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Abstract

This paper examines uniqueness and stability results for an inverse problem in thermal

imaging. The goal is to identify an unknown boundary of an object by applying a heat flux

and measuring the induced temperature on the boundary of the sample. The problem is

studied both in the case in which one has data at every point on the boundary of the region

and the case in which only finitely many measurements are available. An inversion procedure

is developed and used to study the stability of the inverse problem for various experimental

configurations.
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1 Introduction

Thermal imaging is a technique of wide utility in non-destructive testing and evaluation. The

technique is used to recover information about the internal condition of an object by applying

a heat flux to its boundary and observing the resulting temperature response on the object's

surface. From this information one attempts to determine the internal thermal properties of

the object, oi? the shape of some unknown portion of the boundary. -Thermal imaging has

been much investigated as a method for detecting damage or corrosion in aircraft. See [10]

for an account of the technology and typical data processing techniques that are employed,

and a more extensive bibliography on the subject.

One of the most common uses of thermal imaging is for the detection so-called "back

surface" corrosion and damage. Briefly, one attempts to determine whether some inaccessible

portion of an object's boundary has corroded, and therefore changed shape. In this paper

we investigate the inverse problem of determining changes in the boundary profile of a two-

dimensional sample by using thermal imaging. We consider a certain portion of the surface

of a rectangular sample to be accessible for measurements and the remainder of the surface,

which may be corroded, inaccessible. This problem has been considered by others [3, 4] with

an emphasis on recovering estimates of the unknown surface from data by using an output

least-squares method.

VVe examine both a continuous and finite data version of the inverse problem. The

continuous version assumes that one has data at every point on the accessible portion of the

object's surface. The finite data version assumes that only finitely many measurements have

been made. Our goals are

• To examine uniqueness and continuous dependence results for the continuous version

of the inverse problem, and what they imply for the finite data inverse problem.

• To examine how various experimental parameters affect stability and resolution for the

finite data inverse problem, especially the effect of measurement locations on stability.

• To determine how one might incorporate a priori information or assumptions into the

finite data inverse problem.



Our main focus is not to develop inversion algorithms, but in the courseof examining the

problem we derive (but do not prove convergencefor) an inversion procedure for the finite

data inverse problem. This algorithm allows the easy incorporation of a priori assumptions

into the inversion process.We apply the algorithm to severalsimulated data sets to illustrate

our conclusions. Our study of the stability of the inverse problem reducesto studying the

invertibility of a certain matrix, which we do with a singular value decomposition. VVedo

not make any explicit finite dimensional parameterization of the unknown surface.

We should note that a very similar approach has beenused in [8] to study resolution and

stability for the inverse conductivity problem. Isaacson,Cheney,and others [6, 7] have also

carried out similar sensitivity studies related to the inverse conductivity problem, especially

the effect of finitely many measurements on the inversion process.

The outline of the paper is as follows. In Section 2 we present the mathematical for-

mulation of the continuous and finite data versions of the inverse problem. In Section 3 we

derive _ linearized version of the continuous problem, and in Section 4 we show how this

leads (as thermal inverse problems often do) to a first kind integral equation which must be

inverted. In Section 5 we use the integral equation formulation to examine uniqueness and

stability results for the linearized version of the inverse problem. In Section 6 we consider an

algorithm for solving the finite data version of the inverse problem and how this approach

can be used quantify the stability of the problem. In the last section we present a variety

of numerical studies to examine the effects that various experimental parameters have on

the stability and resolution of the inversion process, and the effect of incorporating a priori

assumptions into the inversion procedure.

2 The Inverse Problem

Consider a sample to be imaged as a two-dimensional region f_ lying between the two surfaces

•_:2 = S(Xl) and x2 = 1 as illustrated below.



x2= 1

x
2

x
!

x2= S(x, )

Figure 1: Sample geometry.

\_re will refer to the surface x2 = 1 as the "top" or "front" surface and x2 -= S(Xl) as the

"back" surface. We assume that the ends of the sample are sufficiently far away that they

can be ignored, so for our purposes the sample is unbounded in the xl direction. The top

surface is assumed to be accessible for inspection or measurements, but the back surface

x2 ---- S(xl) is inaccessible. This is the portion of the sample to be inspected for corrosion.

The ideal uncorroded case is a flat back surface S(xl) ---- 0. In the corroded case above

S(Xl) > 0 for some values of xl. We will assume that the function S belongs to H2(IR),

although this assumption will later be relaxed. In particular, since H2(IR) C CI(IR) there is

a continuous unit normal vector field on the back surface. The goal is to determine the back

surface or the function S by taking measurements only on the front surface.

