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Abstract 

We discuss two inverse free, highly parallel, spectral divide and conquer algorithms: one for 

computing an invariant subspace of a nonsymmetric matrix and another one for computing left and 

right deflating subspaces of a regular matrix pencil A- )..B. These two closely related algorithms are 

based on earlier ones of Bulgakov, Godunov and Malyshev, but improve on them in several ways. 

These algorithms only use easily parallelizable linear algebra building blocks: matrix multiplication 

and QR decomposition. The existing parallel algorithms for the nonsymmetric eigenproblem use 

the matrix sign function, which is faster but can be less stable than the new algorithm. 
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1 Introduction 

We are concerned with the following two computational problems. 

1. For a given n x n nonsymmetric matrix A, we want to find an invariant subspace R (i.e. 

AR ~ R) corresponding to the eigenvalues of A in a specified region 1) of the complex plane. 

In other words, we want to find a. unitary matrix Q = (QI> Q2 ) with R = span{Q1 } such 

that 

(1.1) 

where the eigenvalues of An are the eigenvalues of A in 'D. We shall call this problem an 

(ordinary) spectr·al divide and conquer (SDC) problem. 

2. A r·egular· matrix pencil A- >.B is a. square pencil such that clet( A- >.B) is not identically zero. 

Given such an n by n nonsymmetric pencil, we want to find a pair of left and right deflating 

subspaces £ and R (i.e. AR ~ £ and BR ~ £) corresponding to the eigenvalues of the pair 

A - >.B in a specified region 1) on complex plane. In other words, we want to find a unitary 

matrix QL = (QLb QLz) with£= spa.n{QLd and a unitary matrix QR = (QRl, QR2) with 

R = span { Q Rl}, such that 

A12 ) H ( Bn 
A22 and QL BQR = 0 (1.2) 

where the eigenvalues of An - >.B11 are the eigenvalues of A - >.B in the region 1). We shall 

ca.ll this problem a. gcnemlizcd spcctml divide and conquer· (SDC) pmblcm. 

The region 1) in the above problems will initially just he the interior (or exterior) of the unit disk. 

By employing Mobius transformations ((n:A+/3B)(!A+bB)- 1
) and divide-and-conquer, 1) can be 

the union of intersections of arbitrary half planes and (complemented) disks, and so a. rather general 

region. We will assume that the given matrix A or matrix pencil A- >.B has ~o eigenvalues on the 

boundary 1) (in practice this means we might enlarge or shrink 1) slightly if we fail to converge). 

The nonsymmetric eigenproblem and its generalized counterpart are important problems in 

numerical linear algebra, and have until recently resisted attempts at effective parallelization. The 

standard serial algorithm for the spectral divide and conquer problem is to use the QR algorithm 

(or the QZ algorithm in the generalized case) to reduce the matrix (or pencil) to Schur form, and 

then to reorder the eigenvalues on the diagonal of the Schur form to put the eigenvalues in 1) in the 

upper left corner, as shown in (1.1) and (1.2) (see [7] and the references therein). The approach 

is numerically stable, although in some extremely ill-conditioned ca.ses, the swapping process may 

faiP. However the approach seems be too fine grain to parallelize successfully [22]. 

There are two highly parallel algorithms for the spectral divide and conquer problem, those 

based on the matr·ix sign function (whkh we describe in section 3), and inver·se fr·ee methods based 

on original algorithms of Bnlgakov, Godunov and Malyshev [30, 14, 41, 42, 43], which are the 

main topic of this paper. Both kinds of algorithms are easy to parallelize because they require 

only large matrix operations which have been successfully pa.rallelized on most existing machines: 

1 Recently Bojanczyk and Van Dooreu [11] have fo1111;l a way to eliminate this possibility, although the theoretical 

possibility of nouconvergeuce of the QR algorithm remains [8). 
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matrix-matrix multiplication, QR decomposition and (for the sign function) matrix inversion. The 

price paid for the easy parallelization of these algorithms is potential loss of stability compared to 

the QR or QZ algorithms; they can fail to converge in a number of circumstances in which the QR 

and QZ algorithms succeed. Fortunately, it is usually easy to detect and compensate for this loss 

of stability, by choosing to divide and conquer the spectrum in a slightly different location. 

In brief, the difference between the sign-function and inverse-free methods is as follows. The 

sign-function method is significantly faster than inverse-free when it converges, but there are some 

very difficult problems where the inverse-free algorithm. gives a more accurate answer than the 

sign-function. This leads us to propose the following 3-step algorithm [21, 24]: 

1. Try to use the matrix sign-function to split the spectrum. If it succeeds, stop. 

2. Otherwise, if the sign-function fails, try to split the spectrum using the inverse-free algorithm. 

If it s11cceeds, stop. 

3. Otherwise, if the inverse-free methods fails, use the QR (or QZ) algorithm. 

This 3-step approach can works by trying the fastest but least stable method first, falling back to 

slower but more stable methods only if necessary. 

This paper is primarily concerned with the algorithms based on the pioneering work of Godunov, 

Bulgakov and Malyshev [30, 14, 41], in particular on the work of Malyshev [42, 43]. We have made 

the following improvements on their work: 

• We have eliminated the need for matrix exponentials, thus making their algorithms truly 

practical. By expressing the algorithms for computing the ordinary and generalized spectral 

divide and conquer decompositions in a single framework, we in fact show it is equally easy 

to divide the complex plane along arbitrary circles and lines with the same amount of work. 

• Our error analysis is simpler and tighter. In particular, our condition number can be as small 

as the square root of the condition number in [42], and is precisely the square ofthe reciprocal 

of the distance from A- >.B to a natural set of ill-posed problems, those pencils which have 

an eigenvalue on the unit circle. 

• We have simplified their algorithms by eliminating all inversions and related factorizations. 

• We propose a realistic and inexpensive stopping criterion for the inner loop iteration. 

Many simplifications in these algorithms are possible in case the matrix A is symmetric. The 

PRISM project, with which this work is associated, is also producing algorithms for the symmetric 

case; see [10, 9, 37, 5, 40] for more details. 

The rest of this paper is organized as follows. In section 2 we present our two algorithms for the 

ordinary and generalized spectral divide and conquer problems, discuss some implementation details 

and options, and show how to divide the spectrum along arbitrary circles and lines in the complex 

plane. In section 3, we compare the cost of the new algorithms with the matrix sign function based 

algorithms. In section 4, we explain why the new algorithms work, using a simpler explanation 

than in [42]. Section 5 derives a condition number, and section 6 uses it to analyze convergence 

of the new algorithms. Section 7 does error analysis, and section 8 contrasts our bounds to those 
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of Malyshev [42]. Section 9 discusses the stopping criterion of the new algorothms. Section 10 

presents numerical examples, section 11 lists open problems, and section 12 draws conclusions. 

Throughout this paper we shall use the notational conventions in [31]: Matrices are denoted by 

upper case italic and Greek letters, vectors by lower-case italic letters, and scalars by lower-case 

Greek letters or lower-case italic if there is no confusion. The matrixAT is the transpose of A, 

and AH is the complex conjugate transpose of A. II · II, II · IIF, and II · ll1 are the spectral norm, 

Frobenius norm, and 1-norm of a vector or matrix, respectively. The condition number IIAII·IIA-1
11 

will he denoted ~>:(A) . .X( A) and .X( A, B) denote the sets of eigenvalues of the matrix A and the 

matrix pencil A- .XB, respectively. span{X} is a subspace spanned by the columns of the matrix 

X. det(A) is the determinant of matrix A. The lower-case italic letter i equals yCI throughout. 

Machine precision is denoted by E. 

2 Algorithms 

Algorithm 1 below computes an invariant sub~pace of a nonsymmetric matrix A corresponding to. 

the eigenvalues inside (or outside) the unit disk, and Algorithm 2 computes left and right deflating 

subspa.ces of a matrix pencil A - .XB corresponding to the eigenvalues in the same region. The 

algorithms are similar to the matrix sign function based algorithms in that they begin by computing 

orthogonal projectors onto the desired suhspaces. Later, we will show how to divide into more 

general regions. Even though the algorithms are very similar, we will present them separately for 

ease of notation. 

The algorithms presented in this section are for complex matrices. But if the given matrices 

are real, then the algorithms only require real arithmetic. 

2.1 Algorithm for spectral division of A 

Algorithm 1. Given an n x n matrix A, compute a unitary matrix Q such that 

and where in exact arithmetic we would have .X(A11 ) ~ 1J, .X(A22)n1J = 0, and E21 = 0. 
1J can be the interior (or exterior) of the open unit disk. We assume that no eigenvalues 

of A are on the unit circle. On return, the generally nonzero quantity IIE21IIdiiAih 

measures the stability of the computed decomposition. 

1) Let Ao =A and B0 =I. 

2) For j = 0, 1, 2, .... until convergence or j > ma.xit 

( 
BJ ) = ( Qn Q12 ) ( R.j ) , (QR decomposition) 

-A1 Q21 Q22 0 

Aj+l = Q~A1; 
Bj+l = Q~Bj; 
if IIR.j- R.j-1lh :S riiR.j-llh, P = j + 1, exit; 

End for 



3) For the exterior of the unit disk, compute 

(Ap + Bp)-1 Ap = QRII, (rank revealing QR decomposition) 

or for the interior of the unit disk, compute 

(Ap + Bp)-1 Bp = QRII, (rank revealing QR decomposition) 

4) l = rank(R), (number of eigenvalues in the selected region) 

5) Compute 

QHAQ = l (An 
n -l E21 

and IIE21IIt!IIAII1· 
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Note that in step 2), we assume that the QR decomposition of ( -~~ ) is computed so·that the 

diagonal elements of Rj are all positive, so the matrix Rj is uniquely defined. IIE21IhiiiAII1 is an 

accurate measure of the backward stability of the algorithm, because setting E 21 to zero introduces 

a. backward error of precisely IIE21IIt/IIAII1 (measured relative to A and using the 1-norm). 

In Algorithm 1, we need to choose a. stopping criterion r in the inner loop of step 2), as well as 

a. limit maxit on the maximum number of iterations. So far we have used r ~ nc (where cis the 

machine precision) and maxit = f)O. In section 10 we shall discuss these issues again. 

