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AN INVERSE BOUNDARY VALUE PROBLEM FOR
SCHRÖDINGER OPERATORS WITH VECTOR POTENTIALS

ZIQI SUN

Abstract. We consider the Schrödinger operator for a magnetic potential A
and an electric potential q , which are supported in a bounded domain in R"
with n > 3. We prove that knowledge of the Dirichlet to Neumann map
associated to the Schrödinger operator determines the magnetic field rot(A)
and the electric potential q simultaneously, provided rol(A) is small in the
L°° topology.

1. Introduction

In this paper we consider the Schrödinger operator

(i-i) HA,g = E(-i-¿r.+Mx)) +?W,j=i v      j '

where x = (xx, x2, ... ,x„) eW , n > 2, i = y/^ï. The vector function
A = (Ax, A2, ... , An) is the magnetic potential and the scalar function q is the
electric potential. We assume that A¡ e WX'°°(W), 1 < j < n , q e L°°(R"),
and that they are real-valued.

Let Q be a bounded domain in E" with smooth boundary. If zero is not a
Dirichlet eigenvalue of (1.1) on il, then for any boundary value / G Hxl2(dQ)
there exists a unique solution u e TT'(Q) which solves

(1.2) HAqu = 0   infl       and       u\dÇi = f.

Variational principles show that the solution u in ( 1.2) can be obtained by
minimizing the functional

(1.3) I r   (to) =     (VwVw + (A2 + q)ww + iA- (wVw -WVw))dx
Ja

over functions w with w\dçi = f in TT'(r¿). More precisely,

(1.4) !/„(")=     inf    1/   (w).
u>\ua=f
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954 ZIQI SUN

In terms of boundary value /, the functional 1^-    can be expressed also as

li>)=/  ~f^Ä,qif)ds,
JdQ.

where the operator A^-   , mapping Hxl2(diï) into H~x/2(dQ.), is defined as

+ i(Â-N)f,        fieHx'2(dÇl),
an

with u solution of (1.2) and N the outer normal on dCl.
The operator Aj- , which is the main subject of this paper, is called the

Dirichlet to Neumann map of TT.-     on 9fi.   In this paper we assume that
supp A , supp q cCl. Thus in this case

oiy an

When Q is given, the Dirichlet to Neumann map A^- is uniquely deter-
mined by TTj- , i.e., by potentials A and q. The problem under discussion
in this paper is whether the converse is true. More specifically, we ask whether
the potentials A and q axe uniquely determined by A^- . A resolution to
this problem would have important applications to the problem of the inverse
scattering at fixed energy. On the other hand, inverse boundary value problems
for general elliptic operators are of independent interest. Our study is partly
devoted to understand exactly what the Dirichlet to Neumann map does deter-
mine if an elliptic operator involves a first-order term. One shall note that a
self adjoint elliptic operator of second order with A as its principal symbol can
always be written as a Schrödinger operator with vector potentials.

In recent years significant progress has been made on this problem in the
case of A = 0. It has been shown that in dimension n > 3, an L°° potential
q is uniquely determined by the Dirichlet to Neumann map Aq [NSU]. The
L°° hypothesis on q can even be relaxed to U with 5 > n/2 [Ch] and to
L"l2 [LN], and the smoothness assumption on öQ can be relaxed to C11
[N]. It has also been shown that in dimension n = 2, a Wx'°° potential q is
uniquely determined by Aq provided q is close to zero [SU-II] and close to
"most potentials" [SuU-I]. More recently, it has been shown that singularities
of an arbitrary two-dimensional potential q are uniquely determined by Aq
[SuU-II]. We refer readers to [C, KV-I, KV-II, SU-I, A, I], and [Su-I] for results
on the inverse isotropic conductivity problem which is closely related to the
problem discussed here and to [NH, N, R], and [W] for applications to inverse
scattering.

In the case of A ^ 0, however, there is an obstruction to uniqueness. In fact
a change of the magnetic potential A to its gauge equivalence A' = A + Vg for
some g e Wx>°° with g = dg/dN = 0 on dÇl would not change the Dirichlet
to Neumann map A^-   . Indeed, it is a straightforward computation to show
that replacing A by A' in (1.1) is equivalent to replacing the solution u in
(1.2) by u' = ue~'g . Since u' carries the same boundary value and the normal
derivative as u , it follows that A^-,    = A^-   .

c-5»       A¿,--f-§%
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SCHRÖDINGER OPERATORS WITH VECTOR POTENTIALS 955

It is easy to see that the above gauge transformation A —> A' preserves the
rotation xot(A) = xot(A'), where

^iA)=t{^-d^)dxJAdxl.

