}, j € ¥ and define:

o T10lTa1, T,
< TOO] T ’
as an (N — 1) X 1 column vector of expected subcycle

lengths where ‘7’ denotes the transpose operator. Define a
1 X (N — 1) row vector:

,pl0,0,...,0

T(N—l)xl = [, Tu, e < Tzo’

|T01, TOZ, ..

€1x(N-1) =[’ 07 LR
"'|1—p,0,...,0],

where the only nonzero entries are p and 1 — p, corre-
sponding to T,y and T, respectively. Also, let P be the

N X N matrix of finite time transition functions of the
SMP of the suppliers’ availability with the row and column
elements ordered as in €. (In the subsequent discussion,
for notational simplicity we will drop the dimension sub-
scripts of €, e, and T.)

The following theorem provides a means for computing
the expected length of the regenerative cycle T,; = E[Ty,]
in terms of the expected subcycle lengths T,] =E[T,),§j #
11.

Theorem 1. The expected cycle length T,.(q) of the regen-
erative cycle is

Tu(@)=q+ 2 T:qu,q(Q)a )

j#11

where T [an (N — 1) X 1 column vector with elements T,j
ij # 11} is calculated from:

T = (I - Q) _lt’ (3)
with Q as an (N — 1) X (N — 1) matrix obtained from P
by removing its first column and first row and replacing the

last row by e, and t as an (N — 1) X 1 column vector such
thatt =1[,q,q,...,q, 7] with 7 = E[1].

Proof. Conditioning on the state found when the inventory
reaches r after g time units and using the renewal argu-
ment, we obtain:

T11

_ {q, if {(q) =11 [Wlth probablhty Pll,ll(q)],
" lg + Ty, if{(g) # 11 [with probability Py, ;(¢)].

“4)
Taking expectations in (4), we have:
Tll =4 + E TUPU,I] (‘I) (5)
y#11
We also obtain, for §j # 00,
q, if £{(g) =11
T. = [with probability P,, 11 (g)], 6
i =g+ Tim, ifL(q) = km # 11 (6)
[with probability P, 4 (9)],
and for ij = 00,
T — {1’ + Ty, [with probability p], 2
00 ™ |+ + Ty, [with probability 1 — p]. )

Taking expectations in (6) and (7), simplifying, collecting
the terms containing the unknowns on the left-hand side,
and writing the resulting system of linear equations in
terms of T gives T = t + QT, [or, T = (I — Q)7 't] as
claimed. []

b) Cycle Cost

In order to form the expected long-run average cost func-
tion, we also need to compute the expected cost of a re-
generative cycle. To this end, we define C,(g, r) as the
random cycle cost and let C,(g, r), §j # 11 be the cost of
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the subcycle that starts when the inventory drops to r
and the process is found in state §j. Similar to the analysis
of the expected cycle length, let C,] = E[C). § € % and
define:

Cav-nx1=0Ciz -y CrolCai, Cazy ..., Caol

1Co1s Cozs -+ 5 Cool s

as an (N — 1) X 1 column vector of expected subcycle
lengths. Also, define c(q, r) = K + hg?/2 + hgr as the cost
of ordering and holding inventory in an interval where
inventory level starts with g + r units and ends with  units.
(See Figure 1.) (For notational simplicity, in the subse-
quent discussion we will again drop the dimension index of
C)

Lemma 1. Let y(r) be the random cost incurred from the
time inventory drops to r until either supplier 1 or supplier 2
becomes available. Expected value of y(r) is obtained as:

wﬂ=ﬂwﬂk{.MW—§WMMW)
0

+f[%ﬂ+ﬂw—mdﬂw,

where A(w) is the limiting distribution of the forward recur-
rence time 1 of the OFF state 00 given in (1).

Proof. First, recall that D = 1 and P[r < w] = A(w).
Referring to Figure 1, we note that the cost incurred from
the time inventory drops to r until either supplier 1 or 2
become available is:

v(r)

_ {hwz/z + hw(r —w) =
Y2+ b(w—r),

hirw —w?2), ifw<r,

fw=r,
Taking expectations over 7, the result follows. []

Theorem 2. The expected cycle cost Cy,(q, r) of the regen-
erative cycle is

Cll(q, r)=clq,r) + 2 éij(qa r)Pu,z;(‘I), 3

y#11

where C (with elements C,, ij # 11) is calculated from

l]’
C=(I-Q ¢ )
with ¢ as an (N — 1) X 1 column vector such that

,elg, ), ¥ "

Proof. Using conditioning arguments similar to those in
Theorem 1, we have

CN-1nx1 =[,clg,n,...

c(g, 1), if £(g) = 11
Coi = [with probability Py;,11(g)],
" elg, )+ Cy, i L(g) # 11

[with probability Py, (g)].
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For ij # 00,
clg, ), if {(g) = 11
C. = [with probability P, 1, (q)],
Y c(g, 1)+ Crp, itl(q) =km#11

[with probability P, xm (9)],
and for ij = 00,

_ 7+C107
CDO —{V+C017

[with probability p],
[with probability 1 — p].

Taking expectations and using the matrix notation, we
obtain C = (I — Q) 'c where Q is as defined in Theo-
rem1. []

Now that we have expressions for the expected cycle
time T,,(¢g) and expected cycle cost C,,(g, r), we are al-
most ready to form the ratio

Cu(‘Ia r)
Tu(Q)

to compute the cost function for the problem. However, a
careful look at both T;(g) and C,,(g, r) will reveal that an
exact computation of these terms requires the transient
solutions of the transition functions P, ,,.(q), ij, km € &
for finite q of the SMP of the availability process. This is
presented in the next subsection.

