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Abstract. General analytic solutions are presented here to an equation relating two
angles describing fault shape, and two angles describing fold shape. The analytic solutions
provide any of the four angles when the other three are given.

Armed with the general analytic formulae (including generalizations of the original
equation to relate present-day sedimentary bed positions to fault properties which have
also been previously given), an inverse procedure is then developed which allows param-
eter estimates for fault and bed properties to be determined, while honoring the present
day data.

The inverse method is guaranteed to keep all parameters within pre-set chosen bounds,
and guarantees to find a minimum mismatch between predicted and observed present
day bed locations and fault position. In this way an appreciation can be achieved of
the assumptions, parameters, and data quality, quantity and distribution, in relation to
resolution, precision, uniqueness, and sensitivity of model outputs and parameters being
sought.

I. Introduction. One of the more obvious facts about geological problems in general
is that only present-day information is available. Thus, any determination of the evolu-
tion with time and space of a particular geological problem has to rely upon inferences
from present-day information.

In turn, such inferences normally require that some model be constructed of proposed
behavior, with the attendant concerns of assumptions intrinsic to the model, of assump-
tion (or specification of) parameter values in the model, and of the quality, quantity,
and sampling frequency of data used as control information for the model. The outcome
from any model must then be evaluated for its uniqueness, resolution, sensitivity, and
precision in respect of honoring the available information.

Two possible avenues are available in such evolutionary model scenarios: one can
construct a "forward" model in which initial and/or boundary conditions are specified
within the broad framework of the intrinsic assumptions of the model; then the evolution
of the model can be carried through, finally arriving at a present-day model result.
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Alternatively, one can start with the present-day information and use inverse proce-
dures to determine (or at least to constrain) the paleo-evolution of the model in respect
to its underlying assumptions, functional dependences, and parameter values.

A third approach, and the one usually taken in geological problems, is to perform a
"pseudo-inverse", in which the intrinsic assumptions of the model are adhered to, as are
the generic functional dependences, but the parameter values (which control the basic
response patterns) are constrained or determined by arranging for the model to honor to
the best of its ability, both the present-day data as well as any paleo-constraints (e.g.,
horizontal sedimentary beds at deposition) imposed on the system.

This third procedure, and applied mathematical methods which guarantee that pa-
rameter values can indeed be determined, is the focus of this paper.

The vehicle used to illustrate the general method of application is the problem of
roll-over faults.

Often, a sedimentary section is observed to be faulted, with a down-thrown sedi-
mentary section on one side of the fault. The down-thrown section may indicate an
instantaneous fault event (observed throws identical for all sedimentary beds of differ-
ent ages) or may indicate a continuously active growth fault (observed throws of older
sedimentary beds progressively larger with greater depth of burial).

The volume accommodation problem (lateral motion of the down-thrown sedimentary
beds) often leads to beds that "roll-over" against the fault, which itself is curved.

Procedures for reconstructing the motion of the sedimentary beds in respect to their
observed positions along the fault then rely upon specifying (a) the geometry of the
fault and whether that geometry remains invariant for all time; (b) the requirements for
the faulted sedimentary beds at the times of their deposition on both sides of the fault.
Down-thrown sediments are customarily referred to as being on the "hanging wall" side
of the fault, while the remaining sediments are said to be on the "footwall" side; (c)
the volume, or area, requirements of the sediments with time (e.g., are the sedimentary
formations treated as of fixed volume or are geometrical thicknesses compacted with
time from their depositional values to allow for the changes due to water loss from the
sediments?).

Accordingly, the reconstruction of evolving sedimentary structural patterns of behav-
ior is by no means a simple problem, being controlled by the model assumptions and
model parameters.

Here we investigate the mathematical methods that can be used to infer parameter
values for any model. The vehicle we choose as an illustrative case is the simple situa-
tion occurring when (a) the fault curve shape is the same for all time; (b) the footwall
sediments move only vertically; (c) compaction is ignored.

