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Abstract

We present a numerical scheme for solving a parameter estimation problem for a model of low-

grade glioma growth. Our goal is to estimate the spatial distribution of tumor concentration, as 

well as the magnitude of anisotropic tumor diffusion. We use a constrained optimization 

formulation with a reaction-diffusion model that results in a system of nonlinear partial differential 

equations (PDEs). In our formulation, we estimate the parameters using partially observed, noisy 

tumor concentration data at two different time instances, along with white matter fiber directions 

derived from diffusion tensor imaging (DTI). The optimization problem is solved with a Gauss-

Newton reduced space algorithm. We present the formulation and outline the numerical 

algorithms for solving the resulting equations. We test the method using synthetic dataset and 

compute the reconstruction error for different noise levels and detection thresholds for monofocal 

and multifocal test cases.
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1 Introduction

Gliomas are tumors that arise from glial cells in the brain. They account for 29% of all brain 

and central nervous system (CNS) tumors, and 80% of all malignant brain tumors of about 

60,000 cases diagnosed each year in the United States (Dolecek et al., 2012). Despite 

advances in surgery, chemotherapy, and radiotherapy, the median survival rate with therapy 

has remained about one year in the past 30 years (Newton, 1994; Salcman, 1980; Seither et 

al., 1995; Swanson et al., 2008; Wrensch et al., 2002).

One of the key challenges in treating gliomas is their aggressive infiltration into the healthy 

tissue, well beyond the visible bulk of the tumor in standard clinical imaging modalities 

(Holland et al., 1985; Seither et al., 1995). Thus it is hard to decide on how much tissue to 

resect in surgery or radiate in radiotherapy. Considering a large margin in radiotherapy may 

destroy healthy tissue, while small margins may result in faster recurrence of the tumor 

(Nazzaro and Neuwelt, 1990; Silbergeld and Chicoine, 1997). In clinical practice, a margin 
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of 1cm–4cm is typically used (Hochberg and Pruitt, 1980; Lawrence et al., 2010). This 

margin is derived by statistical analysis of clinical data (Hochberg and Pruitt, 1980). But 

there is no consensus about its particular value and there is no systematic way to select this 

margin for an individual patient.

Our work has the potential to provide guidance on fine tuning the treatment margin in a 

systematic way, which in turn may improve treatment. It is based on integrating 

mathematical models of tumor growth with imaging, using automatic parameter calibration.

Contributions

We address the problem of determining the full extent of the tumor infiltration for a 

reaction-diffusion tumor growth model. We summarize our contributions below.

– We present the mathematical formulation of PDE-constrained parameter estimation 

for tumor growth. We invert for the initial condition of the tumor concentration and the 

extent of anisotropic infiltration. Unlike existing approaches, our parameterization 

allows for calibration of multifocal gliomas.

– We present and verify a numerical scheme for the solution of the parameter estimation 

problem. Due to the 3D PDEs that describe the tumor growth the estimation problem is 

challenging. We present novel numerical schemes that enable fast solution of this 

problem.

– We apply our scheme to the estimation of the extent of tumor infiltration. We account 

for the fact that we have only limited information on the actual extent of the tumor in 

the patient data. We report preliminary results for synthetic tumors, and the associated 

reconstruction errors.

Including estimation of the anisotropic infiltration rate makes the problem more complex, 

but it is inevitable as there is currently no patient specific method to measure it1. In our 

experiments the data consists of two or more noisy (in terms of errors), partially observed, 

segmented images of the tumor. The partial observation corresponds to the visible bulk of 

the tumor observed in the images.

Limitations

The primary focus of this paper is on the formulation, numerical analysis, and feasibility of 

the proposed method. We use a widely adopted reaction-diffusion model for tumor growth 

(Jbabdi et al., 2005; Swanson et al., 2000, 2008, 2002). We do not consider mass effect 

(deformations of the parenchyma due to tumor growth). The use of more complex tumor 

growth models accounting for mass effect, edema, necrosis, angiogenesis and chemotaxis 

remains to be investigated (Engwer et al., 2014; Habib et al., 2003; Hawkins-Daarud et al., 

2013; Hogea et al., 2008b). Moreover our method requires at least two consecutive time 

frames of tumor growth. This is a limitation especially for high grade tumors since there is 

rarely two time frames available. However, treatment is sometimes delayed for low grade 

tumors. These tumors are left in an observed state, for which multiple time frames may be 

1Manual tuning for this value has been reported (Jbabdi et al., 2005; Sodt et al., 2014).
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available. Also, we require actual tumor concentration values. In practice one can get tumor 

classes from segmentation but not the concentration values (Mang et al., 2012). However, 

some methods of approximating the concentration values from ADC (apparent diffusion 

coefficient) data have been proposed (Anderson et al., 2000; Atuegwu et al., 2013; Weis et 

al., 2013).