Physically, rot(^) is called the magnetic field induced by A . On the other hand,
one shows easily that if xot(A) = rot(^') holds for two magnetic potentials A
and A' satisfying our basic hypotheses and if Q is simply connected, then A
and A' axe gauge equivalent and therefore A^-,    = A^-   .

The above analysis shows that in general the best one can expect in the case
of A ^ 0 is that A^- determines xot(A) and q uniquely. The goal of this
paper is to show that in dimension n > 3, and under the a priori hypothesis
that rot(^) is small in the L°° topology, A^- determines xot(A) and q
uniquely. In what follows we use W£ ■ °° to denote the space of functions /
in Wm'°°iRn) with supp/cfi.

Theorem. Let A¡ e W^,oc , q¡ e L°°(Q), j = 1, 2. Assume that zero is not a
Dirichlet eigenvalue of TT,- , ; = 1,2. Then there exists a positive constant
e = e(Q) such that if

\\TOt(Âj)\\L°°{çi) <£,        7 = 1,2,

and
A; = A x        ,

then
xot(Ax) = xot(A2)   and   qx = q2.

In §2 we shall construct a special class of expotentially growing solutions in
the null space of (1.1), which are analogous to the special solutions constructed
by Sylvester and Uhlmann in [SU-I]. These solutions shall serve as a basic tool
in this paper. The presence of the magnetic potential A in ( 1.1 ) makes the
construction much more difficult especially when rot(^) is not small. This
is the only reason which leads to the smallness assumption on xot(A) in the
theorem. If one converts the differential equation TT^- u = 0 into an integral
equation using Faddeev's Green's function, one sees that the set of exceptional
points for that integral equation may not be bounded in C" when xot(A) is not
small [NH]. Therefore it remains as an open question whether such solutions
can still be constructed when xot(A) is large.

Section 3 is devoted to establish an orthogonality identity which relates A
and q with A.-   .A ,q

Section 4 is the heart of the proof. The main difficulty, which one did not
encounter in the case of A = 0 treated in [NSU], is that one has to determine
xot(A) from a nonlinear integral functional rather than the Fourier transform
of rot(^4). Once xot(A) has been recovered from A^- , we can go further to
recover q using gauge invariant property of A^-    and the method in [NSU].
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We remark that this method does not apply in dimension 2. We shall study
the two-dimensional case in a forthcoming paper [Su-II].

2. Construction of solutions
Following the idea of the geometric optics construction of solutions to hyper-

bolic equations, we look for solutions of the form given below in the null space
of H4 n ■A,q

(2.1) u(x,Ç) = eix+'t'{x't)(l+œ(x,Ç)),

where Z\ e C" is a complex vector satisfying Z, • Ç = 0 and the function
o)(x,£) behaves like |¿;|-1 as |£| tends to oo in an appropriate function space.
We shall show that it is always possible to construct such solutions provided
||rot(/í)||¿oo(ri) is sufficiently small and |£| is sufficiently large.

Substituting (2.1) into the equation H¿  u = 0 and equating coefficients of
powers of |¿;| to zero, we get two equations

(2.2) {-V¿ = -/{•/,

(2.3) Acá + 2(i + V(/> + iA) • Vw - Gco = G,

where

(2.4) G - A2 - iV -A + q- 2iA- V0 - V</> • Vcp - Acf>.
We divide the rest of the section into two parts, where cf> and co will be

constructed separately. In what follows we assume

(2.5) |{|>1,     AeW2'°°,     qeL°°iRn),     supp?cQ.

2.1.    Construction of <f>.   Fourier transforming (2.2) gives

-ü¡.tlfa,t/\£\) = -it'#iti),
where n = inx, n2, ... , nn) is the dual coordinates and A denotes the Fourier
transform with respect to x . We denote by V its inverse. We construct

We shall show that the solution 0(x, £) has the following three properties:

(2.7) \\<p(.,tZ/\c:\)\\wï^m<C\\Â\\Kaa,

(2.8) \\V4> + iÂ\\Loo(m < C\\ rot(i)lk~(£2),

If C(s) : (a, b) -> C" is a differentiable map with £(s) -£(s) = 0
(2.9) and |{(j)| > 1 for all 5, then s -» c¡>(-, c¡(s)/\c;(s)\) is differen-

tiable as a map from (a, b) to L°°(Í2).