For this model situation Xiao and Suppe (1989, 1992) have recently presented an
analysis of the development of roll-over structures against a rigid footwall, in which the
fault surface is composed of two planes meeting at a kink point. Reproduced here as
Figures 1 and 2 are representations of the geometrical scheme considered, with angle
nomenclature and definitions of sediment behaviors taken directly from Xiao and Suppe
(1989, 1992) and Lorenzetti and Brennan (1993), so that a common frame of reference
is available for discussion.
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It is clear that for specified values of any three of roll-over dip angle 6, fault cut-off
angle 9, fault bed angle <j>, or fault cut-off angle on the lower fault segment (9—(j>), together
with specification of the sedimentation to subsidence ratio, SSR, and one scale length,
L (e.g., the distance along the fault to the kink bend), then the locations and structural
deformations of sedimentary beds impacted by the fault can be drawn. This sort of
pattern of roll-over fault and sediment development has been considered by Xiao and
Suppe (1992), and explored extensively in graphical form by Lorenzetti and Brennan
(1993). A good appreciation of the patterns of development, and of the relations of
different angle factors to each other is presented in the large number of numerical cases
presented in Lorenzetti and Brennan (1993). There is no need to repeat this exhaustive
exercise. The forward problem (i.e., with parameters specified), under the conditions and
assumptions laid down by Xiao and Suppe (1992), would then seem to be well understood
after the work of Lorenzetti and Brennan (1993).

Accordingly, with prior specification of the fault bend position, fault length of each
section, sedimentation to subsidence ratio, and angles, the behavior and motion of sed-
imentary beds (both pre-fault, syn-fault, and post-fault) can be determined by pure
geometric considerations and with prescribed sediment deposition rates through time.
The result is a two-dimensional section at the present day which owes its geometric form
to (a) the assumptions of the model (e.g., fixed footwall, no compaction); (b) the particu-
lar values for angles specified in the system. Presumably of concern to an understanding
of the likely evolution of an observed set of present-day data are (i) the ability to investi-
gate how well this particular model of folded structures matches to observed behaviors;
(ii) the ability to determine the particular values of parameters (and their uncertainties)
which most closely allow a match between model predictions and observed behavior;
and (iii) the ability to determine the degrees of resolution, uniqueness, sensitivity, and
uncertainty of paleo-evolution from present-day information.

The aim in this paper is to provide precisely those procedures which not only honor
present-day observations, but which also allow the use of observations to determine the
parameter values (and their uncertainties) which provide minimum discord of observa-
tions and predictions.

Three mathematical components need to be discussed: (i) to provide analytic solu-
tions to Eq. (4) of Xiao and Suppe (1992), who remarked that the equation was not
solvable analytically; (ii) to use generalizations of the original Xiao and Suppe (1992)
fault angle equation obtained by Lorenzetti and Brennan (1993) to relate present-day
sedimentary bed positions to fault properties; (iii) to provide an inverse procedure so
that the difference between predicated and observed present-day bed positions can be
used to obtain parameter estimates that most closely allow satisfaction of the observed
bed and fault positions.

II. Solutions to Equation (4) of Xiao and Suppe (1992). With reference to
Fig. 1, the relation between the two angles 9 and <f> describing the fault shape, and the
two angles 6 and ijj describing the fold shape is given by Xiao and Suppe (1992) (their
Eq. 4) as

sin sin(tp — 6) cosec(9 + ip — 4>) cosec(0 + ip) = sin <5/ sin </>. (1)
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Figure 1. A direct reproduction of Fig. 4 of Xiao and Suppe (1992)
who note that the figure represents "Geometric relationship between
fault shape and rollover shape for a single sharp fault bend. Hanging-
wall collapse is in the axial surface direction (ax and bx'). The
undeformed shape of the dipping beds in Abxx' is Aabx'

Xiao and Suppe (1992) remark, "This is an implicit equation with no analytic so-
lutions; it must be solved numerically." The purpose of this short section is to show
that given any three of the four angles (-0, <5, 6*, 0), Eq. (1) always admits of an analytic
solution for the fourth angle.

Four cases are available for Eq. (4):
(i) given ip, cp, 8, determine 9,

(ii) given 9, ip, 8, determine cp,
(iii) given 6, ip, <p, determine 6,
(iv) given 9, (p, 8, determine ip.