A time-dependent heat flux g(xl, t) is applied to the top of the sample x2 = 1. We will

assume that the sample material is homogeneous with thermal diffusivity _ and thermal con-

ductivity a, both known constants. We will use T(x, t) to denote the resulting temperature

induced in ft, where x = (Xl, x2). The direct thermal diffusion problem will be modeled by

the standard heat equation

OT

Ot
_--_/kT = 0 in ft,

OT

O!0/) -- g(Xl, t) on x2 = 1,

OT

Ol0// -- 0 on X 2 = S(Xl) ,

T(x,O) = To(x),

(2.1)

for t > O, where o denotes the outward normal derivative on the boundary of ft. The

function To(z) is the initial temperature of the region ft at time t = O. Note that the back

surface is assumed to block all heat conduction.
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_,Ve will also assume that the heat flux g(xl,t) is periodic, of the form Re[g(xl)e _'t] with

co > 0. For simplicity, we also take the constants K, and a equal to one. Under these

assumptions the solution to equation (2.1) is given as T(x,t) ---- Re[ei_tu(x)] where u(x)

satisfies

Au--iwu = 0 in fi,

Ou
- g(xl) on x2 = 1,

O_

Ou
- 0 on = S(xl),

&,

at least after transients Dora the initial condition have died out. The main case of interest is

that in which g(xl) is constant, corresponding to uniform heating of the outer surface. This

is typically the case when heat or flash lamps are used to provide the input flux g. For the

moment, however, we will not restrict g.

There are two versions of the inverse problem to be considered:

Continuous Version:

Given measurements of u(x) at all points on the top surface x2 = 1, determine the

function S(xl).

Finite Data Version:

Given measurements of u(x) on the top surface x2 = 1 at points xl = al, a2 .... , a,,

estimate the function S(xl).

The finite data version corresponds to the case in which one has actual measurements. The

data need not be actual point measurements of the temperature u, but this is the most

common situation. Of particular interest are the questions

1. Can the function S(xl) be uniquely determined by knowing _t(Xl) for all xl on the top

surface?

2. If S(Xl) is uniquely determined by u(x_), how sensitive is S(x_) to perturbations in the

data? \What kinds of features in the back surface x2 = S(xl) can or cannot be easily

determined from the data?
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3. Since any practical application falls under the finite data formulation, how stable is

the estimate of S(xl) based oil finitely many pieces of data? What factors influence

stability in this case, and is there an inversion procedure to produce a reasonable

estimate of S(xl) using finitely many measurements?

The first question is easily answered ':yes" by a standard argument. This is the content of

the following-result.

Theorem 2.1 (Uniqueness) Let u(xl,x2; S) denote the solution to (2.2) with back surface

S and nonzero flux g. If U(Xl, 1; S1) = U(Xl, 1; $2) for each (xl, 1) in an open subset C of

the top surface of _2, then S1 -= $2.

Proof: Suppose $1 # $2. Using the shorthand notation ui ----U(Xl,X2;Si), we have that ul

and u2 have the same Cauchy data on C, and by unique continuation ul and u2 agree on any

connected domain on which both are defined, provided that that domain contains an open

portion of C. Assmne that $1 and $2 are not equal and denote by ft/ the region bounded

by x2 ---- 1 and x2 = Si(Xl). S1 7_ $2, so there is some non-empty connected component

D of f_l \ ft2 or ft2 \ f_l. Let us suppose the latter so that the region D is bounded by

X 2 : S 1 (Xl) and x2 ---- S2(Xl). Oil x 2 = S2(Xl) we know that the normal derivative of u2 is

identically zero; on x2 ----Sl(Xl) we know that the normal derivative of ul is zero (from inside

ftl) and since u2 = ul and u2 is smooth across x2 = Sl(Xl), we conclude that the normal

derivative of u2 vanishes on the boundary of D. This forces u2 -- 0 inside D. Standard elliptic

regularity arguments force u 2 _ 0 inside f_2, which implies that the flux g is identically zero,

a contradiction. Thus we must have $1 ---- $2 and so the back surface S(Xl) is uniquely

determined by the boundary data on any open portion of the top surface. []

The second and third questions will be examined in the next few sections by considering

a linearization of the original problem.

3 A Linearization

\_e now linearize the original direct problem given by equation (2.2) with respect to the

function S. Let u0(x) denote the solution to (2.2) with S ---- 0. The surface x2 =-- 0 is the
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point at which we will linearize, since this represents the uncorroded or ideal profile from

which we hope to detect any deviation.