In the next subsection we will show how to compute Q in the QRII decomposition of (Ap + 
Bp)-1 Ap or (A1, + Bp)-1 B1, in step :~) without computing the explicit i~verse (Ap + Bp)-1 and 

subsequent products. This will yield the ultimate inver·se fr·ec algorithm. 

2.2 Algorithm for spectral division of (A, B) 

Algorithm 2. Given n x n matrices A and B, compute two unitary matrices QL and 

Q R, such that 

Qf'AQR = ( 1~: ~~~)' Qf'BQR = ( ~~~ 
and where in exact arithmetic we would have .>.(Au, Bu) ~ T>, .>.(A22, B22) n T> = 0, 
and E 21 = F21 = 0. T> can he the interior (or exterior) of the unit disk. We assume 

that no eigenvalues of the pe;tcil (A, B) are on the unit circle. On return, the generally 

nonzero quantities IIE21 IhiiiAII1 and IIF21II/IIBih measure the stability of the computed 

decomposition. 

I* Compute the right rlcfintiny subsprJcc *I 
1) Let Ao =A and Bo =B. 

2) For j = 0, 1, 2, .... until convergence or j > maxit 

( 
Bj ) ( Qu Q12 

) ( Rj ) , (QR. decomposition) 
-Aj Q21 Q22 0 

Aj+l = QfzAi; 

B.i+t = Q~Bi; 
if IIRj- Rj-tllt ::;: riiRi-tHt, p = j + 1, exit; 



End for 

3) For the exterior of the unit disk, compute 

(Ap + Bp)-1 Ap = QnRniin, (rank revealing QR decomposition) 

or for the interior of the unit disk, compute 

(Ap + Bp)-1 Bp = QnRniin, (rank revealing QR decomposition) 

4) ln = rank(R), (the number of eigenvalues in the selected region.) 

/* Compute the left tleftating subspace * J 

5) Let Ao = AH and B0 = BH. 

6) For Ao and B0 do the loop 2). 

7) For the outside of the unit disk, compute 

A;f (AT>+ B1,)-H = QLRLIIL, (rank revealing QR decomposition) 

or for the inside~ of the unit disk, compute 

B{! (AT'+ B1,)-H = QLRLIIL, (rank revealing QR decomposition) 

8) lL = ra.nk(RL), (the numher of eigenvalues in the selected region.) 

9) If ln =f lL, signal an error and quit, otherwise let l = lR = h; 

10) Compute 

n-l n-l 

Qf AQ R = ~ 1 , _ I ( ~~~ ~~~ ) , 
Bl2) 
B22 . 

and IIE2IIII/IIAIII and I!F2tii/IIBih· 

. 7 

As before, the iterations are not uniquely defined due to the non-uniqueness of the QR decomposi­

tions in step 2). But the Rj are uniquely determined. IIE2tiii/IIAih and IIF2III/IIBih are accurate 

measures of the backward stability of the algorithm because one proceeds by setting E21 and F21 

to zero and continuing to divide and conquer. 

Parameters T and maxit play the same role in Algorithm 2 as Algorithm 1. In finite precision 

arithmetic, it is possible tha.t we might get two different numbers ln and lL of eigenvalues in region 

V in steps 4) and 8). Therefore, we need an extra test step 9) in Algorithm 2. In our numerical 

experiments, ln and lL have always been equaL If they were not, we would handle it the same way 

we handle other convergence failures: the spectral decomposition ha.c:;ecl on V is rejected, and a new 

region V must he selected (see section 2.4). 

In the next section we will show how to remove the apparent inverses in steps 3) and 7) in the 

same way as for Algorithm 1. This will make the algorithm in11crse free. We also show how to 

potentially save half the work, at the cost of solving another linear system, which is potentially 

ill-conditioned. 

2.3 Implementation details and options 

We describe in more detail the implementation of Algorithms 1 and 2. The main costs are the 

matrix-matrix multiplications and the QR decomposition in the inner loop, and the rank-revealing 

QR following the inner loop. 
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There is a large literature on matrix-matrix multiplication, and it is usually one of the first 

algorithms to be implemented quickly on a high performance architecture [25, 2]. 

Regarding the QR decomposition in the inner loop, there is no need to form the entire 2n X 2n 

unitary matrix Q in order to get the submatrices Q12 and Q22 . Instead, we can compute the QR 

decomposition of the 2n x n matrix (BJ, -Aff (using SGEQRF from LAPACK if the matrices are 

real, for example), which leaves Q stored implicitly as Householder vectors in the lower triangular 

part of the matrix and another n dimensional array. We can then apply QT - without computing 

it -to the 2n x n matrix (O,Jf to obtained the desired matrix Q[2 and Qf2 (using LAPACK 

routine SORMQR). 

Another way to view the inner loop is a.s computing an orthonormal basis for the null space 

of (BJ, -A]). The QR decomposition is the simplest way, but there are other ways also. For 

example, we may extend an idea. proposed in Kuhlanovskaya's AB-algorithm [39] for computing 

such null spaces, which cuts the arithmetic cost significantly hut with the possible loss of block 

operations; more study is needed here. 

Let us now discuss computing the rank-revealing QR decomposition of c-1 D (or DH c-H) 

without computing the inverse or product explicitly. This is needed in step 3) of Algorithm 1 and 

steps 3) and 7) of Algorithm 2. For simplicity, let us use column pivoting to reveal rank, although 

more sophisticated rank-revealing schemes exist [19, 32, 35, 52]. Recall that for our purposes, we 

only need the unitary factor Q and the rank of c-1 D (or DH c-H). It turns out that by using 

the generalized QR (GQR) decomposition technique developed in [45, 3], we can get the desired 

information without computing c-1 or c-H. In fact, in order to compute the QR decomposition 

with pivoting of c-1 D, we first compute the QR decomposition with pivoting of the matrix D: 

(2.3) 

and then we compute the RQ factorization of the matrix Q{f C: 

(2.4) 

From (2.3) and (2.4), we have c- 1 D = Qf"(R:; 1 R1 )IT. The Q 2 is the desired unitary factor. The 

rank of R 1 is also the rank of the matrix c-1 D. 

In order to compute the rank revealing QR decomposition of DH c-H, we first compute the QL 

decomposition of C: 

C = Q1L1 (2.5) 

and then compute the QR. decomposition with pivoting of DH Q1 : 

(2.6) 

From (2.5) and (2.6), we have DH c-H = Q 2(R2ITL}HITH)IT. This is not exactly a. QR decompo­

sition, hut has the same effect, since Q 2 is the desired unitary factor, and the rank of R2 is also 

the rank of the matrix DH c-H. 

Note that the above GQR decomposition will not necessarily always reveal the numerical rank, 

even though it works much of the time. In particular, the permutation IT should really depend 

on both C and D. Another way to compute a mnk-r·cvealing GQR decomposition is to explicitly 

form c- 1 D, compute its rank revealing QR, take the resulting permuta.tion IT, and use this IT in 

decomposition (2.3). This costs qtiite a hit more, and IT is still not guaranteed to be correct if 
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c-1 D is computed sufficient inaccurately. However, a. more sophisticated implementation of this 

later idea can indeed reveal the numerical rank of c-1 D; this work will appear elsewhere. 

GQR decomposition is always backward stable in the following sense. The computed Q 2 is 

nearly the exact orthogonal factor for matrices C + f,C and D + bD, where llbCII = O(t)IICII and 

llbDII = O(t)IIDII· 
Here is another implementation option for Algorithm 2, which reintroduces inversion of a par­

ticular matrix, with the payoff of eliminating half the work of the algorithm. It will be justified at 

the end of section 4. Let 

be the QR decomposition. Let PR,Izl>1 = (Ap + Bp)-1 Ap be the matrix computed in step 3) 

of Algorithm 2 (the notation will he justified in section 4), a.nd PL,Izl>1 = A{f(Ap + Bp)-H be 

the matrix computed in step 7) of Algorithm 2. We ma.y compute PL,Izl>1 directly from PR,Izl>1• 
eliminating the work of step 6), by using the formula. 

PL,Izl>1 = (APR,Izl>1• BPR,Izi>1)Q ( ~ ) R-H · 

The condition number of R is the same a.s the condition number ofthe nx2n matrix [A, B]. If [A, B] 

is nea.rly singular, this means the pencil A- >.B is nearly singular, which means its eigenvalues are 

aU very ill-conditioned, among other things [23]. We discuss this further in section 5. 

Finally, we note that in some applications, we ma.y only want the eigenvalues of the reduced 

matrix An or of the matrix pencil (An, En) or their suhhlocks. In this case, we do not need to 

compute the blocks A12 , An, B12 or B22 in step 5) of Algorithm 1 a.nd step 10) of Algorithm 2, 
and so we ca.n save some computations. 

2.4 Other kinds of regions 

Although the algorithms presented in sections 2.1 and 2.2 only divide the spectrum along the unit 

circle, we ca.n use Mobius a.nd other simple transformations of the input matrix A or matrix pair 

(A, B) to divide along other curves (treat A a.s the pair (A,I)). By transforming the eigenproblem 

Az = >.Bz to 
a>. + fJ 

(aA + {JB)z = /A+ 
0 

(!A+ bB)z or Aoz = >.oBoz 

and applying Algorithm 2 to (A0 , B 0 ), we see that we ca.n split along the cnrve where 1>-ol = I ~~!~I = 
1. This is a. major a.ttra.ction of this algorithm: it can handle a.n arbitrary Mobius transformation 

just by setting Au and B0 to appropriate linear combinations of A a.nd B. In contrast, applying 

the matrix sign function to an arbitrary Mobius transformation will generally require a matrix 

inversion. Here are some simple examples. 

(a.) Transform the eigenproblem Az = >.Bz to 

) ( >. -.,. "') (r·B)z (A- pB z = 

where r > 0. Let. A0 = A - JI.B a.nd B0 = TB in Algorithm 2. Then Algorithm 2 will split 

the spectrum of A - >.B along a. circle centered a.t I'· with radius .,. . If A a.ncl B a.re real, and 

we choose p to be real, then a.ll arithmetic in the algorithm will be real. . 
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(b) Transform the eigenproblem Az = >.Bz to 

). - (JL + l/) 
(A- (JL + v)B)z = >. ( ) (A- (JL- v)B)z 

- JL- l/ 

and let Ao = A - (JL + v )B and B0 = A - (JL - v )B in Algorithm 2. Then Algorithm 2 will 

split the spectrum of A - >.B along the line through JL and perpendicular to the segment 

from 11 + v to JL - v. If A and B are real, and we choose I'· and v to be real, then will we 

split along the vertical line through JL, and all arithmetic in the algorithm will be real. This 

is the splitting computed by the matrix sign function. This eliminates the need for matrix 

exponentiation in Malyshev's algorithm [43]. 

