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1. Introduction. In this paper we generalize results obtained by Weston [9] con-
cerning the inverse problem for a particular type of hyperbolic partial differential equa-
tion. The motivation for our work comes from an electromagnetic scattering problem,
and so we begin by briefly outlining such a problém.

Consider a slab of width L situated between the planes z = 0 and z = L, with con-
ductivity ¢(z) and permittivity e(z). Outside of the slab we assume ¢ = 0, ¢ = ¢, . The
conductivity and permittivity of the slab are unknown, and we seek a method for
determining these functions by measuring electromagnetic waves scattered from the
slab. As in all inverse scattering problems, two questions arise immediately: What type
of scattering data is needed and how are the data used to reconstruct the unknown
functions ¢(2), €(2)?

The difference between this problem and the one considered by Weston is that we
no longer require that the functions ¢ and ¢ be continuous at z = 0 and z = L. This
generalization is clearly necessary since the interface between two different media is
characterized by such discontinuities.

We use a time-dependent approach in our solution of the inverse problem, and show
that the necessary scattering data can be obtained by illuminating the slab with a single
plane wave and measuring a finite portion of the reflected wave and the wave trans-
mitted out the far side of the slab. This result is in marked contrast to Weston's, in
which two incident waves are needed (one from either side of the slab) and the resulting
reflected and transmitted waves are measured.

2. Statement of the problem and results. We now present a general formulation
of the inverse problem and outline our results. The equation we consider is
Lu=u,—u,+A@u, +B@)u +Cxu=0, —o << o, —o It o (21)
where

(a) Support A, B, C C [0, ].
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(b) A and B are C" functions on (0, I) with jump discontinuities at z
(¢) C is a continuous function on (0, I) with jump discontinuities at x =
(d) The solution u(z, t) is everywhere continuous and piecewise C”.

(e) There is a jump discontinuity in w, across z = 0, z = [, with

cou.(0—, 1) = w.(04,0, cu(+, 8 = uw(l—,0

where ¢, and ¢; are constants.

For the problem we are considering, the coefficients A, B, C of Eq. (2.1) are unknown
on (0, 1). In this paper we present a method for constructing the coefficient B(z) and the
combination of coefficients C(x) — A’(x)/2 — A*(x)/4 by using a certain set of scattering
data. To understand the nature of this data, let us establish some notation. We refer to
the region (0, I) as the “slab”. Now consider a plane wave u, (z — ) propagating in the
+z direction, incident normally on the slab. This gives rise to a wave u," reflected off
the slab and a wave «.° transmitted through the slab. Thus, exterior to the slab we have
the following solution of (2.1):

wx, ) =u.' (e — ) +u(x+1, <0
utx — ), x> 1. (2.2)

We also require that u,*(y) = u+f(n) = 0fory > 0and u,”({) = 0 for ¢ < 0. (Similarly,
we could use an incident wave u_*(x 4 f) propagating in the —uz direction. This generates
a solution of (2.1)

wz, ) = u'(@x+ 6 +u(— 1), x> 1
=ulx + ¥, z<0 2.3)

whereu_*(£) = u_*(§) = Ofort < Oand u_."(y) = Ofor » > 2L.) Notice that in formulating
the problem (2.1) we required that the solution « be continuous and piecewise C°. In
particular, we require that u.*, ».”, u,‘ have these properties and to be such that u(z, t)
satisfies conditions (d) and (e) given above.

To reconstruct the coefficients we need the following data:

ut(y), —4d <9<0; u ¢, 0<t<4 u'(n), —20—<y9<0.

Let us describe briefly how this data is used in solving the inverse problem. In Sec. 4
we establish the following identities (scattering operators):

u+t(77) bo_lufi(ﬂ) + bo_lgu+i(2l + 77) + f T.(n— S)u+{(3) ds, —4l <9 <0, (24)

u,"(§)

fou (—8) — jou.' @l — &) + f_e R.(t+ 9u,'(s)ds, 0<E<A4L (2.5)

where the constants b, , fo , ¢, jo are defined below. The kernels R, , T, of these operators
are called the reflection and transmission kernels respectively. These are piecewise C*
functions and are, under the hypotheses given above, independent of the choice of
incident wave used in the scattering experiment.

Now by measuring an incident, reflected and transmitted wave, it is possible to
determine the kernels R, , T, and constants b, , f, , 9, jo - We show in Sec. 5 that these
kernels and constants can be used to derive an integral equation which is a generalization
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of the Gelfand-Levitan equation. The solution of this equation enables us to easily
construct the coefficient B and the combination C — 4’/2 — A*/4. We also show how
our results are related to those obtained by Weston. In Sec. 6 we illustrate this technique
by solving an inverse problem for a transmission line with line losses taken into account.
We conclude with an appendix which describes a procedure for solving the inverse
problem when the unknown quantities are constant functions.