Let gt0 denote the region {(x_,x2) • 0 < x2 < 1} in 1192. For any S E H2(IR) C C_(1R),

let us construct the map ¢ from _ to gt0 by

x_ - S(x_) ).
¢(x_,x_) = (x,, 1 - S(x_)

If IS(Xl)l < ] then it is easy to check that ¢ is invertible on gt0. This map fixes the top

boundary ofgt and maps the bottom surface to x2 = 0. Let y = ¢(x) and v(y) = u(.C-;(y)) =

u(x). Under such a change of coordinates V._ = (D_b)Tvv and __o _ __q__owhere _]y = (De)t%,

(De) is the derivative of ¢, and (De) T is the transpose. Under this change of coordinates

the boundary value problem (2.2) becomes

V.tzVv-iwv = 0 in gt0, (3.3)

Ov
- g(x_) on x_ = 1,

c%1

Ov
-- 0 on X2 = 0,

where n = (D¢)(De) T. The vector r/can be written as

0 1 lz]= on x_---- 1, _]= on x2 =0.
1 +

1--S(Xl) S(Xl)--I

This change of coordinates removes the unknown S from the definition of the boundary of

and puts S into the coefficients of the heat operator and boundary conditions.

Now we linearize the problem with respect to S about S -- 0 by assuming that S = ¢S

for some function S, where e is some small real number. Let u denote the solution to (3.3)

for a general S and u0 the solution to equation (3.3) for S -- 0. Suppose that the resulting

perturbation in u0 can be represented as u = u0 + ¢v0. If we substitute these relations into

(3.3), use the fact, that u0 satisfies (3.3) with S = 0, and drop all quadratic e terms then we

obtain a linearized version of the direct problem,

Avo-ic_,Vo = -V- [kVu0], in fro,

CgVo

cgt_ - -S(Yl)g(y_), on y2 = 1

cgv0
- S (y_)u0(Yl) , on Y2 = 0,

0_

(3.4)

6



where /_(y) is the matrix

=
0

(Y2- 1)S'(yl

In particular, we are interested in the special case g = 1 corresponding to spatially

uniform perio_dic heating of the top surface. Under this condition the function u0 depends

only on x2 and equation (3.3) for u0 becomes a two-point boundary value problem

"--iwuo = 0 on (0,1),U 0

,4(0) = 0,

u_(1) = 1.

(3.5)

If we now use u rather than Vo to denote the temperature perturbation satisfying equation

(3.3) then the linearized version of the problem for g = 1 is then

/X u -- iwu

Ou

Ou

Ou

Ou

_--- (1 -- .%'2)Uto(X2)Slt(Xl) -- 2U_(Xl)S(Xl)

-- S(Xl) on x2=l,

0 on X 2 = 0.

on ft0, (3.6)

For simplicity, this is the version of the problem we will examine, although the more

general linearized version (3.4) can be examined using similar techniques. Note that the

linearized problem is defined on the domain _t0 which does not depend on S.

4 An Integral Identity

Let the function d(a) = u(a, 1) denote the top surface data from the direct problem (3.6).

Given that the relation between S and d is linear, it seems reasonable that this relationship

can be expressed by an integral operator

d(a) = ¢_(y)S(y) dy
oo

where ¢_ is some function which depends on the particular point a. Such a relationship does

exist and we can say quite a bit about the function(s) ¢_, as we now demonstrate.



Let L = /X - iw. By Green's second identity

{ ' [ , o. ) _
where ¢ is any sufficiently regular function defned on ft. Assume that u is a solution to

(3.6) and that. ¢ is a function which satisfies L¢ = 0 on ft0 and _ = 0 on the surface x2 = 0.

Then tile above equation becomes

fao ¢(x) ((1 -- xe)u_(xe)S" (Xl) -- 2u_ (x 1)S t (x I ) ) dx F+ ¢(Xl, 1)S(Xl) dXl
C_

oo 0¢ (.1_ 1= --/-oo _ " ' 1)d(xl) dxl.

Let us now complete the specification of ¢ by requiring a¢ = 6_ on the top surface, where 5_

denotes a delta function on the surface x2 = 1 at the point Xl = a. If we write ¢_ to denote

the dependence of ¢ on a then we obtain

/. ¢_ (x) ((1 " ' " /_ =--:_;2)Zt0(eCe)S (Xl)--eu_(xl)S(Xl))dx_ ¢a(xl,1)S(Xl)dxl --d(a). (4.7)
• 0 --_

Note that this equation involves no unknown quantities except S on the left side.

It is worth saying a few words about the function ¢o which satisfies

/k¢_- iw¢_ = 0 in _0, (4.8)

-- 5o on x2 = 1,

0G
-- 0 on xe=O.

Ou

Let F(x) be a Green's function for the operator/X -- iw on IRe; such a function is given by

F(x) = -1 (ker(rv_) + ikei(rv_))

2 and ker 0 and kei() are the Kelvin functions (see [1], section 9.9).where r= I*1= v/x +*=

The function ker(r) has a -- In(r) singularity as 7" approaches zero, while kei(r) is bounded.