Related Work

There is a long tradition in the design of mathematical models for cancer progression. The 

complexity of the underlying bio-physiology results in a diversity of mathematical models, 

accounting for phenomena on the molecular, cellular and/or tissue scale (Bellomo et al., 

2008). We limit this review to tissue scale methods for gliomas and their integration with 

clinical images.

Most work attempting to link mathematical models to images is based on reaction-diffusion 

type equations (Murray, 1989)(see also §2). Its main assumption is that cancerous cells grow 

and infiltrate tissue due to cell division (proliferation) and migration (which can be modeled 

by diffusion). Although this model is simplistic and purely phenomenological, it has been 

shown that it can capture tumor progression on a tissue level (Clatz et al., 2005; Konukoglu 

et al., 2010a,b; Mang et al., 2012; Rekik et al., 2013).

This model has been used extensively for recovering tumor growth patterns in individual 

patients (Clatz et al., 2005; Hogea et al., 2007, 2008b; Jbabdi et al., 2005; Konukoglu et al., 

2010b; Mang et al., 2012; Rekik et al., 2013; Swanson et al., 2000, 2002), for estimating the 

physiological (true) tumor boundary (Cobzas et al., 2009; Konukoglu et al., 2010a; 

Mosayebi et al., 2012), and for studying effects of clinical intervention (Powathil et al., 

2007; Rockne et al., 2009, 2010; Swanson et al., 2008; Tracqui et al., 1995). The parameter 

calibration is typically driven using segmented data of patient images. Besides only 

considering tissue composition (Hogea et al., 2007, 2008b; Swanson et al., 2000, 2002), 

white matter architecture (neuronal pathways), obtained from diffusion tensor imaging 

(DTI) data, has also been included into the models, in an attempt to account for the 

experimentally observed prevalent migration of cancerous cells along the white matter tracts 

(Bondiau et al., 2008; Clatz et al., 2005; Cobzas et al., 2009; Engwer et al., 2014; 

Konukoglu et al., 2010a,b; Mang et al., 2012; Mosayebi et al., 2012; Painter and Hillen, 

2013; Rekik et al., 2013). Models that account for the mechanical interaction of the tumor 

with its surroundings have been described in (Clatz et al., 2005; Hogea et al., 2007; 

Mohamed and Davatzikos, 2005).

A common approach for parameter estimation is manual calibration (Clatz et al., 2005; 

Swanson et al., 2002). However, it is somewhat difficult to reproduce results and this 

approach does not scale with the number of parameters. For this reason, several groups have 

developed automatic parameter calibration algorithms. One approach is to use an asymptotic 

approximation of the reaction diffusion type equations on the basis of a traveling wave 

solution (Swanson et al., 2008). The associated analytical result establishes a connection 

between the velocity of the (spherical) tumor front and the parameters of the underlying 

reaction diffusion type model. An extension that accounts for the heterogeneity of the tissue 

as well as the structure of white matter pathways has been described in (Konukoglu et al., 
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2010a,b). This method has been applied to time series of images (Konukoglu et al., 2010b) 

and to imaging studies based on a single snapshot in time (Rekik et al., 2013).

We use the general framework of parameter estimation, based on optimal control theory 

(Biros and Ghattas, 2005a; Biros and Ghattas, 2005b; Hogea et al., 2008b; Bangerth and 

Joshi, 2008). Our approach extends the work (Hogea et al., 2008b) in that we use second 

order (Hessian) information for the numerical optimization, instead of using first order 

information only or falling back to a derivative free optimization (Mang et al., 2012). We 

use a series of novel preconditioner which noticeably speeds up the time to solution. Also 

the experiments of (Hogea et al., 2008b) were limited to the 1D case, only. We report results 

for the 2D and 3D case, in addition to accounting anisotropic diffusion in white matter.

Outline of the paper

In section §2, we introduce the tumor growth model (i.e. the forward problem). In §3, we 

present the optimization problem to solve for the unknowns (i.e. the inverse problem), and in 

§4 we describe details of the related numerical methods. Finally, in §5 we test the proposed 

algorithm accounting for different noise levels and different detection thresholds. We 

conclude with a discussion of the designed method and the reported results in §6.

2 Tumor Model

The tumor growth model we use has been widely adopted in the literature to model the 

spatio-temporal spread of cancerous cells on a tissue level (Hogea et al., 2007; Jbabdi et al., 

2005; Murray, 1989; Swanson et al., 2000, 2008; Tracqui et al., 1995). It can be stated as 

follows:

Rate of change of cells in time = proliferation rate + motility (diffusion) rate.