We should mention that the hypotheses on u.*, u.”, u.' given above are sufficient
to determine the solution of the inverse problem provided we can determine the scattering
kernels and constants in (2.4) and (2.5). (The sufficiency of these conditions is demon-
strated in Sees. 3, 4 and 5.) If we also require u,”/(0—) # 0, then it can be shown that
these kernels and constants can be uniquely determined. For example, differentiating
(2.4) and bearing in mind that u.*(0) = 0 yields

]
W) = b ) + b7 @ )+ [ T — ) ds

which is valid for all y between —4[ and 0 where «," is defined. Setting n = 0— gives
u.t(0=) = by 'u.”(0—)
and so b, is determined. Similarly
w N (=24) = u(=20=) = b u.(=24) — u.(=2-)} — b 'gu.”(0—)

which yields g. Differentiating a second time produces
0
u+”/(77) = b0_1u+”,("7) + b()_lgu+€,l(2l + 7)) — Ti(pu.”’(0—) + f T.(u.""(n — s) ds

which is a Volterra equation of the second kind for T, (»), so T, is easily determined.

To show the motivation for formulating problem (2.1) in the above manner, consider
again the example of electromagnetic scattering cited in Sec. 1. An electromagnetic wave
propagating along the z-axis normal to the slab situated between 2 = 0 and z = L has
transverse electric field E(z, t) satisfying

E., — e@ukE, — c@u.E, =0, —o <2< », —o <t < o (2.6)

where the permeability u, is constant. The change of variable
r= [l ds, D) =1 ulw ) = e
]
reduces (2.6) to (2.1) with

A(z) = —d% {e@uo}™"?,  2#0,L,

B(x) = —oa(2)/e(2), C(z) = 0.

The continuity of E and E, at z = 0, z = L implies that « is continuous at z = 0,z = 1
and that u, satisfies

{60/6(0‘*—)}1/2“1(0_) t) = uz(0+7 t)
feo/e(L—)} (U4, ) = w(l—, O
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which corresponds to (e) above. Hence, by measuring an incident wave and the resulting
scattered waves we can determine B(x) and A4 (x) (see Sec. 5). In [9] Weston shows how
to recover ¢ and ¢ once A and B are known.

Observe that if B = 0 in (2.1) then we are dealing with a nondissipative problem. If
we further assume A is continuous at x = 0, x = [, then the transformation

v(z, ) = ulx, t) exp {% f: A}

reduces our equation to a selfadjoint onc which is amenable to a time-dependent (see
Kay [3]) or steady-state (see Kay and Moses {5], [6]) inverse scattering technique. In
this case only a reflected wave or set of reflection coefficients is needed to reconstruct
the combination C — A4’/2 — A*/4.

Although our main interest is the fact that we are dealing with a dissipative medium,
our results do have applications to some unresolved problems for nondissipative media.
For example, Moses and deRidder [7] have shown that the permittivity of a dielectric
slab can be obtained by a steady-state approach in two ways: (1) by considering a wave
of fixed frequence and varying the angle of incidence on the slab, or (2) by considering a
fixed angle of incidence and varying the frequency. In the first case it is not necessary
to assume a continuous change in permittivity at the faces of the slab, but in the second
case the continuity is essential. Similarly, it has been pointed out by several authors
(2, 4, 7, 8]) that the inverse problem for lossless transmission lines can only be solved
for the case where the capacitance and inductance are continuous functions. The time-
dependent approach which we present eliminates the continuity assumptions in the
above problems.

Let us establish some notation to be used throughout this paper. It is convenient to
denote A(0+) by A(0) and A(I—) by (A(l), with a similar convention for B. Also, to
denote differences in function values, we write

% = 1@ — {(P).

Finally, let G(2) = exp {— [o° B(s) ds}, and let the function 6(s) be such that 6(s) = 0
ifs <0,60(s) =1ifs > 0.
We list here constants which will be used at various points in this work:

a, = exp {é fol (A(s) & B(s)) ds}

1
by = ZC—O (co + 1)(c; + Da-

b = fc— (e + D + Da,™

fo = (co — 1)/{co + 1)
fo={(a =1/l + 1)
g = ffiGQO)
ho = beflG(D™!
he = bif GO

jo = (e — 1)/(ca + l)bo—la+
i = (o — 1)/(c. + Db e
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3. The weak Riemann function. We begin by developing an expression for the
solution of (2.1) in terms of waves (2.2), (2.3). This is done by solving the Cauchy
problem for (2.1) with the data being u(z, t), u.(x, t) where £ = 04+ or z = [—. We
present a general approach to the solution of this Cauchy problem, using a weak Riemann
function. Such a function should prove helpful in future studies relating to this type
of problem.

Sett=2x 4+t 9 =2 — tandlet g(§ 9; % , 7o) denote the weak Riemann function. We
require that g have the following properties:

(a) L*g = 0 for t + 5 5= 0, 21 (where L* is the formal adjoint of L).

(b) ¢ is a continuous function of £, 4, & , 7 .

(§o+1m)/2

(c) 9(50 s 15 80 s "Io) = exp {%/z (A(S) 4 B(.S‘)) ds}-

fodn0)/2

1 (E+mo)/2
(d) g(f; Mo 5 &0 s 770) = €exp {é f( (A(S) - B(S)) ds}-

Eotn0)/2

(e) [g: + gn]5+ﬂ=0+5+v=0— = [A]0+o—0|s+n=o .
® lg: + gn]e+"=“+5+n=2!— = [A]Ht—g|£+n=2t .