%(q,r) =

H

¢) Transient Solution of the P;,..(q)

We will develop a system of integral equations for P, ,,,.(q)
that can be solved using numerical techniques.

Recall that the ON RVs X, and X, are Erlangian with
parameters (s;, s;A{) and (s,, s,A,), respectively. Hence,
each stage of X, is exponential with rate s,A,, i.e, it has
the distribution F,(f) = 1 — e ™, ¢ = 0,i € ¥, and
each stage of X, is exponential with rate s,A,, i.e., it has
the distribution F, (1) = 1 — ¢ **¥, 1 = 0,j € &,. The
OFF RVs Y; and Y, have general distributions G(¢) and
G,(¢) with means 1/u; and 1/u,, respectively. Define F,,(1),
sz(t) Gi(t) and G,(t) for i € ¥, and j € &, as the
complementary cumulative distribution functions of the re-
spective distributions, i.e., F;,(f) = 1 — Fy,(¢), etc.

To develop the transition functions (and to simplify the
notation for expressing the transition functions later) it
would be useful to reorder the N states and list them as:

¢y =00, 01, ..., 0s,]10, 11, ..., 15|

.lsloasll’ '7s1s2]'

Since there are N states, we will have a total of N? transi-
tion functions P, 4, (¢), ij, km € $.

Theorem 3. The transition functions P, wn(t), t = 0, i,
kme @ of the SMP representing the suppliers’ avazlabzltty
status are the solutions of the following integral (renewal)
equations:
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Poojem (1)

t

= J dG(w)Piopm (t — u) + J dGo(u)Poy o (t — 1)
0 0

+G1(0)G, (gt 9=m)> kE ¢, me,, (10)
Poim ()

= J dG (W) Py jem (t — u)
0

t
+J dFZ] (u)P0(1+1),km (t*u)-'_Gl(t)FZ] (t)l{0=k,}=m}:
0

jEyz,kESA"l,mEf;’z, (11)
PtO,km(t)

t
=j dF 1, (u) P i1y um (t — u)
0

t
+ J dGZ(u)Pll,km (t - Lt) + Flt(t)GZ(t)1(1=k,O=m}7
0

€Y, k€EF, me,, (12)
Pt},km(t)

t
= J AF 1; ()P i1y, pom (t — 1)
0

t
+ f dFZ](u)Pl(]+1),km(t - u)
0

+ F 1, (OF 3 () 1oy =my
ies})l’jegz,kegl,megz, (13)

with the initial conditions P, ,,(0) = 1, ij = km, and
P, im(0) = 0,4 # km, where 1, , is the two-dimensional
indicator function, and s; + 1 = 0and s, + 1 = 0, for the
two suppliers, respectively.

Proof. Consider (10). Condition on the first state visited at
time u of the first transition out of 00. The transition may
be into 10 with probability dG,(u), and the conditional
probability of ending up in state km after + — u time units
starting at 10 is Pyg (¢t — «). The transition may also be
into 01 with probability dG,(1) and the conditional proba-
bility of ending up in state km after r+ — u time units
starting at 01 is Pg; 4,,(t — u). Removing the conditioning
and adding the probability that no transitions may have
occurred by time ¢ if 0 = k and 0 = m, that is, adding
G,(t)G,(?), gives the result. The other integral equations
are obtained in a similar manner. [7]

At first glance, the above system of integral Equations
(10) through (13) appears to have N> unknown functions
P, ;n(f) and N? equations. However, it is possible to de-
compose this system into a more manageable set of
smaller systems of lower dimension, which substantially
simplifies the solution of P, ,,,(¢).

Corollary 1. The solution of the system (10) through (13)
with N* equations in N* unknown functions can be reduced
to solving separately N systems of N integral equations in N
unknown functions.

Proof. Recall that P, ,,,(¢) is the conditional probability of
the process being in state km at time ¢, given that the
process started in state §j at time 0. Now, fix the index of
the state to be visited at time ¢, i.e., fix k and m as k and 1,
respectively. Since s; + 1 = 0 and s, + 1 = 0 correspond
to the OFF states of the two suppliers, when k = k and
m = m, we can decouple (10) through (13) and reduce
them to a system of N integral equations in N unknown
functions as:

[Pooem (8)s Potjorm (8), - .. 5 Pog, jom ()

|P1ojim (8), Prijem (£), . . ., Py im0

o AP 0km (D), Py 1 (8, s Py s, im(t)].
This proves the corollary. []

Remark 1. In general, even when s; and s, are small and
the OFF periods are distributed exponentially, it is very
difficult to solve (10) through (13) in closed form. How-
ever, as we will discuss below, numerical techniques can be
used to solve the system and to compute the transient
values of the transition functions P, 4,,(f). In order to ap-
ply these numerical techniques effectively, it would be use-
ful to express the individual integrals in (10) through (13)
in a slightly different, but equivalent, form. For example, if
we consider the first integral in (10):

j 4G 1 () Prg o (¢ — 1), (14)
0

we note that this is the convolution integral of two func-
tions g,(t) and Py, (?). By a simple change of variable,
(14) can be expressed equivalently as:

f g1t = u) Piopm (u) du. (15)
0

The other integrals in (10) through (13) can be rewritten in a
similar manner where the transition functions and the proba-
bility densities are interchanged as in (14) and (15). [

Example 1. As an example for Corollary 1, consider the
case where s; = 5, = 2. Now, the reduced system for, e.g.,
k = m = 0, in matrix form becomes