The equivalent mathematical formulation is given by the following partial differential 

equation:

(1)

(2)

subjected to an initial distribution c(t = 0) = c0. Here, c is the normalized tumor 

concentration (i.e. c ∈ (0, 1]), D is a linear differential operator modeling the migration of 

the tumor cells, and R(c) is a nonlinear reaction term, modeling proliferation and necrosis of 

the tumor cells. Furthermore, U := ℬ × (0, 1], where ℬ is the spatial domain of brain and (0, 

1] is the non-dimensional time interval. Moreover, Γ refers to the boundaries of CSF and 

skull of the brain where the tumor cells do not infiltrate into (Tracqui et al., 1995).

The differential operator D that models tumor infiltration is based on a model of 

inhomogeneous, anisotropic diffusion:
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(3)

Where

(4)

Here, k0(x) captures the inhomogeneity due to different diffusion rates in white and grey 

matter, and x = (x, y, z) ∈ ℬ. The inhomogeneity of tumor infiltration follows from the 

experimental study in (Giese et al., 1996), in which it was observed that glioma cells have a 

higher motility rate in white matter as compared to grey matter. This observation has 

recently been related to the higher cell density in grey matter (Sodt et al., 2014). To account 

for these different motility rates, the diffusion coefficient is assumed to be inhomogeneous 

(i.e. k0 is a function of the location x), with a higher diffusion rate in white matter than in 

grey matter (Silbergeld and Chicoine, 1997; Swanson et al., 2000, 2002; Tracqui et al., 

1995). Therefore, we have

We use a five fold difference, i.e.  (Hogea et al., 2008a; Swanson et al., 2002).

Similarly, it has been suggested that glioma cells have a directional preference in their 

infiltration. This can be accounted for by introducing an anisotropic diffusion operator 

(Horsfield and Jones, 2002; Jbabdi et al., 2005; Painter and Hillen, 2013; Stadlbauer et al., 

2009). The second term in Eq. 4, T(x), captures this behavior. T(x) is the weighted diffusion 

tensor derived from diffusion tensor imaging (DTI) data2. We compute T(x), by scaling the 

eigendirections and eigenvalues derived from the 3 × 3 DTI tensor by the so called fractional 

anisotropy (FA):

(5)

where FA is given by

(6)

Here, e1, e2, e3 and λ1, λ2, λ3 are the corresponding eigendirections and eigenvalues, 

computed at each point in the brain. The diffusion tensor T is additionally scaled by kf to 

2DTI is an MR imaging technique that measures water diffusion tensor at every point in the brain (Le Bihan et al., 2001)
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account for differences in the diffusion rates between tumor cells and water. Other methods 

of deriving T by scaling only the principle direction have been suggested as well (Jbabdi et 

al., 2005; Painter and Hillen, 2013; Sodt et al., 2014). For example, T can have the form of:

(7)

In this approach only the principle direction is preferred when there is fiber crossings (the 

planar case). To adress this, (Jbabdi et al., 2005) suggested a linear scaling of the form:

(8)

where a1, a2, and a3 are coefficients that depend linearly on kf and the eigenvalues.

Another study by (Painter and Hillen, 2013) has suggested a different derivation of the 

anisotropic behavior of gliomas from peanut or von Mises distribution. In this approach, the 

macroscopic behavior of glioma cells is derived by considering individual pathways of 

tumor cells along white matter fibres (Hillen, 2006). For example for the 3D case of von 

Mises-Fisher distribution the diffusion tensor will have the form of:

(9)

where a1 and a2 are two parameters that depend on sensitivity of cells to pathways, cell 

turning rate, and the degree of randomized turning. In this paper, we consider Eq. 5 and 7. 

But the inverse problem formulation of §3 can handle the cases of Eqns. 5, and 8. For the 

case of Eq. 9, our method requires a slight modification to invert for both a1 and a2 instead 

of just one of them.

A common model (Hogea et al., 2008b; Konukoglu et al., 2010a,b; Mang et al., 2012; Rekik 

et al., 2013; Rockne et al., 2009) for the cell mitosis and necrosis in Eq. 1 is the following, 

self-limiting logistic reaction term:

(10)

where ρ is the reaction coefficient. This model captures the exponential growth of the tumor 

cells in the areas of low concentration, and necrosis in areas where c > 1. We use ρ = 2, in 

non-dimensional form, to test the method in §5, which corresponds to ρ = 0.0006 per day in 

dimensional form. For the diffusion coefficient we use k0 = 0.1 in non-dimensional form, 

which corresponds to  in dimensional form 3.