Other more general regions can he· obtained hy taking A0 and Bo as more complicated polyno­

mial functions of A and B. 

3 Inverse free iteration vs. the matrix sign function 

In this section we compare the cost of a single iteration of the new algorithm with the matrix sign 

function based algorithm. Numerical experiments will be presented in section 10. 

We begin by reviewing the matrix sign function. The sign function sign( A) of a matrix A with 

no eigenvalues on the imaginary axis can be defined via the .Jordan canonical form of A: Let 

o ) x-1 
]_ 

be the .Jordan canonical form of A, where the eigenvalues of J+ are in the open right half plane, 

and the eigenvalues of.]_ are in the open left half plane. Then sign(A), as introduced by Roberts 

[4 7], is 

sign(A):: X ( ~ ~I) x-1
. 

It is easy to show that the two matrices 

1 . 1 
P+ = 2(1 + s1gn(A)) and P_ = 2u- sign( A)) (3.7) 

are the spectral projectors onto the invariant snbspaces corresponding to the eigenvalues of A in 

the open right and open left half planes·, respectively. Now let the mnk r·evealing QR llecomposition 

of the matrix P+ he P+ = QRIT, so that R is upper triangular, Q is unitary, and II is a permutation 

matrix chosen so that the leading columns of Q span the range space of P +. Then Q yields the 

desired spectral decomposition [fi]: 

where the eigenvalues of An are the eigenvalues of A in open right-half plane, and the eigenvalues 

of A22 are the eigenvalues of A in the open left half plane. By computing the sign function of 

Mohius transformations of A, the spectrum can he divided along arbitrary lines and circles. 
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The simplest scheme for computing the matrix sign function is the Newton iteration applied to 

(sign(A))2 = J: 

Ai+l = ~(Ai + Aj1 
), j = 0, 1, 2,... with A0 =A. (3.8) 

The iteration is globally and ultimately quadratically convergent with limj-oo Aj =sign( A) [47, 36]. 

The iteration could fail to converge if A has pure imaginary eigenvalues (or, in finite precision, if 

A is "close" to having pure imaginary eigenvalues.) There are many ways to improve the accuracy 

and convergence rates of this basic iteration [16, 33, 38]. 

The matrix sign function may also be used in the generalized eigenprobl~m A- >.B by implicitly 

applying (3.8) to AB-1 [29]. We do not want to invert B if it is ill-conditioned, which is why we 

want to apply the previous algorithm implicitly. This leads to the following iteration: 

Ai+1 = ~(Ai + BAj1 B), j = 0, 1, 2,... with Ao =A. (3.9) 

Aj converges quadratically_ to a matrix C if B is nonsingular and A - >.B has no pure imaginary 

eigenvalues. In this case CB- 1 is the matrix sign function of AB-1
, and so following (3.7) we want 

to use the QR decomposition to calculate the range space of P± = ~(I ±CB-1 
), which has the same 

range space as 2P±B = B±C. Thus we can compute the invariant subspace of AB-1 (left deflating 

subspace of A- >.B) without inverting B, by computing the rank revealing QR decomposition of 

B ±C. The right deflating subspace of A- >.B can be obtained by applying this algorithm to 

AH - >.BH, since transposing swaps right and left spaces. 

Now we consider the convergence of (:3.9) when B is singular, and A- >.B has no pure imaginary 

eigenvalues. By considering the Weierstrass Canonical Form of A- >.B [28], it suffices to consider 

A0 = I and B a nilpotent .Jordan block. Then it is easy to show by induction that 

. 2j- 2-j 
Ai = 2-JJ + 

3 
B 2 + O(B4

) 

so that Aj diverges to infinity if B is 3-hy-3 or larger, ancl converges to 0 otherwise. In the latter 

case, the range space of B±Aj converges to the space spanned by e1 = [1,0, ... ,Of, which is indeed 

a left deflating subspace. The situation is more complicated in the former case. 

By avoiding all explicit matrix inversions, and requiring only QR decomposition and matrix­

matrix multiplication instead, our new algorithms may eliminate the possible instability associated 

with inverting ill-conditioned matrices. However, it does not avoid all accuracy or convergence 

difficulties associated with eigenvalues very close to the unit circle. In addition, the generalized 

eigenprohlem hal'! another possible so~uce of difficulty: when A- >.B ifl close to a singular pencil 

[28, 23]. We shall discuss this further in sections 5 and 7. 

The advantage of the new approach is obtained at the cost of more storage and more arithmetic. 

For example, when the matrix A is real, Algorithm 1 needs 4n2 more storage space than standard 

Newton iteration (some other iterations for the sign function which converge faster than Newton 

require even more storage). This will certainly limit the problem size we will be able to solve. 

Table 1 tabulates the arithmetic cost of one loop of the inverse free iteration versus the Newton 

iteration (3.8) and (3.9) for the real ordinary and real generalized spectral divide and conquer 

problems, respectively. From Table 1, we see that for the standard spectral divide and conquer 

problem, the one loop of the inverse free iteration does about 6. 7 times more arithmetic than the one 

loop of the Newton iteration. For the generalized divide and conquer problem, it is about 2.2 times 

more arithmetic. We expect that these extra expenses of the new approach will he compensated hy 

better numerical stability in some cases, especially for the generalized eigenprohlem; see section 10. 
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Table 1: The Arithmetic Cost of One Loop Iteration 

The Real Ordinary SDC Problem 

Inverse free iteration Newton iteration 

SGEQRF Tn::s + O(n:t) SGETRF ~n;j + O(n:t) 

SORMQR 6n3 + O(n2
) SGETRI ~n 3 + O(n2

) 

SGEMM(2) 4n3 +'0(n2
) 

Total 13.3n3 + 0( n2
) Total 2n3 + O(n2

) 

The Real Generalized SDC Problem 

Inverse free iteration Newton iteration 

SGEQRF Tn:5 + O(n2) SGETRF ~n::s + O(n2
) 

SORMQR Gn3 + O(n2
) SGETRI ~n 3 + O(n2

) 

SGEMM(2) 4n:3 + O(n2 ). SGEMM(2) 4n3 + O(n2
) 

Total 13.3n:5 + 0( n2) Total 6n3 + O(n2) 

4 Why the algorithms work 

The simplest way we know to see why the algorithms work is as follows. We believe this is much 

simpler than the explanation in [42], for example. 

For simplicity we will assume that all matrices we want to invert are invertible. Our later error 

analysis will not depend on this. It suffices to consider the first half of Algorithm 2. We will exhibit 

a. basis for the pencil A - >.B in which the transformations of the algorithm will be transparent. 

From step 2) of Algorithm 2, we see that 

( 
Q{\ Q~ ) . ( Bi ) = ( Q{\Bi- Q~Ai ) = ( R

0
. ) 

Q~ Q~ -Ai Q~Bi- Q~Ai 

so Q~Bj = Q~Ai or B.iAj
1 = Q1J! Q~. Therefore 

Aj~1Bi+1 = Aj
1
Q12HQ!ABi = (Aj

1 
Bj)

2 

so the algorithm is simply repeatedly squaring the eigenvalues, driving the ones inside the unit disk 

to 0 and those outside to oo. Repeated squaring yields quadratic convergence. This is analogous 

to the sign function iteration where computing (A+ A-1 )/2 is equivalent to taking the Cayley 

transform (A - I)( A+ I)-1 of A, squaring, and taking the inverse Cayley transform. Therefore, in 

step 3) of Algorithm 2 we have 

( 4.10) 

To see that this approaches a. projector onto the right deflating subspace corresponding to eigenval­

ues outside the unit circle as required by the algorithm, we will use the the Weierstrass Canonical 

Form of the pencil A- >.B [28]. Write 

A- >.B- P' ( Jo- ).J ) p-1 
- L .loo - ).N R 
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where P£ and PR are nonsingular, J0 contains the Jordan blocks of eigenvalues inside the unit 

circle, ] 00 contains the Jordan blocks of eigenvalues outside the unit circle, and N is block diago­

nal with identity blocks corresponding to blocks of finite eigenvalues in Jrx» and nilpotent blocks 

corresponding to infinite eigenvalues (identity blocks in ] 00 ) [28]. In this notation, the projector 

first mentioned in section 2.3 is 

PR,Izi>I = PR ( 0 I ) pRI 

and the deflating subspace in question is spanned by the trailing columns of PR. 

Since ] 00 is nonsingular, we may write 

_ , ( I ) ( Jo - >.I ) _1 _ ( Jo - >.I ) -1 
A- >.B- PL Joo I-' >.J~} N PR = PL I_ >.J~ PR , 

(4.11) 

where J~ = J~} N has all its eigenvalues either nonzero and inside the unit circle (corresponding 

to finite eigenvalues of J 00 ) or at zero (corresponding to nilpotent blocks of N). Thus 

and 

(4.12) 

Since J0
2P --+ oo and J'~P --+ 0 a.s p --+ oo, the last displayed expression converges to PR,Izi>I as 

desired. The approximate projector (Ap + B1,)-
1 Bv onto the other right deflating subspace is just 

I -(Ap+Bp)- 1 Ap = u +(A-1 B)2P)- 1(A-I B)2p = PR ( u + Jr)-
1 

(I+ J'0"2P)_1 ) PR.1 (4.13) 

which converges to 

(4.14) 

The projectors 

PL,Izl>1 = PL ( 0 I ) P£1 and PL,Izl<1 = I- PL,jzl>1 = PL ( I 0 ) P£1 

onto left deflating suhspaces are computed in Algorithm 2 by applying the same procedure to 

AH - >.BH, since taking the conjugate tra.ns1iose swaps right and left spaces. 

We discuss the convergence rate of this iteration in the next section, after we have introduced 

the condition number. 

An alternative approach to computing the left deflating spaces, which saves the cost of running 

the algorithm again hut requires a. possibly ill-conditioned linear system to he solved, is as follows. 