The constant C involved in (2.7)-(2.9) depends only on f2.
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SCHRÖDINGER OPERATORS WITH VECTOR POTENTIALS 957

Lemma 2.1. Let Ci be a bounded domain in W , n>2. Then

(2.10) L(/)=(2»r/B/-".(;¡M-)¿,
defines a bounded map from W£,co to Wn'°°(Q.) for any nonnegative integer
m.
Proof. Rewriting (2.10) in terms of convolution respect to variable (xi, x2),
we get

(2.11) L(fi)= [ /(*1~Zl'X2~2.2'*3'---'X")¿2-,¿z2
yR2 zx + iz2

and thus

(2.12) \\L(f)\\L°°(nnr) < C||/|U«(anr)
for any two-dimensional plane T that is parallel to (xi, X2)-plane. Therefore

(2.13) \\Lif)\\L~[Q) < C||/||LOO(0).
This proves Lemma 2.1 in the case of m = 0. Differentiating both sides of
(2.11) and repeating using (2.13) yield desired results.   D

Proof of (2.1). Without loss of generality, we assume that Z\ = yx + iy2, where
V\, 72 G M" , \Y\ I = 1721 = 1, and yx-y2 = 0. Making a rotation of coordinates
if necessary one can rewrite (2.6) in terms of convolution as follows:

(2.14) *(*4)- f i'*X-l'Z?I+'ai))''><>'>■
\     K\J     Jm1 zx + iz2

Clearly, (2.7) follows from Lemma 2.1. If ¿¡(s) = yxis) + iy2is) is differentiable
in 5 and \yxis)\ = \y2is)\ = 1 for all s e (a, b), then for a fixed x g Q,

(2.15)
:' W   LHx,ih)=l   ^^f^^dzxdz2

(zxyx + z2y2) ■ V(£ • A)(x - (zxyx + z2y2))+ [  v"1/l ' ^'i!   *v~>r    ^"' ' -í,í» dzxdz2,
yR2 zx + tz2

where the dot means d/ds. Using Lemma 2.1 again and noting that supp^ c
Q, one sees that the right-hand side of (2.15) is a function in L°°(Q). Hence
(2.8) follows.

By a change of coordinates we need only to prove (2.9) in the case that
yx = (l,0, ... ,0) and y2 = (0, 1, ... , 0). In this case

V(p + iA=(-in^±^ + iÂ-\.
\       t]X + in2 )

We now compute explicitly the components of Vcj> + i A . We have

( -nx(Ax + iA2)     tf\     _ ( -it]i(Ai + iA2) + iAxinx + tn2) \
(2 16)       \     rli + in2 }        \ rjx+in2

■J  (dA2       dAx\
~    \dxx    dx2)'
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-in2(Ax + iA2) +i¿\    _ I -i"2ÍAx + iA2) + iA2(nx + in2)
(217)    V    fl + "'2 / m + m

= L dAx     dA2
dx2      dxx

and for 3 < j < n ,

it]j(Ax + iAfj ,.2\        ( -ii\jiA\ + Mi) + JAjim + 'V2)
"T l Ai

(2.18) V      * + i* I        \ tll + im )

\dXj      dxx) \dXj      dx2
Applying Lemma 2.1 to (2.16)-(2.18) we get (2.8).
2.2.    Construction of 03.

Proposition 2.2. Let A and q be potential functions satisfying (2.5). Then
there exist positive constants ô = <5(Q) and K such that if || rot(^4J)||LOo(i2) < e
and |^| > K, then equation (2.3) has a solution co e HX(Q.). Moreover,

(2.19) |M|L2(Û) < CKI"1
and

(2.20) l|V<u||L2(n)<C,

where K and C depend only on Q, MH(y2.oo(Q), and ||#||/,°°(fi).

The proof of this proposition is based on the following two lemmas.

Lemma 2.3. Let L¡ = A + 2£ • V. Then the operator L¿ admits a bounded
inverse L~x : L2(il) - HX(Q.). If f e L°°(Q) and v = L~x(f) e T/'(Q), then

(2.21) \\v\\mçi)<C\4\-x\\f\\mn),

(2.22) l|Vü||tf(u)<C|L/||7¿(0)!
where C depends only on Q.
Proof. The existence of L7X as well as the estimate (2.21) follows from a
fundamental result obtained by Sylvester and Uhlmann [SU-I]. (Also see [I] for
a more direct proof.) The estimate (2.22) was proven in the two dimensional
case [SU-II]. We now give a proof of (2.22) in the case of n > 3 .