Polt) = J H(t — u)Pgo (1) du + vy (), (16)
0
where
Poo(t) = [Poo,00(t), Por,oo(t), Pozoo(t)
1P 10,00 (1), P11,00(t), P12,00(t)]
P20,00(2), P21,00(2), P2aoo()] 7, (17)
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0 g,() O gi(t) 0 0
0 0 falo) 0 g.) O
f22() 0 0 0 0 g1(t)
0 0 0 0 g, 0
Ho=| 0 0 0 0 0 fa®
0 0 0 f20) 0 0
fa@ 0 0 0 0 0
0 fi@ 0 0 0 0
0 0 fi2(®) 0 0 0

and, voo(t) = [G,(1)G(2), 0, 0]0, 0, 0]0, 0, 0] . The system
of integral equations in (16) can be solved numerically for
the N = 9 unknowns in Py,(¢). For the other krn # 00, the
P»(t) and vg;(¢) vectors assume slightly different forms,
but the H(t) matrix does not change. In the next section we
will describe a detailed example where we compute the
transition functions numerically using Corollary 1 and op-
timize the inventory model. [

2. ANALYSIS OF TWO CASES

In this section we describe in detail the analysis of two
particular cases. The first case deals with the numerical
solution of a problem with £, ON periods and memoryless
OFF periods for both suppliers, i.e., the E,[E,[/M[M] model.
The second case considers the problem where the optimal
g may be “large,” hence we can approximate the transient
solution of the transition functions of the SMP by their
limiting values.

2.1. Numerical Solution of the E,[E,]/M[M] Model

In this case s, = 5, = 2, i.e,, both X, and X, are Erlangian
with parameters (2, 2A;) and (2, 2A;), respectively. This
implies that F,(f) = 1 — e™ ", t = 0,/ = 1, 2, and F,/(¢)
=1-¢e 2 t=0,j =1, 2. For simplicity, we assume
that the OFF RVs Y, and Y, are exponential with param-
eters w; and p,, ie., Gi(t) =1 — e and G,(r) = 1 —
e M t = 0. We have ¥, = {1, 2} and ¥, = {1, 2}; hence,
there are a total of N = (2 + 1)(2 + 1) = 9 states listed as
¢y = [00, 01, 02 | 10, 11, 12 | 20, 21, 22].

In order to compute the expected cost é(q, r) = C,(q,
r)/T;1(q), we need the transient solution of the transition
functions P, ,,(g) for each g = 0. We now describe the
numerical evaluation of the transition functions.

As we discussed in Corollary 1 and demonstrated in
Example 1, for fixed k and 7, say, k = m = 0, we would
have to solve a system of nine integral Equations (16) in
the nine unknown functions (17). Since the unknown func-
tions appear inside the integrals in (16), solution of the
integral equations would have to be performed using nu-
merical integration techniques. The integral equations in
(16) are classified as “Volterra type of the second kind”
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0 0 0
0 0 0
0 0 0

fii(®) 0 0
0 ful@® 0 |, (18)
0 0 fu@
0 g2(1)
0 0 fa®)

fa() 0 0

(Jerri 1985). There are several numerical solution methods
that can be used to compute the integrals in (16). These
include successive approximations (Jerri 1985), Laplace
transforms (Bellman et al. 1966), and direct numerical in-
tegration (Jerri 1985). We have tried all three methods
and decided to use the last one for its numerical stability.

The direct method of solving integral equations is based
on approximating an integral using one of many classical
formulas for equally spaced points in the domain of inte-
gration. These include, for example, trapezoidal rule,
Simpson’s rule, and Bode’s rule (Press et al. 1989). Briefly
stated, for a scalar integral equation such as:

t

P(t) = G(t) +J g(t, u) P(u) du,
[}

P(0) = G(0) =1,
(19)

for given G(t) and g(t, u) = g(t — u) with the unknown
function P(¢), t = 0, one approximates the integral, say,
using the trapezoidal rule, as:

J g(t, u) P(u) du

0
= At[%g(t, u)Plur) +g(t, us) Plug) + - -
+ gt up1) P(uny) + 390t u,) P(u,)],  (20)

where the interval of integration [0, ¢] is divided into n
equal subintervals of length At = t/n; u, <t,j = L, u; =0
and u,, = ¢t. (The integration is over u, 0 < u < ¢; thus, for
u>t gt,u) =0)

The integral equation in {19) can now be approximated
by the sum:

P(r)
=G (1) + At[3g(t, uy) P(uy) + g(t, us) P(uz) + -+
+g(t, upn-1)Plup-1)
+ 29t up) P(u,)]. (21)
If we consider n sample values of P(t), P(u,) = P, i =
1,..., n, Equation (21) becomes a system of n linear

equations in n unknowns P,, i.e.,
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Pl = (_;1,
P, =G,

+ At[%gthl + gIZPZ +t gl,n—IPn—l + lingn]s

i=2,...,n,
where G, = G(u,), g, = 9(t, uw),j < i, and y; < t,. Hence
the numerical solution of an integral equation can be re-
duced to solving a system of » linear equations in # un-
knowns. This linear system can be conveniently expressed
as P = HP + ¥, with the solution P = (I — H)™'¥, where
¥=1[G,...,G,]  and P =[P,,..., P,]T are n X 1
column vectors and:

. 0 ) 0 0 0
= 3921 3922 0 0
%gnl Gn2 Gn,n-1 %gnn
is an n X n matrix.