Consider each in turn.
(i) Determine 9, given ip,(p, and 8. Rewrite Eq. (1) as

sin(# + ip — cp) sin(0 + ip) = sin ip sin (ip — 8) sin <p/ sin 8. (2)

The left-hand side of Eq. (2) can be written |[cos^ — cos(2(0 + ip) — <p)]\ so it follows
that

9 = —ip + ^(f> + | cos-1 {cos (p — 2 sin ip sm(ip — 8) sin (p/ sin <*>}, (3)

which expresses 9 analytically in terms of ip, (p, and 8.
(ii) Determine (p, given (p,ip, and 8. Rewrite Eq. (1) as

sin(0 + ip — (p)/ sin <p = sinipsin(ip — 6)/(sin<5 sin(# + ip)). (4)

The left-hand side of Eq. (4) can be written sin(# + ip) cot cp — cos(9 + ip); so it follows
that

<y, = ta -i/ sin2(0 + ip) sin 8 j
\ [sin ip sin (ip — 8) + sin 8 sin(0 + ip) cos (9 + ip)} J '

which expresses cp analytically in terms of 9, ip, and 8.
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(iii) Determine 8, given 9, ip, and (p. Rewrite Eq. (2) as

sin(^ — 8)/ sin 8 = sin(# + ip — <p) sin(0 + ip)/(sin ip sin cp). (6)

The left-hand side of Eq. (6) can be written as sin ip cot 6 — cos ip; so it follows that

8 = tan-1 I sin2 ip sin <p 1
\ [sin(0 + ip — <p) sin(0 + ip) + cos ip sin ip sin <p\ J '

which expresses 6 analytically in terms of 9, ip, and (p.
(iv) Determine ip, given 9,(p, and 6. Rewrite Eq. (1) as

[sin(-i/> — 8) sin ip\ sin <p = [sin(# + ip — tp) sin(# + ip)] sin 8, (8)

which can be written

[cos 8 — cos(2tp — 5)] sin <p = [cos <p — cos(2ip + 26 — (p)] sin 8. (9)

Then rewrite Eq. (9) as

cos 2 ip[— cos 8 sin (p + sin 8 cos(2 9 — <j>)]

— sin 2 ip[+ sin cp sin 8 -(- sin 8 sin(20 — <p)] + sin (tp — 8) — 0.

It then follows that

where

and

(10)

ip = — + \ cos 1[sin(i5 - <p)/u] (11)

u = (sin2 8 + sin2 <p — 2 sin (p sin 8 cos(29 + 8 — (p))1^2 (12a)

r _tnn-i f [sin <p sin 8 + sin 8 sin(2fl — <p)] \
\ [sin 8 cos(29 — cp) — cos 8 sin cp] J

so that ip is expressed analytically in terms of 9, cp, and 8.
Thus, in all four cases exact analytic expressions are, in fact, available.

Within the framework of the model for folded structures proposed by Xiao and Suppe
(1992), it follows that once three of the angles are specified, the fourth is uniquely
determined.

As we shall show in Sec. V, which deals with an inverse procedure, it is possible to
both use and also to ignore the angle requirements of the model in order to see how well
the model is constrained by the data.
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III. The Lorenzetti-Brennan (1993) generalization. Lorenzetti and Brennan
(1993) have related the growth axial angle 7 (see Fig. 2) to the angles 6,cfi, and ip and
also to the sedimentation to subsidence ratio, SSR, defined as the ratio of the thickness
of hanging-wall sediments near the fault to the vertical component of slip on the upper
fault segment (see Fig. 2). Then angle 7 is given through Eq. (9) of Lorenzetti and
Brennan (1993) as

cot 7 = [sin(0 + ip) sin(# — (j) + ip)/A\ — cot ip (13a)

where

A — sin^{(SSR — 1) sin#sin(0 — 4> + VO + sin(6> + ip)sin(Q — (f>)}. (13b)

pre-growth

Expansion index (EI) = th / tf
Dimensionless growth rate (DGR) =
Sediment to subsidence ratio (SSR) = P/V
Expansion ratio (ER) = P/ tf
Growth ratio (GR) = P/ th
tf = footwall thickness of growth sediments
P = hanging wall thickness of growth sediments near fault
th = "regional" hanging wall growth sediment thickness