Extending / to be zero outside Q and letting Q' be a bounded domain that
contains Q. we can construct a solution v satisfying (2.21). We shall show that
the following estimate must hold:

(2.23) l¡Vt>||Í2(íl) < Ci\t\2\\v\\2LHa) + \\f\\lHQ)),
where C = (Q, SI'). Clearly, the restriction of v to Q is a solution satisfying
(2.21) and (2.22).

Let x G C^(Sl') so that *(x) =1 for x g SI and 0 < /(x) < 1 for
x G Sl'\Sl. Let u = xv ■ It follows from an elliptic regularity theorem that «
is a H2(Sl) solution of the equation

(2.24) Au + 2£,-Vu = fix + vAx + 2VvVx + 2vÇ • V*.
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Multiplying ü to both sides of (2.24) and integrating by parts we get

/   \Vu\2dx <2      (\uZ,-Vu\ + \fux + ux + uvAx + 2uvZ-Vx\)dx
Ja1 Ja1

I  JNvVx dx
Ja1

la
(2.25) +2

(2.27) Jn

= Ii+ h.
Denoting M = ||,£||c2(íi') an^ using Schwartz's inequality we get

/. <(4\C\2 + M(l + \cl\2)) Í  \u\2dx
(2.26) JQ'

+ -      \Vu\2dx + MÍ2      \v\2dx+      \f\2dx).

Using integration by parts one has

/   TiVvVudx = -l   vCWAx+ VxVu)dx.
Ja1 Ja-

Hence

I2<2M      (\vJi\ + \vVu\)dx
Ja1

<(M + 4M2)[  \v\2dx + M [  \u\2dx + ]- [  \Vu\2dx.
Ja' Ja' 4 JQ,

Combining (2.25) with (2.26) and (2.27) yields

illVwlfoo,, < (|Í|2(M + 4) + 2M) [  \u\2 dx
(2.28) ft

+ (3M + 4M2)      \v\2dx + M      \f\2dx.
Ja' Ja1

Since u = v in SI and \u\ <\v\ in Si', it follows from (2.28) that

||V«||22(n) < 2(\Ç\(M + 4) + 5M + 4M2)|M|22(n,) + M\\ffL2(a,y
This leads to (2.23) immediately.   D

We set G = GXa and tj> = (pxa , with G and c¡> as in (2.2) and (2.4), where
Xsî is the indicator function of SI. To solve (2.3) it suffices to solve

(2.29) (LiÂ-G)co = G,

where
LiJ= Li + (V<^ + ÏÂ) • V = A + 2(£ + V0 + iÂ) • V.

Lemma 2.4. If \\ xotA\\L°°(Q) is sufficiently small, then L, ¿ has a bounded in-
verse L"1-: L2(Sl) -» Hx(Sl). Moreover, if f e L2(Si) and v = L~lJ(f), then

(2.30) \\v\\ma)<c\ç\-l\\f\y{a),

(2.31) l|Vt;|L2(n)<C||/||L2(n),

where C depends only on Si and \\xolA\\L^{Si).
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Proof. Applying Ljx to both sides of L, ¿v = f yields an integral equation

(2.32) (I + 2Fx)v = Ljxfi,

where
Fx =L~X o(V4>+iA)oV,

where I denotes the identity operator and ( ) denotes the multiplication oper-
ator.

From Lemma 2.3 one sees clearly that the right-hand side of (2.32) is in
Hx (Q). Moreover,

(2.33) \\L¡lf\\L2{Q)<C\^\-l\\f\\L2{Q),

(2.34) \\L7lf\\w(a) < C\\f\\L2(Q).

From (2.8), (2.21), and (2.22) we have that Fx maps HxiSl) into Hl(0) and
moreover,

(2.35) PrhVff. <C||nrtiJk«(Q)
where C depends only on Si. Thus, if we view (2.32) as an integral equation in
HxiSi) and use (2.34) and (2.35), we conclude that (2.32) has a unique solution
veHxiSl) provided || rot^l^c.) is sufficiently small and thus (2.31) follows.
Clearly,

v = L~xif + (V<£ + iÂ) o vu).

Hence by (2.21),

Hltf(0) < QtrHWWma) + \\™tÂ\\L~ia)\\Vv\\LHa)).
This estimate together with (2.31) leads to (2.30).   D

Proof of Proposition 2.2. Applying L~x - to both sides of (2.29) yields an integral
C ) A

equation for co :

(2.36) (I + F2)co = L-xÄ(G),

where
F2 = L~xÂo(G).