As mentioned earlier, with the current clinical imaging technologies only the bulk of the 

tumor is visible; the full extent of the invasion (physiological tumor boundary) remains 

3The parameters were selected in the range specified by (Stein et al., 2007)

Gholami et al. Page 6

J Math Biol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



undetectable. That is, the tumor concentration is only detectable at locations in which c*(x) 

> cd. Here c*(x) refers to the spatial tumor distribution and cd refers to the detection 

threshold. This threshold depends on the imaging modality used. In (Swanson et al., 2008) 

the detection threshold was set to cd = 0.16 and cd = 0.8, for T2-weighted (T2w) and T1-

weighted contrast enhanced (T1w-Gd) imaging, respectively. However, there is no 

consensus in the literature as other values such as cd = 0.4 have been used as well 

(Konukoglu et al., 2010a; Tracqui et al., 1995). A thorough in vivo/vitro experimental study 

is needed to identify the correct threshold. To the best of our knowledge, no study on this 

subject has been published yet. Thus, we will consider a range of values for cd in our tests. 

In future, if such data becomes available, one can easily substitute its value and run our 

inversion algorithm. Nothing changes in our formulation, just the value for cd. Based on the 

detection threshold, we define tumor margin, m, to correspond to areas where tumor 

concentration is below cd, and above a cutoff value of 1%. Because the tumor concentration 

is continuous we need to use this cutoff to define the margin.

3 Inverse Problem

We consider an inverse problem approach as a modular method of approximating the full 

extension of tumor invasion, as well as its infiltration rate (kf). The inverse problem is 

formulated as a PDE constrained optimization problem:

(11)

subject to:

(12)

(13)

(14)

Here, O0 and O1 are observation operators, d1 ∈ ℝN1 and d0 ∈ ℝN0 are the vectors of 

observation points, p ∈ ℝNp is a parametrization of tumor distribution at t = 0, and βp is a 

regularization parameter. All the subscripts refer to time (e.g. O0 is observation operator at t 

= 0). The commonly used notations are defined in Table 1.

The observation operators are defined as:
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The reason for different observation operators becomes clear now since c1 has a different 

distribution than c0. As mentioned before, only tumor concentrations above a threshold are 

observable in medical images. Therefore, the second tumor may have a larger or smaller 

detectable part.

Moreover, the initial distribution of the tumor in Eq. 14 is parametrized as a superposition of 

Np Gaussian distributions. This mapping is done by Φ ∈ ℝN0×Np

The corresponding Lagrangian of this problem is given by:

(15)

The first order optimality conditions can be derived by requiring stationarity of the 

Lagrangian with respect to state c, adjoint α and inversion variables p, kf. That is:

(16)

(17)

(18)

(19)

As a result, the adjoint equations are:

(20)

(21)

(22)

Similarly, the state equations are:
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(23)

(24)

(25)

Finally, the inversion equations are:

(26)

(27)

Equations 20-27 form a system of nonlinear PDEs in space and time. In general, they are not 

amenable to analytical solutions, and have to be solved with a numerical method. We use a 

Gauss-Newton method that corresponds to an inexact linearization of the equations. After 

deriving the optimality conditions, then we discretize and solve the resulting PDEs 

numerically (Kallivokas et al., 2013). The scheme can be summarized as follows. Assume 

c0, α0, p0 and  to be the initial guess of the iterative scheme (throughout the paper 

superscripts refer to the iteration number of the iterative solver and should not be confused 

with time, which are always specified by subscripts). The updates to these variables 

(denoted by c ̃, α̃, p̃ and k ̃
f) can be found by solving the second order optimality system (i.e. 

the second variation of the Lagrangian):

(28)

(29)

(30)

(31)

(32)

(33)
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It is useful to rewrite the previous equations using linear operators (definitions are given in 

§6):

(34)

(35)

(36)

(37)

which in matrix form can be written as:

(38)

To solve this linear system, we use a reduced Hessian formulation, by eliminating c̃ and α̃ 

from the system. As a result we obtain:

(39)

where the reduced Hessians (i.e. the individual block matrices on the left hand side in Eq. 

39) are defined in §6 (see Eqns. 57-60).

