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The purpose of this paper is to introduce, model, and solve a rich multiperiod inventory-routing problem
with pickups and deliveries motivated by the replenishment of automated teller machines in the Netherlands.

Commodities can be brought to and from the depot, as well as being exchanged among customers to efficiently
manage their inventory shortages and surpluses. A single customer can both provide and receive commodities at
different periods, since its demand changes dynamically throughout the planning horizon and can be either
positive or negative. In the case study, new technology provides these machines with the additional functionality
of receiving deposits and reissuing banknotes to subsequent customers. We first formulate the problem as a very
large-scale mixed-integer linear programming model. Given the size and complexity of the problem, we first
decompose it into several more manageable subproblems by means of a clustering procedure, and we further
simplify the subproblems by fixing some variables. The resulting subproblems are strengthened through the
generation of valid inequalities and solved by branch and cut. We assess the performance of the proposed solution
methodology through extensive computational experiments using real data. The results show that we are able to
obtain good lower and upper bounds for this new and challenging practical problem.

Keywords : inventory-routing; vehicle routing; inventory management; pickup and delivery; branch and cut;
clustering; exact algorithm; recirculation automated teller machines
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1. Introduction
The purpose of this paper is to introduce, model, and
solve an inventory-routing problem with pickups and
deliveries (IRPPD) arising in the replenishment of auto-
mated teller machines (ATMs). Our study is motivated
by the problem faced by a transporter responsible
for such operations in the Netherlands. As in other
cash-intensive economies, the Dutch credit institutions
are gradually replacing regular ATMs by recirculation
ATMs (RATMs), which are capable of accepting and
dispensing banknotes, as well as checking their quality
and authenticity. RATMs therefore provide customers
the capability of both depositing and withdrawing cash.
These machines provide tangible benefits to banks

and customers, and are becoming the new standard in
many markets. By the end of 2013, a total of 433,780
RATMs were in operation worldwide, corresponding
to 17% of all ATMs (RBR 2014). The number of RATMs
increased by 41% between 2012 and 2014, whereas the
total number of ATMs grew by only 14% over the same
period. RBR (2014) expects that the fast growth of the
number and share of RATMs will continue to intensify.
RATMs allow retailers to make deposits and enable
customers to later withdraw the same cash. In this
sense, RATMs are considerably more self-sufficient than
the regular machines, which can only dispense cash.
RATMs only require a visit to prevent the inventory
level from reaching zero or from attaining the holding
capacity of the machines when the supply and demand
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are out of sync. When an RATM is empty, a customer
can only use it to deposit cash, and when it is full only
withdrawals are allowed.

In the problem considered here, the RATMs are
replenished or partly emptied by using a fleet of rented
armored trucks, which are very expensive. These trucks
deliver cash from a depot to some machines, collect
cash from some others to bring it back to the depot, or
transfer cash between machines. The last operation
reduces the routing cost and sometimes allows smaller
or fewer trucks to be used. An important feature of
the problem is the presence of inventory holding costs.
Indeed, cash lying in a machine generates an implicit
holding cost partly because it is insured and also
because it incurs lost interest income.

To keep RATMs fully operational, that is when custo-
mers can use the RATM to both deposit and withdraw
cash, one must solve an IRPPD. The IRPPD combines
the features of two well-known classes of the vehicle
routing problem: the inventory-routing problem (IRP)
and the pickup and delivery problem (PDP), which we
now briefly review.
The IRP belongs to the broader field of vendor-

managed inventory systems in which a supplier coor-
dinates the inventory management of a number of
locations (Coelho, Cordeau, and Laporte 2014). In
IRPs, the supplier must simultaneously decide when
to visit its inventory locations, how much to deliver
to each of them, and how to combine the deliveries
into vehicle routes. There exist numerous variants of
this problem (Andersson et al. 2010; Coelho, Cordeau,
and Laporte 2014) and the related literature is rapidly
expanding. The first exact algorithm for the single-
vehicle IRP was based on branch and cut (Archetti
et al. 2007). It could solve instances with up to 50
customers and three periods, and 30 customers and
six periods. Archetti et al. (2012) later presented a
hybrid tabu search matheuristic algorithm capable of
dealing with larger instances and yielding solutions
with very low optimality gaps. Coelho, Cordeau, and
Laporte (2012) presented an adaptive large neighbor-
hood search heuristic for the multivehicle IRP, and
Coelho and Laporte (2013a) were the first to solve the
multivehicle IRP exactly. Recently, multivehicle and
multicommodity IRPs were also solved to optimality
by Coelho and Laporte (2013b). All of these algorithms
are based on branch and cut. For a recent survey of
models and algorithms, see Coelho, Cordeau, and
Laporte (2014). A related problem appears in maritime
transportation, in which ships have to visit several
ports to continuously deliver and pickup merchandise
and commodities. Applications include the distribution
of cement (Christiansen et al. 2011), chemical products
(Dauzère-Pérès et al. 2007), and liquefied gases (Rakke
et al. 2011), among others. For reviews of maritime

transportation, see Christiansen, Fagerholt, and Ronen
(2004) and Christiansen et al. (2013).
The PDP concerns the collection and distribution

of one or several commodities to and from a set of
locations. Berbeglia et al. (2007) classify PDPs and
distinguish between three different problem structures:
many-to-many (M-M), one-to-many-to-one (1-M-1), and
one-to-one (1-1). The M-M structure means that each
commodity may have multiple origins and multiple
destinations, and that each location may be the ori-
gin or destination of multiple commodities. In 1-M-1
problems, some commodities are picked up at the
depot and transported to some locations, whereas
other commodities are picked up at these locations and
transported to the depot. The 1-1 structure refers to a
context in which each commodity has a single origin
and a single destination, like in dial-a-ride problems
(Cordeau and Laporte 2007).

Two important classes of PDPs with an M-M struc-
ture are the Swapping Problem (SP) and the One-
Commodity Pickup and Delivery Traveling Salesman
Problem (1-PDTSP). In the SP, introduced by Anily and
Hassin (1992), each vertex of a graph provides a com-
modity and requests a commodity, possibly the same
one. The problem is to design a least cost vehicle route
to satisfy all requests. This problem is NP-hard on gen-
eral graphs, but polynomial on some special structures
(Anily, Gendreau, and Laporte 2011). Erdoğan, Laporte,
and Cordeau (2010) have developed heuristics and a
branch-and-cut algorithm for the multivehicle case. In
the 1-PDTSP, each vertex either provides or requests a
given amount of a single commodity, and a single vehi-
cle route must be designed to transfer the right amounts
of the commodity among vertices. The problem was
introduced by Hernández-Pérez and Salazar-González
(2003) and was solved by branch and cut (Hernández-
Pérez and Salazar-González 2003, 2004a, 2007) and
by heuristics (Hernández-Pérez and Salazar-González
2004b; Zhao et al. 2009). The 1-PDTSP arises in the rebal-
ancing operations in shared bicycle systems (Benchimol
et al. 2011; Chemla, Meunier, and Wolfler Calvo 2013;
Contardo, Morency, and Rousseau 2012; Erdoğan et al.
2012; Erdoğan, Laporte, and Wolfler Calvo 2014; Raviv,
Tzur, and Forma 2013). Some algorithms (Contardo,
Morency, and Rousseau 2012; Dell’Amico et al. 2014;
Raviv, Tzur, and Forma 2013; Shu et al. 2013) are capa-
ble of handling the multivehicle case. The problems
encountered in RATM replenishment and bicycle repo-
sitioning are similar in the sense that they both consist
of moving a commodity between locations to keep its
level within given limits. The main differences lie in
inventory holding costs, which are larger in the case of
RATMs, and also in the planning horizon. Indeed, in
the case of RATMs, planning is typically done over
several days whereas in the case of bicycles, reposition-
ing operations occur on a daily basis, sometimes only
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once during the night and often several times during
the same day.
The PDP with a 1-M-1 structure deals with two

