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AN INVERSE PROBLEM FOR AN INHOMOGENEOUS
CONFORMAL KILLING FIELD EQUATION

ZIQI SUN

(Communicated by David S. Tartakoff)

Abstract. Let g be a C2,α Riemannian metric defined on a bounded domain
Ω ⊂ R2 with C3,α boundary and let X be a C2,α vector field on Ω̄ satisfying
X|∂Ω = 0. We show that if l is a gradient field of a solution u to the equation
4gu−

〈
∇g σ, ∇gu

〉
g

= 0 on Ω, then both inner products
〈
l,X

〉
g

and
〈
l⊥,X

〉
g

are uniquely determined by the restriction of the tensor LX(g) − (eσ ∇g ·
(e−σX))g to the gradient field l, where LX(g) is the Lie derivative of the

metric tensor g under the vector field X and σ = log
√
det(g). This work

solves a problem related to an inverse boundary value problem for nonlinear
elliptic equations.

1. Introduction

The goal of this paper is to present a solution to an inverse problem for the inho-
mogeneous conformal Killing field equation. The inverse problem originates from
a study of the inverse boundary value problems for a class of quasilinear elliptic
equations initiated in [H-Su]. The inverse boundary value problems for semilin-
ear and quasilinear elliptic equations have been studied extensively in the last few
years [I 1], [I 2], [I-N], [I-S], [Su], [Su-U]. It is well-known that an inverse bound-
ary value problem for a quasilinear elliptic equation can be reduced to an inverse
boundary value problem for the corresponding linearized elliptic equation through
a linearization procedure [I 1]. This linearization procedure solves the quasilinear
problem almost immediately when the equation is an isotropic one [Su]. However,
when one deals with the quasilinear anisotropic elliptic equation, the linearization
procedure reduces the original quasilinear problem to a family of linearized prob-
lems depending on the boundary values, and another argument is thus needed to
show that the diffeomorphism obtained from the linearization is actually indepen-
dent of the boundary values. If the original quasilinear anisotropic problem involves
merely the unknown solution in its quasilinear coefficient, one can use a second lin-
earization procedure to achieve the above goal since the required linearization is
performed only at the constant boundary values [Su], [Su-U]. In the case where
one has a quasilinear anisotropic problem involving the gradient of the unknown
solution, the above second linearization argument fails to work since in this case
one needs to linearize the equation at a general boundary value. The recent work
of [H-Su] has been devoted to solve this problem, in which the second linearization
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has been replaced by a more subtle geometric analysis that reduces the problem to
an inverse problem for the inhomogeneous conformal Killing field equation. This
paper is devoted to solve this problem. We refer the readers to [U] for a general
discussion on the field of inverse boundary value problems.

Let Ω ⊂ R2 be a bounded domain with C3,α boundary. Let g be a C2,α Riemann-
ian metric defined on Ω̄ and let X be a C2,α vector field on Ω̄. The conformal Killing
field equation considered in this paper is concerned with the tensor

LX(g)− (eσ∇g · (e−σX))g,(1)

where LX(g) is the Lie derivative of the metric tensor g under the vector field X

and σ = log
√
det(g). Here we use ∇g · to denote the divergent operator under

the metric g. In this paper, we are mainly interested in the case when X satisfies
X |∂Ω = 0.

Let l be the (C2,α) gradient field of a C3,α solution u to the equation

4gu−
〈
∇gσ,∇gu

〉
g

= 0

on Ω̄. Then l satisfies the equation

∇g · l −
〈
∇g σ, l

〉
g

= 0.(2)

Here we use notations 4g and ∇g to denote the Laplacian and gradient operators
under the metric g. Note that u and therefore l depends on the boundary value
u|∂Ω as well as the metric g. Consider the restriction of the tensor defined in (1)
on the gradient vector field l defined in (2) and let F be the resulting 1-form. We
then obtain the following inhomogeneous equation related to the conformal Killing
field:

lc(LX(g)− (eσ∇ · (e−σX)) g ) = F.(3)

Given a metric g, the inverse problem considered in this paper asks whether one
can obtain information about X and l from knowledge of F , assuming X |∂Ω = 0.
In this paper we prove that both inner products

〈
l, X

〉
g

and
〈
l⊥, X

〉
g

are uniquely
determined by F , where l⊥ stands for the unique vector perpendicular to l with∥∥l⊥∥∥ =

∥∥l∥∥ in the counter-clockwise direction under the metric g.

