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ABSTRACT 
When recording data, large errors may occur occasion- 
ally. The corresponding abnormal data points, called 
outliers, can have drastic effects on the estimates. There 
are several ways to cope with outliers 0 detect and 
delete or adjust the erroneous data, use a modified 
cost function. We propose a new approach that allows, 
by introducing additional variables, to model the out- 
liers and to detect their presence. In the standard linear 
regression model this leads to a linear inverse problem 
that, associated with a criterion that ensures sparse- 
ness, is solved by a quadratic programming algorithm. 
The new approach (model + criterion) allows for ex- 
tensions that cannot be handled by the usual robust 
regression methods. 

1. INTRODUCTION 

In linear regression, when fitting a linear model to noisy 
data, the presence of outliers i.e. observations which 
depart from the basic assumptions, can have dramatic 
effects on the quality of the estimates. The classical 
least-squares procedures, for instance, becomes unreli- 
able in the presence of outliers in the data [2]. 

Mainly two differents approaches have been pro- 
posed to solve this problem [1]-[4]. The most well- 
known relies on identifying the abnormal observations 
in order to  remove or correct them. This is generally 
achieved in an iterative way by removing one obser- 
vation at a time but is computationally intensive and 
hazardous when several outliers have to be diagnosed. 
The other approach is robust estimation, it amounts 
to develop schemes that are less vulnerable to  outliers. 
In the first approach one tries to detect and delete the 
abnormal observations in order to use a standard esti- 
mation scheme on the remaining data, in the second, 
one fits a robust estimate first and later decides upon 
the outliers by looking for instance at the residues. 

The approach we present achieves both tasks (ob- 
taining a robust estimate and detecting the outliers) 
simultaneously. As far as the basic parameters are 

concerned, it turns out to be analytically equivalent 
to the most well-known robust estimation scheme (the 
M-estimator with Huber's influence function [1]-[4]). It 
is nevertheless of interest because it sheds new light on 
this scheme and allows for extension that are not pos- 
sible in the initial formulation. 

2. ROBUST LINEAR REGRESSION 

The objective is to fit a linear model to noisy observa- 
tions : 

Y = A X + N  (1) 

where Y is an n-dimensional vector of observations, X 
the pdimensional vector of parameters to be estimated 
and N the additive noise vector. A is the ( n , p )  dimen- 
sional data matrix which we assume to be of full column 
rank. Let a? designate the i-th row of A and r,  the i-th 
residual : ri = yi - aTX.  The standard least squares 
approach minimizes cr? = IJY - AX113 and the min- 
imum is attained at XlS = (ATA)-'ATY. If the noise 
or model error N has a normal density with covariance 
matrix C proportional to identity i.e. N E N(0 ,  a"), 
this solution corresponds to the maximum likelihood 
estimate. 

If even a very limited number of observations do not 
follow the assumed gaussian density, the least squares 
estimate can be extremely far away from the true value 
[2]. This led Huber (see [3] for details) to seek the 
"worst" possible density among those of the form p = 
(1 - e)p0 + cppl where e E (0, l ) ,  p ,  = N(0,l)  and pl is 
an arbitrary density, i.e. the so-called €-contaminated 
Gaussian densities. He then proposed to use the asso- 
ciated maximum likelihood estimator as a robust esti- 
mator. "Worst" meaning that one seeks the density p 
that yields the least possible information in each indi- 
vidual residual yi - a'X. One looks for the density p 
within the class that minimizes the Fisher information 
matrix : 
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The optimum p" is given by : 

where the constant h depends upon E (see [3][4] for de- 
tails) and varies from 0 to 00 as E goes from l to 0. 
This is a quite rational approach to robust estimation 
and one expects that the maximum likelihood (ML) 
method applied to this density leads to  a robust re- 
gression estimate. We detail it below. 

3. THE M-ESTIMATORS 

Maximizing the log-likelihood of p* in (2) leads to the 
minimization of : n 

(3) 

with the function f -known as Huber's function- de- 
fined by : 

f ( r )  = r"/2 Irl I h 
= hlrJ - h2/2 Irl > h (4) 

It is a parabola in the vicinity of zero and increases 
linearly for Irl > h. The interpretation is that obser- 
vations with large residuals are given less weight and 
hence less influence than those with small residuals, h 
being the threshold. 