types of commodities. Delivery commodities are trans-
ported from a single depot to multiple nodes, and
pickup commodities are transported from multiple
nodes back to the depot. A typical application is the
recycling of products such as beer bottles, pallets,
and containers (Berbeglia et al. 2007). A distinction is
made between combined and single demands. Com-
bined demands occur when locations may require
both a pickup and a delivery, whereas single demand
refers to problems where each location has either a
pickup or delivery demand. The single demand prob-
lem was introduced by Mosheiov (1994). Heuristics
were proposed by Gendreau, Laporte, and Vigo (1999)
and by Subramanian and Battarra (2013), whereas
Baldacci, Hadjiconstantinou, and Mingozzi (2003) and
Hernández-Pérez and Salazar-González (2007) solved
the problem exactly by branch and cut. The combined
demand case was introduced by Min (1989). It was
solved heuristically by Bianchessi and Righini (2007);
Subramanian et al. (2010); Zachariadis, Tarantilis, and
Kiranoudis (2010); Vidal et al. (2013), and exactly by
branch-and-price algorithms by Angelelli and Mansini
(2002); Dell’Amico, Righini, and Salani (2006); Subra-
manian and Battarra (2013). We are not aware of any
contributions on the multicommodity 1-M-1 PDP.
Our aim is to model and solve the IRPPD aris-

ing in the replenishment of RATMs. We view it as
a novel logistics application arising in the banking
service sector. As will be seen, the Dutch application
that motivates this study gives rise to a very large-
scale mathematical model, which cannot be solved
directly. To tackle it, we first decompose it into several
subproblems through the application of a clustering
procedure, and we further simplify the subproblems
by fixing some variables. The resulting subproblems
are then strengthened through the generation of valid
inequalities and solved by branch and cut. The paper
makes four main contributions. First, it introduces
pickups and deliveries within an IRP context. Second,
it combines two PDP structures: the 1-M-1 structure,
which accounts for commodity movements from the
depot to RATMs to the depot, and the M-M structure,
which refers to commodity transfers among RATMs.
Hence, our PDP could appropriately be designated
as a 1-M-M-1 problem. Note that we tackle a rather
general case of this problem, in that there are several
vehicles and side constraints in addition to the standard
IRP and PDP features. Third, to cope with realistic
sized instances, we propose a practical decomposition
methodology combining clustering, variable fixing, and
branch and cut. Our fourth contribution is to apply
our algorithm to data derived from a real-world case
arising in the Netherlands.

The remainder of this paper is organized as follows.
We formally describe the problem in mathematical
terms in §2, where we provide a mixed-integer for-
mulation. The algorithm is described in §3. This is
followed by the results of an extensive computational
study in §4 and by conclusions in §5.

2. Mathematical Programming
Formulation

The IRPPD is defined on a directed graph G= 4V 1A5.
The set V of vertices is partitioned into 8D1ℛ9, where
D is a set of depots and ℛ is the set of RATM locations.
The set A= 84i1 j52 i1 j ∈V 1 i 6= j9 is the arc set. Each
RATM incurs unit inventory holding costs �i per period
(i ∈ ℛ), and has an inventory holding capacity Ci.
A handling cost � is incurred at each depot, and is
proportional to the quantity picked up and delivered
at the depot. The length of the planning horizon is p,
with discrete time periods t ∈T = 811 0 0 0 1 p9. A set of
rented armored vehicles k ∈K= 811 0 0 0 1K9, each with
capacity Qk and average speed sk, is given. A renting
cost �k per period is incurred if vehicle k is used. Each
vehicle is able to perform one route per period, from
one depot to a subset of RATMs, each requiring r
units of time to be served, and back to the same depot.
The shift of each vehicle is limited to S minutes, after
which � monetary units per minute of overtime are
incurred. A travel time cij in minutes is associated
with arc 4i1 j5 ∈A. We assume each depot has sufficient
inventory and capacity to perform all pickups and
deliveries during the planning horizon. The inventories
are not allowed to exceed the holding capacity nor are
they allowed to become negative. At the beginning of
the planning horizon, the decision maker knows the
current inventory level I 0i of the RATMs and receives
information on the net demand dt

i of each RATM i for
each period t. Negative demands mean that the RATM
provides a commodity, whereas positive demands
mean that the RATM receives some quantity of the
commodity. We assume that the quantities qti received
by RATM i in period t can be used to satisfy its net
demand in that period. The quantities picked up at
the depots and at the RATMs may be delivered to any
RATM to satisfy their demands. The objective of the
problem is to minimize the total cost while satisfying
the net demand for each RATM in each period.

The variables used in the formulation are as follows.
Five families of binary variables are used: directed
routing variables xkt

ij are equal to 1 if and only if arc
4i1 j5 is used on the route of vehicle k in period t;
visiting variables ykt

i are equal to 1 if and only if
RATM i is visited by vehicle k in period t; vehicle usage
variables vkt are equal to 1 if and only if vehicle k is
used in period t; delivery variables wkt

i are equal to 1 if
and only if a delivery is made to RATM i by vehicle k in



van Anholt et al.: Inventory-Routing Problem with Pickups and Deliveries
1080 Transportation Science 50(3), pp. 1077–1091, © 2016 INFORMS

period t; and pickup variables zkti are 1 if and only if a
pickup is performed at RATM i by vehicle k in period t.
Integer variables I ti represent the inventory level at
RATM i ∈ℛ at the end of period t ∈ T . Variables qkti are
integers representing the product quantity delivered to
RATM i using vehicle k in period t, and variables pkti
are integers representing the product quantity picked
up from RATM i using vehicle k in period t. Two sets
of variables represent the amount of inventory carried
by vehicle k in period t into and out of the depot: H t

k

and J tk , respectively. The load of vehicle k after serving
RATM i in period t is represented by variables ukt

i ,
and Et

k represents the overtime in number of extra
minutes worked by vehicle k in period t beyond the
regulatory shift duration S.