To compute p̃ we solve the following equation using an iterative scheme such as 

Generalized Minimal Residual (GMRES) or Conjugate Gradient (CG) method. Because the 

Hessian is symmetric positive definite, we use CG to solve the Schur complement of Eq. 39, 

given by:

(40)

Then k̃
f can be found by substituting the computed p ̃ in the following equation:

(41)

Since the problem is nonlinear, this update process must be repeated. That is, one should 

update (p0, ) with (p̃, k̃
f) (using a globalization scheme such as a line search) and repeat 

the solution process (i.e. solve Eqns. 40 and 41 again).
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4 Numerical Methods

Following our earlier work (Hogea et al., 2008b), we use a Strang second-order time 

splitting method (Strang, 1968) to numerically solve the PDEs. Splitting methods provide 

exclusive benefits for solving complex PDEs that involve different operators, without loss of 

accuracy. Here we explain how the forward PDE (i.e. Eq. 1) is solved with this method. The 

other PDEs of the optimality systems in §3 can be solved in a similar fashion. Let cn denote 

the tumor distribution at the n-th time step. To find cn+1 the following steps have to be 

performed:

1.
Solve  over time ∆t/2 using a second order implicit Crank-Nicolson method 

with cn as initial condition, to obtain c†.

2.
Solve  over time ∆t analytically/numerically with c† as initial condition, to 

obtain c††.

3.
Solve  using a second order implicit Crank-Nicolson method over time ∆t/2 

with c†† as initial condition, to obtain cn+1.

This scheme can more compactly be written as:

(42)

Where , is the numerical PDE solver corresponding to each of the above steps. 

For instance,  corresponds to the first step and applies the diffusion operator to cn and 

gives c† as its output (the interested reader is referred to (Strang, 1968) and (Ropp and 

Shadid, 2009) for more details). To solve for each of these steps we use a pseudo-spectral 

method. The space is dis-cretized into N = 643 nodes and Nt = 10 time steps. The space 

discretization corresponds to a domain of 64 mm3 centered around the tumorous region4. 

Finally, we note that the overall numerical scheme is second order in time and has spectral 

accuracy in space. We have tested and verified this.

A key advantage of the splitting method is that the nonlinear logistic growth model has an 

analytical solution. As a result,  can be computed with an accuracy that is down to 

machine precision and with negligible computational cost (this not only reduces the 

computational complexity, but also allows for very accurate approximations to the Hessian 

operator). For PDEs that involve the derivative of the reaction term, one can simply use a 

second order Crank-Nicolson method in the absence of an exact solution. For the diffusion 

part  we use pseudo-spectral method in space and second order Crank-Nicolson scheme 

in time. For instance,  is solved to obtain c† as follows:

4This area can be increased for highly infiltrative tumors that spread through a larger portion of the brain.
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(43)

The implicit scheme of Eq. 43 results in a symmetric system that is solved iteratively using 

the Conjugate Gradient method. A key advantage of implicit methods is that they are, in 

contrast to explicit methods, unconditionally stable. On the downside, one must solve a 

system of equations at each iteration.

Hessian Preconditioner

Here, we briefly explain how we solve and precondition Eq. 40. Solving this equation is one 

of the major bottlenecks of the algorithm, as each application of the Hessian involves the 

solution of the forward and adjoint PDEs in time. To prevent any ambiguity, we refer to 

 as the Hessian matvec for a given p̃.

We precondition Eq. 40 to increase its convergence rate. As a result, the number of 

necessary Hessian matvecs will decrease, thus reducing time to solution. A good 

preconditioner is one that has low overhead of forming and applying, while increasing the 

convergence rate considerably. An extreme case for a preconditioner is the inverse of the 

Hessian operator, which would decrease the number of iterations to one, but is too expensive 

to form and apply. On the other hand, the identity operator is a preconditioner with no 

overhead and obviously no effect. With this in mind, we preconditioned Eq. 40 with an 

analytical approximation to Hpp. The analytic expression is derived by approximating 

numerical operators of Hpp (defined in Eq. 57). For this, we use the average value of the 

variable diffusion coefficient tensor K(x). This allows an analytical solution to the diffusion 

operator in the splitting scheme. The other terms such as the reaction operator are solved 

numerically as before. The fact that we are not solving an implicit system of equations for 

the diffusion operator reduces the overhead of forming and applying this preconditioner 

considerably. This is the only approximation that we are doing and the rest of the operators 

are the same as the numerical Hessian. This preconditioner performs very well and thus 

reduces the number of CG iterations to solve Eq. 57 by a factor of 5 (from about 25 to 5).

Since we are solving a nonlinear optimization problem, Eq. 40 has to be repeatedly solved 

(we refer to these repetitions as Newton iterations). The number of Newton iterations 

depends on how far the initial guess of the inversion parameters are from the actual (true) 

solution. The fact that the Hessian preconditioner performs very well, shows that it is 

actually a good approximation to the true Hessian. As a result, one can use it to first solve 

for a good starting point with negligible computational overhead. This means that one first 

solves Eq. 40 and Eq. 41 to compute p0 and  by using analytical approximations to the 

Hessian operators, instead of using their true numerical expressions. The approximation is 

exactly the same as explained above; that is, we only approximate the costly diffusion 

operator with an analytical expression by using the average value of the diffusion tensor. 