Since the development has been done under the as- 
sumption that the standard noise has unit variance, to  
adapt it to  real data, one has either to  divide the resid- 
uals or multiply the threshold h by a robust estimate 
6 of the standard deviation of the residuals. 

f ( r i /6 )  for this 
function (4) or other even functions are known as M- 
estimates in the statistical litterature. Many other 
functions have been proposed. The minimization (3) is 
generally achieved using a so-called iteratively reweighted 
least squares scheme (IRLS) [5], [9]. Let us now present 
and justify such a scheme. Since f in (4) is convex, the 
minimum in (3) is found by making the gradient van- 
ish. Denoting Vr, the gradient of the i-th residual ri 
with respect to  X ,  this leads to  : 

Estimates obtained minimizing 

1 

where $(r)  known as the influence function, is the 
derivative of f (r) .  This set of p non-linear equations 
can be rewritten as : 

where the last expression can be seen as the gradient of 
the weighted residuals : E, w,r: = (Y - A X ) T D ( Y  - 
A X )  with diagonal weighting matrix D = diag(wi) = 
diag (F). An IRLS algorithm consists then in ini- 
tializing DO = I and iterating : 

' 

x1 = ( A ~ D ~ A ) - ' A ~ D ~ Y  

RI = Y - A X 1  ( 5 )  
hl = 1.345 x 1.483 med, Iri - medj r j )  

until some stopping criterion is satisfied. Note that for 

The idea is to start with the standard least squares 
fit and to  iteratively reweight the residuals. The weights 
are functions of the residuals from the previous itera- 
tion such that observations with larger residuals re- 
ceive relatively less weight than observations with small 
residuals. Abnormal points tend to receive less weight 
than typical points. 

For completness we have included the robust re- 
evaluation of the modified threshold h [5]. The factor 
1.345 is the usual value of h for unit-variance gaussian 
noise, it is chosen to  guaranty a given level of efficiency 
in the absence of outliers [l]. It is multiplied here by 
an estimate of the scale 6 = 1.483 med Ir, - med rjl 

where med denotes the median. This is an approxi- 
mately unbiased estimate of the standard deviation of 
the residuals when the error model is gaussian [l]. 

For f ( r )  as in (4) one can show that the algorithm 
converges though the convergence can be relatively slow. 
One can show that when M-estimates are ML estimates 
the associated IRLS algorithm is also an expectation- 
maximize (EM) algorithm and convergence results of 
these algorithms thus apply. 

f as in (41, 'wi = +). 

4. THE PROPOSED APPROACH 

Let us rewritte the standard regression model (1) by 
adding n new variables U ,  one in each observation 
equation : 

Y = AX + I U +  N = B Z +  N 

where B = [ A  I] and ZT = [ X T  U T ] .  The objective is 
to use the unknowns U to model the outliers. Remem- 
ber that these are occasional large measurement errors 
that can be caused by disturbances, conversion failures, 
etc. In any case they are extremely sparse which means 
that only very few components in U should be non- 
zero. Adding these new variables U, transforms the 
initially over-determined set of linear equations into an 
under-determined one. While (1) has (generically) no 

(6) 
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solution, (6) has an infinite number of solutions and 
one now needs a criterion that selects among them a 
solution in which U is sparse. We will show that : 

is such a criterion. It is a combination of the standard 
least squares criterion and a regularization term on the 
el-norm of the U-variables. This criterion is convex 
but not continuously differentiable. 

The minimization (7) can be transformed into a 
quadratic program. Indeed, if one introduces new vari- 
ables U: = max(q,O), U;  = max(-q,O) and replaces 
U, by U: - uf and I u , ~  by U: +UT, this unconstrained 
non-smooth optimization problem is converted into a 
quadratic program with the X variables unconstrained 
and these new variables U: and U: constrained to be 
greater or equal to  zero [SI. Its unique solution is eas- 
ily and quickly obtained, even for large number of un- 
knowns, using standard programs available in any sci- 
entific program library. 

The criterion (7) is similar to the one used in [7],[8]. 
The el-norm regularization term is known to lead to 
sparseness and the weight or hyper-parameter X allows 
to tune the sparseness in U.  The criterion can be given 
a Bayesian interpretation with a Laplace prior for the 
U variables. 

5. THE EQUIVALENCE OF BOTH 
APPROACHES 

Let us now show that the two approaches : 0 minimiz- 
ing (3) with Huber's function (4) and 0 minimizing (7) 
lead to the same X estimates. 

Criterion (7) is separable, it can be rewritten : 

The minimum with respect to U, only concernes the 
i-th term and is obtained either for uf = 0 if I T ~ I  5 X f 2 
or at = T, - (X/2) sign ~f if lril > X/2, replacing ui 
by these optimal values, the criterion becomes : 

where if designates the indicator function. This new 
formulation is equivalent to the minimization of Ci f ( r i )  
with f the Huber function (4) provided X = 2h. Mini- 
mizing (3) with function (4) is thus equivalent to  : 

(8) 
1 

min -1lY - A X  - Ulli + hllUlll x,u 2 

This is an interesting point for both approaches. It 
allows for new interpretations of the standard approach 

and extends its domain of applicability as we will argue 
below. From an computational point of view it shows 
that, for this specific M-estimate, the IRLS procedure 
can be replaced by a quadratic programming routine. 