The multidepot IRPPD is then formulated as follows:

(MD-IRPPD)

minimize

{

∑

i∈ℛ

∑

t∈T

�iI
t
i +

∑

k∈K

∑

t∈T

�4J tk+H t
k5

+
∑

k∈K

∑

t∈T

�kv
kt+

∑

k∈K

∑

t∈T

�Et
k

}

(1)

subject to

I ti = I t−1
i +

∑

k∈K

qkti −
∑

k∈K

pkti +dt
i1 i∈ℛ t∈T 1 (2)

0≤ I ti ≤Ci1 i∈ℛ t∈T 1 (3)
∑

j∈V

xkt
ij −

∑

j∈V

xkt
ji =01 i∈V k∈K t∈T 1 (4)

∑

j∈V

xkt
ij =ykt

i 1 i∈V k∈K t∈T 1 (5)

∑

i∈D

∑

j∈ℛ

xkt
ij ≤11 k∈K t∈T 1 (6)

ykt
i ≤vkt1 i∈ℛ k∈K t∈T 1 (7)

vkt≤
∑

i∈D

∑

j∈ℛ

xkt
ij 1 k∈K t∈T 1 (8)

∑

i∈S

∑

j∈S

xkt
ij ≤

∑

i∈S

ykt
i −ykt

m 1

S ⊆ℛ k∈K t∈T m∈S 1 (9)

wkt
i ≤ykt

i 1 i∈ℛ k∈K t∈T 1 (10)

zkti ≤ykt
i 1 i∈ℛ k∈K t∈T 1 (11)

qkti ≤wkt
i 4Ci−I ti 51 i∈ℛ k∈K t∈T 1 (12)

pkti ≤zkti I
t
i 1 i∈ℛ k∈K t∈T 1 (13)

wkt
i +zkti ≤11 i∈ℛ k∈K t∈T 1 (14)

sk
∑

4i1 j5∈A

cijx
kt
ij +r

∑

i∈ℛ

ykt
i ≤S+Et

k1 k∈K t∈T 1 (15)

ukt
j ≥ 4ukt

i +pktj −qktj 5x
kt
ij 1 i1 j ∈V k∈K t∈T 1 (16)

0≤ukt
i ≤Qk1 i∈V k∈K t∈T 1 (17)

J tk =
∑

i∈D

ukt
i y

kt
i 1 k∈K t∈T 1 (18)

H t
k=

∑

i∈ℛ

∑

j∈D

xkt
ij u

kt
i 1 k∈K t∈T 1 (19)

qkti 1p
kt
i 1J

t
k1H

t
k≥01 i∈ℛ k∈K t∈T 1 (20)

xkt
ij ∈801191 4i1j5∈A k∈K t∈T 1 (21)

vkt1ykt
i ∈801191 i∈V k∈K t∈T 1 (22)

wkt
i 1z

kt
i ∈801191 i∈ℛ k∈K t∈T 0 (23)

The objective function (1) minimizes the total cost of
inventory holding, inventory handling at the depot,
and vehicle renting. Constraints (2) state the inventory
conservation condition over successive periods: they
define the inventory in period t as the inventory held
in period t − 1, plus the quantity delivered, minus
the quantity picked up, plus the net demand of the
location. Constraints (3) define the bounds on the
inventory held by each RATM throughout all peri-
ods. Constraints (4)–(9) guarantee that proper vehicle
routes are created. More specifically, constraints (4)
are flow conservation constraints, constraints (5) relate
the incoming flow of a vertex to the fact that it is
visited or not. Constraints (6) state that a vehicle can
leave at most one depot in any period. Constraints (7)
mean that a vertex cannot be visited if no vehicle
is assigned to it. Similarly, constraints (8) relate the
use of a vehicle during a given period to the flow
variables associated with that vehicle and that period.
Constraints (9) prevent the formation of subtours over
a set of RATMs. These are the subtour elimination
constraints proposed by Gendreau, Laporte, and Semet
(1997) for the covering tour problem. Constraints (10)
link the delivery binary variables wkt

i to the visiting
binary variables ykt

i . They allow a delivery decision
to be made only if a visit is performed to the RATM.
Constraints (11) are similar to (10) and apply to the
pickup decisions. Constraints (12) and (13) allow a
quantity to be delivered or picked up at an RATM only
if the corresponding binary decision variable is equal
to 1. Constraints (14) ensure that a visit to an RATM is
made either for a pickup or for a delivery operation.
Constraints (15) guarantee that the shift duration is
respected and that overtime is properly accounted for.
Constraints (16) ensure that the load within the vehicle
is consistent along its route. Constraints (17) set bounds
on the load inside the vehicle after serving RATM i.
Constraints (18) set the load of the vehicle when leav-
ing the depot, whereas constraints (19) compute its
load when returning to the depot at the end of the
route. Finally, constraints (20)–(23) define nonnegativity
and binary conditions on the variables.

3. Solution Algorithm
In the RATM application that motivates this study,
6,377 machines must be replenished by 32 vehicles,
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each based at a different depot, over a six-day planning
horizon. This means that the (MD-IRPPD) model just
described will contain more than 7.8 billion binary
variables and about the same number of nonlinear
constraints, in addition to O42�ℛ�5 subtour elimination
constraints. Solving such a model or even its contin-
uous relaxation is beyond the reach of any available
mathematical programming solver. We have there-
fore opted for a practical three-step solution strategy.
We first apply a clustering procedure to decompose
the initial problem into 32 subproblems of about 200
RATMs each, one for each depot (each having a single
vehicle). This reduces the number of variables of each
subproblem to a more manageable size, around 250,000,
but still too many to reach optimality. For comparison
purposes, the largest IRP instance that can be solved
exactly, with a single vehicle and a single depot, con-
tains 200 customers (Coelho and Laporte 2014), but the
IRP does not contain many of the features presented in
this paper. Likewise, the largest M-M PDP instance
solved to optimality contains 200 vertices and a single
vehicle (Hernández-Pérez and Salazar-González 2007).
The IRPPD combines features of these two problems
and is significantly more complicated than either of
these. For these reasons, it is unrealistic to solve this
problem exactly for the large sizes we are consider-
ing. We therefore simplify the subproblems further
by fixing some variables. This yields instances that
can be solved exactly or to near optimality by branch
and cut. These three phases are described in §§3.1–3.3,
respectively. Algorithm 1 provides a sketch of our
solution procedure.

Algorithm 1 (Overall solution algorithm)

1: Clustering procedure: solve a transportation
problem to obtain as many single-depot
instances as the number of depots (see §3.1)

2: for each single-depot instance do
3: Apply the variable fixing procedure (see §3.2)

to reduce the instance size
4: Solve the IRPPD model by branch and cut

with some fixed variables and valid
inequalities (see §3.3)

5: end for.