Both functions and their derivatives are smooth away from zero and rapidly decreasing as r

tends to infinity, where "rapidly decreasing" means faster than any power of 1 If we define

G(x) = -2r(x- xa) where xo is the point (a, 1) on the top surface, then standard potential

theory arguments ([9], chapter 3) show that

Gg',,--iw¢a = 0 in Ft0,

Or, - G on x2 1

(4.9)
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It is not true that

--0
0t,

However, if we take v_ E Hl(Ct) to satisfy

on x2 = 0.

Av_--iwva ---- 0 in _0,

0v_
-- 0 on x2 = 1,

0y

0u 0u
on x 2 _ 0.

(4.10)

then ¢, = _/,_ + va. Since the Neumann data for va on the bottom surface is --_ which

is in H °° (IR) (the singularity for ¢a lies on the top surface, and away from this singularity

_/,, is smooth and rapidly decreasing), one can show that v_ is in H °° (_t0). As a result, the

function ¢,(x) has a _!= In Ix] singularity near x = 0 and otherwise is smooth and rapidly

decreasing in Ix], along with its derivatives of all orders.

If we write the integrals in equation (4.7) with limits, we find that S must satisfy

f_ (Pa(Xl)S"(Xl) + qa(Xl)S(Xl)) dXl = --d(a)
oo

where

1p,_(xl) = ¢,_(xl,x2)u_o(X2)(1 -- x2) dxs, (4.11)

qa (Xl) = --2 _a(Xl,:C2)u_(:c2)dx2-[-d)a(Xl,1). (4.12)

One can check that the integral in q,_(xl) is continuous as a function of Xl, smooth away

from Xl --= a, and rapidly decreasing in xl. Also, since ¢_(xl, 1) has a logarithmic singularity

at xl = a, so does q_. Moreover q_ is an L 2 function. The function pa(xl) is also clearly

smooth away from Xl = a and rapidly decreasing in Xl. The singularity of ¢_(xl, x2) looks

like the singularity of ker]x- x_l , and one can use this fact to expand the function ¢_(x_, x2)

near the singularity to show that the function pa(xl) is actually in HS(IR). Since both pa(xl)

and q_(xl) tend rapidly to zero as Ixll -+ oo we can integrate by parts twice to find that

pa(xl)S"(:Vl) dXl = p_(xl)X(Xl) dXl.

Equation (4.9) can now be written

/__ c,_(xl)S(xl) dxl = d(a) (4.13)
oo

9



where

co(x1) = -p"(xl)- qo(x_) c L_(_). (4.14)

Given the translation invariance of this problem in the Xl direction and the fact that the

flux g(xl) = 1 does not. depend on Xl, it is clear that Ca(X1) = C(Xl -- a) for some function c.

Lemma 4.1 _The function c(xl) = uo(O)iw¢o(xl, 0), where Oo satisfies (4.8) with a = 0 and

Uo satisfies (3.5).

In proving this result, We will make use of the following simple fact•

Remark 4.1 If f(t) and g(t) are functions defined on [0, 1] with if(O) = f'(1) = 0 and

.9'(0) =0, g'(1) = 1, and g" = iw 9 then

/o' Io1 /o• f"(t).q'(t)(1 - t) dt = .f(1) -- 2iw .f(t)g(t) dt + iw.f(O)g(O) + ic_ (1 -- t)f(t)g'(t) dt.

To see this identity requires only a few applications of integration by parts, f udv = uv -

.f vdu. Take u = g'(t)(1 -- t), dv = .f"(t) dt to obtain

fo 1 .f"(t)g' (t)(1 - t) dt = .£_ f' (t)g'(t) dt - iw fo 1 .f'(t)g(t)(1 -- t) dr,

where we have made use of g" = icJg. Integrate the first integral by parts with u = g' and

dv = .f' dr; integrate the second integral bv parts with u = (1 - t)g and dv = •f' dt. After a

number of cancellations, the Remark follows immediately.

Proof of Lemma 4.1: From equations (4.11), (4.12) and (4.14) we obtain

c(:vl) =-- ((1--:c2) .. U_o(X2)--2_oU_(Xl))dx2--Oo(xl,1).

Recall that uo is a function of x2 only, and that u_ = ic_uo with u_(O) = 0 and u_(1) = 1.

02¢..___o 0__ With this substitution and u_Since /XOo -- iw¢o = 0 we have 0._ = ico¢o - 0_ " = iwuo

_01_(x_) = - [i_,(1 ' • - - " , _-- x2)¢oUo(._.2 ) (1 x_)uo 02&° 2iw¢0u0] dx2 &o(Xl, 1).
- Ox_

To finish the proof, use Remark 4.1 above with f = ¢o and g = Uo. After a few cancellations

the statement of the lemma followsm

10
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Lemma 4.1 implies a number of things about the function c(xl), in particular, that c is

in H_(IR). It is important to note that u0(0) is never zero, for u0 satisfies the two-point

boundary value problem (3.5) and one easily finds that

_t0 (X2) =
o:(e _ --e -s) ,

o: = (1 + i)v/-_/2. In particular,where

9,
u0(0) =

_(e_ --e-9"

The numerator above is never zero, hence u0(0) # 0. As a result the fimction C(Xl) will not

be identically zero for any w > 0.

