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Abstract

This paper shows global uniqueness in an inverse/ problem for a fractional mag-
netic Schrodinger equation (FMSE): an unknown, electromagnetic field in a
bounded domain is uniquely determined upite a natural gauge by infinitely
many measurements of solutions taken in arbitrary open subsets of the exterior.
The proof is based on Alessandrini’shidentity rand the Runge approximation
property, thus generalizing some previous works on the fractional Laplacian.
Moreover, we show with a simple model that the FMSE relates to a long jump

random walk with weights.

Keywords: Fractional magnetic Schrédinger equation, Non-local operators,
Inverse problems, Calderén problem
2010 MSC: 35R11, 35R30

1. Introduction

This paper studies a fractional version of the Schrodinger equation in a mag-
netic field, or'a fractional magnetic Schrodinger equation (FMSE), establishing
a uniqueness.resultfor a related inverse problem. We thus deal with a non-local
counterpart of the classical magnetic Schrodinger equation (MSE) (see [33]),
which requires to find up to gauge the scalar and vector potentials existing in a
medium from veltage and current measurements on its boundary.

Let 2/C R™ be a bounded open set with Lipschitz boundary, representing
a medium containing an unknown electromagnetic field. The solution of the
Dirighlet problem for the MSE is a function u satisfying

(—A)au+ qu = —Au — iV - (Au) —iA-Vu+ (JA? +¢@u=0 inQ
{ u=f on 0}

Preprint submitted to Inverse Problems December 3, 2019
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1 INTRODUCTION

where f is the prescribed boundary value and A, q are the vector and scalar
potentials in the medium. The boundary measurements are encoded ine 4 4
HY2(0Q) — H~/2(99) , the Dirichlet-to-Neumann (or DN) map. Theinverse
problem consists in finding A4, ¢ in © up to gauge by knowing A 4 4.

The study of the local MSE has both mathematical and practical interest,
since it constitutes a substantial generalization of the Calderén problem (see [0]).
This problem first arose for the prospection of the ground in search,of valuable
minerals. In the method known as Electrical Impedance Tomography (EIT),
electrodes are placed on the ground in order to delivér voltage and measure
current flow; the resulting data carries information abéutithe conductivity of the
materials underground, allowing deductions aboutstheir composition ([42]). A
similar method is also used in medical imaging. Since the tissues of a body have
different electrical conductivities ([26]), using the same setup harmless currents
can be allowed to flow in the body of a patient, thus collecting information about
its internal structure. This techniguie can be applied to cancer detection ([20]),
monitoring of vital functions ([8]) and mere (see‘e.g. [23]). Various engineering
applications have also been proposed. A recentione (see [21]) describes a sensing
skin consisting of a thin layer ofconductive’ copper paint applied on concrete.
In case of cracking of the block, the rupture of the surface would result in a local
decrease in conductivity, which wouldyinn turn be detected by EIT, allowing the
timely substitution of the failing block. The version of the problem with non-
vanishing magnetic field is‘interesting on its own, as it is related to the inverse
scattering problem with a fixed energy (see [33]). First order terms also arise
by reduction in the study of numerous other inverse problems, among which
isotropic elasticity /[35])) special cases of Maxwell and Schrédinger equations
([310, [16]), Dirac equations ([34]) and the Stokes system ([22]). The survey [39)]
contains more references on inverse boundary value problems for the MSE.

Below we introduce a fractional extension of the local problem. This is mo-
tivated by the connection between anomalous diffusion and random walks, as
explained in the end of the Introduction and in Section 5. Fix s € (0,1), and
consider the fractional divergence and gradient operators (V-)® and V*. These
are based on the theoretical framework laid down in [I3], [I4], and were intro-
duced in [I0] as non-local counterparts of the classical divergence and gradient.
They are defined to be the adjoint of each other, and also they have the ex-
pected property that (V-)*V® = (—A)?®, the fractional Laplacian. Fix now a
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vector potential A, and consider the magnetic versions (V-)% and V¥ of,the
above operators. These correspond to (—iV + A)- and (—iV + A), whose,coms-
bination results in the local magnetic Laplacian (—A)4. Analogouslypwe will
show how (V)% and V¥ can be combined in a fractional magnetic Laplacian
(—A)%. As expected, this operator will reduce to the known (—A)® if A = 0!
The next step will be setting up the Dirichlet problem for FMSE as

(—A)Su+qu=0 inQ
u=f in

Since our operators are non-local, the exterior values are taken over (), =
R” \ . The well-posedness of the direct problem is grantedsby the assumption
that 0 is not an eigenvalue for the left hand side of FMSE, (see e.g. [38]). We
can therefore define the DN map A3 , : H*(Qe) =(H*(¢2))" from the bilinear
form associated to the equation. The inversesproblem is to recover A and ¢
in 2 from A% . Because of a natural gauge ~ enjoyed by FMSE, solving the
inverse problem completely is impossible; however; the gauge class of the solving

potentials can be fully recovered:

Theorem 1.1. Let Q C R™, m Silwbe ¢ bounded open set, s € (0,1), and let
(A;,q;) € P fori=1,2. Suppose Wi, Ws C . are non empty open sets, and
that the DN maps for the FMSEs in Q' relative to (A1, q1) and (Asz,q2) satisfy

Ail,ql [f]lWQ N AZQ,QQ[f]|W27 Vf € Cso(Wl) .

Then (A1, q1) ~ (Az, qa), that jis, the potentials coincide up to the gauge ~.

The set P of potentials and the gauge ~ are defined in Section 3. P contains
all potentials (A, ¢).satisfying certain properties, among which (p5): supp(A) C
Q2. We suspeet. this, assumption to be unnecessary, but we nonetheless prove
our Theoremnin this easier case, and highlight the occasions when (p5) is used.

The! proof is based on three preliminary results: the integral identity for
the DN map, the weak unique continuation property (WUCP) and the Runge
approximation preperty (RAP). The WUCP is easily proved by reducing our
cage to that of the fractional Laplacian (—A)®, for which the result is already
known (see e.g. [37], [I7]). For this we use (p5). The proof of the RAP then
comes from the WUCP and the Hahn-Banach theorem. Eventually, we use
this result, the integral identity and (p5) to complete the proof by means of

Alessandrini’s identity. This technique generalizes the one studied in [17].
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We consider Theorem 1.1 to be very satisfactory, as gauges show up in,the
local case s = 1 as well (again, see [33]). For comparison see [7], where' it is
shown that no gauge exists for a fractional Schrodinger equation withya local
first-order perturbation of the form b(x) - Vu(z). As observed in Section 3, our
operator can be regarded as a fractional Schrodinger equation with a nontlocal

perturbation of the kind
/ b(z,y) - Vou(z,y)dy ,

and thus our results extend the investigation in [7] in a rather natural way. One
may also compare our operator with the one studied in [3]:3In such work the au-
thors consider non-local lower-order perturbation§ of the fractional Schrodinger
equation of the form (—A)ng(x)(—A)gzu(x), where the symbol (—A)?{Q de-
notes the regional fractional Laplacian. In the case of eomplete data, [3] shows
that the perturbation b and the potential (g can be,completely recovered; how-
ever, in the case of a single measurement, the authors interestingly find that
there exist natural obstacles to the full recoevery of both b and q.