= slip below the fault bend
V = vertical component of slip on upper fault segment

(a)

FIGURE 2a. A direct reproduction of Fig. 18(a) of Lorenzetti and
Brennan (1993) who note, "Some commonly used measures of rel-
ative stratal thicknesses across normal faults. In the equations de-
rived by Xiao and Suppe (1992), expansion index (EI) is used. This
quantity is defined as the ratio of the undeformed growth sediment
thickness in the hanging wall to the growth sediment thickness in
the footwall block. Other measures, shown here, are related to the
growth axial angle (7)."
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growth

pre-growth

(b)

Figure 2b. A direct reproduction of Fig. 18(b) of Lorenzetti and
Brennan (1993) who note, "At low relative sedimentation rates, tf
goes to zero, the growth axial angle (7) becomes smaller, and the
expansion index (EI) and expansion ratio (ER) are undefined. In
this diagram, SSR = 1.0 (the basin created by the normal fault is
filled with sediment exactly as fast as the basin is being formed, and
there is no growth sediment on the footwall; P = V)."

|p

growth sediments

pre-growth

(C)

Figure 2c. A direct reproduction of Fig. 18(c) of Lorenzetti and
Brennan (1993) who note, "At the very lowest sedimentation to sub-
sidence ratios, th goes to zero, 7 changes sign, the growth rate (GR)
and the dimensionless growth ratio (DGR) are undefined. Only the
SSR is still valid, and the restricted nature of the basin is indicated
by the fact that P < V, and hence the SSR is less than 1.0."

IV. Inverse Procedures. The problem to be addressed here is the inverse of the
forward problem. Basically the argument is as follows: on seismic sections (migrated
to true depth sections) one observes the present-day locations of sedimentary beds and
of a fault bend. The question then is: can one use the observed bed locations to infer
the parameter values of the model most consistent with the observations, and can one
obtain measures of precision, resolution, uniqueness, and uncertainty on the available
parameters, so the limitations can be set on the possible ranges of extensional structural
developments with time?

The purpose of this section of the paper is to demonstrate that such a goal is achiev-
able and to provide quantitative procedures for determining, or at least bracketing, the
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relevant parameters controlling the system under the model assumptions as set down by
Xiao and Suppe (1992).

Imagine first that a forward model were to be run. Controlling parameters are (i)
three angles (say <j>, ip, and 6 to fix ideas) with the fourth determined by the analytic
solutions to Xiao and Suppe's equation (4); (ii) the sedimentation rate to subsidence
rate ratio, SSR, from which the growth axial angle is then determined using Eq. (9) of
Lorenzetti and Brennan (1993), which involves SSR and the angles of Eq. (4) of Xiao
and Suppe (1992); (iii) a scale length, L, which measures either depth, length to a fault
kink, etc. In short, five parameters, <fr,i/j,6, SSR, and L describe the evolution of the
system relative to a given depositional behavior for the sedimentary beds (horizontal in
the classical model of Xiao and Suppe (1992); non-horizontal, but of fixed slope, in the
generalization of Lorenzetti and Brennan (1993)).

After evolution from fault initiation time t — tf until the present day, t = 0, a
sequence of N sedimentary beds (B — 1,..., N) will then occupy a set of locations with
the present-day location of the Bth bed described through Y — Yb(x,p), where the
vertical coordinate is Y and the lateral coordinate is x. The vector p is the vector of all
five parameters (ip, <f>, 6, SSR, L) describing the system.

Thus, for a given initial choice of the components of the vector p, all sedimentary bed
positions will be determined at present day. However, direct measurements are available
for the observed beds at Y = Ys(xi) at R lateral positions xt (i = 1,..., R), where the
vertical coordinate reference is the same as for the forward run model calculation.