Of course, our problem is complicated by the fact that
we have a system of integral equations in N unknown func-
tions Py 4,,(2), t = 0, for fixed k and m. However, we can
still apply the trapezoidal rule to each integral in (16) after
dividing the [0, ¢] interval into n subintervals of equal
length. Since there are N unknown functions, each of
which is being sampled at n points, the resulting linear
system now has nN equations in nN unknowns. For exam-
ple, for k = m = 0, this would transform (16) into:

Poo = HPgy + Vo0, (22)

where

Poo = [Poo (1), - - ., Poo(un)|Por(ur), - - . s Por(un)|
e Py, ),y o, Py, (ua)],

00 = [G11)G2(u1), .., G1(un)Go(uy)
0,...,00...]0,...,0]

are nN dimensional column vectors and H is a suitably
constructed sparse nN X nN matrix whose nonzero
submatrices are positioned in a manner similar to the non-
zero entries in (18).

Solving (22) for Py, would give the numerically esti-
mated solution of the transition functions P o(f) for any
t = 0. The computational approach is very similar for
other ki # 00; however, ¥z, assume slightly different
forms.

Now that we have estimates for all the transition func-
tions P, 4,,,(t), ij, km € &, we can easily compute T in (3)
and find the expected cycle time T';(q) for any given q.
Similarly, C can be calculated from (9) and the expected
cycle cost Cy;(q, r) can be found for given g and r values.
Using T,,(q) and Ci1:(g, ), one can then find the corre-
sponding value of the expected cycle cost 6(q, r) for given
q and r.

Unfortunately, since neither T;,(q) nor Cy;(g, r) is avail-
able in closed form, it is not possible to analyze %(g, r)
for its convexity properties nor to compute its partial
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derivatives. Therefore, it would be useful to implement a
search method that can identify the optimum making use
of different values of € evaluated at (g, r). We have de-
cided to optimize (g, r) using adaptive random search
(ARS) (Gottfried and Weisman 1973) for its simplicity and
effectiveness. ARS is a simpler version of the global opti-
mization method known as simulated annealing (van Laar-
hoven and Aarts 1987). For our problem with two decision
variables, starting with a feasible point in the two-
dimensional region that is known to contain the optimal
solution (g*, r*), ARS randomly generates the next feasi-
ble point and compares it to the previous point. If the new
point is better than the previous one, it is kept; otherwise,
the new point is discarded. For example, if g* is known to
be in the interval [g,, 4], and if g4 is the previous point,
then the new point g, is generated using the formula
Gnew = Goia T (s — q¢)(26 — 1)°, where 6 is a random
number between 0 and 1 and v is an odd integer. The
process continues in this manner until convergence is
established.

We use the following algorithm to compute the optimal
(g, ) values:

Step 0. Set the initial value of 6 at a high positive level,
say, 10,

Step 1. Start with a feasible (g, r) point.

Step 2. Evaluate the transition functions at g using the
method that solves the system of integral equations for

Pt],km(Q)‘

Step 3. Generate the Q matrix appearing in (3). Com-
pute the T and C vectors and evaluate T;,(¢g) and Cy,(g,

r).

Step 4. Evaluate the expected cost 6(q, r). If the new
value of € is better than the previous one, keep the corre-
sponding (g, r). (If the improvements in 6 become negli-
gible, stop.) Go to Step 2. Otherwise, generate a new
feasible (g, r) and go to Step 2.

Example 2. Let us now consider an example where the
above algorithm is implemented. Supplier availability and
cost parameters are initially set as follows: A; = 3/5, A, =
1/2, w, = 1, uy = 3/4; K = $200/order, & = $100/unit/
time, b = $500/unit. As previously discussed, demand rate
is D = 1 unit/time where a “unit” could correspond to, say,
1,000 items. Since Y; and Y, are exponential, it can easily
be shown that A(w) = 1 —e ™™, w=0,p = u/u, 7=
1/p, and ¥(r) = e #[he* (wr — 1) + b + h]/u?, where
[l R )

To implement the ARS optimization algorithm, we
wrote a program using Microsoft QuickBASIC v4.5 which
was run on an 80486 machine with a clock speed of 50
MHz. Numerical solution of the integral equations (16)
was performed using a value of n = 10. This meant that, to
solve for Py, in (22), we had to compute the inverse of a




Table 1

Sensitivity Analysis Results for E,[E,])/M[M] Model

K h b q* r* €* dro0 “Eoco

H @ O 4 (%) (6) (M (8)

200 100 500 2.119 0.004 211.63 2.000 200.00
1,000 2.239 0.018 228.15

300 500 1.170 0.000 35491 1.154 34641
1,000 1208 0.008 382.99

400 100 500 2952 0.000 289.19 2.828 282.84
1,000 3.016 0.002 303.04

300 500 1.731 0.003 492.08 1.632 489.89
1,000 1.814 0.012 51641

90 X 90 matrix I — H. The bottleneck in these computa-
tions is the size of I — H which would quickly grow as s,
and/or s, take on larger values.

In all computations we used double precision arithmetic.
Inversion of the 90 X 90 matrix using LU decomposition
was done only once, which took approximately one minute.
Generation of the Q matrix and the evaluation of the %(q,
r) function had to be done for each test value of (g, r) used
in the algorithm. Each iteration took about 4 seconds.
Using the above data values, we obtained the optimal val-
ues as ¢g* = 2.119 unit, #* = 0.004 unit, and 6* = $211.63.
In the absence of supplier uncertainties, we would use the
standard EOQ model for which the optimal solution would
be gtoo = 2.0, rEoo = 0, and €Eoo = $200.00, implying
that the cost of uncertainty is $11.63 per time unit.