3.1. Clustering Procedure
Partitioning the customer base into clusters not only
makes sense from a computational point of view but
also from an empirical standpoint because this is how
the problem is solved in practice. We solve a trans-
portation problem to assign RATMs to depots while
controlling the size of the clusters. The assignment
cost in each cluster is the sum of the radial aver-
age travel times, interpreted here as distances. Eilon,
Watson-Gandy, and Christofides (1971) show that radial
distances are often a good proxy for routing costs.
Let �ij be a binary variable equal to 1 if and only if

RATM i is assigned to depot j . The transportation
problem is then

minimize
∑

i∈ℛ

∑

j∈D

4cij + cji5�ij/2 (24)

subject to
∑

j∈D

�ij = 1 i ∈ℛ1 (25)

∑

i∈ℛ

�ij ≤A j ∈D1 (26)

�ij ∈ 80119 i ∈ℛ j ∈D0 (27)

The objective function (24) minimizes the total sum
of the distances between assigned RATMs and depots.
Constraints (25) ensure that each RATM is assigned to
exactly one depot, and constraints (26) ensure that each
depot is assigned to at most A RATMs, with A chosen
so as to balance the number of RATMs per depot.
Constraints (27) define the domain of the variables.

After the clustering procedure has been applied, the
problem is simplified and the (MD-IRPPD) formulation
can be reduced to one without the depot index, i.e.,
D= 809. We provide this formulation for the sake of
completeness and because we will later use it to gener-
ate valid inequalities. Reusing the notation employed
in §2, we now state the single-depot formulation

(IRPPD)

minimize

{

∑

i∈ℛ

∑

t∈T

�iI
t
i +

∑

k∈K

∑

t∈T

�4J tk +H t
k5

+
∑

k∈K

∑

t∈T

�ky
kt
0 +

∑

k∈K

∑

t∈T

�Et
k

}

(28)

subject to

I ti = I t−1
i +

∑

k∈K

qkti −
∑

k∈K

pkti + dt
i1 i ∈ℛ t ∈T 1 (29)

0≤ I ti ≤Ci1 i ∈ℛ t ∈T 1 (30)
∑

j∈V

xkt
ij −

∑

j∈V

xkt
ji = 01 i ∈V k ∈K t ∈T 1 (31)

∑

j∈V

xkt
ij = ykt

i 1 i ∈V k ∈K t ∈T 1 (32)

∑

i∈S

∑

j∈S

xkt
ij ≤

∑

i∈S

ykt
i − ykt

m 1

S ⊆ℛ k ∈K t ∈T m ∈S 1 (33)

wkt
i ≤ ykt

i 1 i ∈ℛ k ∈K t ∈T 1 (34)

zkti ≤ ykt
i 1 i ∈ℛ k ∈K t ∈T 1 (35)

qkti ≤wkt
i 4Ci − I ti 51 i ∈ℛ k ∈K t ∈T 1 (36)

pkti ≤ zkti I
t
i 1 i ∈ℛ k ∈K t ∈T 1 (37)

wkt
i + zkti ≤ 11 i ∈ℛ k ∈K t ∈T 1 (38)

sk
∑

4i1 j5∈A

cijx
kt
ij + r

∑

i∈ℛ

ykt
i ≤ S+Et

k1 k ∈K t ∈T 1 (39)

ukt
j ≥ 4ukt

i + pktj − qktj 5x
kt
ij 1 i1 j ∈V k ∈K t ∈T 1 (40)
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0≤ ukt
i ≤Qk1 i ∈V k ∈K t ∈T 1 (41)

J tk = ukt
0 1 k ∈K t ∈T 1 (42)

H t
k =

∑

i∈ℛ

xkt
i0u

kt
i 1 k ∈K t ∈T 1 (43)

qkti 1 p
kt
i 1 J

t
k1H

t
k ≥ 01 i ∈ℛ k ∈K t ∈T 1 (44)

xkt
ij ∈ 801191 4i1 j5 ∈A k ∈K t ∈T 1 (45)

ykt
i ∈ 801191 i ∈V k ∈K t ∈T 1 (46)

wkt
i 1 z

kt
i ∈ 801191 i ∈ℛ k ∈K t ∈T 0 (47)

The description of the variables, objective function,
and constraints is similar to that of the multidepot
model. Three comments are relevant with respect to the
IRPPD formulation. The first regards constraints (40),
which resemble the Miller-Tucker-Zemlin (1960) sub-
tour elimination constraints. These constraints do not
eliminate subtours in this context, because the load
within the vehicle is not monotonically increasing or
decreasing. We therefore impose Dantzig-Fulkerson-
Johnson (1954) subtour elimination constraints (33)
whose number is O42�ℛ�5. Second, the load consistency
constraints (40) have been used in a number of other
pickup and delivery problems; see, e.g., Desaulniers
et al. (2002); Gribkovskaia et al. (2007); Hoff et al.
(2009). When it is known in advance whether an RATM
requires a pickup or a delivery, they can be lifted
(Gribkovskaia et al. 2007). However, this is not the
case here. The third comment refers to the fact that the
formulation is nonlinear because of constraints (36),
(37), (40), and (43). However, these can be linearized
as follows. Constraints (36) and (37) can be rewritten
in a slightly weaker form as

qkti ≤ wkt
i Ci1 i ∈ℛ k ∈K t ∈T 1 (48)

pkti ≤ zkti Ci1 i ∈ℛ k ∈K t ∈T 0 (49)

On their own, these constraints would allow quanti-
ties to be picked up or delivered to violate the inventory
bounds, but together with constraints (29) and (30), they
are feasible linear representations of constraints (36)
and (37). Constraints (40) can be linearized as

ukt
j ≥ ukt

i + pktj − qktj − 41− xkt
ij 5Qk1

i1 j ∈V k ∈K t ∈T 0 (50)

Finally, constraints (43) can be rewritten in a linear
form as

H t
k ≥ ukt

i − 41− xkt
i0 5Qk1 i ∈ℛ k ∈K t ∈T 1 (51)

H t
k ≤ Qk1 k ∈K t ∈T 0 (52)

The IRPPD formulation can be strengthened through
the generation of the following valid inequalities:

xkt
ij ≤ ykt

i 1 i1 j ∈ℛ k ∈K t ∈T 1 (53)

ykt
i ≤ ykt

0 1 i ∈ℛ k ∈K t ∈T 0 (54)

Constraints (53) are referred to as logical inequalities.
They tighten the relation between routing and visiting
variables. Constraints (54) include the supplier in the
route of vehicle k if any RATM is visited by that vehicle
in that period.