By Lemma 2.4 one sees clearly that the right-hand side of (2.36) is in Hx (Si).
Moreover,

(2.37) \\L:*ß\\L2ia)<C\C\-l\\G\\L2ia),

(2.38) WLjffimm * c\\G\\mm-
We view (2.36) as an integral equation in L2iSi). From (2.30) and (2.31) we
see clearly that F2 maps L2iSi) into L2(Q) and moreover,

(2.39) \\F2\\L1,L2 < CIIGIU-pDlir1,
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where C depends only on Q and || xotA\\L°°(Q) ■ Therefore (2.36) has a unique
L2 solution co provided |¿;| is large enough. Using (2.37) one sees that a>
satisfies (2.19). On the other hand (2.36) can be rewritten as

œ = L-xÂ(G(l + co)).

Now it follows from (2.31) and (2.19) that the L2 solution co is also a Hx
solution of (2.36). Moreover,

ll»lliri(0)<C,||G||i.«.(n)(l + ||u>||u(o)),
from which (2.20) follows.   D

3. An identity
The main purpose of this section is to present an orthogonality identity which

relates potential functions A and q to the Dirichlet to Neumann map A .-   .
A , q

Proposition 3.1. Let A¡ and q¡■, j = 1, 2, be potential functions satisfying
(2.5). Then

i / (Â\ - A2) • («iV/<2 -u2Vux)dx + / (A2 - A2 + qx - q2)uxu2dx
Ja Ja

= -       ü2(Ar     -Ar     )uxds,
Jaa        A{'q>       Á1'qi

holds for arbitrary u¡ solution of H¿    u¡■ = 0, j = 1, 2.

Proof. We have

(3.1) Aux+2iAx-Vux - Qxux =0   in Si,
(3.2) Aü2-2iA2-Vü2-Q2ü2 = 0   in Si,
where
(3.3) Qj = A2 - zV • Aj + q},        j = 1, 2.
Multiplying (3.1) by u2 and (3.2) by ux and then adding them, we get

\fi2Aux + uxAU2 + 2iu2Ax • Vux - 2iuxA2 • Vü2 - Qxll2ux - Q2uxu2)dx = 0.Lia
Integrating by parts yields

(3.4)
-2i j ux(Ax - A2) -S7u2dx - / ux(Qx - Q2)u2dx - 2/ / V • AxuxTi2dx

Ja Ja Ja
í    ídux_      du2 ... -    ._    _ \   ,      n+       [-g^u2-—ux+2i(Ax-N)uxu2jds = 0.

Exchanging positions of Uj and A¡, j = 1, 2, in (3.4) and then taking the
complex conjugate, we get

(3.5)
-2/ / u2iAx - A2) •Vuxdx + / uxiQx - Q2)u2dx+ 2i     V • A2uxü~2dx

Ja Ja Ja
+       (-^ü2 + -^ux+2i(A2-N)uxü2) ds = 0.
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Substracting (3.5) from (3.4) and using (3.3) we get

—i

(3.6)
' j (Ax - A2) • (uxVu2 - u2Vux)dx - \ (A2 - A2 + qx - q2)uxu2dx
Ja Ja

+ j   Í ̂ "2 - QjjUi + 2i(iAx + A2) • N)uxü2J ds = 0.

Since (3.6) holds for any A¡  and q¡■■,  j = 1, 2, it holds in particular for
Ax = A2 and qx = q2. In this case (3.6) becomes

(3-7)      lM°-^u+MA~2-N>u¥)ds=o-
where u and v satisfy

Hs „u = Hz nv = 0   in Si,

v\aa = "2I0Q   and   u\da = ux\da.
Hence

(3-8) La ^UldX = La {0%^ + 4l{Â2 ■ N)UiJi2) ds-
Using (3.8) and recalling (1.5) we find that the third integral in (3.6) is equal to

L(ïï2(^-^)+2i((/'-/2)^H^
= /    »2iAÂ     -AÂ   2)uxds,

Jaa
from which Proposition 3.1 follows.    D

Corollary 3.2. Let A¡ and q}■■, j = 1,2, be potential functions satisfying (2.5).
Assume that A .- n = A .-     . Then

(3.9) i / (Ax -A2)- (uxVü2 - ü2Vux)dx+ / (A2 - A22 + qx - q2)u{ü2dx = 0
Ja Ja

holds for arbitrary u¡ solution of H¿     u¡ = 0, j =1,2.