We have solved a large number (several hundred) of
other test problems to evaluate the effects of changing
parameter values on the optimal solution. In Table I we
present a representative sample of eight problems that
indicate the direction of movements for g¢*, r*, and 6€*
given in Columns 4 to 6 when K, h, and b vary as in
Columns 1 to 3. This table includes the corresponding
values for the optimal solution for the standard EOQ
model as given in Columns 7 and 8. Note that optimal
order quantity g* in the presence of supply disruptions is
always greater than the economic order quantity ggoo-
Although the optimal reorder point r* is not kept at very
high levels, it is affected by increases in the backorder cost
b, as should be expected. []

2.2. Analysis of the Model for “Large” q

In this subsection we analyze the model for asymptotically
“large” values of g so that the transient probabilities can
simply be replaced by their limiting values P, = lim,_...
P{{(q) = km|{(0) = ij}, km € & in order to simplify the
analysis. When optimal ¢q is not likely to be large (in rela-
tion to D = 1), then this approach would provide an easy
to compute, but possibly poor approximate solution. On the
other hand, if order cost X is large and/or holding cost A is
small compared to backorder cost b, then the optimal ¢ is
likely to be large, and replacing the above time-dependent
(transient) conditional probabilities by their constant lim-
iting values may be an acceptable approximation. (This will
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be more apparent in Example 3 that will be discussed later
in this section.)

a) Computation of the Limiting Probabilities

Analysis of the model for large g produces the limiting prob-
abilities of the SMP of the N states in the problem. Since
N is finite and ON and OFF periods of both suppliers have
finite means, the SMP has a unique limiting distribution
independent of the initial state (Ross 1983, p. 131). Under
these conditions, we have the following proposition.

Proposition 1. The limiting probabilities of the SMP:
Pim = limg .. P{L(q) = km|{(0) = ij}, ij, km € F,

exist independent of the initial state, and they are computed as:

P — E(Yl) . E(Yz)
TN +E(Y)) U+ E(Yy)
_EY) 1/(sa49)
Pom = {0 v E@) Th, + E(vy) ™€
_ 1/(S]}ll) . E(Yz)
Pro = {5 ¥ ECD) Th, By K€
Pkm

__ Vlsih)  1/Gs22,)
/A + E(Yy) 1/A; + E(Y3)’

ke&l’l,mefj’z.

Proof. First recall that the two suppliers have independent
ON/OFF processes {; = {{,(t),t = 0} and {, = {&,(1),t =
0}. Consider the limiting probabilities of {; and &, i.e.,

P =lim, .. P{{1(q) = K| (0) =i}, i, ke,
PP =limy . P{L2(q) = m|L2(0) =j}, j,mE .

Since the sum of the ON and OFF periods have finite
means for both suppliers, ie., E(X; + Y;) < < and E(X,
+ Y,) < o, using Proposition 4.8.1 in Ross (1983, p. 131),
we obtain:

1/(s1Ay)
[} R it S TN
P 1/A, + E(Yy)’ k& J1,
E(Yy)
1 =17
P = x s B
1/(s2 A7)
(2) o W ehre)
Pm 1/)\2+E(Y2)’ meyz,
P(SZ)_ E(YZ)

T 1/A;, + E(Y,)’

as the limiting probabilities of the ON/OFF processes for
the individual suppliers. Using the independence of the ¢,
and ¢, processes, we have:

Poy = PP,

Pon = PVP2. me 9,,

Py =PVPP, ke oy,

P, =P{PP? ked , me¥,. [
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e(r) =
2K + 2P[y(r) - 7hr]

£(q) = hq® + 2hq7Py,

Figure 3. Analysis of ¥ (g, r) = 0.

b) The Cost Function

The following theorem provides simple expressions for the
expected cycle length and cycle cost (and hence the ex-
pected cost) when ¢ is “large.”

Theorem 4. Assume that the limiting probabilities Py,, of
the SMP have been found using the procedure described
above. When q is “large,” the long-run expected average
cost function H(q, r) is obtained as:

_c(q, r) + ¥(r) Py
%(q’ r) - q + E‘POQ '

Proof. We find (after some matrix manipulations) that:
T= (I—Q)_It:PLH[POQ?‘Fq, ,Pooi"‘}'q,

g+ 7P +P11)] ",

i.e., the first N — 2 elements of the T vector are (Py7 +
q)/P,,, and the last element is T(Pyq + Py;)/Py;. Using
T,=gq+ pIEY T,]-P,Jl we obtain the expression for the
expected cycle time as Tj1(g) = (g + TPyo)/P;4. Similarly,
for the expected cycle length we find another expression as
Cilg, r) = [c(g, r) + ¥(r)Pyo)/Py;. Using the renewal
reward theorem, the objective function becomes:

_Culg,n) _clg,r) + 3Py

3{(‘1, r) 7"11(q) - q + ?POO D (23)
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When both suppliers are always available, then Py, = 0
and the above expression reduces to the cost function of
the standard EOQ model, as would be expected.

It is interesting to note that, when g is large the only
probability that appears in the objective function is Py,
i.e., the limiting probability of finding both suppliers in
their OFF state. This is the case when shortages may start
accumulating, and the cycle time and cycle cost differ from
those of the EOQ model, i.e., from ¢ and c(g, r) by an
amount of 7 and ¥(r), respectively.

c) Optimality Conditions

We now analyze the cost function (23) in more detail by
examining the necessary conditions for optimality. (In
what follows, we use the subscript notation to denote the
partial derivatives of ¥(q, r) and c(g, r).)