There is one more fact which will be extremely useful. Defining the Fourier transform

f(y) of a function .f(x) of a single variable by

//](y) = e-'%f(x)dx,

we have

Lemma 4.2 For c given by Lemma _.1,

2iwuo(O)
_(y) =

_(e_ -- e-9

where o: = v/y 2 + iw. Also, the .function d(y) is never equal to zero.

Proof: Let .¢0(Yl,X2) denote the Fourier transform of ¢0(Xl,X2) with respect to Xl only,

where ¢o satisfies equation (4.8) with a = 0. Then

//_0(Yl, X2) = .¢0(Xl, X2)e -'xlyl dxl.
oo

If ¢o is sufficientlv._ rapidly decreasing (as in our case) then _° and the Fourier transform

operator commute. Fourier transforming both sides of the boundary value problem (4.8) with

respect to Xl yields a two-point boundary value problem for .&0(Yl, x2) in the x2 variable,

d250
dx_ (Yl_+ i_)_0 = 0,

d$0
dx2 (1) ---- 1,

d_0
--(0) = o,
dx2

(4.15)
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where we have used 60 = 1. The solution is

$0(y_, x2) = e_'_2 + e-_'_2

where ct = Cy_ + iw. On the bottom surface x2 = 0,

_0 (yl, 0) =

which, combined with Lemma 4.1 yields the conclusion. The fact that 5(y) is never zero

follows from w > 0 and u0 (0) # 0.

5 The Linearized Inverse Problem

In this section we will examine the continuous version of the linearized inverse problem•

Suppose that we have top surface data d(Xl) = u(x_, 1) where u satisfies equation (3.6).

Based on equation (4.13) and the above noted fact that Ca(:h) = C(Xl --a) we conclude that

S and d satisfy the relationship

/_'_ S(y_)c(y_ -- x_) dy_ = d(x_)

or

F S(yl)¢(x_ -- y_) dyl = S* ¢ = d(Xl) (5.16)
• (2(3

where ¢(x_) = c(--x_)and "." denotes convolution. With d(x_) considered known this

becomes a first kind integral equation for the unknown function S. The kernel ¢ is known,

or can be determined, according to Lemma 4.1. First kind integral equations have been

extensively studied ([11, 12]) and are well-known to be unstable; small perturbations in the

right hand side d(x) can lead to arbitrarily large changes in the solution S. However this

formulation of the inverse problem as an integral equation will allow us to obtain uniqueness

and stability estimates for the linearized version of the inverse problem.

Theorem 5.1 (Uniqueness) If the data d(x) is an L _ function and if there exists a solution

S _ LU(1R) to the linearized inverse problem, then S is unique.

12



Proof: SupposeS1 and $2 are L 2 functions which both give rise to data d. Let S = $1 -- $2.

Linearity implies that the data for S is identically zero. Fourier transform both sides of the

equation S * ¢ = 0. By the convolution theorem and the fact that ¢ = b if ¢(x) = c(--x)

(where the overbar denotes complex conjugation) we obtain ¢5: = 0. By Lamina 4.2 & =

# 0 and we conclude that

S--0.

so that 5;----0orS1 =$2. []

Remark 5.1 In the preceding proof, we assumed a priori that S is in LZ(]R). In general,

for an arbitrary d E L 2 (IP_) we cannot find a function S in L 2 which gives rise to data d via

equation (5.16).

The convolution equation (5.16) also provides information on continuous dependence. Since

the function ¢0 is smooth and never equal to zero, we can define the space of functions L.2(IR)

with the norm

f(z) 2
Ilfl17= dz.

From Lemma 4.2 it follows that 1 grow like The norm II thus puts a heavy
penalty on high frequencies; the functions in this space are very smooth. We can Fourier

transform both sides of equation (5.16), divide by (_0 and take the L .2 norms of both sides to

obtain

Theorem 5.2 (Continuous Dependence) If a back surface x2 ---- S(Xl) generates front sur-

.face data d(x) for the linearized problem (3.6), then

IISlIL: < Clldll.

where C is independent of d.

Estimates of S from data d will thus be extremely sensitive to any noise, because the in-

version process weights a frequency f in the data by a factor proportional to fe f. Lemma 4.2

and the structure of the convolution operator mapping S to the data d make it clear that it

will be difficult to estimate the high spatial frequency components in the Fourier decompo-

sition of S, for these components are heavily damped out by the forward mapping.