3.2. Variable Fixing Procedure
To solve realistic instances, we have designed a variable
fixing procedure, which is applied prior to executing
the branch-and-cut algorithm, in the spirit of granular
search (Johnson and McGeoch 1997; Toth and Vigo
2003). This heuristic determines for each RATM i ∈ℛ

and each period t ∈ T whether it must be visited, must
not be visited, or must perhaps be visited. Specifically,
for each period t we distinguish five subsets: (1) a must
pickup set Ut , (2) a must deliver set W t , (3) a perhaps
pickup set X t , (4) a perhaps deliver set Yt , and (5) a not
visit set Zt . These five sets define a partition of ℛ. When
RATMs are added to one of the subsets Ut , W t , or Zt ,
the size of the formulation is considerably reduced
and the branch-and-cut algorithm benefits from this
reduction, because some of the decisions related to
pickups, deliveries, and visits for some RATMs are
already made. When RATMs are added to one of
the other two subsets X t or Yt , the algorithm still
determines for each period t whether a visit is required,
but the benefit of the variable fixing procedure is that
it limits the choice to either a pickup or a delivery. It is
implemented as follows:

∑

k∈K

zkti = 11 i ∈Ut t ∈T 1 (55)

∑

k∈K

wkt
i = 11 i ∈W t t ∈T 1 (56)

∑

k∈K

wkt
i = 01 i ∈X t t ∈T 1 (57)

∑

k∈K

zkti = 01 i ∈Yt t ∈T 1 (58)

∑

k∈K

ykt
i = 01 i ∈Zt t ∈T 0 (59)

Also, it follows directly that several other constraints
fixing binary variables can be derived from (55)–(59).
These are used to further reduce the size of the problem
by effectively eliminating several variables from the
problem

∑

k∈K

ykt
i = 11 i ∈Ut t ∈T 1 (60)

wkt
i = 01 i ∈Ut k ∈K t ∈T 1 (61)

∑

k∈K

ykt
i = 11 i ∈W t t ∈T 1 (62)

zkti = 01 i ∈W t k ∈K t ∈T 1 (63)

wkt
i = 01 i ∈X t k ∈K t ∈T 1 (64)
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zkti = 01 i ∈Yt k ∈K t ∈T 1 (65)

wkt
i = 01 i ∈Zt k ∈K t ∈T 1 (66)

zkti = 01 i ∈Zt k ∈K t ∈T 0 (67)

The variable fixing procedure uses the parameters
defined below, which allow us to test various settings.
The first parameter relates to due periods and tipping
periods. A due period is a period in which a visit
is required to prevent the inventory from exceeding
the holding capacity or from a stock out. A tipping
period is a period in which a pickup is required to
remain cost efficient, that is when the holding cost is
disproportionately high related to the cost of visiting
the RATM. The parameters are as follows:
• m: number of periods preceding a due period or a

tipping period;
• f : number of RATMs that are closest to RATM i;
• g: minimum inventory level of RATM i, in a

percentage of its holding capacity Ci;
• b: expected number of RATM visits per vehicle k

in a period t.
In what follows, let Ī t

′

i = I 0i +
∑t′

t=1 d
t
i be the cumula-

tive inventory of RATM i in period t′. This is useful
to identify up to which period t′ the RATM will be
capable of respecting its inventory constraints without
replenishment. The pseudocode of the variable fixing
procedure is presented in Algorithm 2.

Algorithm 2 (Variable fixing procedure (m, f , g, b))

1: ℛ̄←ℛ

2: for all i ∈ℛ do
3: for all t ∈T do
4: Add i to Zt

5: if t = 1 or m= 0 then

6: if Ī ti >Ci then
7: Add i to Ut ; remove

i from Zt ; remove i from ℛ̄

8: else if Ī ti < 0 then
9: Add i to W t ; remove

i from Zt ; remove i from ℛ̄

10: end if
11: else
12: for t′ = t−m to t′ = t3 t′ > 1 do

13: if
∑

t′′∈T dt′′

i > 0 and 4 ¯I t
′

i ×�i5 >

4�k/b/4
¯I t
′

i /44
∑

t′′∈T dt′′

i 5/p555 then
14: Add i to X t ; remove

i from Zt ; remove i from ℛ̄

15: else if ¯I t
′

i >Ci then
16: Add i to X t ; remove

i from Zt ; remove i from ℛ̄

17: else if ¯I t
′

i < 0 then
18: Add i to Yt ; remove

i from Zt ; remove i from ℛ̄

19: end if

20: end for
21: end if
22: for all f number of RATMs j having the

smallest cij to i do

23: if i ∈ 8Ut1X t9 and 4 ¯I t
′

j /Cj5 < 41− g5 then

24: Add j to Yt ; remove i from Zt ; remove
i from ℛ̄

25: else if i ∈ 8W t1Yt9 and 4 ¯I t
′

j /Cj5 > g then

26: Add j to X t ; remove
i from Zt ; remove i from ℛ̄

27: end if
28: end for
29: end for
30: end for
31: Return Ut1W t1X t1Yt1Zt .

The variable fixing procedure starts by adding each
RATMs i in each period t to the not visit subset Zt

(lines 2–4). When t = 1 or m= 0, lines 5–10 ensure that
RATMs are added to the must visit subsets Ut and W t

when the holding capacity Ci is exceeded or when the
inventory Ī t

′

i becomes negative. If either condition is
satisfied, the algorithm does not have the flexibility to
choose between preceding or succeeding periods to
visit the RATM. Therefore, the RATM must be visited.

If the condition in line 5 is not met, we check three
more conditions in lines 13–18 to add RATMs i to the
perhaps visit subsets X t and Yt in period t as well
as to the subsets in m preceding periods t. Line 12
ensures that RATMs i are also added to the subsets
in m number of preceding periods t. We introduce
lines 13 and 14 to ensure RATM i is visited for a
pickup when a tipping period occurs, i.e., when the
holding cost exceeds the cost of visiting the RATM.
More precisely, the following condition is verified: the
inventory Ī t

′

i of RATM i in period t multiplied with the
unit inventory holding cost �i exceeds the vehicle rental
cost �k divided by the expected number of visits per
route b and divided by the expected number of days
elapsed since the last visit. To this end, we calculate
the expected number of days elapsed since the last
visit by dividing the inventory level Ī t

′

i by the average
demand

∑

t∈T dt
i/t. If the latter condition is met, then

the RATM i is added to the perhaps pickup set X t .
RATMs i are also added to the X t subset in periods t
when the inventory exceeds capacity Ī t

′

i >Ci (lines 15
and 16). In the case of stock outs, the RATMs are added
to the perhaps deliver subset Yt , which is indicated in
lines 17 and 18.

Most likely, some RATMs i will have been taken out
of set Zt and added to the other subsets Ut1W t1X t ,
and Yt when arriving at line 18. The final part in
lines 22–28 ensures that even more RATMs j , which
are located closest to RATMs i belonging to Ut1W t1X t ,
or Yt , are added to the perhaps visit subsets. The
number of RATMs j added per RATM i is determined
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by parameter f . It should be noted that RATMs j

are only added when they meet an inventory level Ī tj ,
which is at least as high as a given percentage g of the
holding capacity Ci for a pickup, or lower than a given
percentage 1−g for a delivery. The rationale of this final
part is to stimulate the exchange of inventories between
RATMs i and j to eventually reduce the amount to be
picked up from, and delivered to the depot.