Besides the purely mathematical appeal, we believe that the problem we are
considering may also be interesting from a practical point of view. As a matter
of fact, fractional mathematical models are nowadays quite common in many
different fields of science, including image processing ([19]), physics ([13], [15],
18], [28], [32], [44]), ecology. ([25], [30], [36]), turbulent fluid dynamics ([9], [I1])
and mathematical finance ([1],[29], [40]). For more references, see [0]. All these
applications involve anemalous diffusion, i.e. a diffusion process in which events
that are quite farfrom the mean are still allowed to happen with a relatively high
probability. As a ¢onsequence, one can model such phenomena with anomalous
diffusion randem walks. These are ”anomalous” in the sense that the variance
of the length of theljumps is not finite as in the classical diffusion case. The
authors of [43] have proved how the fractional Laplacian corresponds to a long
jump'randem walk of this kind. In Section 5 we extend their line of reasoning to
our magnetic fractional operator, showing that its leading term corresponds to
along jump random walk with weights. We also prove that this is an anomalous

diffusion random walk.
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< (A =A%), o + 4t — A& : Ai(y,x) )
n H (A(z,y) — Ai(z,y)) + (Aly, z) — Ai(y, z))
2 =
— (A= A7)l + ’W’y) ~ Ao+ W)~ A7) 2
<2YA— A2 <2/i. -

Remark 2.4. If A € C2°, the operators (-)s, (*)a, (+)|, ()u_commute with each
other; because of Lemma this still holds a.e. for A € L*(R?™). Thus in the
following we use e.g. the symbol Ay for both (Ag)) and (4 ).

Sobolev spaces. Let Q C R™ be open and 1 € R, p € (1,00), n € N\ {0}.
By the symbols WP = W™P(R"™) and W/'P(Q) we denote the usual LP-based
Sobolev spaces. We also let H* =, ,H*(R") = W:22(R") be the standard L>-
based Sobolev space with norm ||uf|ga@n) = ||~ (£)%0)||L2(rn) , where s € R,
(€)== (14 |¢>)*/? and the Fourier transform is

(€)= Fu(é)= / e S y(z)dx .

n

One should note that there exist many equivalent definitions of fractional
Sobolev spaces (see ¢.g» [12]). Using the Sobolev embedding and multiplication

theorems (see e.g. [4], [2]), these spaces can often be embedded into each other:
Lemma 2.5. Let s € (0,1), ps=max{2,n/2s} and h > 0. Then the embeddings
(el). H® x H® & 47/ (02+sp=25) (e5). L% x L2 < LP |
(e2). H*® x LR — [20/(n+2s)

(e6). HSP~25 — [P
(e3). LAXE? — L2/ (n+2s)

(e4). ['L2® x H® — L? (e7). L2/ (H2h) <y =
holdy where x indicates the pointwise product. ]
Let U, F C R” be an open and a closed set. We define the spaces
H*(U) = {ulv,u e H*(R")},

H*(U) = closure of C>°(U) in H*(R"™) , and

Page 6 of 30
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Hp(R") = {u € H*(R") : supp(u) € F} |

where ||ul|gs )y = inf{||w|[gs@ny;w € H*(R"), w|y = u}. For s € (0/1) and
a bounded open set U C R™, let X := H*(R")/H*(U). If U is a Lipschitz
domain, then then H*(U) and HE (R™) can be identified for all s €R(see [17]);
therefore, X = H*(R")/HZ(R"), and its elements are equivalence classes of

functions from H*(R") coinciding on U,. X is called abstract trace space.

Non-local operators. If u € S(R™), its fractional Laplacian‘is (see |27], [12])

, u(@) — u(y)
—A)’u(x) :=Cps lim ———dy,
Coyuw) = tim [ A
for a constant C,, ;. Its Fourier symbol is |£]?%, i.e.[ (—A)su(z) = F~1(|¢]**0(€)).
By [24], Ch. 4 and [1], (—A)® extends as a bounded map (—A)*® : W™P(R") —
Wr=2sP(R") for 7 € R and p € (1,00). Let/@(m,y) : R? — R" be the map

C,l,,,/f YT

a(z,y) = V2 x| 721

If u e C*(R™) and x,y € R, the fractional gradient of u at points x and y is

Viu(z, ylus (u(z) = uly))e(z, y) , (4)

and is thus a symmetric and parallel’ vector function of = and y. Since it was
proved in [I0] that ||V5u||%2(R2n) < ||u||2HS(Rn), and thus that the linear op-
erator V¥ maps C°(R") into L*(R?"), we see that V® can be extended to
Ve © H5(R™) — L2(R%*").Using a proof by density similar to the one for
Lemma one sees that still holds a.e. for u € H*(R™).

If w e H(R?) and.v & L?(R*"), the fractional divergence is defined as that
operator (V). L?(R*") — H~*(R") satisfying

(V) v,u) p2@mny = (v, Viu) p2(gen)y (5)

i.eqityis by definition the adjoint of the fractional gradient. As observed in [10],
Lemma 211, if w € H*(R") the equality (V-)*(V*u)(z) = (—A)°u(x) holds in
weakysense, and (V-)*(V°u) € H*(R").

Lemma 2.6. Let u € C°(R™). There exists a constant ky, s such that

.F(V"'u)(f,n) = k”’s (|§|n/§+ls + |,,7|n/727+18> ]:u(f + 77) :
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Proof. As u € C°(R"), we know that Vu € L?(R?"), and we can computeg its

Fourier transform in the variables £, 7. By a change of variables,

1/2

F(Vu)

n

_ k/ /
on

K [
on

— K, Fué +1) / (e — (=€), (|2 )T

_ k”

n,s

= kn,s <

n

7293 5 —1 ( ) U(y)
yn ) AT 7 x\"/2+€+1 (y — x) de dy

—1z n

FRGs 2 [ e )~ (e 1) do

Z|n/2+s+1

- e Fu(é 4+ n)(1 — % E s

n

Fu(+n) (227 () + R *)(=€))

£

n
|¢[n/2+1=s + 77|n/2+1_s> Fu(§+1) - O

Lemma 2.7. The fractional gradient extends as. a bounded map

VS . HT(R’H.) 4 <DL + Dy>rst2(R2n) ,

and if r < s then also V*®: H"(R") % HT 5(R?") .