Theorem 1. Let g be a C2,α Riemannian metric on Ω̄. Let X be a C2,α vector
field on Ω̄ satisfying X |∂Ω = 0, and l a C2,α gradient field satisfying equation (2).
Let F be a C1,α 1-form on Ω̄ such that

l c(LX(g)− (eσ∇ · (e−σX))g) = F.

Then both
〈
l, X

〉
g

and
〈
l⊥, X

〉
g

are uniquely determined by F.

The main feature of Theorem 1 is that both X and l are unknown. As one will
see later, the assumption that X |∂Ω = 0 is crucial in Theorem 1. This assumption
guarantees that both

〈
l, X

〉
g

and
〈
l⊥, X

〉
g

can be determined by F alone. In fact,
the assumption X |∂Ω = 0 guarantees

〈
l, X

〉
g
|∂Ω = 0 and

〈
l⊥, X

〉
g
|∂Ω = 0 for any l,

and thus eliminates the need of any addtional information about l at the boundary.
If we consider the case where l is a known gradient field and search for information
of X only, then the assumption X |∂Ω = 0 is not necessary, as one can see from the
following theorem.
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Theorem 2. Let g be a C2,α Riemannian metric on Ω̄. Let X be a C2,α vector field
on Ω̄ and l a C2,α gradient field satisfying equation (2). Let F be a C1,α 1-form on
Ω̄, such that

l c (LX(g)− (eσ∇ · (e−σX))g) = F.

Then both
〈
l, X

〉
g

and
〈
l⊥, X

〉
g

are uniquely determined by F , X |∂Ω and l|∂Ω.

A consequence of Theorem 2 is that, when l|∂Ω is known and l|∂Ω 6= 0, the
vector field X can be determined by F , X |∂Ω and l|∂Ω. This is due to the fact
that any nonconstant solution to a two-dimensional elliptic equation carries only
discrete critical points [B] and thus X is determined by the inner products

〈
l, X

〉
g

and
〈
l⊥, X

〉
g
. Note that in Theorem 1, the vector field X cannot be determined by

F alone since the vector field l is also unknown. If in Theorem 1 we assume F = 0,
then both

〈
l, X

〉
g

and
〈
l⊥, X

〉
g

must equal zero, as one shall see from the proof of
Theorem 1.

Theorem 3. Let g be a C2,α Riemannian metric on Ω̄. Let X be a C2,α vector
field on Ω̄ satisfying X |∂Ω = 0, and l a C2,α gradient field satisfying equation (2).
If

l c(LX(g)− (eσ∇ · (e−σX))g) l = 0

in Ω, then both
〈
l, X

〉
g

and
〈
l⊥, X

〉
g

are equal to zero in Ω.

If one chooses l|∂Ω 6= 0 in Theorem 3, then we can conclude X = 0 in Ω. Theorem
3 sharpens, in the setting considered in this paper, some of the classical theorems
regarding conformal Killing field obtained in [Y].

2. Proof of the theorems

We assume readers are familiar with some basic concepts of Cartan’s moving
frame method on Riemannian manifolds.

For any point in Ω there exists an open neighborhood U of the point in which
one can construct two unit vector fields e1 and e2 such that the pair {e1, e2} forms
an orthonormal frame (under the metric g). Let ω1 and ω2 be two 1-forms on U
such that the pair {ω1, ω2} forms the dual frame of {e1, e2}. We can write

F = F1ω1 + F2ω2

with two components F1 and F2 defined on U . Then the equation in Theorem 1
can be rewritten as two equations

(LXg − eσ∇g · (e−σX)g)(l, ek) = Fk, k = 1, 2,(4)

in which the tensor LXg − eσ∇g · (e−σX)g is applied to two vector fields l and e1

or e2 and the vector field l satisfies equation (2).
From the definition of the Lie derivative [He] and the following simple relation

eσ∇g · (e−σX) = 〈∇gσ,X〉g −∇g ·X ,

one can further rewrite equation (4) in the following form:

X〈l, ek〉g − 〈[X, l], ek〉g − 〈l, [X, ek]〉g + 〈∇gσ,X〉g〈l, ek〉g
− (∇g ·X)〈l, ek〉g = Fk, k = 1, 2.