With these starting values of p0 and  we then solve Eq. 40 and Eq. 41 with the correct 

numerical forms of the Hessian operators. This process is quite effective as it reduces the 

number of Newton iterations by a factor of 3 (from about 15 to 5).
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Regularization Parameter

Inherent in any inverse problem, is a regularization operator that limits noise amplification. 

We use a Tikhonov-type regularization model in Eq. 11 for this purpose (Tikhonov, 1963). 

If the problem is under-regularized (i.e. βp ≪ 1), the solution will be dominated by the 

inherent noise in the data. On the other hand, over-regularization (i.e. βp ≫ 1) will result in 

a poor fit to the data. Therefore, it is necessary to choose an optimal regularization 

parameter, somewhere in-between these two extremes. It is possible to choose βp 

heuristically. However, we will use a systematic approach to compute an optimal βp. The L-

curve method is one of the widely used methods for this purpose (Hansen, 1992, 1999). We 

provide a plot of an exemplary L-curve in Fig. 2. We obtained βp = 0.01 as an optimal 

regularization parameter for test case 2, with cd = 0.2, and η = 5% (the test case will be 

defined in §5). This process needs to be repeated for new datasets. Although this method has 

an expensive computational cost, it allows a systematic selection of the regularization 

parameter. It is also possible to do this process inside the iterative solver, where one starts 

from the tail of the L-Curve (large regularization) and reduces the regularization parameter 

as the solution converges (Fathi et al., 2015). In this fashion, part of the computational cost 

will be overlapped in the non-linear iterations.

5 Results

Setup

We consider synthetically created tumor distributions as target. We apply our inversion 

algorithm to noisy, partial observations of these targets, limited to two time frames, and 

compute the corresponding reconstructions. This synthetic analysis allows us to compute the 

exact errors between the reconstructions and the target, which would otherwise not be 

possible. As mentioned before, only part of the target tumor is detectable. Our observation 

operator (i.e. O0 and O1) captures this, by selecting tumors at points that have a 

concentration above the detection threshold. Since there is no consensus in the literature 

about the exact value of this detection threshold (Konukoglu et al., 2010a; Swanson et al., 

2008; Tracqui et al., 1995), we will consider different values to test our algorithm. 

Moreover, the data derived from any imaging modality will contain noise. To account for 

this, we add different levels of white noise (denoted by η) to the observed data (target 

distribution).

To match our implementation to virtual brain anatomy, we use the Brain-Web atlas (spatial 

resolution: 1mm × 1mm × 1mm) (Cocosco et al., 1997). Moreover, we use the diffusion 

tensor imaging data provided by the LONI lab of the University of Southern California 

(Mori et al., 2008).

To test our inversion algorithm, we consider the following three test cases:

Test case 1: Reconstruct full tumor distribution with known anisotropic diffusion 

coefficient kf (using Eq. 5 for the diffusion tensor).

Test case 2: Reconstruct full tumor distribution as well as anisotropic diffusion 

coefficient kf (using Eq. 5 for the diffusion tensor).

Gholami et al. Page 13

J Math Biol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Test case 3: Same as test case 2, but for a multifocal tumor (using Eq. 5 for the diffusion 

tensor).

Test case 4: Reconstruct full tumor distribution as well as anisotropic diffusion 

coefficient kf (using Eq. 7 for the diffusion tensor).

The inversion in all the test cases is derived by partially observed, noisy data of the target 

tumor distribution at two consecutive time frames of t = 0 and t = 1, respectively. Test case 1 

is rather unrealistic, since there is currently no way to measure kf in vivo. However, in test 

case 2 we assume no knowledge of the anisotropic diffusion rate. We include it as an 

unknown inversion parameter in our algorithm. Other researchers have considered manual 

tuning of the method with different kf and then selected the one that has the best fit (Jbabdi 

et al., 2005; Sodt et al., 2014). However, our approach is a systematic one and does not need 

any manual parameter tuning. In the last test case we consider a multifocal tumor. This test 

case is to demonstrate that our inversion algorithm works irrespective of mono- or 

multifocality of the tumor. Moreover, to show that our method works with other diffusion 

tensors, we test the inversion using Eq. 7 for T.

Performance Measures

To quantify the reconstruction performance, we report the mismatch between the target and 

reconstructed tumor distributions:

(44)

where  is the target tumor distribution and ci is the reconstructed one, at time t = i. This 

mismatch error is reported for the two consecutive time frames, at which the data was 

observed (i.e. t = 0 and t = 1). We also report the error for an additional time point t = 2. 