13



6 The Case of Finitely Many Measurements

Suppose that we have point estimates d(a_) = u(ai, 1) of the temperature on the top surface

at n distinct points. How can we construct a reasonable estimate of the function S(xl)?

How can we quantify the stability of the reconstruction with respect to errors in the data,

and how- does the choice of measurement locations ai affect the stability? Let us assume

that we seek an estimate S E L2(IR). Physical considerations make it -desirable to obtain an

estimate with more regularity, but this will be a consequence of the proposed reconstruction

procedure. Based on the convolution equation (5.16) we know that S must satisfy the n

constraints

< S, ci >= S(xl)_i(Xl) dxl = d(ai), i = 1,..., n, (6.17)

with c;(xl) --- _(ai -- Xl) where C(Xl) is the function from Lemma 4.1 and < .f, g >= .f_ .f.q is

the usual L 2 inner product. Note that since ci is an L 2 function, S _-+< S, c_ > is a bounded

linear functional on L 2. The set (6.17) is a horribly underdetermined set of equations. We

can expect to find an entire translated subspace of functions of codimension n in L2(IR)

which satisfy the given conditions, and any such fnnetion "solves" the inverse problem, in

the sense that it gives rise to the measured data.

One practical method for specifying a unique function in L 2 which solves the inverse

problem is to seek that element in L 2 which satisfies the given conditions and has minimal

norm. That such an element exists follows from the fact that the relations (6.17) define a

closed convex subset of L 2 and hence this subset has a unique element of minimal norm. This

idea has been used before ([8]) to construct a "pseudo-inverse" for the finite measurement

case and to characterize the stability and information content for the inverse conductivity

problem, and has also been used for reconstruction from partial information in tomographic

problems [5]. The approach has several merits: In the present case it leads to an exceptionally

easy and efficient inversion algorithm which allows us to study the conditioning of the inverse

problem independent of any explicit finite dimensional parameterization of the unknown S.

By weighting the L 2 space appropriately we can also incorporate a priori assumptions into

the reconstruction procedure and examine the effect, these assumptions have on stability.

Also, given the continuous dependence result from Lemma 5.2 and the fact that data is

14



invariablx/ noisy, we know that any inversion procedure will tend to give extraneous high

frequency components in any estimate of S; choosing the estimate of minimal norm should

help to damp out spurious components in the estimate. In this sense the procedure may be

viewed as a form of regularization.

It is an easy application of Lagrange multipliers to verify that the unique element of L 2

with minimum norm which satisfies the constraints (6.17) must be of the form

s(x_)= _ Akc_(x_) (6.18)
k=l

for some {Ak}_=l _ ([7. The constants Ak can be determined by substituting (6.18) into

equations (6.17) and solving the resulting n x n system. The system is of the form MA = d

where __r = [m_j] is an n by n matrix, A is the n vector (A1,..., A,) r and d is an n vector

(d(al), .... d(a,)) T. The entries of 21_rare given by

i L#'_ij = Ci(:F"I)Cj(Xl) dXl : C(Xl -- ai)c(xl -- aj) dx 1. (6.19)

The matrix _V/is clearly Hermitian and in fact is always invertible. To see this, suppose we

can find some vector A _ 0 with MA ----0. Then _TMA -= 0 and we conclude that

I= IC(Xl -- ai)A/C(Xl -- a.j)Xj dXl = AiC(Xl -- ai) d:rl = O.
• 00 • -

z,2 " _ i=1

This implies
Tt.

__,AS(x1 - a_) - o.
j-=--I

Fourier transform both sides and use the basic properties of the Fourier transform to obtain

n

_(y)_ Aj¢-_°;._- o. (6.2o)

The functions fi(y) --- e iaiy are linearly independent for distinct ai, and analytic, so that

f(Y) --- _,_=1/_J e-iaiy has isolated zeroes. Based on equation (6.20) we conclude that _(y) ----0

in L2(]R), contradicting Lemma 4.2. Therefore M must be invertible. This inversion proce-

dure thus always produces a unique estimate of S if the measurement locations are distinct.

We can also "solve" the inverse problem by choosing the unique function S which satisfies

equations (6.17) and has minimal norm in a weighted L 2 space L2(IR) with norm defined by

the inner product

< f,g >_---- _ f(xl).q(Xl 5(Xl ) dXl

15
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where 5(Xl) is some reM-valued non-negative function on JR. In this case, we have

S S 1dx: =

where we must assume that S = 0 wherever 6 = 0. Thus the integral is understood to be

taken only over that set where 6 is non-zero. Equations (6.17) now take the form

< S, c,:6 >_= di (6.21)

and the minimal nor::: solution is of the form

?_.