Proof. Start with u € C2°(R™); /and,let = € R. Then

IV*ullip, p,yr—z2 = (D Dy)"~*V*u, (Dy + Dy)""*Vou) 2

= ({Dy +/Dy)*" =)V u, Vou) 2 (6)
= (F({(Dy + Dy)*"=9V%), F(Vu)) 2

From the previous Lemma we can deduce that

F((Dy + D,)2F=9INVsu) =

L+ 1€ +n) " F(Vu)

4 7

s (s + v ) e+
£ "

= kn,s (

= F(V°(D

|E|n/2Hi=s + |nn/2+1—s> F((D)*" = u) (€ +n)

x)

2(rfs)u)) )

Using the, propertiés of the fractional gradient and @,

||VSU“ Do+Dy)r—sL2 =

=(F
vV
(

(D
(=

(V

*((
)"

*((Dg)* ")), F(Viu)) e
D)20=900) Vo) 2 = (D)2 5w, (—A)*u) 2
S(=A)Pu, (Do) 5 (= A)* ) o

AY2uly, - < cluly -

Page 8 of 30
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3 DEFINITION AND PROPERTIES OF FMSE

An argument by density completes the proof of the first part of the statement.

For the second one, observe that r < s implies

03—« = ((Day)" "0, (Day)" " *0) 12 = ((Dy )", 0) 2
(L+ 2+ [n[*)"0,0) 2 < c((1+ |+ nl*) %, 0) 2
= C(<Dm =+ Dy> (T*S)'U, 'U)Lz = C||v||(Dm+Dy>’"_SL2 5

and so (D, + D,)"~*L*(R*") C H"~*(R?"). O
As a consequence of the above Lemma, the fractional divergenee can be similarly
extended as (V-)® : H{(R?") — H'=3(R") for all t > .

3. Definition and properties of FMSE

Fractional magnetic Schrédinger equation.»Let 2 C R™ be open, 2, =
R™\Q be the exterior domain, and@lse recall that p :=max{2,n/2s}. The vector
potential and scalar potential are two functions A4 : R*® — C” and ¢ : R™ — R.

The following properties are of interest:

(p1). 1A, J2A € L*(R"),

(p2). Ay € HP~5(R2",C") ,

(p3). Aqy(x,y) - (y — 2) >0y for all x,y € R™,

(p4). a € LP(Q),

(p5). A€ L2(R?*"){ supp(A4) C Q2.

With respect to.the above properties, we define four sets of potentials:

A := {vector potentials A verifying (pl) — (p3)},
A := {vector potentials A verifying (p1) — (p3) and (p5)},
Po.:= {pairs of potentials (A, q) verifying (pl) — (p4)},
P = {pairs of potentials (4, ¢) verifying (pl) — (p5)}.

Remark 3.1. The peculiar definitions for the spaces in (pl), (p2) and (p4) are

due/to computational necessities: they make the following quantities

lquller—, 1V Agyllze, [(T2A)[Le,  uToAllrz
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3 DEFINITION AND PROPERTIES OF FMSE

finite for u € H®, as needed in Remark 3.6, Lemma 3.3 and . This is easily
proved by using Lemma 2.5. However, if n > 4, then p = n/2s, and sodn this
case L? = L™ and HP—° = H"™27%; this simplifies the assumptions for n

large enough.

Let A€ Ap and u € H*(R™). By (p1) and (e4),

4, prulalzaen = (/ u(e)” / |A($>y)|2dydw>l/2

n

1/2
([ w@r ma@?as) o= ¥l

< kflul g

jQAHL?,p < 00

and thus the magnetic fractional gradient of w can be defined as the function
S R?™ — C" such that

(Viu,v) := (Viu + A(zfy)u(z),v) , forall v e L*(R*"). (8)

By the same computation, V¥ acts as an operator V¥ : H*(R") — L?(R?").
Let A € Ag, u € H*(R™) and.w € L*(R?"). The magnetic fractional divergence
is defined by duality as that operator (V2)5 : L*(R?") — H~*(R") such that

((V)5v,u):= (v, Viu) .

By construction, the magnetic, fractional divergence and gradient can be com-

S

bined; we call magnetic fractional Laplacian (—A)% = (V-)5 (V%) that operator
from H*(R™) to H=%(R") such that, for all u,v € H*(R"),

(=4)au, v) = (Viu, Viv) . (9)

Remarks3:2. If A= 0, the magnetic fractional Laplacian (—A)% is reduced to

S

its non-magnetic counterpart (—A)*®, as expected. Since the fractional Laplacian

is well understood (see e.g. [T7]), from now on we assume A # 0.

Lemima 3.3. Let A € L2(R*")N Ap and u € H*(R"). The equation

(—A)5u = (—A)*u+ 2/Rn (Aq) - Viu) dy + ((v-)SAS| + /Rn AP dy) u
(10)

holds in weak sense.

10
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3 DEFINITION AND PROPERTIES OF FMSE

Proof. By (), (—A)%u € H~*(R"), and in order to prove in weak sense
one needs to compute ((—A)%u,v) for v e H*(R™). By (9) and (§),

(=A)%u,v) = (Vu + Az, y)u(z), Vv + A(z, y)o(z))
= (V?u, V?v) + (Au, Av) + (Viu, Av) + (Vuf Au) |

where all the above terms make sense, since by formula Vo u, ViugAu and
Av all belong to L?(R?*"). The new term (V*u, A(y, z)v(x))is alsofinite, so

(=AY u,v) =(V°u, V) + (Au, Av)+
+ (Vou, A(z,y)v(z)) — (Vi Ay, ©)vlz))+ (11)
+(Vou, A(y, 2)v(2)) + (Vou, A(z, y)u) .

For the first term on the right hand side of , by definition,
(Viu, Vov) = (V) ' Viuw) = (=A)°u, v) . (12)
For the second one, by the embeddings (e5), (¢2) and (e7),
(Au, Av) = <u(a:) /Rn |A(x,y)|2dy,v> = (u(JoA)?,v) . (13)

Since u € H*(R"), by (3)) we deduceynJo(Vsu) € L*(R™). Now (e3) implies that
J2(VEu)Jo A € L7+ 30n the other hand, by Cauchy-Schwarz
Viu - Ady

_2n
a5
R™ Ln+2s (Rz) n | Jrn

</ (/ |v5u|A|dy) i< | </ vrultay [ |A2dy) da

:/ (V) ToAl75 de = || Jo(V u) JoA| 73,
Rn

2n
n+2s

dxr

2n )

L7n+2s (R7)

and so, [, Vour Ady € L7%5 . Now (Jgn VPu - Ady, v) is finite by (e7), and

/ Viu - Az, y)dy, v> — < Viu - Ay, x)dy, v>
R‘VL R’!L
(14)

(
- </Rn Vou - (A(z,y) — A(yyx))dy,v>
(

2/ Vou - Ay dy,v> = <2 Vou - Ay dy, v> )
RTL RW,

11
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3 DEFINITION AND PROPERTIES OF FMSE