(5)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1586 ZIQI SUN

Here and in the rest of the paper, we use Xf to denote the application of the vector
field X on the function f , which is the directional derivative of f under the vector
field X , and use [X,Y ] to denote the Lie bracket of vectors X and Y .

Let us denote by D the covariant differentiation associated to the metric g and
by DY the covariant differentiation in the direction of a vector field Y . Then

[X,Y ] = DXY −DYX.(6)

D is best characterized through the connection forms ωij , i, j = 1, 2, in the following
equations:

Dek =
2∑
i=1

ωkiei, k = 1, 2,(7)

with

ωij + ωji = 0, i, j = 1, 2.(8)

Using the connection forms one can express the covariant derivative of a vector field
v = v1e1 + v2e2 by the following formula:

Dv =
2∑
i=1

(dvi)ei +
2∑

i,j=1

vjωjiei =
2∑

i,j=1

vi,jωjei,(9)

where d stands for the exterior differentiation and the function vi,j , i, j = 1, 2, are
the components of the covariant derivative. Similarly, the first and the second order
covariant derivatives of a scalar function f , when expressed by fi and fij , i, j = 1, 2,
are given by the following formulas:

df =
2∑
i=1

fiωi,(10)

2∑
j=1

fijωj = dfi +
2∑
j=1

fjωji, i = 1, 2.(11)

Note that in this case fij is symmetric in i and j.
Under the above setting we can express the following differential operators in

terms of the covariant derivatives:

∇gf = f1e1 + f2e2,(12)

4gf = f11 + f22,(13)

∇g · F = F1,1 + F2,2.(14)

We now calculate the left-hand side of (5). Under the orthonormal frame {e1, e2}
one can write

l = l1e1 + l2e2, X = X1e1 +X2e2.
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Then

X〈l, ek〉g =
2∑
j=1

Xjej lk =
2∑
j=1

Xj(dlk)(ej),

where (dlk)(ej) means the exterior derivative of lk in the direction of ej . By using
(6), (7), (9) and the definition of the Lie bracket,

[X, ek] = DXek −DekX

=
2∑
j=1

(XjDejek −Dek(Xjej))

=
2∑

i,j=1

Xjωki(ej)ei −
2∑
j=1

dXj(ek)ej −
2∑

i,j=1

Xjωji(ek)ei,

so we have (by (8))

X〈l, ek〉g − 〈l, [X, ek]〉g

=
2∑
j=1

Xj(dlk)(ej)−
2∑

i,j=1

Xj liωki(ej) +
2∑
j=1

ljdXj(ek) +
2∑

i,j=1

Xj liωji(ek)

=
2∑
j=1

Xj(dlk)(ej) +
2∑

i,j=1

Xj liωik(ej) +
2∑
j=1

ljdXj(ek) +
2∑

i,j=1

ljXiωij(ek)

=
2∑
j=1

(Xj lk,j + ljXj,k).

(15)

By (6), (7) again,

[X, l] = DX l −DlX

=
2∑

i,j=1

(XiDei(ljej)− ljDej (Xiei))

=
2∑

i,j=1

(Xi(dlj)(ei)ej +XiljDeiej − ljdXi(ej)ei −XiljDejei)

=
2∑

i,j=1

Xi(dlj)(ei)ej +
2∑

i,j,m=1

Xiljωjm(ei)em

−
2∑

i,j=1

ljdXi(ej)ei −
2∑

i,j,m=1

Xiljωim(ej)em,
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so we have (by (9))

〈[X, l], ek〉g =
2∑

i,j=1

(Xi(dlk)(ei) +Xiljωjk(ei))

−
2∑
j=1

ljdXk(ej)−
2∑

i,j=1

Xiljωik(ej)

=
2∑

i,j=1

(Xi(dlk + ljωjk)(ei)− li(dXk +Xjwjk)(ei))

=
2∑
i=1

(Xilk,i − liXk,i).