S(x:) ----5(x:) _ Aici(x:). (6.22)
i----1

The idea is to choose 5(x:) to have the same general form as S(x:), and so incorporate a

priori information into the reconstruction based on (6.22) by forcing it to have the same

general form. For example, if we know that S is supported in the interval [--b, b] we can

choose 5(x) ---- 1 on [--b, b] and 5(x) __ 0 elsewhere. The optimal estimate of S becomes

S(x) = A c (x)
i=1

where _'[-b,b] is the characteristic function of the interval [--b, b] and where the Ai are found

by solving

i-_1_ (/bbci(x)cj(x)dx))_i _ dj

for.j = 1 to n.

Whether we use a priori information or choose a uniform weighting on L 2, the recon-

struction procedure is as follows: Compute the matrix M defined by equation (6.19) and

"measure" the data di at the corresponding points Xl = ai on the top surface. Solve the

system l_l,\ = d to obtain A:,..., A, and then compute an estimate of S(x:) from equation

(6.18) or (6.22). The stability of the finite data inversion is thus determined by the nature

of the matrix iF/, and specifically, of its inverse. YVe can quantify the stability of the finite

data inverse problem by studying the conditioning of the inverse of M in various situations.

This is done in the following section by studying the singular values of the matrix/_f.
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7 Numerical Experiments

\,Ve will now examine the finite data version of the inverse problem by using the previously

described inversion procedure. In this section we apply the procedure to simulated data

sets, both with and without noise. Our main focus is to examine the stability and resolution

of back surface estimates with respect to various experimental parameters, specifically, the

frequency of _.he input heat flux and the distribution of the measurement locations along

the top surface of the sample. We also demonstrate how a priori assumptions about the

nature of the corrosion can be incorporated into the inversion procedure, and the effects

such assumptions have on stability and resolution.

There are a few points worth mentioning before we present the numerical results. The

estimates of S constructed using equation (6.18) lie in H_(IR) and so the graph x2 = S(xl)

would make sense as a curve in IR2, except that the estimate will usually be complex-valued.

This is not surprising, for a complex-valued S makes perfect sense in the linearized version

of the problem on which the inversion procedure is based. Estimates of S, especially in the

presence of noise or the linearization error, will almost certainly have non-zero imaginary

part. However, for those S of "small" norm the linearized problem accurately reflects the

full non-linear (with respect to S) direct problem and so the estimate of S should be "mostly

real", that is, it should have a relatively small imaginary component. This is indeed the case.

A physically meaningful estimate of the true back surface x2 = S(Xl) can be provided by

either dropping the imaginary component or taking the modulus of the estimate. We choose

the latter.

In the examples that follow we generate simulated test data using the full direct problem

(2.2) with heating g(x) _-----1. The direct problem is solved by converting it into a boundary

integral equation which is then solved numerically. The boundary integral formulation leads

to a second kind Fredholm equation (explained below). The fact that g is not compactly

supported nor even L 2 presents a minor problem. This can be fixed by simply subtracting

off the function u0 satisfying the direct problem with S =-- 0. Recall that u0 can be found

explicitly by solving equation (3.5). The function v = u -- u0 then satisfies the boundary

value problem

17
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Av--iwv = 0 in f/,

Ov
-- 0 on xs = 1,

0_

Ov OUo
- on x2 = S(x:).0_ 0L,

If S(:rl) is sufficiently rapidly decreasing then the Neumann data in the above boundary

value proble m is L 2 and the integral equation formulation becomes

lv OG Ouo(x) + JOao --(z, y)v(y) do.y = - [Joao
f

G(x, Y ) --_ day
Oy_

v-here day is surface measure on 0ft0 and G(x, y) ---- F(Ix - y]). The integral equation is

solved using Nystr6m's method (see [2]) with appropriate quadrature rules on the interval

(--oo, oo) that arises when the boundary of ft0 is parameterized. The boundary integral

approach is exceptionally fast and accurate and provides estimates of the solution only on

tile boundary of ft0, the only place that we need the solution.

To illustrate the general procedure and to show that the inversion algorithm provides

reasonable estimates, we begin with a simple example. We apply the inversion procedure to

data generated using the back surface

e-(x-1)2 e-(x+2)2/2

S(x) - +
10 5

We use a heating frequency of w -- 1. As a first step the function c(x) defined in Lemma 4.1

is computed by solving the system (4.10) with a = 0 nmnerically and then computing

¢0 = -2F + v0, again via NystrSm's method. These quantities are precomputed and stored

rather than re-computed every time they are needed, for the function c(x) depends only on

ft0, not S. The same is true of the matrix M. The entries of the matrix are computed

by using equation (6.19) and an appropriate quadrature rule on (--oo, co). In the example

below the data is computed using the full direct problem. The temperature data vector d

__ i foris computed at 21 equally spaced points on the top surface, x: = ai where ai --5 +

i = 0 to 20. We then invert the 21 x 21 system NIA = d to find A and return an estimate of

S via equation (6.18). The estimate of S is computed at a suitable number of points on the

range of interest, in this case from --5 to 5. The reconstruction is shown in Figure 2. The

dotted line is the actual function S(x) and the solid line is the reconstructed version.