Note that 

PL,I•I>I . (A, B) = ( PL ( 0 I ) Pfi', PL ( 0 J' o ) Pfi') = (A, B) ( PR,I•I>l PR,I•I>I ) . 
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We can solve this for PL,fzf>l by using the decomposition 

so 

and thus 

PL,fzf>l = (APR,fzf>t. BPR,fzi>I)Q ( ~ ) R.-H 

The condition number of R. is the same as the condition number of the n x 2n matrix (A, B). 

If (A, B) is nearly singular, this means the pencil A- >.B is nearly singular, which means its 

eigenvalues are all very ill-conditioned, among other things [23]. We discuss this further below. 

5 Perturbation theory 

Algorithms 1 and 2 will work (in exact arithmetic) unless there is an eigenvalue on the unit circle. 

This includes the case of singular pencils, in the sense that if A- >.B is a singular pencil then A- zB 

will be singular for any z, including the unit .circle. Thus the set of matrices with an eigenvalue on 

the unit circle, or pencils such that A - zB is singular for some z on the unit circle, are the sets of 

"ill-posed problems" for Algorithms 1 and 2. 

Our goal is to show that the reciprocal of the distance to this set of ill-posed problems is a 

natural condition number for this problem. This will rely on a clever expression for the orthogonal 

projectors by Malyshev (42]. In contrast to Malyshev's work, however, our analysis will be much 

simpler and lea.d to a. potentially much smaller condition number. 

We begin with a simple formula. for the distance to the nearest ill-posed problem. We define 

this distance as follows: 

d(A,B) = inf{IIEII + IIFII :(A+ E)- z(B +F) is singular for some z where lzl = 1} . (5.15) 

This infimum is clearly attained for some E and F by compactness. Note also that d(A,B) = 

d(B,A) = d(AH,BH) = d(BH,AH)· 

Lemma 1 d(A,B) = mine ('Tmiu(A- f/e B). 

Proof. Let (T = mine ('Tmin(A - c;e B). Then there is a () and an E such that liE II = a and 

A + E - cie B is singular, implying d(A,B) $ IIEII = (7'. To prove the opposite inequality, the 

definition of d(A,B) implies that there are a. f:J and matrices E and F with II Ell+ IIFII = d(A,B) such 

that A+ E- eie(B +F)= (A- cie B)+ (E- eie F) is singular. Thus 

ie ie 
d(A,B) = IIEII + IIFII ~ liE-(; Fll ~ ('Tmin(A- C B) ~ (T 

as desired. I 
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As a remark, note that essentially the same proof shows that for any domain V 

min{IIE, FllF : det((A +E)- z(B +F))= 0 for some z E V} = min O'min( cA - sB) , 
s,c 

z=s/cET> 

lsl2+lcl2
=1 

which is the natural way to extend the notion of pseudospectrum to matrix pencils [54). 

Now we turn to the perturbation theory of the approximate projector computed in step 3) of 

Algorithm 2, (Ap + Br>)-1 Bp, which is also given by the formula in ( 4.13). Following Malyshev [42), 

we will express this approximate projector as one block component of the solution of a particular 

linear system (our linear system differs slightly from his). Let m = 2P. All the subblocks in the 

following mn-hy-mn linear system are n-by-n. All suhhlocks not shown in the coefficient matrix 

are zero. 

-A -B 

M,.(A, B)· ( 

Zm-1 

) B 
-

Zo 
B -A 

If BorA were nonsingular, we could confirm that the solution of (5.16) would be 

( 

Zm-1 l Zm-2 

Zo 
( 

(B-1 A)m-1(J + (B-1 A)"')-1 l 
(B-1 A)m-2(! + (B-1 AY")-1 

(I+ (B-1 AY")-1 

or 

·r (A-
1

B)(l+(A-
1

B)m)-
1 l 

(A-1 B)2(I + (A-1 B)m)-1 

(A-1 BY"(J + (A-1 B)m)-~ 

(5.16) 

Thus we see that Z0 = (A-1 BY"(!+ (A-1 BY'')-1 as in (4.13). By using the Weierstrass Canonical 

Form of A - >..B, we can change basis a.nd solve this system explicitly without assuming A or B is 

nonsingular. It will still turn out that Z0 = (AT>+ B
11
)-

1 Br>. By using standard perturbation theory 

for linear systems, we will get the perturbation theory for (Ap + B1,)-
1 Br> (or (Ar> + Bp)-1 Ap = 

I- (A1, +Br>)-1 Br>) that we want. 

The motivation for (5.16) in [42) is from a. recurrence for the coefficients of the Fourier expansion 

of (B- eie A)-1, but that will not concern us here. 

We now change variables from Z; to Zi = Pi/ Z;PR, which we should expect to block diagonalize 

A, B and Z; and so decouple (5.1G). Making this substitution, premultiplying the block equations 

in (5.16) by Pi1
, and using ( 4.11), we get 

where 

-A 
13 

-13 

13 -A 

13 = ( I J~ ) a.nd A = ( .To I ) · 

(5.17) 



Now we can write Zj = J,+ 
( 

Z· 

Zj,-

-Jo 

and 

Jb ~~ 
(

-I 

J' 0 
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) and decompose ( 5.17) into two systems, 

-I 

(5.18) 

I -Jo 

(5.19) 

These equations are rather simple, a.ncl it is easy to verify that the following are the solutions: 

Zm-I,+ Jf{t-I(I + .J({')-1 Zm-1,- .l'o(I + .J'~t)-1 
Zm-2,+ .J~"-2(! + .l;'{')-1 Zm-2,- .J'~(I + J'~t)-1 

and = (5.20) 

ZI,+ .Jo(I + .lo" )-1 Z1,- J'~t-1(1 + J'~t)-1 
Zo,+ (I+ .T({')-1 Zo,- J'~t(I + J'~t)-1 

Thus, we can reconstruct 

Zo 

= 

( 5.21) 

a.s given in ( 4.13). 

Now we can ask how much Z0 can change when we change A ancl B in (5.16). We will answer 

this question using a slight variation on the usual normwise perturbation theory, and take full 

account of the structure of coefficient ma.trix. In fact, we will see that we get the same condition 

number whether or not we take the structure into account or not. Let Im be an m-by-m identity 

matrix, and .lm be an m-by-m matrix with 1 on the subdia.gonal, a.nd -1 in position (1, m). Then 

one can ea.c;ily confirm that the coefficient matrix in (5.16) can be written using the Kronecker 

product ® as 

Mm(A,B) =-I"'® A+ .lm ® B . 

Since .lm is orthogonal, and hence normal, its eigendecomposition can be written .lm = U AUH, 

where U is a. unitary matrix and A = dia.g( ei£h, ... , eiB,.) is the diagonal matrix of eigenvalues, all of 

which must lie on the unit circle. In fact, one can easily confirm that the characteristic polynomial 

of .lm is det( AI - .lm) = N" + 1, so the eigenvalues are m- th roots of -1. Then transforming 



Mm(A, B) using the unitary similarity U ®I .. , we get 

(U ® I .. )H Mm(A, B)(U ®In) = -UH ImU ®A+ U JmUH ® B 

-Im ®A+ A® B 

= diag( -A+ ei81 B, ... ,-A+ eiBm B) 
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Therefore, the smallest singular ·value of Mm(A, B) is minl<j<m D"min( -A+ ei
8
i B). As m grows, 

and the process converges, this smallest singular value decre~e~ to mine D"min( -A+ ei
8 B) = d(A,B)· 

This shows that d(l,B) is a condition number for (Ar + Bp)-1 Bp, and in fact a lower bound bound 

for all finite m. We may also bound . 

6 Convergence analysis 

Using equation (4.12), we will hound the error 

<~ 
- tl(A,B) 

(5.22) 

after p steps of the algorithm. Our hound will he in terms of IJPR.Izl>1ll and d(A,B)· It can be much 
tighter than the corresponding hound in Theorem 1.4 of [42], for reasons di::;cussed in section 8. 

Theorem 1 Let d(A,B) be defined w.; in (5.15}. Then if 

we may bound 

II(A, B) II- d(A,B) 
p 2: log2 -------'--'--'-

d(A,B) 

II(Ap + BT,)-
1 
AT,- PR,Izi>Iil 

IIPRJ=I>111 

2P+3(1 _ d(A,B~ ?P 

< II(A,B II . 
- (Q 1 2P+2(1 d(A,B) )2P) 

max ' - - II(A,B)II 

(6.23) 

Thus, we see that convergence is quadratic, and depends on the smallest relative perturbation 

~ that m<~.kes A- >.B have an eigenvalue on the unit circle; the smaller thi::; perturbation, the 

~~';.;~~~~the convergence. 

We begin the proof with an estimate on the growth of matrix powers. Many related bounds are 

in the literature [54, 34]; ours differs slightly because it involves powers of the matrix y-1 X. 

Lemma 2 Let X - >.Y have all itc;; eigenvalues inside the unit cir-cle. Then 

{ 

(
. d(X,Y)) m 

II(Y-1 X)"''ll ::; r:~,l;'.-llm. 1- Wil 

. d(X,Y) 

if m IIYII-d(x,Y) 
> d(X,Y) 

if m < IIYII-d(x,Y) 
- d(X,Y) 

whcr·e exp(1) ::; Cm = (1 + m-1 )m+1 
::; 4, and limm-+oo ern = exp(1). We may also bound em· m :S 

e(m + 1). 
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Proof of Lemma 2. Let r satisfy p(Y-1 X)< r:::; 1, where p(Y-1 X) is the spectral radius of 

y-1 x. Then 

< 

< 

112~i la27r ( reie)m( reie I- y-1 X)-1dreiell 

112~i la27r c reiernc reiey - x)-1dreiey II 

rm+l\IYII 
mine O'miu(reiey- X) 

rm+1 \IY \I 
mine O'min(eiey- X+ Yeie(r- 1)) 

r·m+I IIYII 
mine O'min(eiey- X) -\IYI\(1- r·)) 

,,.m+1 

d(x,Y)/.IIYII- 1 + r 
- f(r·) 

We may easily show that if m ~ [1\YII- d(x,Y)]/d(x,Y)• then f(r) has a minimum at p(Y-1 X)< 

r· = "~t 1 (1- d(X,Y) /\IYII) :::; 1, and the value of this minimum is 

If m:::; [IIYII - d(X,Y)]/d(X,Y)• then the upper bound is attained at ,,. = 1. I 

Completely analogously, one may prove the following lemma., which is a special ca.c;e of a bound 

in [54]. 