With arbitrary choices of the vector p there is no reason why model predictions
Ys{xi,p) and observations Yb(xi) at each location xt and for each bed B should be
even close to each other. The aim is to use the difference between observed and pre-
dicted behaviors to provide a procedure which iteratively corrects the model parameters
towards values leading to the least discord between predictions and observations. Such a
procedure operates as follows. The five parameters in the vector p have different dimen-
sions. Let the jth component of p have a maximum value max., and a minimum value
mirij. Then set

a,j = (pj — min))/(maxJ — min.,) (14a)

so that 0 < ttj < 1 and miny < Pj < maxj. Regard the vector a as fundamental with p
being a dependent vector given through

Pj = minj + aj(maxj — minj). (14b)

In this way all components of a are dimensionless and are required to be in the range
zero to unity.

Introduce the least squares control function

X2(a) = N-1 J2 (15)
B = 1 I i= 1 J

which provides a measure of average mismatch between observed and predicted bed
positions.
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An iteration scheme which guarantees a closer correspondence of predicted and ob-
served bed locations at each iteration, and which guarantees to keep each component of
a in the bounds 0 < aj < 1 can be constructed as follows: At the nth iteration represent
the updated value a,j(n + 1) to aj by

aj (n) = sin2 Oj (n);

6 j (n + 1) = 9j (n) exp t f w \ dX2(a(n)) \ (16a)

where

aj(n + 1) = sin2 Oj(n + 1);

9X2(a(0))
daj{ 0)

6j(n) = q-j(n)/

ln{l + (Ma^O))"1}, (16b)

P
p= 1

(16c)

with
1j(n) — (Iaj(n) ~ aj(.n ~ 1)1 /aj(n)) + P2 (16d)

where M is the number of times the nonlinear iteration is to be undertaken, aj(0) is
the initial choice for aj with (0 < a.,(0) < 1), P is the number of parameters being
varied, and (3 is the scale-choice for calculating numerically the derivative dX2 /daj (see
below). The factor 6j(n) chooses the most sensitive parameters for more rapid variation
after the first iteration (n > 2) while for n = 1, <5j(l) is set to unity. Note that if aj
is chosen larger (smaller) than the value providing a minimum in X2 then dX2/daj is
positive (negative), in which case the exponential argument in Eq. (16a) is then negative
(positive) so that the next updated value of aj is then decreased (increased). Hence the
procedure always heads towards a minimum while keeping aj >0.

Note also that the sensitivity factor Sj will be small, 0(/32), if aj(n) « a,j(n — 1), and
large, O(l), if aj(n) is far from aj{n — 1). Those components of a that are not close to
the values providing a minimum in X2 are moved the most in a given iteration, while
those close to providing a minimum in X2 are hardly moved at all. Thus the procedure
operates on the most sensitive parameters first.

Accordingly, the procedure increases (decreases) aj according as dX2/daj is negative
(positive), guarantees to keep each component of a in the range 0 < aj < 1, and to make
the largest changes in those parameters that are furthest from satisfying the least squares
control.

Two caveats exist: (i) the numerical accuracy with which a minimum in the least
squares control function can be achieved is limited by the accuracy with which the partial
derivatives, dX2/da, are calculated; (ii) the fact that the nonlinear iteration scheme
guarantees to find a minimum least squares mismatch is no guarantee that the procedure
has found a global minimum.

The first caveat can be handled by decreasing the range of a particular component of
the vector a used to calculate a derivative: thus, with the approximation
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dX2/da,i = ((3ai)~1{X2(a1,a2,...,a,i + /3a,:,ai+i,...) - X2(a!,a2,... ,a;,ai+i,...)}

and a default value (3 = 0.1, one can replace [3 in turn by 10~2,10-3,..., until some
pre-set criterion is reached for accuracy of the derivative calculation. As a by-product,
if numerical resolution allows (n) to exceed unity, then it is an appropriate strategy to
immediately set ai(n) = 0.9, which forces a,(n) to be in the pre-set domain {0,1}, and
which is also a valid value from which to calculate the partial derivative because, then,
a,i + 0.1 cii = 0.99, which is also in the required domain.

The second caveat is of greater concern because some procedure must be found for
assessing whether multiple minima exist, the relative depths and parameter space ranges
of such minima, and of deciding on which minimum is the appropriate value to use in
parameter determination, from which one constructs the combined paleo-evolution of
the fault and associated sedimentary beds. In addition, the number, M, of nonlinear
iterations needs to be given.