3.3. Branch-and-Cut Algorithm
We have implemented a branch-and-cut algorithm
capable of solving the IRPPD model with the linearized
constraints, the valid inequalities, and the fixed vari-
ables. All variables of the formulation are explicitly
handled by the algorithm, but we cannot generate all
subtour elimination constraints (33) a priori. These will
be dynamically generated as cuts as they are found to
be violated. The formulation is then solved by branch
and cut as follows. At a generic node of the search tree,
a linear program with relaxed integrality constraints is
solved, a search for violated constraints is performed,
and violated valid inequalities are added to the current
program, which is then reoptimized. This process is reit-
erated until a feasible or dominated solution has been
reached, or until no more cuts can be added. At this
point, branching on a fractional variable occurs. Details
regarding the implementation and improvements to
this algorithm are provided in §4.2.

4. Computational Experiments
We will present the instances generator in §4.1, some
implementation details in §4.2, the analysis of our
extensive computational experiments in §4.3, and the
estimated benefits of our study in §4.4. The instance set
as well as detailed computational results are available
at http://www.leandro-coelho.com/instances.

4.1. Instances Description
The data used in our experiments stem from a real-
world case in the Netherlands. A total of 6,377 cash
dispensing self-service devices, both regular and recircu-
lation ATMs, were installed in the Netherlands in 2013
(ABN ARMO Bank 2013; ING Bank 2013; Rabobank
2013). These are replenished from 32 cash centers
(depots). By setting A equal to 200 in constraints (26),
we assigned the 6,377 RATMs fairly evenly to the
depots, each of which serves a small region of the
Netherlands (Figure 1). For our experiments, we assume
that all self-service devices in the Netherlands are
RATMs. This is not unrealistic given the recent strong
increase in the share of RATMs in the Netherlands
(ECB 2013). Also, in several other countries, such as
Japan, RATMs already dominate the cash self-service
device market (RBR 2014). To conduct our numerical
experiments, we used real data for the locations of
RATM devices, true distances and speeds, and real

RATM demands. Although the Netherlands is rather

densely populated, not all parts of it are equally well

served by RATMs. Their coverage varies considerably

over the country. Our solution methodology is rather

robust and can easily deal with this diversity. Fig-

ure 2 depicts the position of the RATMs and the cash

center for the Amsterdam area. There still exist some

ARMs that are not RATMs. For these, we generated

RATM demands. The depot locations are confidential

for security reasons, so we used approximate locations.

To mimic real demands for devices that are not yet

RATMs, we have carefully studied real demands from

readily installed RATMs. This study demonstrates that

the number of transactions per day is well estimated

by a Poisson probability distribution; the number

of deposits and the number of withdrawals follow

completely different patterns in terms of quantity,

value, and weekly seasonality pattern; a huge diversity

exists among the demand intensity of RATMs, and the

average value per deposit is E1,000 and the average

value per withdrawal is E133.

Based on these findings, we have generated deposit

and withdrawal distributions separately and added

these sequentially to construct a net demand per RATM

per day. For the deposits and withdrawals of each

RATM, we uniformly assigned two demand intensity

levels of one to five to mimic demand intensity for

both deposits and withdrawals (Table 1).

By randomly drawing from a Poisson distribution

with the assigned number of transactions per day and

multiplying the resulting number of transactions by

the average transaction amount, i.e., E1,000 or E133,

we obtained daily deposit and withdrawal amounts.

Finally, to cope with week seasonality, we modified

these amounts with the factors described in Table 2.

The parameters of our instance are then as follows:

• �i = E0008 per E1,000 inventory per period t (based

on a 3% annual interest rate).

• Ci = E260,000 per RATM i. This is an estimation

based on an RATM with four cassettes, each with a

capacity of 2,000 notes.

• �= E0030 per E1,000 picked up or delivered at the

depot.

• p= six periods. Periods coincide with days, which

together define a workweek from Monday to Saturday.

In practice, order lead times are not more than one

or two days and so a planning horizon of six days is

sufficient.

• K= one vehicle.

• Qk = E7,800,000 per vehicle k. This is an estimation

based on 30 full replenishments of E260,000 in a single

period.

http://www.leandro-coelho.com/instances
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(c) OpenStreetMap and contributors,

Creative Commons-share Alike License

(CC-BY-SA)

Figure 1 (Color online) Map of the Netherlands Depicting 32 Subregions

• �k = E2,000 per vehicle k per period used.

• r = 18 minutes.

• S = eight hours. This is the regular daily work time

in the Netherlands.We assume the vehicle is loaded prior

to performing the route, so the driver has at most eight

hours to perform all pickups and deliveries.

• � = E8000 per minute, which is approximately

twice as expensive as the regular vehicle renting cost.

• I 0i ∈ 801 0 0 0 1Ci9. Each RATM i is assigned a random

initial inventory in euros.

• dt
i = 8±− 45,0001 0 0 0 1±45,0009 per period. Random

values are drawn from a Poisson distribution for both
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Figure 2 (Color online) Map of the Amsterdam Subregion

withdrawals and deposits, which are thereafter com-
bined into a net demand. To simulate real demands
at different locations, we have ensured that RATMs
either have a net-positive, net-negative, or balanced
demand without losing stochasticity. We have then
generated different demands at distinct periods: in
periods t ∈ 81129 the demand tends to be net-positive,
because in the Netherlands more cash is deposited
on Mondays and Tuesdays. The demand in periods
t ∈ 85169 tends to be net-negative, since more cash is
withdrawn on Fridays and Saturdays.

• cij = the arc set is constructed by first using real
travel distances between the RATMs and the depot.
A routable network data set for the Netherlands was
then constructed using OpenStreetMap data (Geofabrik

GmbH, OpenStreetMap Contributors 2013) and average
driving speeds were used on the various road types to
approximate true speeds.

4.2. Implementation Features
The algorithm just described was coded in C++ using
IBM Concert Technology and solved with CPLEX 12.5.1
running on a single thread. All computations were

Table 1 Different Levels of Deposits and Withdrawals per Day

Demand intensity level 1 2 3 4 5

Deposits per day 10.0 1705 2500 3205 4000

Withdrawals per day 75.0 13103 18705 24308 30000
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Table 2 Seasonal Factors for Deposits and Withdrawals in Percentage

Weekday Mon Tue Wed Thu Fri Sat

Deposits 120 110 100 90 80 100

Withdrawals 70 80 90 110 120 130

executed on a grid of Intel Xeon processors running at
2.66 GHz with up to 48 GB RAM installed per node,
with the Scientific Linux 6.1 operating system. A time
limit of six hours was imposed on the execution of
each of the 32 instances.
The clustering procedure was run only once. It is

conceivable that overall improvements could have been
obtained by performing 1-opt or 2-opt moves between
clusters, but there exist O4�ℛ�25 such potential moves
and evaluating each of them would have entailed
solving a large-scale integer linear program, which was
impractical.
Several experiments were performed with various

variable fixing parameters. These settings were gathered
from cash supply chain parties in the Netherlands,
and estimated when these could not be made publicly
available for security reasons. The parameters for the
clustering heuristic were set as follows: m ∈ 8011129;
f ∈ 8011129; g ∈ 8301501709; b ∈ 8159.
For the instances considered in this paper, which

contain up to 200 vertices, we cannot obtain optimal
solutions with our branch-and-cut algorithm. To cope
with this situation, we have decided to add two new
layers to the branch-and-cut algorithm. In the first one,
we verify at every node having a fractional solution
whether inequalities (53) are violated and we then
add them to the linear program. This helps improve
the lower bound of the instance. The second new
layer is added to handle constraints (50) since we
have observed that these constraints are not tight
with respect to the vehicle capacity and are generally
satisfied. For this reason, we have devised a procedure
to verify whether they are violated only at an integer
solution. If the integer solution is found to violate
constraints (50), these are added and the node is then
reoptimized. Otherwise, the solution is feasible for the
IRPPD. These two enhancements have significantly
decreased the computational time.