Lemma 3 Let X have all its eigenvalues inside the unit cir-cle. Let dx = mine O'min( eie I- X); dx 

is the smallest per·tur·bation of X that will make it have an eigenvalue on the unit cir-cle. Then 

II
X.,.II <_ { Cr

1

n • rn · (1- dx )m if m > 
1
·;/x 

'f < 1-~x 
dx 1 m- dx 

whe1·e em is as defined in Lemma 2. 

Proof of Theorem 1. By a. unitary change of basis, we may without loss of generality assume 

that 

A _ >-.B = ( An A12 ) _ >-. ( Bn B12 ) 
0 A22 0 B22 

where the eigenvalues of An - >-.B11 are inside the unit circle, and the eigenvalues of A22 - >-.B22 

are outside the unit circle. Let L and R he the unique matrices such that [23, 50] 

( A~, ~:: ) _A ( B~1 !:: ) ~ ( ~ ~ ) . ( Au -0 ABu A,! AB,, ) . ( ~ ~ ) -l . 



Then, a..c;suming for the moment that A is invertible, we get 

and 

p ( I R ) ( 0 0 ) ( I R. ) -
1 

( 0 R. ) 
R,lzl>1 = 0 I . 0 I . 0 I = 0 I 

Then we see that Ep =(I+ (A-1 B)2P)-1
- PR,Izi>I may be written 

= ( (I+ (B]} An) 2 ~)- 1 (B!/ AnflP ~ ) . ( ~ -
0
R. ) 

- ( ~ ~ ) . ( ~ (I+ (A2} B22?~')- 1 (A2} B22 )
2

P ) 
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The derivation of this formula used the fact that A, and so A11 , were nonsingula.r, hut the final 

formula. does not require this. Since the rational function in the formula is correct off the set 

of measure zero where A is singular, and continuous on this set of measure zero, where the· true 

function is also continuous, it must necessarily be correct everywhere. Thus 

provided the denominators are positive. From Lemma. 2, we ma.y bound . 
l 21' 

II(B-1 A )21'11 < 4. 2T'. (1- (,(A!l,Bil)) 
11 11 

- IIBnll 

for p sufficiently large. Since 

this yields the desired bound. I 
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A weakness in Lemmas 2 and 3 comes from using the single number d(A,B) (or dA) to characterize 

a matrix. For example, 

where a~ 1- 1.25 ·10-7 have the same value of dA, namely about 1.25 ·10-7
. IIA211 clearly never 

increases, let alone to 1/dA ~ 8 · 106 as predicted by Lemma 3; in contrast IIAIII gets as large 

as 1.5 · 106
• For large n, IIA211 decreases precisely as (1 - dA)n ~ .999999875n, as predicted by 

Lemma 3; in contrast IIA!II decreases much faster, as .sn. To see that both parts of the bound 

can be attained simultaneously, consider diag(AI. A2 ). Despite the potential overestimation, we 

will use d(A,B) in all om analyses in the paper, both because it gives tighter hounds than those 

previously published, and in the inevitable tradeoff hetween accuracy and simplicity of bounds of 

this sort, we have chosen simplicity. 

One can use the bound in Lemma 3 to hound the norm of A 11 computed in floating point [34); 

this work will appear els~where. 

7 Error analysis 

Following Malyshev [42], the analysis depends on the observation that step 2) of Algorithm 2 is just 

computing the QR decomposition of Mm(A, B), in a. manner analogous to block cyclic reduction 

[15). Malyshev works hard to derive a. rigorous a. pr·ior·i bound on the total roundoff enor, yielding 

a.n expression which is complicated and possihly much too large. It ca.n be too large because it 

depends on his condition numher w (see section 8) instead of our smaller d(l,B)' because we use 

the GQR decomposition instead of explicitly inverting (Ap + Bp) in step 3), and because worst 

case roundoff analysis is often pessimistic. In algorithmic practice, we will use an a posterior·i 

bound max(IIE21II, IIF21II), which will be a precise measure of the backward error in one spectral 

decomposition, rather than the a pr·ior·i bounds presented here. 

We begin by illustrating why step 2 of Algorithm 2 is equivalent to solving (5.16) using QR 

decomposition. We take p = 3, which means m = 23 = 8. Let 

( 
Q (.i) Q(j) ) . 11 . 12 

Q
(j) Q(j) 
21 22 

be the orthogonal matrix computed in the jth iteration of step 2), and let 

Q(j) - Q21 Q22 
( 

(j) (j) ) 

- Q(j) Q(j) . 
. 11 12 

Then we see that step 2) of algorithm 2 is equivalent to the identity 

{JU)H ( -Ai 
B· J 

(7.24) 
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where the *S are entries which do not interest us. Multiplying block rows 1 and 2, 3 and 4, 5 and 

6, and 7 and 8 in (5.16) by Q(o)H and using (7.24) yields 

Rt * 
0 -AI 

* RI 
Bt 0 

* 
-AI 

* Rt 
BI 0 

* 
-Bt 

z1 
z6 
Zs 
z4 
z3 
z2 
ZI 
Zo 

Reordering the odcl-numherecl hlocks before the even ones results in 

Rt * * z1 
Rt * * Zs 

Rt * * z3 
Rt * * Z1 

-At -B1 z6 
B1 -At z4 

B1 -At z2 
BI -At Zo 

* 
-BI 

0 

0 

0 

0 

0 

0 

* 
0 

0 

0 
(7.25) = 

-B1 
0 

0 

0 

Repeating this with (j(t)H on the lower right corner of (7.25), and similarly reordering blocks, we 

get 

RI * * z1 * 
R1 * * Zs 0 

R1 * * z3 0 

R1 * * Zt 0 
(7.26) 

R2 * * z6 * 
R2 * * z2 0 

-A2 -B2 z4 -B2 
B2 -A2 Zo 0 

One more step with Q(2)H on the lower right corner of (7.26) yields 

R1 * * z1 * 
Rt * * Zs 0 

Rt * * z3 0 

R1 * * Z1 0 
(7.27) = 

R2 * * z6 * 
R2 * * z2 0 

R3 I * 
--z.;- * 

I -A3- B3 z;;- -B3 

Thus, we see again that Z0 = (A:3 + B3 )-
1 B:3 as desired. It is clear from this development that 

the process is backward stable in the following sense: the computed A3 + B3 (or more generally 
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Am + Bm) in the transformed coefficient matrix, and B3 (or Bm) in the transformed right hand 

side, are the exact results corresponding to a slightly perturbed M2m(A, B)+ bM2m and initial right 

hand side B2m + bFhm, where llbM2mll = O(c:)II(A, B)ll and llbB2mll = O(c)IIBII. 
Next we must analyze the computation of Q R in step 3) of Algorithm 2. As described in 

section 2.3, if we use the GQR decomposition to compute Q R without inverses, then Q R is nearly the 

exact orthogonal factor of (Am +Bm +E)-1(Bm +F) where II Ell= O(c)IIAm+Bmll = O(c:)II(A, B) II, 
and IIFII = O(c:)IIBmll = O(c:)IIBII· We can take these E and F and "push them hack" into bM 

and bBm, respectively, since the mapping from M2m(A, B)+ bM2m to Am+ Bm is an orthogonal 

projection, as is the map from B2m to Bm. So altogether, combining the analysis of steps 1) 

and 2), we can say that QR is nearly the exact answer for M2m(A,B) + bM~m and B2m + 6B~m 

where II6M~mll = O(c:)II(A,B)II and II6B~mll = O(c:)IIBII· Since the condition number of the 

linear system (5.16) is (no larger than) d(l,B)' and the ·norm of the solution is hounded by (5.22) 

the absolute error in the computed Z0 of which Q R is nearly the true factor is hounded by2 

O(c:) ·IIBII·II(A, B)lld(1,B>::; O(c:) ·II( A, B)ll 2d(l_B)" 
To hound the error in the space spanned hy the leading columns of Q R, which is our approximate 

deflating subspace, we need to know how much a. right singular suhspa.ce of a matrix Z0 , i.e. the 

space spanned by the right singular vectors corresponding to a subset S of the singular values, is 

perturbed when Z0 is perturbed by a matrix of norm 7J· If Zo were the exact projector in (4.14), 

S would consist of all the nonzero singular values. In practice, of course, this is a question of rank 

determination. No matter what S is, the space spanned by the corresponding singular vectors is 

perturbed by at most 0(17)/gaps [4fi, 53, 50], where gaps is the shortest distance from any singular 

value in S to any singular value not in S: 

ga.ps = min 1(1 - n-1 . 
l1ES 

iTrf.S 

So we need to estimate gaps in order to compute an error bound. We will do this for Zo equal to 

its limit PR,Izl<l in ( 4.14). There is always a. unitary change of hasis in which a projector is of the 

form ( ~ ~),where~= diag(l11, ... ,lT/R) is diagonal with lT1 2: ··· 2: lT[R 2:0. From this it 

is easy to compute the singular values of the projector: { j1 + lTf, ... , j1 + lTfR' 1, · · ·, 1, 0, ... , 0}, 

where the number of ones in the set of singular values is equal to max(2lR - n, 0). Since S ::;:: 

{ J 1 + lTf, ... , J 1 + lTl R, 1, · · · , 1}, we get 

if 2lR ::; n 

if 2lR > n· 

Thus, we get that in the limit a.s m -+ oo, the error bQ R in Q R is bounded by 

2This hound is true even if we compute the inverse of Am + B,. explicitly. 