This test is included to study how well does the reconstruction capture the growth pattern of 

an untreated tumor (i.e. the tumor growth prediction capabilities of our method). 

Furthermore, we provide Jaccard Index (JI) to assess how well our method approximates the 

tumor margin:

(45)

where H is the Heaviside function, mi is the reconstructed margin at time t = i, and  is the 

target one. Note that we are using the tumor margin, m, instead of the full tumor 

distribution, c. This is because the tumor margin does not involve areas above the detection 

threshold. Those areas have a JI of one, and including them will increase JI artificially. This 

is specially important for cases where cd is small, and using m will give a better metric of 

how well the margin is reconstructed.

For test case 2 and 3, we also report the error in the reconstruction of kf compared to the 

target anisotropy coefficient :
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(46)

The target tumor distribution c* is shown in Fig. 1 at these three time frames. The results are 

computed by solving the forward problem in 3D. For the test case 1 and 2 we perform the 

reconstruction in 3D. For the test case 3 (multifocal tumor) we limit the reconstruction to a 

2D slice.

Numerical Result

The reconstruction results for test case 1 are shown in Table 2. We report the relative 

reconstruction error (computed according to Eq. 44) at different time frames, for different 

threshold values, cd, and different noise levels, η. Note that only the two time frames t = 0, 1 

are used to solve the inverse problem. The error given at t = 2 demonstrates how well the 

reconstruction matches the target if the tumor was left untreated. The reconstruction error 

increases with an increasing detection threshold. This behavior is expected, since a higher 

threshold means less data is available to drive the inversion. Moreover, the reconstruction 

error is higher, as noise is increased. However, the difference is not significant, because the 

regularization operator counter balances noise amplifications.

But what if the value of the anisotropic diffusion rate is unknown as well? This is exactly 

what we study in test case 2. The corresponding errors are shown in Table 3. As one can see, 

the inversion algorithm approximates the correct value of kf with a very good accuracy. As a 

result, the errors in tumor distribution reconstruction at t = 0 and t = 1 are comparable to 

those reported for test case 1. Figure 3 illustrates how well the reconstruction compares to 

the target distribution for test case 2 with cd = 0.20 and η = 5%. The target distributions are 

shown with a blue contour marking the area where the tumor concentration is equal to the 

detection threshold. The reconstruction, shown in the second row, is computed using only 

the target cell density that is within this contour. As can be seen, the reconstruction 

qualitatively captures the growth pattern very well.

As a proof-of-concept, we test how the inversion performs when we consider a multifocal 

tumor as shown in Fig. 4. This test case is performed in 2D, in contrast to case 1 and 2. The 

corresponding errors are reported in Table 4. Overall, we observe the same behavior as in 

the previous test cases. Similarly, to show that our scheme works for other diffusion tensors, 

we consider the case of Eq. 7 for T. In this case, only the dominant eigendirection is 

considered. The results are given in Table 5.

6 Conclusions

We presented an inverse problem formulation to determine the full extent of tumor 

infiltration in the brain based on a PDE-constrained optimization problem. The key 

quantities of interest are (i) the full extent of tumor invasion, and (ii) the rate of anisotropic 

diffusion. We used a nonlinear reaction-diffusion model for glioma growth, and solved the 

optimization problem with a reduced space Hessian method. State of the art numerical 

techniques were presented to speed up the time to solution. The design criteria for these 
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techniques were low computational cost and robustness. We tested the resulting algorithm, 

using synthetic tumors with different levels of noise and different detection thresholds.

We want to emphasize that these are preliminary results and a significant amount of work is 

still necessary, before this scheme can be applied to real datasets. For instance, the use of 

more complex tumor growth models has to be investigated (Habib et al., 2003; Hawkins-

Daarud et al., 2013; Hogea et al., 2008b; Lima et al., 2014), accounting e.g. for mass effect, 

edema, necrosis, angiogenesis, chemotaxis, and haptotaxis. More importantly, one has to 

find ways to experimentally verify the forward model as well as the reconstruction results. 