Moreover, we have also observed that the separation
algorithm of constraints (9) can be improved by adding
a new set of variables representing the route of the
vehicle in an undirected graph. By doing this, the
separation algorithm runs on a graph half the size of
the original one, looking for connected components and
deriving maximum cuts over a much smaller network.
Moreover, each subtour elimination cut derived for
this new variable is equivalent to two cuts expressed
in the original variables, one in each direction.
These two procedures employed to generate new

cuts dynamically typically yield around 20,000 cuts

only at the root node of the search tree. This number,
although sizeable, is only a small fraction of the total
number of cuts that could potentially be generated.
By optimizing a problem with fewer constraints, we
gain in speed since far fewer simplex iterations are
needed. We note that a typical IRPPD instance still
contains around 250,000 binary variables and 150,000
constraints after the two procedures just described
have been applied, besides O42�ℛ�5 subtour elimination
constraints.
We have also observed that at the beginning of the

optimization process, the problem is degenerate, i.e.,
several pivoting operations do not improve the value
of the objective function. We have therefore taken
advantage of the fact that during the optimization
process, one can change the routing decisions while
remaining feasible. Since routing variables x do not
appear in the objective function, this solution has the
same objective function value. Note that as long as
the total route length is less than the shift duration, the
solution remains feasible. We have also tested adding a
small coefficient to the objective function to further
minimize route length, and thus avoid degeneracy, but
this option did not yield any significant advantage.
Finally, to obtain a clear view of the performance

of our algorithms, and also to speed up the solution
of each node, we have turned off the CPLEX cut
generation.

4.3. Analysis of the Computational Experiments
We start our analysis by presenting the results obtained
by the algorithm presented in §§3 and 4.2 on the set
of 32 instances described in §4.1. Not all conceivable
instances of the MD-IRPPD are feasible, but feasibility
was always achieved with our data. The optimality gaps
observed before variable fixing are rather large, with an
average of 51%, a maximum of 62%, and a minimum
of 45%. Even when 24 hours of computing time were
allotted, these figures did not improve significantly:
the average lower bound increased by 2% from 16,002
to 16,355, and the average gap went down from 51.31%
to 50.23%. In what follows, we use the information
obtained within six hours of computing time to allow
for a direct comparison with the performance of the
variable fixing procedure. To benchmark the quality of
these solutions, we can compare to the instances of the
IRP without pickup and delivery, which has recently
been solved to optimality in Coelho and Laporte (2014)
for comparable sizes. The problem at hand is much
more complicated and clearly requires an additional
effort to obtain good solutions.

We have then limited the flexibility of the algorithm
by disallowing visits to RATMs that do not require
a pickup or delivery to remain operational. This is
achieved by setting to zero both parameters m and f
of the clustering procedure. Obviously, all solutions
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Table 3 Full Results of the Branch-and-Cut Algorithm with the Clustering Procedure Set with m= 0 and f = 0

Upper bound Upper bound Improvement due to Lower bound Optimality

Instance �V ′� (without variable fixing) (with variable fixing) variable fixing (%) (with variable fixing) gap (%)

Inst-01 200 37,289 25,698 31008 25,642 0.22

Inst-02 191 34,076 23,890 29089 23,849 0.17

Inst-03 200 35,898 25,594 28070 25,576 0.06

Inst-04 200 33,962 24,988 26042 24,949 0.15

Inst-05 200 30,505 24,754 18085 24,754 0.00

Inst-06 200 34,214 25,420 25070 25,394 0.10

Inst-07 200 33,984 24,978 26050 24,963 0.06

Inst-08 200 31,837 25,067 21026 25,053 0.05

Inst-09 200 43,820 25,190 42051 25,181 0.03

Inst-10 200 31,955 25,070 21054 25,070 0.00

Inst-11 200 39,339 24,647 37034 24,640 0.02

Inst-12 200 29,865 24,313 18059 24,301 0.04

Inst-13 200 32,564 23,663 27033 23,644 0.08

Inst-14 200 28,123 26,498 5077 26,498 0.00

Inst-15 200 30,684 25,705 16022 25,705 0.00

Inst-16 178 31,620 24,255 23029 24,165 0.37

Inst-17 200 33,619 24,831 26013 24,816 0.06

Inst-18 200 37,025 24,502 33082 24,457 0.18

Inst-19 200 28,200 24,708 12038 24,685 0.09

Inst-20 200 31,525 24,751 21048 24,737 0.05

Inst-21 200 33,028 25,343 23026 25,313 0.12

Inst-22 200 31,669 24,732 21090 24,685 0.19

Inst-23 200 29,385 24,751 15076 24,737 0.05

Inst-24 200 36,754 25,012 31094 24,960 0.20

Inst-25 200 31,767 24,156 23095 24,134 0.09

Inst-26 200 31,970 24,743 22060 24,743 0.00

Inst-27 200 28,714 23,771 17021 23,763 0.03

Inst-28 200 33,452 25,343 24024 25,343 0.00

Inst-29 200 35,921 25,852 28003 25,852 0.00

Inst-30 200 30,078 24,529 18044 24,525 0.01

Inst-31 200 32,503 24,081 25091 24,030 0.21

Inst-32 200 33,661 25,339 24072 25,313 0.10

Average 199 33,094 25,114 24011 24,859 0.09

obtained for this constrained version of the problem
remain valid for the general case. In this situation, we
have observed an average reduction of 24% in the
upper bounds, even if the problem is more constrained.
Note that this improvement was not observed even
when the computing time was four times as long for
the case without variable fixing. This can be explained
by the fact that the branch-and-cut algorithm performs
a search in a more promising area of the solution space.
Under this scenario, seven instances were solved to
optimality, and most of them yielded gaps below 0.1%.
This is remarkable given the difficulty of the problem,
which combines characteristics of the IRP and of the
M-M PDP. These results are displayed in Table 3,
where we present in columns “upper bound (without
variable fixing)” and “upper bound (with variable
fixing)” the upper bounds before and after applying
the variable fixing phase, as well as the “improvement
due to variable fixing (%).” Again, note that the latter
solutions are valid for the general problem. The size of
the vertex set V ′ is also listed: all instances but two
contain 200 RATMs. These two exceptions resulted

from the indivisibility of the number of RATMs (i.e.,
6,377) over the 32 instances. In column “lower bound
(with variable fixing)” we present the lower bound
obtained when solving the problem after applying the
variable fixing procedure, i.e., the constrained problem.
We observe that these lower bounds are not valid for
the general problem, which is less constrained. The
column “optimality gap (%)” refers to the optimality
gap between the upper and lower bounds computed
after variable fixing. By increasing the number of
periods m in which the algorithm can decide when to
serve the RATMs, we obtain a problem that turns out
to be very similar to the original one, and the same
solutions are obtained when m= 1 and m= 2.