It turns out that the case & - 7, > 2l is only of minor interest and so in the remainder
of this paper we consider & 4+ 7, < 2! and, where appropriate, merely state results for
the case & 4+ 5, > 2I. Now several remarks are in order:

(a’) It is clear that ¢ exists and is unique.

B)UO0<t+ < 2and0 < & + 9 < 2I, then g coincides with the classical
Riemann function.

(¢") If & 4+ no < 0, condition (e) becomes g; + g, = A0) on & + 4 = 0+.

(d) If & + 50 < 0, then from the propagation of discontinuities (see [1, vol. II,
p. 618)])

(g™ ™ e e

14 + Bl [ 46 + B asf
for o < <204+ 9, 3.1
—ts 1 (E-£o0)/2
0 e = =304 = Bl e {4 [ 40 — By i)

for & <EL<204&. 3.2)

(See Fig. 1.)

We now express the solution % of (2.1) in terms of Cauchy data on & = [—.
Lemma 1. For x, < !l and any ¢, , we have

2uz0, ) + (@ = DO(=m) [ 0=, b +9) ds

-z

Q
= quls + gulo + [ lulge + 0 — g — ADug) ds

where the integral on the right-hand side is along the line x = {— and P, Q have space-
time coordinates (I— , x, + &, — 1), ({—, to — x, + I) respectively.
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(L,t -x0+£)
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Ldiscontinuity in gE

(xo,to)

discontinuity in g£+gn //\

 discontinuity in g,

(2,t +x0-£)

0

b 4

Fic. 1.

Proof: If x, > 0 the above formula follows as in the classical case. If 2, < 0 inte-
grate the expression gLu — uL*¢y = Q over theregions § + 5 < 0, ¢ = & , 7 = 7, and
0<t49n<2LE2%,n = 1 . Add the resulting quantities, using the fact that g, — g,
is continuous across x = 0 and also using property (e), and the lemma follows.

In a similar manner we get

LemMa 2. Forz, > 0 and any ¢, ,

°

2u(zy , ) + (¢, — Do(x, — ) ’ w,(l+,s+ t, — D) ds

2l—-z,
Q
= gulr + gulo + fp fulg + ¢,) — w9 — AQQug} ds

where the integral on the right-hand side is along the line x = 0+ and P, Q have space-
time coordinates (04, &, + z,), (0+, &, — x,) respectively.

A simplified expression for g and its derivatives as they appear under the integral
signs in Lemmas 1 and 2 can be obtained due to the fact that the coefficients of (2.1)
are independent of time. This result is expressed in the next lemma.

Lemma 3. The functions K, and K_ defined by

K.(x,,y,n) exp {% f (A(s) — B(s)) dS}

=gq(Qn—y+to,y—to;xo+to,xo—to), 3.3)
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Koo, v, exp {5 [ (40) + Bo) da)

=gf(y+to,2n_y_to;x0+t0,zo_‘t0) (3.4)

(where n = 0 or n = [) satisfy the following conditions:

3 & d 3
{6_1? - a_yi + B(x)(’é; + b—y_> + Di(x)}K*(x, Y, n) = 0) r # 07 lr (35)
K.(z,2n — z,7) = }(A = B)]. exp {i f " Bes) ds} , (3.6)

K.@ a,m) = —3 [ Du(s)ds + 44 % B)l,

+ 10(fx — B{l —n} — 2n)(4 F B),-..  (B3.7)
where
Di(z) = C(z) — 34’() = 3B'(2) + (B°(x) — A’(x)), =2 #0,1L

Proof: We consider the case n = [ and verify formulas (3.4)-(3.7). The other cases

follow in a similar manner.

Let L;.,, denote the operator L in characteristic coordinates. It can be shown that
as a function of (£, , 10), g, n; & , 10) satisfies L, .,.,g = 0. It follows that L,.,.,g: = O.
(The method of successive approximations [1, vol. II, p. 462] shows the continuity of
the mixed partial derivatives which are involved.) A boundary condition for g on
n = 1, is obtained from item (d) above, and a condition on ¢ = £, is obtained from (a)
and (c¢). We thus have a characteristic initial value problem for g, . The change of
variable & = b —§5B=mn + Eand gf(gy 2l — §a + £ 8- E) = f(S) a, B, l) converts
this problem into one which is independent of £&. Now set « = 2, — %, 8 = 2 + y and

608, = K-, D exp {5 [ (46 + B as)

and our result follows.
In the same way as in Lemma 3, we can prove
Lemma 4. The functions L, and L_ defined by

L+(1'o ' Y, n) exp {% ‘/:. (A(S) - B(S)) dS}

=g@2n —y+to,y— t; %+ t,To— b) 3.8)

Lo, v exp {8 [ (46) + B i

=gy +to,2n—y—ty; %0+ to, o — t) 3.9)

satisfy Eq. (3.5) and have boundary values

L.(x,2n — 2,n) = exp {:i:[n B(s) ds} (3.10)