A strategy, which has proven inordinately useful in other problems, where similar
concerns have arisen, is as follows.

First, make a rough assessment of the minimum and maximum ranges that one antic-
ipates will encompass each parameter. Quite often, there is enough geological knowledge
to constrain approximately the ranges of initial estimates. When there is not enough
such information, a broad linear search range for each parameter, done one order of
magnitude at a time, is enough to provide quickly a fairly good initial estimate of pa-
rameter range. Then do a linear search over pairs of parameter values while holding the
remaining parameters at their midpoint values. Two-dimensional plots of mean square
control function contours in each two-parameter space then provide a rough idea of where
minima lie, as well as specifying how to modify the initial estimated ranges of parameter
values in order to improve the ability to focus resolution on the minima uncovered.

Then a multi-dimension nonlinear iterative search, as outlined above, improves the
degree of fit between predicted and observed behaviors. The point here is that all pa-
rameters are allowed to vary simultaneously (rather than just two), thereby improving
the overall parameter values. A linear search, as above, can be redone after the nonlinear
iterations, so that one is more sure that a global minimum in the search ranges specified
has been obtained. The pair of intertwined procedures (linear search, nonlinear iteration)
can be repeated as many times as desired. The improvement in least squares mismatch
using this type of strategy is considerable, as well as helping to ensure that the search
procedure does not become "stuck" in a local minimum. The number, M, of nonlinear
iterations to use is also fairly easy to determine. A group of 10 nonlinear iterations can
be done, the "best" set of parameters determined, and then these parameters used as
initial estimates for a further set of 10 nonlinear iterations. The ranges of the "best" pa-
rameters can be adjusted either by using an interleaved linear search, nonlinear iteration
pair of procedures or, more automatically, by choosing those parameter ranges around
the best value for which the mean square control function is a fixed percentage (10% say)
above the minimum value. In this way a sequence of a few lots of 10 nonlinear iterations
at a time rapidly produces convergence to a minimum.
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The extent to which the Xiao-Suppe (1992) model of faulting and roll-over of struc-
tures is an appropriate representation of a given set of present-day observations can be
addressed with the above nonlinear procedure.

The crucial point to note is that in the Xiao-Suppe (1992) type of model only three of
the four angles are free to be specified, with the fourth being determined from these three
as shown in Sec. II. On the other hand, there is no fundamental reason compelling an
actually occurring fault to be precisely of the modeled form. A test for satisfaction of the
proposed model fault behavior vis-a-vis a given set of observations of faulted sedimentary
beds can then be made as follows.

First, assume that the Xiao-Suppe model is correct and so go through the inverse
procedure given above to determine the best set of five parameters, and their uncer-
tainties. Second, ignore the geometrical connection between the four angles required in
the Xiao-Suppe model, and let all four of the angles, together with the SSR ratio and
a fundamental length scale, L, be determined simultaneously and independently by an
obvious generalization of the nonlinear inverse procedure given above, together with their
ranges of uncertainty.

By direct insertion of the four angles so determined into Eq. (1), one can determine
the extent to which Eq. (1) is, or is not, satisfied, thereby providing a direct measure
of the ability of the Xiao-Suppe model to honor the particular set of observations. This
procedure provides a method for testing the model.

The stability of a minimum to variations in data quality, quantity, and sampling
frequency is also of concern. A minimum should be ruggedly stable, in the sense that
small changes in the data values, number of datum points, and/or the distribution of the
data should not seriously perturb either the existence of the minimum or the location of
the minimum.

To address these concerns a small amount of random noise can be added to each
datum point and the variation of the minimum addressed; in addition, different numbers
of datum points can be added or removed in order to determine the number of datum
points needed in order to provide a stable minimum. In this way an appreciation is
obtained of the resolution and stability of the parameter values.

Taken together, the components of this general strategy are sufficient to permit a
systematic and thorough investigation for self-consistent evolution of a fault and associ-
ated sedimentary beds within the framework of the proposed models of geometric fault
pattern evolution.
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