(7.28) 

l1·· 
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A similar bound holds for II<S"Q £il in Algorithm 2. Thus 

IIE21II < ii(QL + bQL)H A(QR + bQR)- Qf AQRii = llbQf AQR_+ Qf AbQRii + 0(£2) 

< (libQLII + llbQRII)IIAII + 0(£2) 

with a similar bound for IIF2tll· 
So altogether, in the limit as m-+ oo, we expect the following bound on backward stability3

: 

(7.29) 

where gap5 R refers to the gap in the singular values of PR,izi<l1 and gap5 L refers to the gap in the 

singular values of PL,Izi<I, 
For simplicity, consider Algorithm 1, where PR,Izi<I = PL,Izi<I· An interesting feature of the 

error bound is that it ma.y he smaller if 2lR ::::;: n tha.n otherwise. This is borne out by numerical 

experiments, where it can he more a.ccura.te to make the choice in step :3) of Algorithm 1 which 

leads to A 11 being smaller than A22 . Also, when 2lR ::::;: n, the error hound is a. decreasing function 

of (TIR" On the other hand, If (TIR is large, this means (11 and so IIPR,Izi<Iil = J1 + ar are large, and 

this in turn means the eigenvalues inside the unit circle are ill-conditioned [23). This should mean 

the eigenvalues are lumlc1· to divide, not ea..c;ier. Of course as they become more ill-conditioned, 

d(A,B) decreases at the same time, which counterhala.nces the increase in aiR· 

In practice, we will use the a. postc1·im·i bounds IIE2tll and IIF2tll anyway, since if we block upper­

triangularize Qf(A- >..B)QR by setting the (2, 1) blocks to zero, IIE2tll and IIF211i are precisely 

the backward errors we commit. If the next section, we will compare our error hound with those 

in [42]. 

8 Remark on Malyshev's condition number 

We have just shown that ll(l,B) is a natural condition number for this problem. In this subsection, 

we will show that Malyshev's condition number can be much larger (42]. Malyshev's condition 

number is 

w - 11 2 ~ fo
2

tr (B- c/1> A)-1(AAH + BBH)(B- ci1> A)-H d</> II 

112~ .£21r (B'- (;i,P A')-l(B' -(;it/> A')-H d</> II (8.30) 

where A'= (AAH + BBH)- 112 A and B' = (AAH + BBH)- 112 B; this means A' A'H + B' B'H =I. 

Malyshev begins his version of the algorithm by replacing A by A' and B by B', which we could 

too if we wanted to. 

Malyshev's ahsolute error hound on the computed Z0 is essentially 0( c )w2
, whereas ours is 

0(£)d(1,B)' assuming II(A, B) II~ 1. We will show tha.t d(],B) can be a.s small a.s the square root of 

w. 

3 ln fact this honnd holds for snfficieutly large m il.l:' well. 
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Since 

( 
H H) d(A,B) H H) 

O"min AA + BB ~ i ~ O"max(AA + BB 
. l (A',B') 

it is sufficient to compare w and d(J,B) when AAH + BBH is well-conditioned. Malyshev shows 

that, in our notation, d(J',B') < 51l"w, showing that d(J',B') is never much larger than w. Malyshev 

shows that d(l,B) and w can be close when B =I and A is real symmetric. By taking norms inside 

the integral in (8.30), one gets the other bound ...;W ~ d(l,B)' showing that d(l,B) can be as small 

as the square root of w. To see that ll(l,B) can indeed be this small, consider the following example. 

Let A = I and B = D - N, where D is diagonal with entries equally spaced along any arc of the 

circle centered at the origin with radius 0 < d < 1 and angular extent 1r /8, and N has ones on the 

superdiagonal and zeros elsewhere. When d is close to 1 and the dimension of A is at least about 

20, one can computationally confirm that (l(l,B) is close to ...jW. This example works because when 

eie is in the same sector as the eigenvalues of B, (B- ci0 A)- 1 is as large a.s it can get, and its 

largest entry is in position (1, n): 
1 

f1k=l(Bkk- eiB) 

Thus the integral for w is hounded a.hove hy a. modest multiple of the integral of the square of the 

magnitude of the quantity just displayed (times O"max(AAH + BBH)), which is near its maximum 

value cl(l,B) for a range of 0 close to [0, 1r /8], so the integral is within a. constant of d(l,B)" 

9 Stopping criterion 

In this section we justify the stopping criterion used in Algorithms 1 and 2 hy showing that Rj 

converges quadratically. 

From step 2) of Algorithm 2, we see that 

Bi+I = Q~Bi = Q~QuR.i and Aj+l = Q~Ai = -Q~Q21Rj . 

For two symmetric non-negative definite matrices P1 and P2 , we use the relation P1 ~ P 2 to 

mean that P 2 - P 1 is non-negative definite. The above relations imply 

Rf+1Rj+1 Bft_1Bi+l + Af+1Aj+I 

R_r ( QI; Q22Q~Qu + Qft Q12Q~Q21) Rj 

< Rf ( Q{;Qu + QftQ21) Ri 

RfRi. 

Since Rlf Rj ;::: 0 for all j, the ahove rela.tion implies that the sequence { Rlf Rj} converges. On 

the other hand, since Rj can he viewed a.s a. diagonal block in the upper triangular matrix of the 

cyclic QR decomposition of the coefficient matrix in (5.16), we have O"min(Rj) ;::: cl(A,B)· Hence 

the sequence { Rf Rj} converges to a. symmetric positive definite matrix. Let this limit matrix be 

RH R, where R is upper triangular with positive diagonal elements. It follows that the sequence 

{ Rj} converges to R. 
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To see the quadratic convergence of {Rj}, we note that 

Rf-._1 Ri+I Rlf ( Q{; Q22Q~Q11 + Q~ Q12Q~Q21) Ri 

= Rlf Ri- Rf(SJ·Sf +Sf Si)Ri 

where Sj = Q{\ Q21 . It then follows that Sj converges to the zero matrix. Furthermore, let 

Ri+l =(I+ Ej)Rj, then Ej is upper triangular and the above relation implies that 

(I+ Ej)H (I+ Ei) =I- (SiSf+ Sf Si). 

In other words, (I+ Ei )H (I+ Ei) is the Cholesky factorization of I - (SiSJl + Sf Si ). Hence 

IIEill = O(IISill 2
) and 

IIRj+l -Rill ::; IIEiiiiiRill = O(IISiii 2 IIRjll). 

Note tha.t Qn = BiR.i
1 

and Q21 = -AiR.i1 
and so 

Si = -RjH Bf AjRj1
• 

In the following we establish the quadratic convergence of Sj. To this end we first establish a 

recursive relation for the sequence {Bf Aj }. Recall that by step 2) of Algorithm 2, 

Bi+l = Q~Bi a.nd Ai+I = Q~Ai . 

Hence 

(9.31) 

Since 

we ha.ve 

On the other ha.nd we also have 
.H H 
Q12Q12 + Q22Q22 = I · 

Combining these two relations, we obtain tha.t 

where Hi = AjBj1 and W is an arbitrary n x n orthogonal matrix. Hence 



26 

Substituting this relation into (9.31) we obtain 

H H ( H H )-l H Bi+1 Aj+t = Bi Aj Ei Ej + Ai Aj Ei Aj . (9.32) 

Recall that Rj+I =(I+ Ej)Rj and Sj = -RjH Bf AjRj1
, equation (9.32) can be rewritten as 

(9.33) 

with Ej = O(IISill2). This establishes the quadratic convergence of {Sj} and hence {Rj}. We point 

out that this implies that the sequence { Ef Aj} also quadratically converges to the zero matrix. 

10 Numerical experiments 

In this section, we present results of onr numerical experiments with Algorithms 1 and 2 and 

compare them with the matrix sign function based algorithm. In all experiments we split the 

spectrum along the imaginary axis. This means we apply Algorithm 1 to A0 = I- A and Eo = I+ A 

and Algorithm 2 to Au = B- A a.nd Eo = E +A. We focus primarily on the ordinary SDC problem 

(Algorithm 1). All algorithms were implemented in MATLAB version 4.0a on a SUN workstation 

1 + using IEEE standard double precision arithmetic with machine precision £ ~ 2.2 x 10-16
• 

The Newton iteration (3.8) for computing the matrix sign function of a matrix A is terminated 

if 

IIAj+I - Ajllt :::; 10n£11Ailh· 

The inner loop iteration in Algorithms 1 and 2 for computing the desired projector is terminated if 

We set the maximal number of iterations rnaxit=GO for both the Newton iteration and the inverse 

free iteration. 

Algorithms 1 and 2 and the matrix sign function hased algorithm work well for the numerous 

random matrices we tested. In a typical example for the standard SDC problem, we let A be a. 100 

by 100 random matrix with entries independent and normally distributed with mean 0 and variance 

1; A has condition number about 104 . Algorithm 1 took 13 inverse free iterations to converge and 

returned with IIE21 1ltfiiA21 Ih ~ 5.44 x 10-15. The matrix sign function took 12 Newton iterations 

to converge and returned with IIE21 1lt/IIA21 Ih ~ 2.12 x 10-14
• Both algorithms determined 48 

eigenvalues in the open left half plane, all of which agreed with the eigenvalues computed by the 

QR algorithm to 12 decimal digits. 

In a typical example for the generalized SDC problem, we let A and E be 50 by 50 random 

matrices with entries distributed as above. Algorithm 2 took 10 inverse free iterations to compute 

the right deflating subspace, and 10 inverse free iterations for the left deflating subspace, and 

returned with IIE211lt/IIA21Ih ~ 3.31 x 10-15 and IIF2tllt/IIE2tll1 ~ 2.64 X 10-15. Using the QZ 

algorithm, we found that the closest distance of the eigenvalues of the pencil A->..E to the imaginary 

axis was about 10-3 . 

We now present three examples, where test matrices are constructed so that they are ill­

conditioned for inversion, have eigenvalues close to the imaginary axis, and/or have large norm 

of the spectral projector corresponding to the eigenvalues we want to split. Thus, they should he 

difficult cases for our algorithms. 
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Table 2: Numerical Results for Example 1 

Newton iteration Inverse free iteration 

~(A)~ "12 rcond(A) iter ~ ite1· ~ I 1 

1 6.83e- 2 7 2.19e- 16 7 3.14e- 16 
10-2 3.18e- 2 14 1.26e- 15 14 1.75e- 15 
10-6 3.12e- 2 27 2.21e- 11 27 1.94e- 11 
10-10 4.28e- 2 41 3.65e- 07 40 1.56e- 07 

In the following tables, we use rcond( A) to denote the estimate of the reciprocal condition 

number of matrix A computed hy MATLAB function rcond. ~(A) = min,xiE,\(A) IRAjl is the 

distance of the nearest eigenvalue to the imaginary axis. sep = sep( An, A22) = O'min(I 0 An- AI2 0 
I) is the separation of matrices An and A22 [50], and IIPII = .j1 + IIRII 2 is the norm of the spectral 

projector P = ( ~ ~ ) corresponding the eigenvalues of A11 ; R satisfies A11 R- RA22 = -A12 . 