(i) Hy(q, r) = 0 implies (g + TPyo)c,(q, 1) — (g, 1) =
¥(r) Py, which simplifies to £&(q) = hq® + 2hqTPy = €(r)
= 2K + 2Py [¥(r) — 7hr]. Here, &(g) is a convex quadratic
function with &0) = 0, and it has a minimum at g = —7Py,
such that & —%Py,) = —h7P},. For a given value of r, &(r)
is a constant, and the corresponding value of g can be
computed by solving the quadratic equation &(q) = €(r).
(See Figure 3.) Also, note that if Pyy = 0, i.e., when the
suppliers are always available, then &(q) = hg* = €(r) =
2K so that the optimal order quantity is g* = ¢foo =
V2K/h. This is the solution for the classical EOQ problem
with demand D = 1, as expected.




¥'(m A

-hq/Py /
-b

Figure 4. Analysis of ¥,(q,r) = 0.

For positive P, the smallest value of [¥(r) — Thr] (ob-
tained as r — ®) is —hE(7%)/2, hence solving &(q) = (=)
= 2K — hE(7)/2 gives the lower bound gy, = £ '[2K —
hE(7%)/2] for the optimal order quantity g*, i.€., ¢ < q*.

(i) *,(q, r) = 0 implies c,(q, ) + Pyo¥'(r) = 0, which
simplifies to:

¥'(r) = —hq/Pg (24)

where ¥'(r) = h [, wdA(w) + (hr — b) |7 dA(w). Differ-
entiating ¥’ (r) once more, we obtain ¥'(r) = h [ dA(w) +
bA'(r), which is always positive, implying that ¥(r) is con-
vex and ¥ (r) is an increasing function of r. (See Figure 4.)
Note that 3'(0) = —b, and if —b < —hqPy, for a given g,
then there exists a unique value of r solving (24), since
¥'(r) was shown to be increasing in 7. If —hqPgy < -b for
some g, then r would be set equal to zero.

The above system X, = ¥, = 0 could be solved itera-
tively as in the continuous-review (g, r) model discussed in
Hadley and Whitin (1963, Section 4.4). One would start
with ¢ = gEoq = V2K/h and solve for r in ¥, = 0. This
value of » would be used to compute a new g from ¥, = 0
until convergence is achieved.

Using the necessary conditions provided above, one can
show that %, > 0 and the determinant |¥| of the Hessian
matrix

_[Heg Lo
# =[5 %],
is found as

|%|(Poo7 + q)*/Poo
= a(r) = 7' (r)[2Pgo ¥(r) +2K+PgohT(Poo7—2r)]
— Pool¥'(r) — h71%

Since afr) is a function of r only, for given parameter
values its sign can be easily checked for positiveness, i.e.,
for the convexity of the function ¥(g, r). If H(q, r) is
everywhere convex, then the iterative method suggested
above would converge to the optimal solution. As K is
likely to be “large,” since g was assumed “large,” ¥'(r) >
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Table 11
Efficiency of the Asymptotic Approximation
K *h b G Fooo%(g ) 6*  b(g, rie*
OH @ 6 G 6 ) U ®)

212.34 211.63 1.003
228.60 228.15 1.002
378.36 35491 1.066
386.38 382.99 1.008
295.82 289.19 1.022
304.49 303.04 1.004
506.51 492.08 1.029
538.89 516.41 1.043

200 100 500 2.17 0.013
1,000 235 0.004

300 500 1.34 0.084

1,000 1.45 0.000

400 100 500 293 0.090
1,000 3.08 0.028

300 500 1.77 0.058

1,000 1.87 0.107

0, and 0 < Py, < 1, a(r) would likely be a positive function
of r, hence (g, r) would be convex.

Example 3. We used the supplier availability parameters
of Example 2 and the cost data in Table I to compute the
“optimal” solution g and 7 that minimize (g, r). The
results are presented in Table II, where we compare the
expected cost of the exact version of the cost function €
evaluated at (g, ¥) with the minimum expected cost €*
found in Example 2. As we had indicated at the start of
this section, when K is large and/or h is small compared to
b, the asymptotic approximation is likely to give rise to very
accurate results. In fact, as we see in Table II, for b = 1,000
and “large” § > 2, we obtain the smallest error in the
solution, where (g, 7) exceeds €* by less than 0.8%. When
the conditions for K and b (as specified above) are satisfied
for a given problem, it is advisable to use the asymptotic
approximation of this section to compute the optimal val-
ues of decision variables. []

3. ANALYSIS OF AN ALTERNATIVE
INVENTORY POLICY

When at least one of the suppliers is always available, the
optimal policy would call for ordering g* = V2K/h units
whenever the inventory level drops to the reorder point of
r* = 0, i.e., the standard EOQ model applies. In the gen-
eral environment with two suppliers who may be indepen-
dently ON or OFF for random lengths of time, one can
use one of many different inventory policies. One is the
relatively simple to implement (g, r) policy developed in
this paper that requires the optimization of a cost function
of two variables. Another policy is to make the order deci-
sions dependent on the number of available suppliers. In
this case, there would be two different order quantities
represented by the vector ¢* = (g, »), where g, is the
order quantity when the number of available suppliers is j,
j = 1, 2. The resulting (4@, r) policy could be modeled in
a similar manner. However, the expressions for cycle
length and cycle cost would be different, and the objective
function would depend on three decision variables. It is
clear that this policy is more general than the (g, r) policy.
This follows, since if g, = g5, then (¢, r) reduces to (g,

r).
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Yet another possibility is to make the decisions “state-
dependent” in the sense that the order quantity would de-
pend on the availability status of the suppliers. Now, one
would need to consider three different order quantities repre-
sented by the vector ¢® = (g, 10, go1) and the reorder
point r. Here, gy, is the quantity ordered when both sup-
pliers are ON, g, is the quantity ordered when only supplier
1 is ON, and g, is the quantity ordered if only supplier 2
is ON when inventory level drops to r. This (@, r) policy is
even more general than (@@, r), since setting gy, = ¢4
would reduce (¢, r) to (q?, r).