The last steps use Lemma to write A, for A € L? and to see that Viu is
a.e. a parallel vector for v € H*(R™), which implies V*u - A, = 0 a.es This
computes the third and fourth terms on the right hand side of . For the
last two terms observe that, since A(y, z)v(x) — Az, y)v(y) is antisymmetric,
by Lemma [2.3| we have (V*u, A(y, z)v(z) — A(z, y)v(y)) = 0, and/so

<v5u,A(y,x) U(Q:» + <VSU,Au>
= /R% A(z,y) - (v(y) Viu + u(x) Vi) de dy
— / A- a(v(y)(U(x) —u(y)) + u(x)(w(z) — v(y))) dedy (15)
R2n

= [ Aq-a(u@)el) - uwv(fdady
R27
= (Ay, V2 (w)) = (u(V-)" Ay, 0)
On the third line of the integrand isthe product of a symmetric, parallel

vector and A; this reduces A to Agy."Erom (el), (e7) and Lemma [2.7| one sees
that V*(uv) € H°~"P, and now (A, V¥(uw)) makes sense by (p2). Eventually,

7 (e6), (e2) and (e7) explain the last step. Equation follows from ,
@), @3), [4) and (5. =

Lemma 3.4. Let A € L*(R*") N Ags” There exists a symmetric distribution
o € D'(R*) such thatg,> 1 and A,|| = a(o — 1) a.e..

Proof. Because of Lerhma @ A, is a parallel vector almost everywhere, and
thus |[Aq — (Aq)))llz2 =0, _Again by Lemma

AaH'(x_y) T
|z —y|? ==v)

N V2 Ay (z—y) i oy—a
alf C}L/f lz —y[i=n/2=s | /2 |y — x|n/2+stL

V2 Ag -y —=)
— 1 -1
Ag << + CL2 |z — y[i=n/2=s @

Moreover, if ¢ € C>°(R?") and B,,, B,, are balls in R™ centered at the origin

0= || Aay— (Agpyllzz = HAa| -

L2

L2

L2

12
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3 DEFINITION AND PROPERTIES OF FMSE

FMSE with exterior value f if and only if

(—A¥u+qu=0 inQ
u=f in .

holds in weak sense, that is if and only if u— f € H*(2) and, for all'v € H*(R"),
(=A)au,v) + (qu,v) = 0. (16)

Remark 3.6. By (pl), (p2) and (p4), formula makes sense. | This was
already partially shown in the above discussion about the magnetic fractional

Laplacian. For the last term, just use (p4), (e2) and/(€7).

Old gauges, new gauges. Let (G, -) be the abelian group.of all strictly positive
functions ¢ € C°(R™) such that ¢|q, = 1. For' (A,g), (A", ¢') € Py, define

(A,q) ~ (A,¢) & (FA U+ qu=(FA)u+du, (17)

(A9~ (A,qd) & 3¢€G:(=A)(up) hgue = ((—A)yu+q'u) (18)

for all w € H*(R™). Both ~ and =~ are,equivalence relations on Py, and thus we

can consider the quotient spacesiPy/.~- and Py/ ~. Moreover, since ¢ =1 € G,
we have (A,q) ~ (4. ¢') = (A~ (4", ¢).

We say that FMSE has the gauge/~ if for each (A,q) € Py there exists
(A',q") € Py such thatn(4',¢") # (4,q) and (A,q) ~ (A’,¢'). Similarly, we
say that FMSE has the gauge s if for each (4,q) € Py there exist ¢ € G,
(A, q") € Py such thatig # 1, (A", ¢') # (A,q) and (A,q) = (A',¢').

Remark 3.7. The definitions and , which have been given for FMSE,
can be extended to' the local case in the natural way.

If s = 1, itissknown that (—A)a(u¢g) + que = ¢ ((—A)A+v7¢u + qu) for all
¢ € G and u€H(R"). If we choose ¢ # 1, we have (A+ %,q) # (A, q) and

(A,q) = (A + Yf, q), which shows that MSE has the gauge ~. On the other
hand,if (A, ¢q)w (4’,¢') then necessarily A = A’ and ¢ = ¢’: thus, MSE does
net/enjoy the gange ~. We now treat the case s € (0,1).

Lemma 3.8. Let (A,q),(A’,q") € Py. Then (A,q) ~ (A',¢") if and only if
Aq= A;H and Q = @', where

Qi=q+ / APdy + (V) Ay, Q@ =d+ / A2 dy + (V)* AL
R Rn

14
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3 DEFINITION AND PROPERTIES OF FMSE

Proof. One direction of the implication is trivial: by and the definition, it
is clear that if A, = A;H and Q = Q' then (—A)5u+ qu = (—A)%,u + gu.
For the other one, use Lemmas 3.3 and 3.4 to write (—A)% u+qu = (—A)Spu+q'u

as

0= 2/ la*(0" — o) (uly) — u(z)) dy + u(=)(Q — Q)
n (19)

u(y) — u(x) /
=Cps o' — o)~ — L dy +u(x)(Q Q)<
[ (@ o) v @) (Q - Q)
Fix ¢ € C2(R™), z € R” and u(y) := ¢ (y)e /1*=¥l|z — y|®$25: one sees that
u € §, since it is compactly supported and all the’/derivatives of the smooth
function e~/1*=¥l vanish at 2. Thus u € H*®, andéWecan substitute it in :

0= /n (o(x,y) — a"(x, y))e*1/|xfy\w(y) dy = {(o(a ) - O'/(;E, '))6,1/|m,y‘7¢> '

Being ¢ arbitrary and e~'/1#=¥ nén-negative, we deduce that y +— o(x,y) —
o'(z,y) is zero for any fixed z, thatis, o= o’.‘Bhen A, = A} by Lemma
and also Q = Q' by . O

Lemma 3.9. Let A #0. /Then EMSE-has the gauge ~.

Proof. 1f (A, q) € Po and A’ € Ay is'such that A, = A;H, then by the previous
Lemma (A4, q) ~ (A’4¢)if and only if Q = @', that is

q’:q+/R IAIQder(V')Sf‘ls||_/]R (AP dy — (V-)° A

Since A, A’ & Ay, we\have ASHaAIsH € H°P~% and JoA, Jo A’ € L?P. By the
former fact, (V-)84,, (V-)SA'SH belong to H*?~2% and eventually to LP because
of (e6). By the latter fact and (e5), [, |A]* dy, [g. |A']?dy € LP. Also, q € L?
because (Ayq) € Pod This implies that (p4) holds for the ¢’ computed above.
Hence, if we find A" € Ag such that A, = A;”, and then take ¢’ as above, we
get a'/(A’)q) €/Py in gauge ~ with a given (A,q) € Py. We now show how to
do this with A% A’, which implies that FMSE enjoys ~.