A numher 10a in parenthesis next to an iteration number iter· in the following tables indicates that 

the convergence of the Newton iteration or the inverse free iteration was stationary at about 10cr 

from the iterth iteration forward, and failed to satisfy the stopping criterion even after 60 iterations. 

All random matrices used below are with entries independent and normally distributed with 

mean 0 and variance 1. 

Example 1. This example is taken from [4, 1]. Let 

C'} 
1 0 

~) (;) -1 -'1] 0 
G=R= ( 1 1 ) . B= ·o 1 1 

0 ''I 

0 0 -1 1} 

and 

A= QT ( ~ -~T ) Q. 

where Q is an orthogonal matrix generated from the QR decomposition of a random matrix. As 

'I] - 0, two pairs of complex conjugate eigenvalues of A approach the imaginary axis, one pair at 

about -TJ2 ± i and the other pair at about -11
2 ± i. 

Table 2lists the results computed by Algorithm 1 and the matrix sign function based algorithm. 

From Table 2, we see that if a. matrix is not ill-conditioned to invert, the Newton iteration performs 

as well as the inverse free iteration. When there are eigenvalues close to the boundary of our 

selected region (the imaginary axis), the inverse free iteration suffers the same slow convergence 

and the large backward error as the Newton iteration. These eigenvalues are simply too close to 

separate. Note that the Newton iteration takes about fi to 7 times less work than the inverse free 

iteration. 

For this example, we also compared the observed numerical convergence rate of Algorithm 1 with 

the theoretical prediction of the coitvergence rate given in Theorem 1. To compute the theoretical 
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Figure 1: Convergence History of Example 1, 'TJ = 0.1 
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prediction, we need to estimate d(A,B)· Algorithms for computing dA and related problems are 

given in [18, 13, 12, 17}. Since our examples are quite sma.Il, and we needed little accuracy, we used 

"intelligent brute force" to estimate rl(A,B)· 

Figure 1 plots the observed convergence rate of Algorithm 1 and the theoretical convergence 

rate, which is the upper bound in {6.2:3), for the matrix A with TJ = 0.1. We estimated d(Ao,Bo) ~ 

9.72 x 10-3
, and II(A0 , Bo)ll::::::: 6.16. Although the theoretical convergence rate is an overestimate, it 

does reproduce the basic convergence behavior of the algorithm, in particular the ultimate quadratic 

convergence. Regarding the analysis of the backward accuracy as given in (7.29), for this example, 

we have 

IIIEI~IIIII ~ 7.87 x 10-15 < £ ~~~~o, Bo)ll2 ::::::: 8.89 x 10-n. 

(Ao,Bo) 

As we have observed in many experiments, the bound in {7.29) is often pessimistic, and so the 

algorithm works much better than we can prove. We have some ideas on this but it is not complete. 

More study is needed. 

Example 2: In this example, A is a parameterized matrix of the form 

T­
A=Q AQ, 

where Q is an orthogonal matrix generated from the QR decomposition of a random matrix, 

k 
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Eigenvalue Distribution of A 
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real part 

Figure 2: Eigenvalue distribution of 40 hy 40 matrix A with k = 20, a = 0.45 

Table :3: Numerical Results for Example 2 

Newton iteration Inverse free iteration 

~(A) rcond(A) sep liP II iter· ¥ iter· ~ 1 1 

10 1 8.19e- 04 2.00e- 1 fi.42e + 0 9 8.15e- 16 9 2.49e- 16 
w-3 1.61f:- 07 2.00e- 3 2.07e+2 15(10-13

) 4.23e- 12 15 1.19e- 15 
w-s 4.12e- 12 2.00e- 5 8.0()f; + 4 21(10-09

) 3.27e- 07 22 8.46e- 15 
w-7 1.38e- 15 2.00r-:- 7 2.29e + 6 28(10-05

) 2.09e- 04 28(10-13
) 2.44e -13 

0: l 
1- n ' 

0 ~(X~ 0.5, 

and A12 is a random matrix. Note that the eigenvalues of A11 lie on a. circle with center 1 -a a.nd 

radius r.1 a.nd those of A22 lie on a. circle with center -1 + a a.nd radius a. The closest distance 

of the eigenvalues of A to the imagina.ry a.xis is ~(A) = 1- 2a. As a -+ 0.5, two eigenvalues of 

A simultaneously approach the imaginary a.xis from the right and left. Figure 2 is the eigenvalue 

distribution when k = 20 and a = .45. 

Table 3 reports the computed results for different values of a with k = 10. From this da.ta, we 

see tha.t when the eigenvalues of A are adequately separated from the imaginary a.xis (~(A)~ ..Ji), 
the results computed hy the inverse free iteration are superior to the ones from Newton iteration, 

especially when the matrix is ill-conditioned with respect to inversion. This is what we expect from 

the theoretical analysis of the algorithms. The following example further confirms this observation. 
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Table 4: Numerical results for Example 3 

Newton iteration Inverse free iteration 

cl rcond(A) sep liP II iter .~ iter -~ 1 1 

1.0 4.09e- 06 1.36e- 03 7.39e + 1 9(10 ·l;$) 4.56e- 14 10 7.08e- 16 

0.5 1.29e- 06 2.37e- 04 4.32e + 2 11(10-12) 1.99e- 12 10 1.66e- 15 

0.3 3.43e- 10 4.71e- 06 2.76e + 5 14(10-07
) 4.55e- 09 15 1.64e- 15 

0.2 6.82e- 11 3.94e- 07 5.48c + 4 16(10-07
) 2.76€- 08 12 1.43e- 13 

0.1 8.12e- 14 1.54e- 10 7.48c + 8 - (fail) 15{10-13) 3.66e- 11 

Example 3. The test matrices in this example are specially constructed random matrices of the 

form 

(10.34) 

where Q is a.n orthogonal matrix generated from the QR decomposition of a random matrix. 

Subma.trices An and A 22 are first set to he 5 X 5 random upper triangular matrices, and then 

their diagonal elements replaced hy tlla;;l and -dln;;l, respectively, where a;;(1 :::; i:::; n) are other 

random numbers and d is a positive parameter. A12 is another 5 x 5 random matrix. As d gets 

small,. all the eigenvalues get close to the origin and become ill-conditioned. This is the hardest 

kind of spectrum to divide .. 

The numerical results are reported in Table 4. All eigenvalues are fairly distant from the 

imaginary axis (Ll(A) ~ 0(10-:3)), but the conditioning of the generated matrices with respect 

to inversion can he quite large. The separation of An and A22 can also become small, and IIPII 
large, indicating that the eigenvalues are hard to separate. Table 4 gives results for d in the 

set { 1, 0.5, 0.3, 0.2, 0.1}. Again, Newton iteration is inferior to inverse free iteration for the ill­
conditioned problems. In pa.rticular, in the case of cl = 0.1, we observed that from the fourth 

Newton iteration onward rcond(A4 ) was about 0(10-18), and that Newton failed to converge. 

However, the inverse free iteration is still fairly a.ccura.te, although the convergence rate and the 

backward accuracy do deteriorate. 

11 Open problems 

Here we propose some open problems a.hont spectral divide and conquer algorithms. 

1. In Algorithm 2, we test that whether lL is equal to lR, where lL is the number of eigenvalues 

in the specified region determined from computing the left deflating space, and lR is the 

number of eigenvalues in the specified region determined from computing the right deflating 

space. Normally, we expect them to he the same, however, what does it mean when lL # lR? 

Perhaps this is an indicator that the pencil is nearly singular. 

2. Iterative refinement, ha.sed either on nonsymmetric .T acobi iteration [22, 2f), 27, 51, 44, 49, 

48, 55] or refining invariant snhspa.ce ([20] and the references therein) could be used to make 

E21 (and F21 ) sma.ller if they are unacceptably large. 
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12 Conclusions and future work 

In this paper, we have fnrther developed the algorithms proposed by Godunov, Bulgakov and 

Ma.lyshev for doing spectral divide and conquer. With rea.c;onable storage and arithmetic cost, 

the new algorithms apply equally well to the standard and generalized eigenproblem, and avoid all 

matrix inversions in the inner loop, requiring QR decompositions and matrix multiplication instead. 

They form an alternative to the matrix sign function for the parallel solution of the nonsymmetric 

eigenproblem. 

Although the new approach eliminates the possible instability a.c;sociated with inverting ill­

conditioned matrices, it does not eliminate the problem of slow or misconvergence when eigenvalues 

lie too close to the boundary of the selected region. Numerical experiments indicate that the 

distance of the eigenvalues to the boundary affects the speed of convergence of the new approach 

as it does to the matrix sign function based algorithm, hut the new approach can yield an accurate 

solution even when the sign function fails. The hackwanl error bounds given in section 7 are often 

pessimistic. The new algorithms perform much better than our error analysis can justify. We 

believe that in dealing with the standard spectral divide and conquer problem, the matrix sign 

function based algorithm is still generally superior. 

Future work includes building a "rank-revealing" generalized QR decomposition, devising an 

inexpensive condition estimator, incorporating iterative refinement, and understanding how to deal 

with (nearly) singular pencils. The applications of the inverse free iteration for solving algebraic 

Rkcati equations deserves closer study too. 

The performance evaluation of the new algorithms on massively parallel machines, such as the 

Intel Delta and Thinking Machines CM-5, are underway and will he reported in a. subsequent }>aper. 

References 

(1] G. Amma.r, P. Benner, and V. Mehrma.nn. A multishift algorithm for the numerical solution 

of algebraic Ricca.ti equations. ETNA, Kent State Univer·sity, 1, 1993. 

[2] E. Anderson, Z. Bai, C. Bischof, .J. Demmel, J. Dongarra., .J. Du Croz, A. Greenbaum, S. Ham­

ma.rling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACJ( Use1·s' Guide, Release 1.0. 

SIAM, Philadelphia, 1992. 235 pages. 

[:3] E. Anderson, Z. Ba.i, and .J. Donga.rra. Generalized QR factorization and its applictions. Lin. 

Alg. Appl., 162-Hi4:243-271, 1992. 

[4] W. F. Arnold and A . .J. Lauh. Generalized eigenprohlem algorithms and software for algebraic 

Ricca.ti equations. Pmr:. IEEE, 72:174(i-1754, 1984. 

[5] L. Auslander a.nd A. Tsa.o. On para.llelizable eigensolvers. Allvances in Applied Mathematics, 

13:253-261, 1992. 