(16)

From (12) and (14) we have

〈∇gσ,X〉g〈l, ek〉g − (∇g ·X)〈l, ek〉g

=
2∑
j=1

σjXj lk − (X1,1 +X2,2)lk.
(17)

Combining (15)-(17) together we have that the left-hand side of (5) can be expressed
as

2∑
j=1

(ljXk,j + ljXj,k + σjXjlk)− (X1,1 +X2,2)lk, k = 1, 2.(18)

When k = 1, (18) can be expressed as

l1X1,1 + l2X2,1 − (−l2X1,2 + l1X2,2) + (σ1X1 + σ2X2)l1,

and therefore the first equation of (5), i.e. the case with k = 1, can be expressed
as follows:

〈l,De1X〉g − 〈l⊥,De2X〉g + (σ1X1 + σ2X2)l1 = F1.(19)

Here we have used the simple fact that

l⊥ = −l2e1 + l1e2.

Similarly, when k = 2, (18) can be simplified to

l1X2,1 + l2X2,2 + (−l2X1,1 + l1X2,1) + (σ1X1 + σ2X2)l2,

and the second equation of (5), i.e. the case with k = 2, can be rewritten as

〈l,De2X〉g − 〈l⊥,De1X〉g + (σ1X1 + σ2X2)l2 = F2.(20)

Set

p = 〈l, X〉g, q = 〈l⊥, X〉g.

Then

pk = ekp = 〈Dek l, X〉g + 〈l,DekX〉g,
qk = ekq = 〈Dek l⊥, X〉g + 〈l⊥,DekX〉g.
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Clearly, with p and q we can rewrite equations (19) and (20) in the forms

p1 − q2 − 〈De1 l, X〉g + 〈De2 l⊥, X〉g + (σ1X1 + σ2X2)l1 = F1,(21)

p2 + q1 − 〈De2 l, X〉g − 〈De1 l⊥, X〉g + (σ1X1 + σ2X2)l2 = F2.(22)

Since lk, k = 1, 2, are covariant derivatives of the solution of the equation

4gu−
〈
∇g σ, ∇gu

〉
g

= 0,

we have that li,j , i, j = 1, 2, are the second order covariant derivatives of the solution
u, and therefore

li,j = uij = uji = lj,i, i, j = 1, 2.

Using this fact as well as equation (2), we have

−〈De1 l, X〉g + 〈De2 l⊥, X〉g + (σ1X1 + σ2X2)l1
= −l1,1X1 − l2,2X1 + (σ1X1 + σ2X2)l1

= −(∇g · l)X1 + (σ1X1 + σ2X2)l1
= −〈∇gσ, l〉gX1 + (σ1X1 + σ2X2)l1

= −σ2l2X1 + σ2l1X2 = σ2q.

Similarly,

−〈De2 l, X〉g − 〈De1 l⊥, X〉g + (σ1X1 + σ2X2)l2
= −l2,2X2 − l1,1X2 + (σ1X1 + σ2X2)l2

= −(∇g · l)X2 + (σ1X1 + σ2X2)l2
= −〈∇gσ, l〉gX2 + (σ1X1 + σ2X2)l2

= −σ1l1X2 + σ1l2X1 = −σ1q.

Hence, (21) and (22) become

p1 − q2 + σ2q = F1,(23)

p2 + q1 − σ1q = F2.(24)

Taking covariant derivatives on both sides of (23) and (24) and then substracting
the two equations yield

q11 + q22 − (σ1q)1 − (σ2q)2 = F2,1 − F1,2,

i.e.

4gq −∇g · (σq) = −∇g · F⊥.(25)

Clearly, equation (25) holds in the entire domain Ω. By the uniqueness of solutions
to elliptic equations we have that q is uniquely determined by F and q|∂Ω. In the
case of Theorem 1, we have X |∂Ω = 0 which implies q|∂Ω = 0, and therefore q
is uniquely determined by F alone. In the general case as in Theorem 2, q|∂Ω is
determined by both l|∂Ω and X |∂Ω and therefore q is determined by F , l|∂Ω and
X |∂Ω. Clearly, if both F = 0 and X |∂Ω = 0 are assumed, then q = 0, as claimed
by Theorem 3.

On the other hand, one can derive a similar equation for p:

4gp+ (σ2q)1 − (σ1q)2 = F1,1 + F2,2,

and one can get the same results for p as we did for q. This completes the proof.
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