6. OPTIMALITY CONDITIONS 

The optimality conditions for (8) allow for new inter- 
pretations of the robust estimation procedure. A nec- 
essary and sufficient condition for Z* = ( X " ,  U * )  to be 
the global optimum of (8) is that the vector 0 be a sub- 
gradient of the criterion at Z*. Since (8) is non-smooth 
at zero only, we distinguish the non-zero components 
of Z*,  denoted Z*, from the zero components. For the 
components in Z* the subgradient reduces to the gra- 
dient and has to vanish. 

Let Z* denote the union of the components of X *  
and the non-zero components in U*, themself noted 
U * .  In a similar way, we denote B the matrix formed 
with the columns in B associated with the non-zero 
components in Z* so that BZ' = BZ*.  Equating the 
gradient of (8) at Z* with zero, one gets : 

where B+ denotes the pseudo-inverse of B and sign (Z* )  = 
[OTsign (U*T)JT,  with sign (ui) = -1, +1 for ui respec- 
tively < 0,>  0. Note that this is not an explicit ex- 
pression of the optimum Z* of the criterion since Z* 
appears on both sides. 

For the other components in Z*, i.e., the zero com- 
ponents in U * ,  the vector 0 must be a subgradient of 
the criterion (8), this condition becomes : 

I(Y - BZ*)jl  < h v j  3 U; = o  (10) 

where (.), denotes the j- th component. 
These two relations (9, 10) fully define the opti- 

mum Z* and though they are not explicit (the opti- 
mum can only be obtained in an iterative way) they 
clearly indicate how the presence of outliers affects the 
least squares solution and the bias that is due to the 
presence of the threshold h. Taking a close look at (9) 
it appears that it is sufficient to know (or guess) the 
indices and the signs of the non-zero components in U* 
to  completely define the optimum. 

The non-zero components in U actually designate 
the outliers. 

Further insight can be gained by considering the 
dual form of the optimization problem (8) which is : 

min llAX + Vll: 
X J J  

subject to  : AT(Y - AX - U )  = 0 (11) 
IIY - A X  - Ulloo 5 h 
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It is obtained by fi.rst transforming (8) into a quadratic 
program and then taking the dual in the usual way [6]. 
Introducing the a.ugmented residuals E ;  = ~i - U; = 
y, - aTX - U ; ,  the constraints in (12) say that at the 
optimum these residuals are bounded by h in absolute 
value. In fact (see (10)) they are strictly smaller than 
h for observations that are considered to be outlier free 
and equal to h otherwise. 

7. COLORED NOISE EXTENSION 

So far we have assumed that the different observations 
were independent or at least uncorrelated. In practice 
this might not be the case and quite often one is in the 
situation where the covariance matrix C of the noise 
N is known up to a multiplicative constant C = a”. 
In standard least squares this is of no consequence and 
one whiten- the observations by pre-multiplying them 
by Such a whitening step is however unfeasible 
in the presence of outliers since it will distribute the 
effect of the outliers on all the data. Let us recall (6) 
the augmented regression model we introduced earlier : 

Y = AX + U + N 

where N the standard noise model has now a normal 
density N(0,  U’%). Clearly whitening the observations 
transforms this model into : 

F = Ax + ,q-’/qJ + 3 

whith F = c-’/’Y, A = ,%-1/2A and where N is 
again N ( 0 ,  U”). Standard robust regression estima- 
tion methods no longer apply since the effect of even 
a single outlier (one non-zero component in U )  is now 
distributed over all the components in E-’/* U .  On 
the other hand, the criterion (8) we introduced simply 
becomes : 

and no difficulty occurs since the regularization term 
continues to penalize just U and makes it sparse. Due 
to  limited space we do not present simulations that 
highlight this point. 

8. CONCLUSIONS 

Adopting an inverse problem approach to robust re- 
gression estimation, we have developped a new model 
and criterion that happens to lead to  an optimum that 
is strictly equivalent to  the M-estimator with Huber’s 
function also known as the minimax M-estimator which 
is probably the most used robust estimator. This new 

approach presents several advantages. It allows to re- 
place the iteratively reweighted least squares approach 
that is used to  obtain M-estimates, requires good initial 
estimates and encounters sometimes convergence diffi- 
culties by a standard quadratic programming routine 
available in any standard scientific program library. 

The new approach also allows for extensions not 
readily handled with other techniques. We have indi- 
cated here its extension to  the colored noise case that 
cannot be handled by the standard approaches [lo]. 
Further extensions include the robust subset selection 
problem [ll] where the p dimensional initial model may 
be over-parametrized and a lower order model (using 
a subset of columns of A )  could be more informative 
than the full model. Work in this direction is under 
progress. 
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