In the model that uses the (q'¥, r) policy, it may be
tempting to define the cycles to commence whenever the
inventory is raised to ¢,; + r when {(f) = 11 and proceed
as in Section 1. However, this would not be an operational
definition of a cycle, since we do not actually observe state
11 of the process as the stages of Erlang random variables
are artificial constructs. (For the simple (g, ) policy of
Section 1, this was not a problem since the order quantity
was not state dependent, and we always ordered ¢ units
regardless of which supplier was available.) Thus, in the
(@, r) model one would need to redefine the cycles to
start whenever the inventory level is raised to g;, + r units
at that epoch where supplier 1 just commences his ON
period and supplier 2 is still OFF. (Equivalently, cycles
may also be defined to start when inventory is raised to
qo1 T r units when supplier 1 is OFF and supplier 2 just
starts his ON period.)

With this definition of a cycle, we would need to com-
pute the new expected cycle length and cycle cost. Unfor-
tunately, in this case we cannot extend the analysis
presented in Section 1.1 in a straightforward manner using
the definition of the new cycle. For example, the expres-
sion for cycle length T, is not analogous to the expression
for the cycle length T, in (4). In other words,

910, if {(q10) = 10
[with probability Pg 16(g10)],

if £(g10) # 10
[with probability P19, (g10)]-

Ty #
10 q10 + T1]5

This follows because the event {(g,y) = 10 does not nec-
essarily start a new cycle, since the process may have al-
ready spent some time in state 10 by the time inventory
drops to r after g,, time units. Hence, a proper definition
of the expected cycle length (and cost) would require an
analysis different from the one presented in Section 1.1.

There is, however, one special case where we can easily
compare the (g, r) and (g, r) policies: If we assume that
s; = 5, = 1, i.e,, the ON periods for both suppliers are
distributed exponentially, then the cycle for the (q®, r)
policy is defined similar to the cycle of the (g, r) policy due
to the memoryless property of the exponential distribution.
Thus, both policies can be easily compared.

For this state-dependent M[M]/M[M] model with N = 4
states {11, 10, 01, 00}, cycles would start whenever the
inventory level increases to g;; + r and both suppliers are

available (ie., the process is in state 11). We can then
write:
qii, if {(q11) =11

[with probability Py 11 (g11)],
qu +T,, if{(g;)+11

[with probability Py, (g1;)].

T, =

so that Ty; = gy + 3,415 T,Py1,(qy1,) from (5). For ij #
00, we obtain:
qy if {(g,) =11
[with probability P, 1;(g,,)],
if {(q,) = km # 11
[with probability P, im(q,)],

T, =
/ qy + Tkma

and for ij = 00, the same expression in (7) applies. The
expected cycle length T, is now a function of three vari-
ables ¥, and it can be computed in a manner similar to
(3) after suitably redefining the t vector.

The expected cycle cost C,, is a function of four vari-
ables (¢, r), and it, too, can be computed using the
procedure explained in Theorem 2. We note, however,
that the cost of ordering and holding inventory in an inter-
val that starts with g, + r units and ends with r units is
c(q; ) = K + hg}/2 + hq,r, ij = 11, 10, 01. Thus, after
suitably redefining the ¢ vector and solving for C,;, the
average cost function becomes:

_ é]l(q(a)y r)
Ti1(q®)

which can be minimized with respect to the four decision
variables (@, r).

We now discuss an example and compare the (g, r) and
(q®, r) policies for the state-dependent M[M)/MIM)]
model.

€@, r)

>

Example 4. We use the same cost parameter values as in
Example 2; i.e., K = $200/order, # = $100/unit/time, and
b = $500/unit. Supply availability parameters are chosen
as Ay = 3/10, A, = 1/4, u, = 1, and p, = 3/4, so that the
expected ON/OFF durations are E(X,) = 10/3, E(X,) = 4,
E(Y;) = 1, and E(Y,) 4/3. We solved the same set of eight
problems discussed in Example 2. The results (to two sig-
nificant digits) are presented in Table III, where the last
column 12 provides a comparison of the objective function
values of both policies. In this example we see that the
suboptimal (g, r) policy that we have chosen in this paper
performs well compared to the better policy (¢, r). Al-
though the optimal values of (g, r) and (q*®, r) are not
necessarily equal, the optimal €* and ¢®* are so close
that the deterioration in the objective function resulting
from the use of the suboptimal policy becomes negligibly
small, as shown in column 12 of Table III. This result can
be attributed to the flatness of the objective functions
around their optimal values. Thus, even if the suboptimal
(g, r) policy is implemented, the minimum value of the
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Table III
Comparison of the (g, ) and (@, r) Policies for Varying K, 4, and b

[€*/6®* — 1] x

K h b q* r* @x* 9 9t qo1 r* g3= 100
(1) (2) (3) 4) (5) (6) Q) () %9 (10 (11) (12)
200 100 500 2.04 0.00 204.66 2.01 2.07 2.06 0.00 204.65 0.004%

1,000 2.11 0.00 212.24 2.06 2.18 2.14 0.00 212.18 0.028%

300 500 1.16 0.00 350.14 1.15 1.17 1.16 0.00 350.13 0.003%

1,000 1.19 0.00 362.14 1.16 1.23 1.21 0.00 362.03 0.038%

400 100 500 2.85 0.00 285.31 2.84 2.86 2.85 0.00 285.30 0.003%
1,000 2.90 0.00 290.91 2.88 2.94 2.91 0.00 290.90 0.003%

300 500 1.63 0.00 490.09 1.63 1.63 1.63 0.00 490.08 0.002%

1,000 1.66 0.00 499.38 1.64 1.68 1.67 0.00 49932 0.012%

Note: Some r* values are positive but <0.001.

resulting objective is not likely to be too far from that of
the better policy.