In the rest of this section we shall replace u¡ in (3.9) with the exponentially
growing solutions constructed in the previous section.

Let k, yx , and y2 be three mutually orthogonal vectors in W with |j>i| =
\y2\ = 1 . Let C,c¡ eC" be given by
(3.10) C = n+iY2,        Ç = sÇ + g(s, k)yx ,
where 5 is a positive real parameter and

(3.11) g(s, k) = 2~x\k\2((\k\2 + 4s2)x¡2 + 4s)~].
Let ¿¡i, & G C" be given by

(3.12) É, = /fc/2 + í,        l2 = tk/2-Z.
One checks directly that

(3.13) íi-íi=Í2-Í2 = 0,    íx+íi = ik,    ¡Zx-l2 = 2Z,
(3.14) Éi/J-C,    îi/s^-C    i/s^Ç,        así-oo.
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Following the construction in §2 we can construct

(3.15) Uj(x, Çj) = e«r*+*/(*.i;/K/l)(i + coj(x , {_,-))

solution of Hj    uj = 0, j = 1, 2, where c/>j solves

(3.16) tj'V<Pj = -itj'Äj,       j=l,2,
and (Oj, j = 1,2, satisfies

(3.17) \\G>j\\u(Q)<C\ij\-1
and

(3.18) IIV^H^o) < C,
where C depends only on Q, H^f/H^.«.^) , and ||<7y||z.«>(n.), j = 1,2.

Substituting (3.15) into (3.9) yields

(3.19) Fx+F2 = 0,
where Fx and F2 are functions of s, k , yx , and y2 and they are given by the
following formulas:

(3.20) Fx = -2/ / eikx+^+H ■ (Ax - A2) dx,
Ja

F2 = i f e'**+*'+*2((/, - A2) • V(^2 - </>,) - i(A2 - A2 + qx - q2))dx
Ja

- 2/ / eikx+<t"+H • (Âx - Â2)(œx +W2 + œxW2) dx
Ja

(3.21) +i f eikx+(t"+^(Äx -Ä2)-(Vm2-Vcox +œxVW2-W2Vcox)dx
Ja

+ i f eikx+*l+**iÂi - Â2) • (V02 - V0i)(töi +W2 + coxœ2) dx
Ja

+ i e*x+<l>i+*2(A¡ - Ai + qx- q2)(œx +W2 + cüxcú2)dx.
Ja

If we fix k, yx , and y2, view Fx and F2 as functions of 5 and apply (2.19)
and (2.20) to (3.20) and (3.21), then it is clear that

(3.22) Fx = 0(s),    F2 = 0(1),        as s -» oo.

Thus

(3.23) lim s~lFx = -2i lim s~x [ elkx+^+H ■ (Ax - A2)dx = 0.
s—»oo s—»oo Jo

Since cf>j is continuous in Z,j/\Z,j\ (see (2.9)) and ¿Ï/7K/I is continuous in 5,
it follows from (3.10), (3.11), (3.14), and (3.23) that

(3.24) / **»+*'-*»Ç • (Ax -A2)dx = 0,
Ja

where 4>* = <p*(x, C) solves

(3.25) C • V0Î = -iC -Âx,        C • v£ = iC ■ A2 ,
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and by (2.14)

/i i^ j.*,     r\      Í   C-A\(x-(zxyx +z2y2))(3.26) <f>\(x,C)=-—Z-LJ1dzxdz2,
J&2 ZX  + IZ2

ti.n\ IVV   n f  C-Mx-(zxyx + z2y2))(3.27) tp2ix,Q = -      - -dzxdz2.
JR2 Z\   + IZ2

We summarize the result of this section in the following proposition.

Proposition 3.3. Let A¡ and q¡■, j = 1, 2, be potential functions satisfying
(2.5). Assume that A .- = A .- . Then (3.24) holds with d>*, j = 1,2, as
in (3.26) and (3.27).

4. Proof of theorem

We divide this section into two parts. In the first part we shall prove xot(A x ) =
xot(A2) and in the second part we shall show qx= q2.

4.1. Proof of rot(^i) = rot(/Í2) • We shall assume throughout this subsection
that Si is a ball, i.e.,
(4.1) Sl={xeR",\x\<R}
for some R > 0. This additional assumption would have no influence to our
result. Suppose that Si is not a ball, then we can choose a ball Si' so that
ficfi' and extend A¡ and q¡ to be zero in Si'\Si. Clearly, A¡ and q¡ still
satisfy (2.5) with Si = Si' after the extension. Standard arguments show that
A.- „ =A; „   on dSi implies A.-      =A,-      on dSi'. Therefore it suffices^i.?i ^2><?2 v A,,q, A2,q2
to prove the theorem with assumption (4.1). See [SU-I] for relevant arguments.