Fix (A, q) € Py, and for the case Ay # 0let A" := A — Ay. Then A # A’,
becanse A, # A’ ; moreover, from A = A“ we get Ay = A;” and A;H =4, €
H*PES. Eventually, |A|? = |AI||2 + A P = AP+ AP = 4P+ |AL? =
|4)? implies Jo A’ = JoA, and A’ verifies (p1). If instead we have A; = 0,
let A” = A + RA|, where R is any m/2 rotation. Then as before A, = A;H

15
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3 DEFINITION AND PROPERTIES OF FMSE

and A'SH = Ay € H°P7?°, because A = Ah. We also have A # A’, because
AL =0# RA = A',. Finally, since JoA € LP, A’ verifies (p1):

1/2 1/2
ad = ([ 1aray) = ([ 14214 P
1/2 1/2
=</ |A|I2+|RA|I2dy> =</ 2A||I2dy> =R_%A4 O
R™ Rn

Lemma 3.10. FMSE does not have the gauge =.

Proof. Let (A,q),(A4’,q") € Py such that (A,q) = (A'{q").»Then there exists
¢ € G such that (—A)% (ug) + quo = ¢((—A)% v +qu) for all w € H°. Fix
Y € CX(R™), x € R” and u(y) := ¥(y)e”V/1*¥ |z — y|"*255as in Lemma 3.8.
Then u € S, and by Lemma 3.3 and Remark 3.5,

0=Cp. PV / <U () L2 = uW)P) sy (@) (z) = u(y)gb(x)) oy

|x_y|n+25 |x_y|n+23

+u(@)p(2)(Q - Q)

—Con PV [ 0w n)0l) dy

= Cn,s/ Y(y)e VIV (ol (@ y)d@)= o (z,y)o(y)) dy .
o

Here the principal value disappears bhecause the integral is not singular. Given
the arbitrarity of ¥ and the non negativity of the exponential, we deduce
o(z,y)p(y) = o' (z,y)¢(x) for all y # x. On the other hand, since o,0’ are
symmetric and ¢ > 0, by taking the symmetric part of each side

o(x) + o(¥)
2

o) + ly)

= (d(2,9)8(y))s = (o' (@, y)d(x))s = o' (x,y) =

o(z,y)

This impliesie. = ¢"; and the equation can be rewritten as o(z, y)(¢(y) —¢(z)) =
0. Being g > 0, it is clear that ¢ must be constant, and therefore equal to 1.
This meéans that whenever (A,q), (A’,q") € Py are such that (A,q) ~ (4’,¢)
with some ¢ € G, then ¢ = 1, i.e. FMSE does not have the gauge ~. O

By the last tw6 Lemmas, FMSE enjoys ~, but not ~. Observe that the
reverse is'true for the classical magnetic Schrodinger equation. This surprising
difference is due to the non-local nature of the operators involved: FMSE has ~
because the coefficient of its gradient term is not the whole vector potential A,
as in the classical case, but just a part of it. On the other hand, the restriction

imposed by the antisymmetry of such part motivates the absence of ~.

16
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3 DEFINITION AND PROPERTIES OF FMSE

Bilinear form. Let s € (0,1), u,v € H*(R"™), and define the bilinear form
B, H* x H* — R as follows:

Bj ,lu,v] = / / Viu - Vv dydz +/ quu dz .
Observe that by Fubini’s theorem and Lemmas 3.3, 3.4
B lusu] = ((=A) u,u) + 2(Viu, Agju) + (Qu, u)
= (V°u, Viu) + 2(Viu,a(c — 1)u) + (Qu,u)
= (Vou, Vou + (0 — Da(u(z) — u(y))) #§Qu, u)
= (Vu,oV?u) + (Qu,u) .
Since again by Lemma 3.4 we have ¢ > 1, for the first term

(Viu,oVou) = / o|Viul|? dydz > / \Veul2dyde = ((—A)*u,u)
R2n R2mn

and thus B3 [u,u] > Bj g[u,u]. /Now Lemma 2.6 from [38] gives the well-
posedness of the direct problem for. EMSE, in'the assumption that 0 is not an
eigenvalue for the equation: if F € (H?(Q2))®thén there exists a unique solution
up € H*(Q) to By [u,v] 2 (v), Yv € H*(Q), that is a unique up € H*(Q)
such that (—A)%u+ qu = F I, uplg, = 0. For non-zero exterior value, see

e.g. [I0] and [I7]; one also gets the estimate

gl ey < cUIF Il g= )~ + 1 e @n)) - (20)

Lemma 3.11. Let v,w € H*(R"), f,g € H*(Qe) and uy,uy € H*(R™) be such
that ((—A)% + q)ug=, ((=A)% +q)uy =0 in Q, uslo, = f and uglo, = g. Then

1. By  [v,w] =85 [w,v] (symmetry),
2. |B} gl < Kl[o]l s weny 1wl sz
3. B;,q[ufﬂeg} = qu,q[“gaef] ’
where e, ey € H*(R™) are extensions of g, f respectively.

Proof. Symmetryfollows immediately from the definition. For the second point,

usen(e2)s (e7) and the definition of magnetic fractional gradient to write

| B glv, w]| = Vi, Viw) + (qu,w)| < Vi, Viw)| + [(qu, w)]

< Viaolle2 IVawll 2z + [lqulla—

wl| prs

< Klollaellwllms + Ellgllce vl s lwllme < Ellvl e llw] a2 -

17
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3 DEFINITION AND PROPERTIES OF FMSE

For the third point, first compute

B alugugl = [ (A + augugdo = [ (=A)3us + qupylde

e

= /Q (=A)juy + quylegdr = B [uy, eg]

and then BY  [uf,eq] = BY  [uf,ug]l = BY  [ug,up] = By [ugees]. O

The DN-map and the integral identity.

Lemma 3.12. There exists a bounded, linear, self-adjoint map Aix,q X - X*
defined by

(MNaglf] l9) = B gluy, gl Vg € HAR"),

where X is the abstract quotient space H*(R™)/H*(Qpand u; € H*(R") solves
(= A)Sup + qup =0 in Q with u —,f € H¥(Q).

Proof. We first prove that the tentative definition of the DN-map does not
depend on the representatives of the)equivalence classes involved. Let ¢,¢ €
H*(Q) and compute by Lemma,

B qlurte, 9+ 9] =/ (g+ ) (=A% + Quyrg dr

e

_ /Q o((~A)% + quy do = BY Jup.g)

The 1 disappears because it vanishes in ()., while the ¢ plays actually no role,

since f = f + ¢ over(). tmplies usiy = uy. The boundedness of A% , follows

from and (20)¢ first compute

(A Llg ) = 1B g[up, gl < Kllug e

gllas < cllfllusllgllas ,

for allpf € [f], g € [g], and then observe that this implies

(Rl a1 < fnf flle ind gl = £1Ax gl -

Finally; e prove the self-adjointness from Lemma [3.11}
<Af4,q[f]7 [g]> = Bf&q[ufa eg] = Bqu[U’Qv ef] = <Aj47q[g]7 [f]> = <[f]7Af4,q[g]> N D
The DN-map will now be used to prove an integral identity.