Moreover, effects of treatment (chemo- and/or radiotherapy) should be added to the model, 

as serial scans of untreated human subjects are rare.
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Appendix A: Operator Definitions

The definitions of operators in Eqs 34, 35, 36, and 37 are as follows:

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)
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(56)

The reduced Hessians of Eq. 39 are defined as follows:

(57)

(58)

(59)

(60)

To compute the matvec of Hppp ̃ one needs to take the following steps:

1. J−1Φ:

Solve Eq. 31 with k ̃
f = 0 and initial condition of c ̃0 = Φp̃ to get c̃

2. −J−TNJ−1Φ:

Solve Eq. 28 with k̃f = 0 and initial condition of α̃1 = −OT Oc̃1 to get α̃

3. B + ΦT J−TNJ−1Φ:

Compute −ΦT α0 and add Bu

To compute the matvec of Hpkk
̃
f one needs to take the following steps:

1. J−1WT:

Solve Eq. 31 with zero initial condition to get c ̃

2. J−T(−ZT+NJ−1WT):

Solve Eq. 28 with initial condition of α̃
1 = −OT Oc̃1 to get α̃

3. −ΦT J−T(−ZT+NJ−1WT):

Compute −ΦT α0

To compute the matvec of Hkup ̃ one needs to take the following steps:

1. J−1Φ:

Solve Eq. 31 with k̃f = 0 and initial condition of c ̃0 = Φp̃ to get c̃

2. ZJ−1Φ:

Compute 

3. −J−TNJ−1Φ:

Solve Eq. 28 with k̃
f = 0 and initial condition of α̃1 = −OT Oc̃1 to get α̃
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4. −W J−T NJ−1Φ:

Compute 

5. Add 2 and 4

To compute the matvec of Hkkk
̃
f one needs to take the following steps:

1. J−1WT:

Solve Eq. 31 with zero initial condition to get c ̃

2. ZJ−1WT:

Compute 

3. J−T(−ZT+N J−1WT):

Solve Eq. 28 with initial condition of α̃
1 = −OT Oc̃1 to get α̃

4. W J−T (−ZT + N J−1 WT ):

Compute 

5. Add 2 and 4.

Appendix B: Fictitious Domain Method

We use a fictitious domain method in which the original brain domain, ℬ, is extended to a 

cubic box, denoted by Ω (Hogea et al., 2008b; Mang et al., 2012; Tracqui et al., 1995). The 

original homogeneous boundary conditions imposed on Γ can be satisfied using a penalty 

method (Del Pino and Pironneau, 2003). To do so we define a new diffusion coefficient 

Kε(x), x ∈ Ω as follows:

where the penalty parameter ε, is a small positive number. The actual boundary condition on 

Γ will be satisfied in the limit of ε → 0 (Del Pino and Pironneau, 2003). The original 

boundary conditions can be re-imposed on the extended cubic domain, Ω, for both the 

forward Eq. 1 and adjoint equation Eq. 20.
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Fig. 1. 
Forward simulation of tumor growth using the reaction-diffusion model of Eq. 1. From top 

to bottom, the rows show the tumor distribution at t=0,1 and 2, which in dimensional form 

corresponds to 0, 14, and 28 months, respectively.
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Fig. 2. 
L-curve for choosing the regularization parameter. The corner of the L-curve yields βp = 

0.01 as the optimal regularization parameter for cd = 0.2 and η = 5%.
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Fig. 3. 
Reconstruction results for test case 2. The top row shows the target tumor distribution at 

different points in time. The three columns show the tumor distribution at t = 0 1 and 2 

which in dimensional form corresponds to 0 14 and 28 months respectively. The blue 

contour indicates an observable tumor concentration of cd = 0.2. The reconstruction is 

driven by noisy observations (η = 5%) of the cell density on the inside of this contour (at t = 

0 and t = 1). The second row shows the reconstruction results at the corresponding times. 

The reconstruction relative errors are 6.6% 4.5% and 5.3% respectively. The last row shows 

the same difference but with a rescaled colormap (k) of the original colormap (j).
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Fig. 4. 
Reconstruction results for multifocal test case 3. The top row shows the target tumor 

distribution at different times. The three columns show the tumor distribution at t = 0, 1, and 

2 which in dimensional form corresponds to 0, 5, and 10 months, respectively. The white 

contour indicates the observable tumor concentration of cd = 0.2. The bottom row shows the 

reconstruction results at t = 0, 1, and 2 for η = 5%. The reconstruction errors are 10.3%, 

6.97% and 6.56%, respectively.
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Table 1

Basic notations used in this paper.

C Normalized tumor concentration

ci Normalized tumor concentration at t = i, i ∈ {0, 1}

cd Detection threshold

x = (x, y, z) Spatial location

ℬ Brain domain

t Time

D Tumor diffusion operator

K Tumor diffusion tensor

ko Inhomogeneous diffusion coefficient

kf Anisotropic diffusion coefficient

T DTI weighted diffusion tensor

R Tumor reaction operator

ρ Tumor reaction coefficient

di Target tumor concentration at t = i, i ∈ {0, 1}

Oi Observation operator at t = i, i ∈ {0, 1}

p Reconstruction initial condition parametrization

Φ Reconstruction initial condition parametrization basis function

βp Regularization parameter

α Adjoint variable
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