(6] Z. Ba.i and .J. Demmel. Design of a parallel nonsymmetric eigenroutine toolbox, Part I. In 

Proceedings of the Si2:th SIAM Conjc1·c7u:c on Pamllel Pmceesing joT Scientific Computing. 

SIAM, 1993. Long version available as UC Berkeley Computer Science report all.ps.Z via 

anonymous ftp from toe.cs.berkeley.edu, directory pubjtech-reportsjcsjcsd-92-718. 



32 

[7] Z. Bai- and J. Demmel. On swapping diagonal blocks in real Schur form. Lin. Alg. Appl., 

186:73-96, 1993. 

[8] S. Batterson. Convergence of the shifted QR algorithm on 3 by 3 normal matrices. Num. 

Math., 58:341-352, 1990. 

[9] C. Bischof, M. Marques, and X. Sun. Parallel bandrednction and tridiagonalization. In Pro­

ceedings of the Sixth SIAM Conference on Parallel Proceesing for Scientific Computing. SIAM, 

1993. 

[10] C. Bischof and X. Sun. A divide and conquer method for tridiagonalizing symmetric matrices 

with repeated eigenvalues. MCS Report P286-0192, Argonne National Lab, 1992. 

[11] A. Boja.nczyk and P. Van Do01·en. Reordering diagonal blocks in real schur form. In M. Moonen, 

G. Golub, and B. de Moor, editors, Linear· Algebm fo7· Lmye Scale and Real- Time Applications, 

pages 351-352. Kluwer Academic Puhlishers, 1993. NATO-ASI Series E: Applied Sciences, Vol. 

232. 

[12] S. Boyd and V. Balakrishnan. A regularity result for the singular values of a. transfer matrix 

and a. qua.dra.tica.lly convergent algorithm for computing its L00 -norm. Systems Control Letters, 

15:1-7, 1990. 

[13] S. Boyd, V. Bala.krishna.n, and P. Kaba.mba.. A bisection method for computing the Hoo norm 

of a. transfer matrix and related problems. Mathematics of Contr·ol, Signals, and Systems, 

2(3):207-219, 1989. 

[14] A. Ya. Bulgakov and S. K. Godunov. Circular dichotomy ofthe spectrum of a. matrix. Siber·ian 

Math. J., 29(5):734-744, 1988. 

[15] B. Buzbee, G. Golub, and C. Nielsen. On direct methods for solving poisson's equation. SIAM 

J. Nttm. Anal., 7:fi27-fi5fi, 1970. 

[16] R. Byers. Solving the algebraic Rlccati equation with the matrix sign function. Lin. Alg. Appl., 

85:267-279, 1987. 

[17] R.. Byers. A bisection method for measuring the distance of a. stable matrix to the unstable 

matrices. SIAM J. Sci. Stat. Comp., 9(5):875-881, 1988. 

[18] R. Byers and N. K. Nichols. On the stability radius of a. generalized state-space system. Lin. 

Alg. Appl., 188-189:113-134, 1993. 

[19] T. F. Chan. Rank revealing QR factorizations. Lin. Alg. Appl., 88/89:67-82, 1987. 

[20] .T. Demmel. Three methods for refining estimates of invariant subspa.ces. Computing, 38:43-57, 

1987. 

[21] .J. Demmel. Trading off para.llelis:J;Il and numerical sta.hility. In M. Moonen, G. Golub, and 

B. de Moor, editors, Lincm· Algebm fm· Lm·ge Scale and Real- Time Applications, pages 49-68. 

Kluwer Academic Publishers, 1993. NATO-ASI Series E: Applied Sciences, Vol. 232; Available 

a.s a.ll.ps.Z via. anonymous ftp from toe.cs.herkeley.edu, in directory pub/tech-reports/csjcsd-

92-702. 



33 

[22] .J. Demmel, M. Heath, and H. van der Vorst. Parallel numerical linear algebra. In A. !series, 

editor, Acta Nume1·ica, volume 2. Cambridge University Press, 1993. 

[23] .J. Demmel and B. Kagstrom. Computing stable eigendecompositions of matrix pencils. Lin. 

Alg. Appl., 88/89:139-186, April1987. 

[24] J. Demmel and X. Li. Faster numerical algorithms via exception handling. In M .. J. Irwin 

E. Swartzlander and G. J ullien, editors, Proceedings of the 11th Symposium on Computer 

Arithmetic, Windsor, Ontario, June 29- July 2 1993. IEEE Computer Society Press. available 

as all.ps.Z via anonymous ftp from toe.cs.berkeley.edu, in directory pub/tech-reports/cs/csd-

93-728; software is csd-93-728.shar.Z. 

[25] J. Dongarra, .J. Du Croz, I. Duft, and S. Hammarling. A set of Level 3 Basic Linear Algebra 

Subprograms. ACM Tmns. Math. Soft., lf)(1):1-17, March 1990. 

[2fi] P. Eberlein. A Jacobi method for the automatic computation of eigenvalues and eigenvectors 

of an arbitrary matrix. J. SIAM, 10:7 4-88, 19G2. 

[27] P. Eberlein. On the Schur decomposition of a matrix for para.llel computation. IEEE Tmns. 

Comput., 36:1()7-174, 1987. 

[28] F. Gantma.cher. The Thr:m·y of Matt·ices, vol. II (tmnsl.). Chelsea, New York, 1959. 

[29] J. Gardiner and A. Lauh. A generalization of the matrix-sign function solution for algebraic 

Riccati equations. Int. .J. Contml, 44:823-832, 198(). 

[30] S. K. Godunov. Problem of the dichotomy of the spectrum of a matrix. Siber·ian Math. J., 

27(5):649-660, 1986. 

[31] G. Golub and C. Va.n Loan. Mat1·i:r Computations. Johns Hopkins University Press, Baltimore, 

MD, 2nd edition, 1989. 

[32] M. Gu and S. Eisenstat. An efficient algorithm for computing a rank-revealing QR decompo­

sition. Computer Science Dept. Report YALEU /DCS/R.R-967, Yale University, .June 1993. 

[33] N. J. Higham. Computing the polar decomposition - with applications. SIAM J. Sci. Stat. 

Compttt., 7: 1160-117 4, 198fi. . 

[34] Nicholas J. Higham and Philip A. Knight. Matrix powers in finite precision arithmetic. Nu­

merical Analysis Report No. 2:~5, University of Manchester, England, August 1993. 

[35] P. Hong and C. T. Pan. The rank revealing QR and SVD. Math. Comp., 58:575-232, 1992. 

[36] J. Howland. The sign matrix and the separation of matrix eigenvalues. Lin. Alg. Appl., 

49:221-232, 1983. 

[37] S. Huss-Lederman, A. Tsa.o, and G. Zhang. A para.llel implementation of the invariant subspace 

decomposition algorithm for dense symmetric matrics. In Pr·oceedings of the Sixth SIAM 

Confer·ence on Pamllcl P1'0ceesing for· Scientific Computing. SIAM, 1993. 



34 

[38] C. Kenney and A. Laub. Rational iteration methods for the matrix sign function. SIAM J. 

Mat. Anal. Appl., 21:487-494, 1991. 

[39] V. Kublanovskaya. AB-algorithm and its modifications for the spectral problem of linear 

pencils of matrices. Num. Math., 43:329-342, 1984. 

[40] S. Lederman, A. Tsao, and T. Turnbull. A parallelizable eigensolver for real diagonalizable 

matrices with real eigenvalues. Report TR-01-042, Supercomputing Research Center, Bowie, 

MD, 1992. 

[41] A. N. Malyshev. Computing invariant subspaces of a regular linear pencil of matrices. Siberian 

Math. J., 30( 4):559-567, 1989. 

[42] A. N. Malyshev. Guaranteed accura.cy in spectral problems of linear algebra, I,II. Siberian 

Adv. in Math., 2(1,2):144-197,153-204, 1992. 

[43] A. N. Malyshev. Parallel algorithm for solving some spectral problems of linear algebra. Lin. 

Alg. Appl., 188,189:489-520, 1993. 

[44] M.H.C. Paarclekooper. A quadratically convergent parallel .Jacobi process for diagonally dom­

inant matrices with distinct eigenvalues. J. Comput. Appl. Math., 27:3-16, 1989. 

[45] C. Paige. Some aspects of generalized QR factorization. In M. Cox and S. Ha.mmarling, editors, 

Reliable Numer·ical Computations. Clarendon Press, Oxford, 1990. 

[46] B. Parlett. The Symmetr·ic Eigenvalue Pmblcm. Prentice Hall, Englewood Cliffs, N.J ,-1980. 

[47] .J. Roberts. Linear model reduction and solution of the algebraic Ricca.ti equation. Inter. J. 

Contr·ol, 32:677-{)87, 1980. 

[48] A. Sameh. On .Jacobi and .Jacobi-like algorithms for a. parallel computer. Math. Comp., 

25:579-590, 1971. 

[49] G. Shroff. A parallel algorithm for the eigenvalues and eigenvectors of a. general complex 

matrix. Num. Math., 58:779-805, 1991. 

[50] G. W. Stewart. Error and perturbation hounds for suhspaces associated with certain eigenvalue 

problems. SIAM Review, 15( 4):727-764, Oct 1973. 

[51] G. W. Stewart. A .Jacobi-like algorithm for computing the Schur decomposition of a non­

Hermitian matrix. SIAM .l. Sci. Stat. Comput., 6:853-864, 1985. 

[52) G. W. Stewart.. Updating a. rank-revealing ULV decomposition. SIAM J. Mat. Anal. Appl., 

14(2):494-499, April 1993. 

[53] G. W. Stewart. and .J.-G. Sun. Matr·i:1: Pe1'tu1'imtion Theor·y. Academic Press, New York, 1990. 

[54) L. N. Trefethen. Pseudospectra of matrices. In 1991 Dundee Numer·ical Analysis Conference 

Proceedings, Dundee, Scotland, June 1991. 

[55) K. Veselic. A quadrat.ic.a.lly convergent .Jacobi-like method for real matrices with complex 

conjugate eigenvalues. Nurn. Math., 33:425-4:~5, 1979. 

. .. 



LAWRENCE BERKELEY LABORATORY 
UNIVERSITY OF CALIFORNIA . 

TECHNICAL INFORMATION DEPARTMENT 
BERKELEY, CALIFORNIA 94720 

~. --· 