L.(x,z,n) = 1. (3.11)
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We are now in a position to express the solution of the Cauchy problem in terms of
waves outside of the slab.
TueoreM 1. Assume the Cauchy data for Eq. (2.1) is

uln, t) = v(n — t) + win + 1), u,(n, ) = cv'(n — t) + cw'(n +t) (3.12)

where n = 0 or n = I and v, w are continuous, piecewise C* functions. Then the solution
u of (2.1) is given by

2u@, ) + (0 = DO=2) [ w05+ ds + = Doz — 1
st 0= s = e & [ 46 - B asf{e + e — 0
— (e — Do@n — 2 — 0) exp { [ 8o ds} + [~ 0N v dy}
+ exp {é [ 4©+ 5w ds}{(cn + Du + 9

— (e, — Dw@n — x4+ &) exp {—fﬂ B(s) ds} + fh_z wly + ON_(z,y,n) dy} (3.13)

where
Ni(zi Y, n) = (Cn + I)Ki(x) Y, n)

— (e — DKa(z, 20 — y, 1) exp {:i: f " B(s) ds} — AWML, y, 7).  (3.14)

Proof: In Lemmas 1 and 2 write the u, term in the expression [»? u.g ds in terms
of the waves (3.12) and then integrate by parts. The theorem now follows from Lemmas
1-4,

4. The scattering operators. The scattering operators for Eq. (2.1) map an incident
wave into the corresponding reflected and transmitted waves. Before constructing these
operators we first notice that by using Lemmas 3 and 4 and Eq. (3.14), we can write

N.(z,y9,) = V+l(x + v + W.'(z — y)

forz < 0,z <y < 2l — z, where V.', W.' are piecewise C*. We can also assume that
V.'(s) = 0if s < 0. From (3.2), (3.3) and (3.14), we then deduce that

V') ™ emo- = V. (0+) = =% + 1)(A = B)lo . (4.1)
Similarly, (3.1), (3.4) and (3.14) imply that
[W+l(3)]"(‘2”_s-<-zz)+ = i(c — I)G(l)-l(A + B)lo - 4.2)

We now establish a result which expresses the incident and reflected waves in terms of
the transmitted wave.
TrEOREM 2. There exist unique piecewise C* functions V, and W, such that

u. () = b0f0u+'(—£) - h0u+‘(2l —-§ + j: V.t + S)M*‘(S) ds, £>0, 4.3)

u, (n) = bau.'(n) — bogu.'2l + ) + f W.(n — sju,'(s)ds, 7 <0. (4.4)
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Proof: If such functions exist, it is clear that they are unique. Now consider an
incident wave u,*(y) propagating in the 4z direction. In Theorem 1 set n = I (hence
v = u,’ and w = 0) and & < 0. The integral on the left-hand side of Eq. (3.13) can be
written

f_ w(0—, s+ O ds = u,'(n) — w.' (—8) — u."(—n) + u.’(®).

Assuming ¢ < 0, we then get
(eo + Du'(m) = (o — Du,"(—n)

= a—{(cl + 1)u+l(77) + fo W+1(7l - s)u+l(s) ds} (4.5)

for all #. Setting ¢ > 0 in Theorem 1 and using (4.5) yields
(¢ + Du."(®) — (eo — Dus’(—9)

= a_{—(cl — Du' 2l —§) + e W.(n — s)u.'(s) ds + " V. E+ syu.'(s) ds}.

-t
Since W.'() is constant for < —2I, we define
V.i® = —W. (-9 (4.6)
for £ > 2l and get
(¢o + Du®) — (o — Du' (=9
= a-{—(ct - Du, 2l — 9 + f_e V& + su.'(s) dS} @7
for all £.
The theorem now follows from (4.5) and (4.7) with
W.m) = (a_/4c){(co + DW.'(m) + (co — DV.'(=m)}, =2<0 (4.8)
V) = (a-/dc){lco — DW. (=8 + (0o + DV.'®)), £>0. (4.9)

If we consider u,'(n) as an unknown, then (4.4) is a Volterra integral equation
involving a delayed argument. Inverting this equation will give an expression for the
transmitted wave in terms of the incident wave. To accomplish this, first consider
—2l < n < 0 and invert in the usual way (see [1, vol. I, p. 140]) using the resolvent
kernel T, to get

0
ul () = by 'u () + f T,(n — shu.'(s) ds, —20< <0

where

0

BTL() + 07 W) + [ W — 9@ ds =0,  —20<n<0.

Using this result we can write the forward scattering operator (or transmission operator)
by inverting (4.4):

u'(m) = b 'y (n) + be gu, (2L + n)

+ f To(n — u.'(s)ds, —4l<n<0 (4.10)
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where
boT . (n) + bo_1W+("I) — bogT. (2L + n)
0
+ bWl + 0) + f W.in — T.(5)ds, —4l<n<0 (411
n

and by definition
W.(n) = T.(9) =0 for »>0.

Clearly the kernel 7', is unique. Notice also that in Eq. (4.10) the term u.*(2l + 9)
corresponds to an internal reflection in the slab. We would pick up additional reflections
by inverting (4.4) on a domain larger than —4l < 5 < 0.