In the second half of this example, we present the solu-
tion of 16 additional problems where we vary the supply
uncertainty parameters Ay, py, Ay, and u, that cover a wide
range, while keeping the monetary parameters K, A, and b
at their base levels of 200, 100, and 500, respectively. The
results are presented in Table 1V, where we see again that
the suboptimal policy that we have chosen performs well
compared to the better policy (q®, r). []

As indicated at the beginning of this section, modeling
the (¢, r) policy for the nonexponential, i.e., Erlangian,
case would require a redefinition of the regenerative cycle
and reconstruction of the model from scratch. However,
when this model is built, the expected cycle time and cycle
cost expressions should be computable in a manner similar
to the expressions (3) and (9), respectively, with the Q
matrix and t and ¢ vectors having different forms. Thus,
the average cost objective function would still have a struc-
ture that is similar to the original model. Additionally,
since the objective function appears to be flat around the
optimal solution for these type of order quantity/reorder

point problems, it is likely that the suboptimal policy (g, 7)
will still perform well compared to the better policy (¢,
r) for the Erlangian case.

Ideally, one would need to use the machinery of dy-
namic programming to prove the optimality of a particular
policy used in any inventory model. (For example, see Bar-
tmann and Beckmann 1992.) Although the (q®, r) policy
dominates the (q'?, r) and (g, r) policies, dynamic pro-
gramming may reveal that there may exist yet another
policy that is superior to (q‘®, ). Identification of the
optimal policy for the two-supplier environment discussed
in this paper appears to be an open problem that should
be studied in the future.

4. SUMMARY AND EXTENSIONS

This paper has analyzed an inventory problem where two
suppliers in a market may sometimes be unavailable due to
strikes, machine breakdowns, political upheavals, etc. We
modeled the durations of availability of the suppliers using
Erlangian random variables. The periods of unavailability
were modeled using general random variables. The “meth-
od of stages” was used to transform the non-Markovian

Table IV
Comparison of the (g, r) and (q®, r) Policies for Varying Ay, py, A, and w,

Ay Mq Ay Mo * r* ©€* 911 g7 901 r* @+ ((6*/(6(3)* = 1) X 100
(1) (2) (3 @ ® (6) @) (8) (9 10 (@ay (12) (13)

0.1 0.2 0.05 0.1 2.07 0.00 224,78 2.00 2.20 2.09 0.00 224.64 0.062%
5.0 2.00 0.00 200.09 2.00 2.00 2.00 0.00 200.09 0.000%
10 0.1 2.32 0.00 268.48 2.21 2.20 2.33 0.00 266.87 0.603%
5.0 2.05 0.00 206.00 2.01 2.01 2.14 0.00 205.92 0.038%
0.1 20 0.05 0.1 2.00 0.00 200.01 1.99 2.00 2.00 0.00 200.01 0.000%
5.0 2.00 0.00 200.00 1.99 1.99 2.00 0.00 200.00 0.000%
10 0.1 2.00 0.00 200.03 1.99 1.99 1.99 0.00 200.03 0.000%
5.0 2.00 0.00 200.01 2.00 2.00 1.97 0.00 200.01 0.000%
10 0.2 0.05 0.1 2.31 0.00 264.22 2.06 3.43 2.08 0.00 260.44 1.451%
5.0 2.00 0.00 200.27 1.99 1.98 2.00 0.00 200.26 0.005%
10 0.1 2.10 1.38 348.70 2.06 2.09 2.09 1.38 348.69 0.028%
5.0 2.06 0.08 215.16 2.06 2.06 2.06 0.08 215.16 0.000%
10 20 0.05 0.1 2.00 0.00 200.82 1.99 2.02 2.00 0.00 200.81 0.005%
5.0 2.00 0.00 200.01 2.00 1.99 1.99 0.00 200.01 0.000%
10 0.1 2.02 0.00 202.42 2.03 2.02 2.02 0.00 202.42 0.000%
5.0 2.01 0.00 201.32 2.01 2.01 2.01 0.00 201.32 0.000%

Note: Some r* values are positive but <0.001.
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stochastic process of suppliers’ availability into a Mark-
ovian one. Renewal reward theorem was employed to con-
struct the objective function of the long-run average cost
per time. We discussed a special case where the problem
was solved numerically. A second example was discussed
for the case of asymptotic order quantity ¢. In this case,
the constant limiting probabilities of the supplier availabil-
ity stochastic process could be used to simplify the compu-
tation of the expected cost function. Finally, an alternative
state-dependent inventory policy was introduced and com-
pared to the (g, r) policy used in the paper. It was found in
several examples that although the alternative policy
would dominate the (g, r) policy, deterioration in the ob-
jective function value was negligibly small when the latter
policy was employed.

We have used the Erlang distribution to represent the
durations of the ON periods for both suppliers assuming
that the coefficient of variation (COV) of these random
variables does not exceed one. In practice, this would not
create a serious difficulty, since for most problems the
standard deviation of the periods of availability is likely to
be smaller than their mean, i.e., COV < 1. However, it
would be interesting to investigate the problem where ON
periods have a general distribution without any restrictions
on the magnitude of the COV. It may be possible to use
the “supplementary variable™ technique due to Cox (1955)
to transform the non-Markovian process into a Markovian
one. This transformation would require the use of an infi-
nite number of state variables.
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