Adding two equations in (3.25) together gives

(4.2) C-(i*i-^2) = /C-V(#+£).
Substituting (4.2) into (3.24) and noticing k _L £ we have

f eikx+rt+%¡-. (^ _ X2)dx = i [ eikxC ■ V(^*+^*) dx
Ja Ja

= i [ Ç-V(eikx+^+^)dx.
Ja

Then integrating by parts gives

(4.3) /   eikx(t:-N)e¥(x^ds = 0,
Joa

where

(4.4) «F(x,C) = fi(*,C)+£(x,C).
We shall use (4.3) to prove our result. We divide the remaining proof into

three steps.

Step 1. For any k e R" , Ç = yx + iy2 e C" with yx and y2 as in (3.10) and
integer m > 0 ,

(4.5) /   eikxiC-N)iC-x)mext'lx'ods = 0.
Joa
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Proof. Fix C = y\ + iyi in (4.3). Since (4.3) holds for any k _L yx, y2, it follows
by using the inverse Fourier transform that

(4.6) /      (i.-N)eV(x^dsT = 0
Jaanr

for any two-dimensional plane T that is parallel to yx and y2, where dsj is
the usual surface measure on dSi n T.

Given k, yx, and y2, three mutually orthgonal vectors in R" with k / 0
and |yi| = I72I = 1 • We view {yx, y2, k} as a right-handed three-dimensional
frame in W . Then

{7\, 72, k} -> /   eikx(C-N)e^x'()ds
Jaa'aa

defines a map from the collection of all such frames to C. We shall prove (4.5)
by differentiating this map in certain directions.

We construct two families of such frames,  {y[l\0), y2\6), /c(1)(0)}  and
{y(i2)i6),y2](G),k{2)(d)}, depending smoothly on 0 e [0, n/4], as follows.
Define y{2l)(d) = y2 for all 0 and define y\l)(6) and k^(6) to be the result-
ing position vectors after we rotate the (right-handed) two-dimensional frame
{71, k} clockwise with an angle 0 in the plane spanned by yx and k. Sim-
ilarly, define y¡2)(0) = 71 for all 0 and define 722)(0) and kM(6) to be the
resulting position vectors after we rotate the (right-handed) two-dimensional
frame {72, k} clockwise with an angle 0 in the plane spanned by 72 and k .
It is easy to show that

(4.7)

(4.8)

dkW

dy\l)

de
dyf

= \k\y\, dkW

dd
If we define
(4.9)
then (4.8) implies

(4.10)

de

e=o

0=0

de \k\y2,

-\k\-xk dy\
de

dy{x2)

9=0
d()

= 0.
0=0

CJ,(0) y\J\e) + iy(2j)(e),

d^
de + 1

dC
6=0 de

7 = 1,2,

= 0.

Next, we compute (d/d6)Ç¥(x, C(1)(0))+¿'vr'(x, C(2)(ö)))|e=o • Using formula
(3.26) we have
(4.11)

4<(x,c<,>(0))= f ^(e)-(Ax-Ä2)(x-(zxy^e) + z2/M))dzidz2
Jr2 Z\   + IZ2

fox j =1,2. Using (4.8), (4.10), and (4.11) we obtain

(4.12)

^(4'(x,C(1)(Ö)) + /4'(x,C(2)(Ö)))|e=o

= \k\-] [ k -V(C • (Ax - A2))(x - (z,7, + z2y2))dzxdz2
Jr2

= \k\~xk V / (C • (Ax7r2
^2))(x - (zi7i + z272))^zi dz2.
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It is easy to see that the last integral in (4.12) is a function of x which is equal
to a constant on any two-dimensional plane that is parallel to 71 and 72.