Combining (4.3) and (4.10) we get the back scattering (reflection) operator

u,"(F) = fou (=8 — jou. 2l — &) + f_os R.(t+ su.'(s)ds, 0<t<4l (4.12)

where

R.(®) = bofoT.(=§) + by 'V.(§) — hoT(2l — &) + by 'gV.(t — 2)
+ [ Vet 0<i<4  @13)
-t
and by definition V,(¢) = 0 for ¢ < 0. Using (4.11), we also get

¢ + 1_ 97 _
o+ 17 bohoT. (21 — &)

V() = boR.() — b foT.(—8) — bogR.(E — 20) + 2

+ /: W.(s — O{R.(8) — bofoT.(—s) + hT.(2L — s)] ds. (4.14)

We now establish a crucial identity in N, and N_ to be used in Sec. 5.
Lemma 5. Tor0 < z < land —z < y < z, we have

N+(I) Y, O) = G(x){(cﬂ + 1)R+('E + y) - fON_(.T, -Y, 0)
- f Ry + 9N_(z,5,0) ds} - (4.15)

Proof: For an incident wave u,*(n) it follows by causality that for any x the solution
u of (2.1) satisfies u(x, t) = O for t < z. Using such a value of ¢, set n = 0 in Theorem 1.
Then the left-hand side of Eq. (3.13) vanishes, and on the right-hand side we have
v = u,” and w = u,”. Using the reflection operator to express u.” in terms of u.’, we
obtain our result by virtue of the fact that ., is arbitrary.

Lemma 6. Tor0 < z < [, we have

Gy = ven - 5 [ Z Uz + 9)N_(z, 4, 0) dy (4.16)

where U(y) = 1 4+ (co + 1)/(2c0) fo’ R.(s) ds.

Proof: Let n = 0in Theorem 1. Now setting v = 1 and w = 0 produces the same
value u(zx, t) on the left-hand side of Eq. (3.13) as does setting v = 0 and w = 1. Equate
the resulting quantities to obtain
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200 = [ Nua,y, 0)dy = G(z){zco -/ " N_(z, 9, 0) dy}- 4.17)

Our result follows by substituting into Eq. (4.17) the expression for N, obtained in
Lemma 5.

Thus far we have considered an incident wave u.*(z — ). In an analogous manner,
we can derive results for an incident wave u_*(z + ¢).

TaEOREM 3. There exist unique piecewise C* functions V_ and W_. such that

u.’(n)

2l—~-9
bfut@l — 1) — hut(—n) + / Vo + u ') ds, <2l

£
uE) = bau'(E) — bigu.'(E — 20) +f0 W_t — Sut(s)ds, £> 0. 4.18)

Inverting (4.18), we get the transmission operator
u'® = b7 u® + b7 - 20) + f T @ds, 0<t<d4l
where
bT-(§) + b7'W_(®) — bigT-(¢ — 20) + b 'gW._(t — 20)
+ f: W_(t — 9T()ds =0, 0<E< 4l
and by definition, W_(¢) = T_(¢) = 0 for ¢ < 0. The reflection operator is
w(n) = fu '@l — m) — ju'(—n) + f:[”R-(n +u(s)ds, —20 < <2

where

R_(n) = bf,T-2l — n) + b7 ' V_(n) — h,T_(—n)

+oTV @A+ [ Vet 9T (ds,  —2<n<2
o
and, by definition, V_(3) = 0 for 4 > 2l. As before, we get

012 + 1_ _
(Cz I 1)2 b,th_( 77)

V_(n) = bR_(9) — b,zf,T_(Zl — ) — bgR_ (2L + n) + 2

+ [ Ws = MIR(9) = bAT-2L = 9 + BT (=)} ds

Finally, causality yields
Lemma 7. For0 <z <landz < y < 2l — z, we have

G@N_(z, 9, 1) = —G(l){(cz + DR_(z + v)

2l-y
+ le+($, 2l — Y, l) + f R—(y + S)Nv+(z) Sy l) dS}




140 ROBERT J. KRUEGER

5. The inverse problem. Our strategy in solving the inverse problem is to derive
an integral equation whose solution is the function N_(z, y,0) for0 < z < I, —z <y < .
Using this equation to determine N_ , we can then easily find G(z) (and therefore B(x))
from Lemma 6. Finally, since the boundary values N_(z, z, 0) can be expressed in terms
of the coefficients of Eq. (2.1), we can then dctermine the quantity C — A’/2 — A*/4.

We show in this section that the integral equation for N_ can be constructed from the
following data:

(a) Reflection kernel B, (s), 0 < s < 4l

(b) Transmission kernel T',(s), =2l < s < 0

(¢) Constants ¢, , by, g and (¢; — D)a, .
As indicated in Sec. 2, this data can be determined by measuring incident and scattered
waves.

For future reference, we write down several useful identities (for 0 < z < I):

2M@Lm=4A+wm+m+n[D@@ 5.1)

26N _(x, —2,0) = —(4 +aB)ls — (o — 1) [ D.() ds.