We have also tested different cases by allowing the
algorithm to visit RATMs that do not necessarily need
a visit, but that could help reallocate cash throughout
the system, thus avoiding the need to return cash to
the depot, which incurs a cost. Whenever we set the
number f of close-by RATMs allowed to be visited to
1 or 2, but did not allow them to be visited in different
periods, i.e., m= 0, the same solutions from the general
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Table 4 Summary of the Results When Changing the Parameter b, Controlling the Inventory Levels of

Extra RATMs

Upper bound Upper bound Improvement due to

Variable fixing parameters (without variable fixing) (with variable fixing) variable fixing (%)

f = 1, m= 1 b= 30 33,094 31,937 3051

b= 50 33,094 30,802 6094

b= 70 33,094 27,829 15079

f = 1, m= 2 b= 30 33,094 31,949 3047

b= 50 33,094 31,944 3049

b= 70 33,094 30,840 6080

f = 2, m= 1 b= 30 33,094 31,958 3045

b= 50 33,094 31,934 3051

b= 70 33,094 31,562 4063

f = 2, m= 2 b= 30 33,094 31,952 3046

b= 50 33,094 31,941 3049

b= 70 33,094 31,926 3054

case were obtained once again. This remained true
irrespective of the value of the parameter b, i.e., the
minimum inventory level of the extra RATMs.

Fixing the number f of extra RATMs and the num-
ber m of extra periods, and testing the effect of selecting
RATMs based on their minimum average inventory
level, i.e., b = 30, 50, and 70%, we have observed a
clear trend: when the RATMs with higher inventory
levels are allowed to be visited, better solutions are
obtained. One possible explanation for this is that cash
could be moved from these high inventory RATMs to
those with shortages, hence decreasing both inventory
costs and depot handling costs. Table 4 provides a
summary of these results.
Finally, since all upper bounds obtained by dif-

ferent clustering procedures remain feasible for the
general case, we are able to compile the best known
upper bounds for each instance. These best-known
upper bounds are presented in Table 5, along with
the improvement with respect to the upper bounds
obtained for the general case. We observe that solv-
ing the problem with our variable fixing procedure
yields better upper bounds for all instances, with aver-
age improvements of 29.94% and attaining 47.17% in
one case.

4.4. Estimated Benefits
Although the results of this study have not been im-
plemented at the time of this writing, we can provide
some estimates of its benefits. According to the data
to which we had access, the expected business cost
savings is estimated at about E10.1 million per year
only in the Netherlands, when compared with current
practice, mostly due to the reduction in the number of
required armored trucks. Since RATMs are expected to
become a market standard in the near future, our work
anticipates this development by providing cash supply
chain parties the means to immediately improve the
replenishment operations. In addition to significant
cost savings, we emphasize that our methodology

yields extra potential benefits, which are harder to
quantify in monetary terms. Indeed, we observe that
the maximum amount of money that can be carried
by an armored truck is limited by its (very expensive)
insurance policy. The larger the average amount of cash

Table 5 Best Results of the Branch-and-Cut Algorithm with the

Clustering Procedure

Upper bound Upper bound Improvement

(without variable (with variable due to variable

Instance �V ′� fixing) fixing) fixing (%)

Inst-01 200 37,289 22,538 39056

Inst-02 191 34,076 23,890 29089

Inst-03 200 35,898 25,594 28070

Inst-04 200 33,962 24,988 26042

Inst-05 200 30,505 24,754 18085

Inst-06 200 34,214 25,420 25070

Inst-07 200 33,984 24,978 26050

Inst-08 200 31,837 25,067 21026

Inst-09 200 43,820 25,190 42051

Inst-10 200 31,955 25,070 21055

Inst-11 200 39,339 24,647 37035

Inst-12 200 29,865 24,313 18059

Inst-13 200 32,564 23,663 27033

Inst-14 200 28,123 26,498 5077

Inst-15 200 30,684 25,705 16022

Inst-16 178 31,620 18,607 41015

Inst-17 200 33,619 21,677 35052

Inst-18 200 37,025 22,235 39095

Inst-19 200 28,200 24,708 12038

Inst-20 200 31,525 19,204 39008

Inst-21 200 33,028 18,861 42089

Inst-22 200 31,669 24,732 21090

Inst-23 200 29,385 19,238 34053

Inst-24 200 36,754 19,417 47017

Inst-25 200 31,767 19,271 39034

Inst-26 200 31,970 19,721 38031

Inst-27 200 28,714 23,771 17021

Inst-28 200 33,452 20,028 40013

Inst-29 200 35,921 21,381 40048

Inst-30 200 30,078 24,529 18045

Inst-31 200 32,503 24,081 25091

Inst-32 200 33,661 21,010 37058

Average 199 33,094 23,196 29094



van Anholt et al.: Inventory-Routing Problem with Pickups and Deliveries
1090 Transportation Science 50(3), pp. 1077–1091, © 2016 INFORMS

being transported, the more expensive the insurance
becomes. Our algorithm achieves a 54% reduction
in the in-transit inventory, when compared with the
traditional 1-M-1 structure. Not only will the insurance
premium decrease substantially, but a less expensive
truck (due to reduced armor) could be deployed, CO2

emissions can be reduced, and losses due to thefts
should significantly go down.

5. Conclusions
We have introduced, modeled, and solved an inventory-
routing problem with pickups and deliveries. We have
been successful in solving a difficult application of the
problem arising in the optimization of distribution and
inventory management of cash in recirculation ATMs
in the Netherlands. The problem was first modeled as a
very large-scale nonlinear mixed-integer program. After
applying a clustering procedure and linearizing some
of the constraints, including some valid inequalities and
fixing the values of several variables, we have solved
the problem by branch and cut. Different settings of
the variable fixing procedure were tested, and we have
shown which ones are able to provide a good trade-off
in terms of simplification of the problem and upper
bound values. After variable fixing, we were able
to solve exactly or to near optimality 32 instances
involving up to 200 vertices. This size is similar to that
of the largest IRP or M-M PDP instances that have
been solved in the past. Our problem is obviously more
difficult, because it combines these two features. Since
recirculation ATMs are expected to become a market
standard in the near future, our paper anticipates this
development by providing cash supply chain parties
the means to immediately improve the replenishment
operations and yield significant cost savings.
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