18
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6
- 1
8 2 Lemma 3.13. Let (A1,q1),(A2,q2) € P, fi1,f2 be exterior data belonging to
9 i H*(R™) and u; € H*(R™) be the solution of (—A)% wu; + qiu; = 0 with uis fi €
1(1) 5 H*(Q) fori=1,2. The following integral identity holds:
12 ¢ s s
13 7 (A, g0 — Ao, o) 15 f2) =
‘ S (21)
14 o = 2</ ((A1)a) — (A2)q)) - Viuy dy7U2> +((Q1 — Q2)ugsuz) «
15 n
10
1? 11 Proof. The proof is a computation based on the results of Lemimas[3.12] and 3.3:
18 2
19 13 (A, g0 — A, 00) 15 f2) = By, g [ur,u2] — By, [u, us)
14
;? 15 - <v8u1v VSU2> + 2< /n (Al)uH - Viuy dy, u2> + (Qlul, u2>—
22 10
53 17 —(Viuy, Viug) — 2</ (A2)q)/ Vouy dy;U2> — (Qau1, ug)
2 18 R
25 19 = 2</ ((A1)a) — (A2)a)) - Vu dy; U2> +((Q1 — Q2)ur,ug) . O
20 R
26
57 21
28 22 The WUCP and the RAP. Let W € Q. be open and u € H*(R™) be such
29 zz that w =0 and (—A)%u + qu = 0 in WA If this implies that w = 0 in  as well,
30 95 we say that FMSE has got'the WUCP. It\is known that WUCP holds if both A
1
22 26 and ¢ vanish, that is, in the case of the fractional Laplace equation (see [38]).
33 2 Let R = {uy|q, fo€ C(W)} C L2(2) be the set of the restrictions to € of
28
34 59 those functions uy solving FMSE for some smooth exterior value f supported
22 30 in W. If R is dense inl L?(€)), wé say that FMSE has got the RAP.
31
g; 32 Remark 3.14. The WUCP and the RAP are non-local properties. For example,
39 33 the RAP shows la certain, freedom of the solutions to fractional PDEs, since it
40 §4 states that théy canlapprozimate any L? function. This is not the case for a local
2; 3¢ operator, e.q. the cldssical Laplacian, whose solutions are much more rigid.
37
43 33 Lemma 3.15. The WUCP implies the RAP in the case of FMSE.
44
39
45 10 Proofs, We follow the spirit of the analogous Lemma of [I7]. Let v € L?(2), and
j? 41 assuine that (v,w) = 0 for all w € R. Then if f € CX(W) and ¢ € H*(R)
42
48 o
49 [,
50 T
51 16
52 47
53
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4 MAIN RESULTS

solves (—A)% ¢ + g¢ = v in Q, we have

n

0= (vusle) = (o = ) = [ oluy = s
— [ vlas = e = [ (~A)50 +a0)(us - f)da
Q Q
= [ (a%0+ a0 - o
=Bl - [ (~A)30+ o) da.

n

However, By [¢,uf] = [p. (=A)5uy + qup)pdr =05 and 50 . (—A)56 +
q®)f dx = 0. Given the arbitrarity of f € C2°(W), this implies that (—A)%¢ +
g =0 in W. Now we use the WUCP: from (—A)%¢+gp=0and ¢ =0in W,
an open subset of (., we deduce that ¢ = 0 in £ agwell. By the definition of ¢
and the fact that v € L?(f2) it now follows that,v = 0. Thus if (v, w) = 0 holds
for all w € R, then v € L?(2) must vanishy by the:Hahn-Banach theorem this
implies that R is dense in L?(Q). O

4. Main results

The inverse problem. We prove Theorem 1.1 under the assumption (4, q) €
P, while for all the previous results we only required (A, ¢) € Py. We find that
(p5) makes physical sense, asithe random walk interpretation of FMSE suggests;
however, we move the consideration of the general case to future work.

By (p5) and Lemma3.4 we easily deduce that o(z,y) = 1 whenever (z,y) € Q2,

since in this case Ag)(z,y) = 0. Another consequence of (p5) is:
Lemma 4.1.0Let (A, q) € P. Then FMSE enjoys the WUCP.

Proof. Suppose, that for all z € W C Q. we have u(z) = 0, (—A)5u(z) +
q(z)u(x)= 0. This in particular implies that (—A)%u(z) = 0. Since = ¢ ,
forcalmost every y € R™ we must have A(z,y) = A(y,z) = 0 by property (p5),
which means that A, (z,y) = 0. It is now an easy consequence of Lemma
3.3 that'(—A)*u(x) = 0 for all x € W. The known WUCP for the fractional
Laplacian ([I7]) gives the wanted result. O

‘We are ready to solve the inverse problem, which we restate here:

20
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1
2
3
‘5‘ 4 MAIN RESULTS
6
7 1
8 2 Theorem 1.1. Let Q C R™, n > 1 be a bounded open set, s € (0,1), and let
9 i (A;,q;) € P fori=1,2. Suppose Wi, Wa C . are non empty open sets, and
1(1) 5 that the DN maps for the FMSEs in Q relative to (A1, q1) and (A, g2 )vsatisfy
12 ¢
13 7 Af41,q1 [f“Wz = Af42,q2[fHW27 Vf € Cso(Wl) .
8
12 9 Then (A1,q1) ~ (A2, q2), that is, the potentials coincide up tosthe gauges.
10
1? 11 Proof. Without loss of generality, let W, N Wy = 0. Let fiie C°(W;), and
18 12 let u; € H5(R™) solve (=A%, ui + qiug = 0 with u; — fi € ]~{9(Q) for i = 1, 2.
19 12 Knowing that the DN maps computed on f € C°(Wy)ieoincide when restricted
;? 15 to Wy and the integral identity , we write Alessandrini’sdidentity:
16
22 s s
17 0= <( A1,q1 Az,qz)f1?f2>
;Z 18 (22)
- 19 = 2</ ((A1)a) = (A2)ay) - Vour dy; U2> + ((Q1 — Q2)u1, u2) .
26 2 y
57 21 We can refine by substituting every instance©f u; with u;|q. In fact, since
28 22y, is supported in QU W; and (Q U W) A(Q UW,) = Q,
29 .
30 Q- Qo) = [ O dr = [ (@ - Q) ds
31 " Q
26
32 2 — [ wloualo(@y# @) do = [ wlauzlo(@ - @2) do.
33 0 R
34 28
35 29 Moreover, by property Ap5);
36 "
37 < Viuy - ((A1)gy— (Az)a||)dy7U2> =
32 R
38 2
39 34 = / UQ/ ((Al)a,H — (AQ)(LH) . Vsul dy d(ﬂ
40 45 n R
y w o= [ ) o) - oxle ) ol (@) - () dy do
43 o ) n
44 5wl [ (@) - o) ol ((wla)@) - (ula)w) dyd.
39 Q Q
45
46 10 Egentually we get
47 N
48 00225/ zlo)@) [ (@1(2,9) = o2l ) o ((1]0)(0) — (o) ) dy do+
49 n n
44
50 15 +/ ug|uz|a(Q1 — Q2) dr .
51 16 n ’3
52 ur (23)
53
54
55 21
56
57
58
59
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5 A RANDOM WALK INTERPRETATION FOR FMSE