By using (4.13), (4.11), (4.9), (4.8) and (4.1) in succession, it can be established that
Co
(co + 1)2

Similarly, by using (4.13), (4.11), (4.9), (4.8), (4.6), (4.2) and (4.1) in succession, it
can also be shown that

R.(0+) = — (A — B)o. (6.2)

26 2
oEa e A ATCRLY

z; _T_ } (24 + (co — DB)|o — (&2 — 1) ‘/; (D.(s) + D_(s)) ds}- 5.3)

We now derive a system of integral equations satisfied by N, and N_ .
THEOREM 4. TFor 0 < x < I we have

0] R

-+

co+ DF.x = 1) + (00 + DE@S.(2, 7, 9) — G@) [ N_(z,5, 008,65, , 9) ds

= (¢, + Da_N,(x, y, 1), r<y<20 —=x (5.4)
= —(c, — DNa,G@)N_(z, 2l — y, 0), 20— <y <2+ 2 (5.5)
=0, 20+ <y (5.6)

where F.(y) = (co + DW.(y) — (co — D)V, (—y) and (for —x < § < )
S+(S, x, y) = (CO + 1)b0R+(S + Z/) - (Cl - 1)b0—1a+W+(2l -8 = y)

et D) [ W R+ y<Atz,
=(co+ DVils+y) — (o — DW,(—=s — y)

— (o +1) f W.iz — YR,z +s)de, 204+1<y.

1

Proof: Consider a fixed point (z, {) where 0 < x < [l and an incident wave u't.
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Fig. 2 illustrates how Theorem 1 can be used in two different ways to represent the solu-
tion u of (2.1) at the point (z, ). (The dotted lines in that figure are characteristics.)
We equate these two expressions for u(z, t), but in doing so, find it necessary to distinguish
three cases. In the first case we require < t < 21 — z (region 1 in Fig. 2) so that u(z, t)
is unaffected by internal reflections. Using Theorem 2, we then write u,’ and ».” in
terms of .’ and thus obtain an expression involving an integral of the form
[=2" (Du'(y — t) dy and an integral [,' (\)u.'(y — t) dy. By virtue of the identities
(4.11), (4.14) and (4.15) it can be shown that the integrand in the first integral vanishes.
The same identities applied to the second integrand along with the fact that u.* is arbi-
trary (implying the integrand must vanish) yields Eq. (5.4).

Nowset 2l — x < t < 2l 4+ z (region 2 in Fig. 2) which corresponds to the case in
which u(z, ?) is influenced by reflections off the interface at x = I. Repeating the above
procedure, we again obtain integrals [_,* (1)u.'(y — &) dy, [.>""" (\)u.'(y — ) dy and
Ju- ()u'(y — 1) dy. As before, the first integral vanishes, and Eq. (5.4) is used to
eliminate the second integral. The internal reflection produces additional terms in the
third integrand which were not present in the second integrand, and so we finally obtain
Eq. (5.5).

Setting ¢ > 2] + z, we pick up multiple internal reflections, and in the same manner
as above, arrive at Eq. (5.6). This completes the proof.

By considering an incident wave u_* we obtain

TuEoREM 5. For 0 < 2 < ! we have

(e + DE@FO)'F_(x — y) + (e + DS-(x, 2, 9) + le—z N.(z,8, D)S_(s,2,y) ds

= —(& + 1a,”'G@GO)'N_(z, y, 0), —r<y<r (6.7

= (co — Da_"'N.(x, —y, 1), r—20l<y< —zx 5.8)

= 0, y<z—2 (5.9
p t

~_ t-x=28

3
2
x+tt=24%
\N 1 "
”
\\ r
.\ AN ///
Cauchy data is d (x.t) X ” Cauchy data is
i r \ / -t
u  (0-t),u, (0+t) AN u (2=
1 7 N\~
7/
N/
/ [~~~ X=t




142 ROBERT J. KRUEGER

where F_(y) = (e, + DW_(y) — (e, — DV_(2l — y) and (forz < s < 21 — 2)
S_(s,z,9) = (e + DbR_(s + y) — (co — )b, 'a "' W_(—s — y)

e+ [ W R G+ b r—2A<y,

2

=+ DV(is+y) —(—DW_2l —s—1y)
—e+n [ CWoe— PRG+ ) d, oy <a—o2l

We observe that Eq. (5.5) contains two unknown functions, namely, G(2) and
N_{(z, y, 0). However, by using Lemma 6 we can climinate G(z)~' from (5.5) and obtain
(after a change of variable)

(co + DX, 2,9) = [ N_(r,5, 0XGs, 7, 9) ds

= —(¢, — Da.N_(z, y, 0), —r<y<zr (5.10)
where
X(s,z,y) =F.(ca+y—2DU(s+ 2) + S.(s, 2,2l — y).

If ¢, ## 1, Eq. (5.10) is for fixed x a Fredholm equation of the second kind. In a sense
it is a generalization of the Gelfand-Levitan equation since the kernel X depends on both
the reflection and transmission operators. Upon solving this equation for N_(s, y, 0),
we use (4.16) to obtain G(z) and thence B(z) from the relation B = —G'/G. Finally, the
combination ¢ — A’/2 — A?/4 is found by means of the identity

2 % N_(r,2,0) = (¢, + 1)D_(x) (5.11)
which follows from (5.1).

In the electromagnetic problem mentioned in Sce. 2 we saw that € = 0. To find A (z)
we need to know A (0). This is found by using (5.2) or by just setting « = 0+ in (5.1).