Finally, letting k = k^(6) and C = CU)(6), j = 1, 2, in (4.3), differentiat-
ing with respect to 0 and using (4.7) and (4.10), we get
(4.13)

0=  *   ( [   eikil)^x(C{l)(e)-N)e^x^m^ds
de \jdíi

+ id_ if   eikmWx(p2\e)-N)e^x>?2)WUs}

= \k\i [  eikx(Ç'N)(i;.x)e^x-Uds
Jaa

+ [   eikx(t:-N)e^x^ ¿(»Ptx, Cw(6)) + W(x, C(2)(#)))
Jaa dv

By (4.6) and (4.12)

ds.
6=0

[      (C-N)e^x^ ^(4'(x,C(1)(0)) + /4'(x,C(2)(ö)))
JaanT aa

dsr
6=0

d_
de'-(4'(x,C<1)(0)) + /"4'(x,C(2)(Ö)))       /      (C-N)e^x^dsT = 0

\e=oJdanT
for any two-dimensional plane T that is parallel to 71 and 72. Therefore the
last integral in (4.13) must be equal to zero. This proves (4.5) with m = 1 .
Repeating the above procedure gives (4.5) with arbitrary positive integer m .   D

Step 2. Let T be any two-dimensional plane that is parallel to 71 and 72. Then

(4.14) /       (C-NTr^(x,OdsT = 0
JaanT

for any integer m > 1, where NT is the outer normal of dSi n T in T.

Proof. Using the same argument as the one which gave (4.6) we obtain from
(4.5) that

(4.15) /      (C-N)((Z-x)me,V{x^)dsT = 0
JaanT

for any integer m > 0.
Recall that Si = {x e R" , |x| < R} is a ball and thus dSi n T is a circle

with origin as its center in the plane T. Therefore

(4.16) C-A = C-Ar,        C • x = R(C • Nt)
for x edSinT. Combining (4.15) with (4.16) yields

(4.17) /      (C-NT)mey,'{x^)dsT = 0
JaanT

for any integer m > 1.
If we denote by  0,  0 < 0 < 2?r, the angle between  71   and NT, then

C ' Nt = e'e . Hence (4.17) can be rewritten as

(4.18) /    eimeef(e) de = 0 f    v integer m > 1,
Jo
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where / = *F|9Qnr • Equation (4.18) implies that there exists a holomorphic
function u defined on D = {x e R2; |x| < 1} such that u\qd = ef. By the
mapping property of the exponential function one sees that log u is well defined
on D. Since log u is also holomorphic in D and log u = f in dD, we must
have

(4.19) /   eimefi(e) de = 0,    V integer m > 1,
Jo

which leads to (4.17).   D

Step 3.  xot(Ax) = rot(i*2) •

Proof. It suffices to show that

(4.20) 7i • / elkx(Ax - A2) dx = 0
Ja

for k and 71 as in (3.10). From (4.2) and (4.4) we have

(4.21) y,.(i,-4) = -Im(C-V¥).
Multiplying both sides of (4.21) by e'kx and integrating by parts we find that

(4.22) yx • [ eikx(Ax - A2) dx = - [   eikx Im((Ç • N)V(x, Q) dx.
Ja Jaa

We now show that the right-hand side of (4.22) must be equal to zero. It suffices
to show that

(4.23) /       lm((Ç.N)V(x,O)dsT = 0
JaanT

for any two-dimensional plane T that is parallel to 71 and 72. Since this is
just a consequence of (4.14) (with m = 1), the proof is complete.   D

Corollary 4.1. There exists p eW^'°° so that Ax - A2 = Vp in Si.
Proof. rot(^i) = rot^) implies that there exist p G Wx'00(Si) so that Ax -
A2 = Vp in Si. The fact of suppA}■ c Si, j = 1, 2, implies that p = constant
in dSi. Hence, by substracting a constant we can adjust the function p so that
pew¿'°°.   a
4.2. Proof of qx= q2. From Corollary 4.1 and the fact that A^- is invariant
under gauge transformations

A^A + Vp,        peW¿\'°°,
we deduce that

A; = A;        .
Then by the hypothesis we must have

A,,q, A,,q2

Thus, we may assume without loss of generality that Ax = A2 = AeW^00 in
the rest of this section. Under this assumption (3.9) reads

(4.24) [ (qx-q2)uxu2dx = 0.
Ja
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Substituting the solution (3.15) into (4.24) gives

(4.25) / e'kx+'t'l+^(qx -q2)dx = [ elkx+^(qx - q2)(o)x + cö2 + coxW2)dx.
Ja Ja

From (4.2) and the statement following (3.23) we see that

(4.26) tpx + 02 -» <f>\ + T2 = 0,     in L°°(Si)       as 5 -> oo.
Using this fact as well as (2.19) we deduce that the left-hand side of (2.25)
tends to (qx - q2)A(k) while the right-hand side tends to zero as 5 goes to oo .
Therefore qx = q2 in Si.   G
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