The RAP holds by Lemmas 3.15 and 4.1. Fix any f € L2(Q), and let f&
C®(W;) for i = 1,2 and k € N be such that v |q = 1, ul¥|q — f4n L%
Inserting these solutions in and taking the limit as k& — oo implies that
Jn f(Q1 — Q2) dz = 0, so that, given that f € L?(Q) is arbitrary,.we deduce
Q1(z) = Q2() for x € Q. Coming back to (23), we can write

/ (u2lo)(x) / (o1(z,y) — 02(x,y)) (U1|Q|)££$_) ;ngélg)(y) dy de' =10,

where u; € H*(R™) once again solves (—A)% u; +qu; = O.with u; — fi € H*(Q)
for some f; € C°(W;) and ¢ = 1,2. Choosing ugk)k) —f.in L? for some
arbitrary f € L2, by the same argument

/n(o,l(x’y) _ 0'2(1'73/)) (ul‘Q)(m) - (U’1|Q)(y) dy =0

o — gt

for z € Q. Fix now some z € Q and an arbitrary ¢he C°(Q2). Since g(y) :=
Y(y)e V12=vl|p — |2 € S € L2(Q) as in Lemma by the RAP we find a

sequence u(lk)|g — g. Substituting/these solutions and taking the limit,

| (o1) ~ axta ol dy 0.

Thus we conclude that for'alllg € Q'it must be o1 (z,y) = o2(x,y) for all y € Q,
i.e. 01 = o9 over Q2. But then o; and o5 coincide everywhere, because they are
both 1 in R?™\ Q2. This means that (A;), = (Az2)4). Moreover, since by (p2),
(p4) and (p5) we have Q1= 0 = Q2 over €., by the argument above Q1 = Q2
everywhere. It thus follows from Lemma that (A1,q1) ~ (A2, g2). O

5. A random walk interpretation for FMSE

Diffusionphenomena can often be seen as continuous limits of random walks.
The classical result for the Laplacian was extended in [43] to the fractional one
by consideringilong jumps. Similarly, the fractional conductivity equation was
shown in, [10] to arise from a long jump random walk with weight v'/2, where
v issthe conductivity. We now show how the leading term in FMSE is itself the
limit of allong jump random walk with weights. For simplicity, here we take o
as smooth and regular as needed. Let h > 0, 7 = h?%, k € Z", x € hZ" and

t € 77Z. We consider a random walk on hZ" with time steps from 7Z. Define

o(z,x + hk)|k|"""2 if k#0

fa, k) = ;
0 if k=0

22
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5 A RANDOM WALK INTERPRETATION FOR FMSE

and then observe that Vx € hZ"™

S fak)y= > flak) = > olw,x+hk)k T

kezn kezZr\{0} kezr\{0}

<folle > KT <00
keZ™\{0}

Thus we can normalize f(z, k), and get the new function P(2%)

-1
(Syezn F@.9))  olwz+ RR)KT" 250 5 k0
0 if k=0

P(z,k) == (24)

P(x,k) takes values in [0,1] and verifies ), ;. P(@yk) = 15 we interpret it as
the probability that a particle will jump from an+ hk to @yin the next step.

Remark 5.1. Let us compare P(x, k) for theyfractional’ Laplacian, conductivity
and magnetic Laplacian operators. /P(x, k)salways decreases when k increases;
the fractional Laplacian, which has o(x,y) =wly treats all the points of R™
equally: no point is intrinsically more likelyto be reached at the next jump; the
fractional conductivity operator, whichyhas o(x,y) = \/W, distinguishes
the points of R™: those withvhigh conductivity are more likely to be reached.
Howewver, the conductivity field is independent from the current position of the
particle. The magnetie, fractional Laplacian operator has no special o(z,y) and
it distinguishes the points of R™ in a more subtle way, as the conductivity field
depends on the position of the particle: the same point may have high conduc-

tivity if the particle is atw.and a low one if it is at y.

Remark 5.2. We/now see why o > 0 and o(x,y) = 1 if (z,y) € Q2: these are
needed for g~ o(z,g) to be a conductivity as in [10] for all x € R™.

Let u(z,#)'be,the probability that the particle is at point x at time ¢. Then
u(,t+7)= Y Pz, kulx+hk,t) .
kezm\{0}

We/can compute Oyu(zx,t) as the limit for 7 — 0 of the difference quotients, and
then substitute the above formula (see [I0]). As the resulting sum approximates
the Riemannian integral, we eventually get that for some constant C' > 0

Ou(z, t) = C/ U(z,y)w dy

|z —y[nF2e

n

23
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5 A RANDOM WALK INTERPRETATION FOR FMSE

If u(zx,t) is independent of ¢, the leading term of FMSE is recovered.

We shall now prove that the random walk we are considering represents
anomalous diffusion. In a classical diffusion scenario, very long jumps should
happen with very low probability. This is mathematically reflected’in the prop-
erty that the variance of the length of the jumps is finite. However, this is not

the case for our random walk:

Lemma 5.3. If s € (0,1), then the second moment of the length of lthe jumps
of the random walk is infinity. Moreover, if s € (1/2;1)nthe first moment
is finite, and if s € (0,1/2] it is infinity.