If ¢; = 1 the above procedure does not yield a Fredholm equation of the second kind.
However, if ¢, # 1 this problem is circumvented by using an incident wave propagating
in the opposite direction.

In the special case ¢, = ¢, = 1, the right-hand sides of (5.5) and (5.8) vanish and so
we are in a situation similar to that considered by Weston (9] although we still allow
A, B, C to be discontinuous at + = 0, z = [. The method of solution given above can no
longer be used since we cannot obtain a Fredholm equation of the second kind. In other
words, the lack of a hard reflection at the interface between the surrounding medium and
the side of the slab opposite the incident wave makes the slab “‘indistinguishable” if
only one incident wave is used. As in Weston's case, we need two incident waves from
opposite directions in order to solve the problem. These are used to obtain the following
data:

(a) Reflection kernels R, (s), R_(s),0 < s < 21

(b) Transmission kernels T,(—s), T_(s),0 < s < 2l

(¢) Constantsa, ,a_ .

(In a manner similar to Weston's, it is readily shown that knowledge of R, and T,
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(or T'.) enables one to determine T- (or 7',).) Now combining (5.4) and (5.7) and using
Lemma 6 to eliminate G(z)~', we obtain for 0 < 2 < !

2X,(r, 2, 9) + 0o — ) — [ N_(z,5,0X(s, 2, p) ds

= —N_(x, y,0), —r<y<ux (5.12)
where
Xi(s, 2, y) = 3a.U(s + 0)S_(x, z, y)

+ i fﬂ_r S_(z, 2, Y{U(s + o)F . (x — 2) + S.(s, 7, 2)} dz.

We now use (5.12) to determine N_ and then proceed as before to reconstruct the
coefficients of (2.1).

6. Example: a transmission line with losses. We now illustrate our technique for
solving the inverse problem by considering an example involving a transmission line.
Instead of using actual scattering data, we shall (for the sake of simplicity) begin with
a partial differential equation with known coefficients and determine the scattering
operators analytically. These operators then serve as the starting point for the inverse
problem and are used in reconstructing the original partial differential equation.

Consider a transmission line of length [, lying between z = 0 and z = [, . We assume
that the shunt capacitance and conductance are constants, C and G respectively, and
that the resistance and inductance are given by R(z) and L(z). It is also assumed that
R is C' and L is C*®. In this case the model equation for the current I(z, t) is

I..— L&)CL, — R()C + LG, —R®GI =0, 0<z<l. (6.1)

We assume the line is terminated in such a way that we have

I,, — LCo,, =0 for 2<0 or z2>1 (6.2)
where L, and C, are constants. The change of variables
x = {LCo}' %, 2 <0
- [ (L(s)C)' ds, 0<z<1, 6.3)
Jo

I+ {LCo} % — 1), 2> 1
where I = [," {L(s)C}"* ds and u(z, t) = I(z, t), transforms (6.1) and (6.2) into

Uy, — Uy + A(@)u, + Blx)u, + C.(x)u = 0, 0<a<l (6.4)
Upy — Uy = 0, z<0 or z>1 (6.5)
where
A@) = ~2 (LE)e), (6.6)
B(r) = —(R@)C + L()G)/L()C, 6.7)

Ci(») = —R@)G/L()C. (6.8)
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Furthermore, we have the jump conditions
Cou,(O—, t) = u,(0+, t)y cluz(l+’ t) = u,(l—, t)
where

co = {LCo/L(0 +)C}l/2y € = {LOCO/L(lx—)C}Uz- (6.9)

We now proceed to determine the scattering operators. To do this, we need to specify
the coeflicients of (6.1) and (6.2). For simplicity, we set B and L constant and require
L=C=a,L,=C, =a,and R = G = r, with a # a,. Then Eq. (6.4) becomes

U — Uy — 2bu, — b'u = 0, 0<a<l (6.10)
where b = a/r, and we also get
Co = ¢ = @y/a = ¢
For a wave incident from the left the solution of (6.9) is
u(z, ) = {f(@ + ) + glz — &)} exp (—bt), O<z<l

with (2.2) holding elsewhere. Notice that f(£) = 0 for 0 < ¢ < 2l. Using the continuity
of u at x = 0 and the jump condition on %, , we can obtain a first-order linear differential
equation for «,” with a nonhomogeneous term involving u.". Solving this, we can express
u,”(¢) in terms of u,’(—§) for 0 < ¢ < 2[ and thence obtain

—2b
R.¢) = (_cTch exp (—kf), 0<E<2]

where k = b/(c + 1). A similar procedure across x = [ yields

T.(n) = {ben 4+ ¢ — 1} exp (kn — bl), =2l <9 <0. (6.11)

(+1)

Now write f(¢) (for 21 < ¢ < 4l) in terms of u.*(—£) (for 0 < £ < 2I) and consider » and
u,atz = 0,2l < t < 41. We can again express u."(£) in terms of u, (—¢) for 21 < ¢ < 4l
and so arrive at

——2bc i 3 2
R.(¢) = m exp (=K1 4+ d,6(t — 2D){d, (21 — &)
+ di(21 — &) + do}}, 0<t< 4l (6.12)
where

dy = ——3 exp (—2ckl), d, = bc’k,

(c + 1)
dy = 3bclc — 1), do = (c + 1D — 4¢c + 1).