Proof. Fix any point x € R"™, and let s € (0,1). The,second moment of the
length of the jumps of the random walk is'proportional to

go(z,x + hk) 1
Z K| o[ 42 z Z k[ +2s—2

kezn\{0} kez"\{0}

By the integral test for the convergence of.a series, we deduce that the above

series diverges because

dx N - 1=2s 7 _ . 2=25|® _
re\B, |T["T2572 - 1 g p=cr |p:1 -
1

Thus the second motnent,is infinity. For the first moment, let M > diam(Q2)/h.
Then (z,x + hk) & Q% for |k|p> M, either because z € Q or because, if z € €,
then |hk| >diam(Q?) and therefore  + hk ¢ Q. Thus by (p5) we know that
o(x,x + hk) = 1 ik} > M.Of course we have

oz, x + hk) o(z,z + hk)
Z |k|W: Z |k‘n+251+ Z |k|pt2s—1

keZm\{0} [k|>M |k| <M
keZ™\{0} keZ™ {0}

because the second sum in the right hand side has only a finite amount of finite
terms, andyis therefore finite itself. For the other sum in the right hand side,

we use again the, integral test: the first moment will be finite if and only if the

dx /°° s
s =c | p*dp
/]R’"\BM |z[nt2s—t M

isvitself finite. We see that this happens if and only if s € (1/2,1), which

concludes the proof. O

integral
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: 6 ONE SLIGHT GENERALIZATION
6
- 1
8 2 Remark 5.4. If s € (1/2,1), the variance of the length of the jumps of.the
9 i random walk 1s infinity because of the above Lemma. Therefore, dn this
1(1) s case the random walk represents anomalous diffusion.
12 ’
13 N 6. One slight generalization
14
15 ?0 We now briefly consider a fractional magnetic conductivity £quation (FMCE)
1? 11 and show that it shares similar features as FMSE. Let (A;g) € P and let v
18 12 be a conductivity in the sense of [10]. Consider v €/H3(R")™ySince V¥ :
19 12 H*(R™) — L2(R?*™), if O(z,y) := +/7(x)y(y)Id by théproperties of v we know
;? 15 that © - V4u € L*(R?"). Thus we define the fractional magnetic conductivity
22 16  operator
23 17
24 12 C3 au(x) :== (V)4(© - Viu)(z), G5 4 HE(R") — H™°(R") .
25
26 20 We say that u € H*(R™) solves theé FMCE with exterior value f € H*(Q,) if
27 .
28 vy C3 qu(r) + g(z)u(@),=0 in Q
29 o4 u =.f in 0,
30 95
31 2 holds in weak sense.
32
33 z; Lemma 6.1. Let u /& H*(R"), g € H*(Q), w = v/?u and f = v'/%g. More-
gg 29 over, let (A,q) € P and
30
36 31 ¢ =d 4= B (A, + (V) (A2 () (=A)*(+'/?)
57 i ot O Gy )
33 s(~1/2) . A 1/2
39 . £ Ny + 142 (= 1)) -
40 4 & 72 () 72 ()
Z; 36  FMCFE with potentials (A, q), conductivity v and exterior value g is solved by u
43 3T if and dnly if w. solves FMSE with potentials (A, q') and exterior value f, i.e.
38
44
39 . , .
(03 =0 Q —A)3 =0 Q
45 0 S+ qu in - (=AY w+ ¢w in
46 " u=yg in Qe w=f in Qe
47 15
48 JgmMoreover, the following formula holds for all w € H*(R"):
49 [,
>0 45 ny,A(V_lﬂw) +qy P =42 <(_A)f4 + q/)w.
51
46
52 47
53
54
55 25
56
57
58
59
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6 ONE SLIGHT GENERALIZATION

Proof. Let us start from some preliminary computations. One sees that

Vow = V(5 2u) = 412 ) Vou+ (@) 9 ()

V4 (v'/?)

1/2 VS

V()

. ) 5w s 1/2
from which V*u = % - w(x)#vm)(y), and eventually
Viw Vi (y!?) w()
Viu=—7— —w(z)———7%— + Alz,y . (25)
) ST A T

By the definition of magnetic fractional divergence, ifw.€ H*(R"?),

(V)50 - Viu),v) = (v} ()7 (y) Viyu, Vo)
= (v'2(@)y" P (y) Vi, Vo) + (v @)y 2 (y)V i, Av)

= <71/2(x)v1/2(y)viuvvsv>+</ (Vi Ady, P >
Applying formula , we get

(V)4(0 - Viu),v) = (y1/2(2)Vow, Vo) =(@(2) (A, y)r' 2 (y) — V* (41/2)), V*v)

1/2 Vow Ve (y1/?) w(z) U
= L0 GNP g + A Wias) - Ader' )

= (Y2(2) V3w, V) + (w(z) (A y)7v 2 (y) — V2 (v1/?)), V*0) (26)
s VS(71/2) A 71/2( )
+ </ﬂ (V w - A—w(x)W + |A|2w(x)71/ (e )) dy, 71/2 >

We treat the resulting terms separately. For the first one, by symmetry,
(312 (@) Viw, V)= (Viw, 72 (2) Vo) = (Vow, VP (0y!/?) —u(y) V* (71/2))
= (A w, o B — (Vow, 0(y) V* (/%)) = ((=A)*w, 07! /?) = (Vow, v(2)V*(4'/?))

s(~1/2
— (R0, 072 - ( . sz‘zlsz(x)) dy, 7" (27)

For the second.part of , we will compute as follows:

A, 12 (y) 7V (r1?), w(@)Vov) =

= (A@, )7 *(y) = V*(41/?), V* (vw) — v(y) V*w)

= ((9)° (A g 2() = 7 (12), 0w) = (A, 2() = V2 (52) Joly), Vow)

Page 26 of 30

_ <((v')s(f471/2(y)) (= 1)/9(71/2))w(m),v’yl/2> _ <(A(y,x)71/2(x) —V8(71/2))0($)7V8w>

73 () ?(x)

26



Page 27 of 30

oNOYTULT D WN =

© 00 N O Ol W N

20

25
26
27
28

30
31
32
33
34
35
36
37
38
39
40
41
42

44
45
46
47

AUTHOR SUBMITTED MANUSCRIPT - IP-102436.R1

REFERENCES
(V) (A 2(y)  (=A) ()
- <( ~172(z) T AR2(2) )w(x)av71/2>* (28)
VE(v'/?)
_ Rvi 1/2 YN ) s 1/2
< RnA(y,x) Viw dy, vy >—|—< o 202 Viw dy, vy >
Substituting and into , we conclude the proof:
S S S S vs(f)/l/2)
<(V)A(® : VAU)7’()> = ((_A) w7v71/2> - < an Viw - W dy771/20>+
(V) (A2 (y)  (=A) (W) 1/2
L G o e R
V(')
_ Rva / RARERRVAS v /
</n A(y,l’) \% ’U)dy,'l}’yl 2> + </n ")/1/2(IE) v wdyav’)/l 2>+
] Vi(y'/?) - A Y2 (y) /
+ </n (V w-A— w(x)W + | APaw(x) 71/2(56)) dy,v* 2v>

= <(—A)Sw + 2/Rn Ag - Viwdy #+ w(x)(/Rn VA |Ady + (V-)SAS||>7071/2>+
(VA 8@m) (=& ('?)

+( {(V-)SAS| +

V22N 72(@)
s(~1/2) . 1/2
+/n (- %;)_A + IA|2(31/2E2 -1)) dy} w(a),v'/?)
= ((=A)5w + (¢ — q/y)w, vy, 0

Thus the FMCEs can be reduced to FMSEs; hence, we know that FMCE enjoys
the same gauges as FMSE, and most importantly we can consider and solve an

analogous inverse problem.
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