We now turn to the inverse problem. We seek to determine the constants C, G and
functions R(z), L(z) in Eq. (6.1) by using scattering data. It is assumed that the constants
L, , Cy in Eq. (6.2) are known and that L, = C, = a, . At this point a scattering experi-
ment is performed in which an incident wave produces reflected and transmitted waves
which are measured in the regions z < 0, z > [, . These waves are easily converted into
z coordinates since for z < 0 and z > [, the transformation (6.3) is known once [ is
determined. But since we seek to reduce our problem to one with unit velocity of
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propagation, we see that [ is just equal to the time required for the transmitted wave
to emerge from the line. Thus, we express the incident and scattered waves in z co-
ordinates, and then use (4.10) and (4.12) to determine the constants ¢, , b, , g, (¢, — 1)a.
and the kernels R, , T, . We obtain

(c + 1)

Co = C, b() = 46

exp (bl),

c—1
EC T 13, exp (2bl), (¢ — Da, = (¢ — 1) exp (—bl)
and R, , T, as given in (6.11), (6.12).
We begin our solution by finding W,.(3) for —2I < 5 < 0. Taking the Laplace
transform of Eq. (4.11), we are able to obtain

W) = 4 exp GD{1 — ¢ exp (br)),  —21 <1< 0.
From (4.14) we get
V. = —2exp G){L + ¢ exp (—b)), 0 << 2L
It follows that
F.(s) =5 exp (bD{1 — ¢ exp (bs)},
U(s) = exp (—ks),

S.(s, z,y) = 9 5 exp (bl — k(s + y){ exp (k(y — x))A + c exp (b(z — ¥)))

+ 6(s +y — 20 + 1 exp (-—-2clcl)} )
and so
X(s,z,y) = —bcexp (b(x +y — 1) — k(x 4+ s)) + 2¢ck exp (—bl + k(v — s))8(s — y).
Substituting this last expression into Eq. (5.10) we get (for z fixed)
N_(z,9,0) = [i(y) + Mf(y) + 9W)fs(v) (6.13)

where

f1(y) {be(c + 1) exp (b — 2k)z + by) — 2bc exp (k(y — 2))}

c—1

L) = —;‘?_c—l exp (ckz + by)

fa(y) = 7 €xp (ky) (6.14)

o) = f N_(z, s, 0) exp (—ks) ds

M = g(—zx).
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From (6.13) and (6.14) it follows that
9(y) exp (my) = exp (cka){(c + 1) exp (—kz) — M} {exp ((m + ck)z) — exp ((m + ck)y}
— (¢ 4+ 1) exp (—ka){exp (mxr) — exp (my)} (6.15)
where m = 2¢k/(c — 1). Setting y = —a in (6.15) we get
M= (¢c+ 1) exp (—kx)(1 — exp (—2ckx))
and so
9@) = (c + D(exp (—kz) — exp (—bx + cky)).
Finally,
N_(z,y,0) = bcexp (b(y — x)).
Using (4.16) and B = —G’/G we get
B{z) = =2, O0<a<l (6.16)
and from (5.11),
Ci(x) — A’'(x)/2 — A*@)/4 = —=b°, O0<z<l (6.17)

Now from (6.7) and (6.16) we see that R(z) is just a constant multiple of L(z), and
so it follows from (6.8) that C,(z) is constant. Furthermore, from (5.2) we determine that

A©) =0 (6.18)

and from (5.3) we get
AQ) = 0. (6.19)

Since C, is constant, it now follows from (6.17), (6.18), (6.19) that A(x) = 0. Using (6.6)
we then conclude that I.(z) (and therefore R(z)) is constant for 0 < z < I, .
Thus, we have that

R @

rte=2
and

GR/LC = b
from which it follows that

R G

10" b.

Furthermore, since the constants ¢ and a, are known, it follows from (6.9) that the
product LC is known,

LC = d’.

With no other information given to us, this is the most we can determine about the
coefficients of (6.1). However, if we can obtain by other means that, for example, C = a,
then we find

L =aq, R =ab=r, G=ab=r.
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Appendix: The constant coefficient case. If it is known a priori that the coefficients
A, B, C of (2.1) are constant on (0, I), then it is a simple matter to dctermine these
constants. In doing so it is no longer necessary to determine the transmission kernel.
We outline the reconstruction of the constants A, B, C under the assumption that
¢ = ¢ = ¢ # 1. The required data is

(a) R.(0+)
(b) [Ru()*™*" oo

(c) Constants ¢ and G/(1)~'. (These are found from the constants f, and j, in Eq.
(4.12).)

We first determine B from the relation

B = —1 I G()
and then 4 is found from (5.2). Now for our case, Eq. (5.3) reduces to
8=20+ _ 2cg(_ZZ_l_ _
R aears = Ct I {2(4 — ¢B)

+ (¢ = D@4 + (¢ — DB) — (" — D@C + 3(B* — 4"}

from which C is easily found.
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