18
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Figure 2: Reconstruction of S(x) -- e-(_+1)_1o+ e-(_-2)2/25

Stability

Of particular interest is the sensitivity of the inversion procedure with respect to various

experimental parameters, e.g., heating frequency and measurement locations. The first task

is to quantify the stability or conditioning of the finite data inverse problem. One sensible

way to do this is to perform a singular value decomposition on the matrix A4 defined by

equation (6.19) and examine the magnitude of the singular values. When the singular values

are small the inversion of MrA = d magnifies small perturbations in d. Put another way,

small singular values mean that relatively large changes in S (and so in A) produce relatively

small changes in the data, so that perturbations in the back surface are "hard to see." Our

goal in choosing experimental parameters is therefore to make the singular values of A4 as

large as possible, within certain limits. We should remark that one can define the condition

number of iF/ as the ratio of the largest to smallest singular values and then attempt to

quanti[v stability using this single number. This is not always good approach in the present

setting, as later examples will show.

Let us begin by examining how the stability of the inversion procedure depends on the

locations of the temperature measurements on the top surface. In the following examples

we fix the heating frequency at w = 1 and take measurements of the resulting temperature

at 21 equally spaced locations on the interval I-a, a] for several values of a. The resulting

_.i for i = O, 20. In each casemeasurement locations are therefore of the form ai = -a + 5-ff • • •,

the matrix M is computed and a singular value decomposition is performed. Let the
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Figure 3:log10 I(_il versus i for various values of a.

singular values of J_l be denoted by c_i, i = 1 to 21, arranged in descending order. In Figure 3

we plot the quantity lOgl0 Ic_l versus i for the cases a ----1, 2, 3, 5, 10.

It is apparent that as the measurement locations become more spread out (as a gets

larger) the singular values decay more slowly and hence the inversion procedure becomes

more stable. In light of Theorem 5.2 this is not surprising. When the measurement locations

are close together we are able to resolve higher spatial frequencies in the data and so we

are able to estimate higher frequencies in the Fourier decomposition of S. But according to

Theorem 5.2, these are exactly the portions of S that are difficult to reconstruct--they are

heavily damped out in the data. The finite data version of the problem reflects this, with a

full 6 orders of magnitude variation for the smallest singular values between the cases a = 1

and a ----10.

Another way to look at the stability of the various experimental configurations is to sup-

pose that we have an "error magnification tolerance" E, and that in the inversion procedure

1
we disregard all singular vectors whose singular values are less than _. This idea has been

used in studying the stability for the impedance imaging problem [8]. The inversion proce-

dure is then stabilized at the expense of rendering those components of S lying in the span

of the corresponding functions invisible. Figure 4 shows the number of singular values of _I

which satisfy c_a :> _ versus logl0(E ) for E from 1 to 10 -9. As in the previous examples, the

a*i
matrix A_I is 21 × 21 and we use measurement locations on the top surface ai -- --a + 5-5,

i -- 0,..., 20 for a ----1, 2, 3, 5, 10. The heating frequency is w ---- 1.
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Figure 4." Number of singular values with c_ > 1 versus logl0(E ) for various values of a.

Figure 4 also makes clear that as the measurement locations become spread out more

1 The inversion procedure then admits more basis functions,singular values satisfy c_i > 3

presumably improving the fidelity of the reconstruction. In the two cases below we perform

the actual reconstruction with E = 100 (so only singular values greater than 0.01 are ad-

missible) and add a small amount of random noise to the data (equal to 10 percent of the

ma×imum signal strength). \¥e then perform a reconstruction which omits all basis vectors

whose corresponding singular values are less than _. Figure 5 illustrates the case in which

the measurements locations are equally spaced from -5 to 5; there are 9 admissible singular

values.

0.25

0.2

0.15

".k/

Figure 5: Reconstruction of S(x) for 21 measurements on [--5, 5], tolerance E = 102.

In Figure 6 we take the 21 measurements on the smaller interval [--1, 1], which yields only 3

admissible singular values.
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Figure 6: Reconstruction of S(x) for 21 measurements on [--1, 1], tolerance E ---- 102.

The reconstruction in Figure 6 is noticeably inferior to that of Figure 5, but we have only 3

admissible basis functions with which to construct S(x). Increasing the value of E to admit

more basis functions is not successful. Figure 7 illustrates what happens if we take E = 104

with measurements on [-1, 1]. Now 5 singular values are admissible, but the reconstruction

is overwhelmed by noise.

f

°I°

1 1 \\_

Figure 7: Reconstruction o.[ S(x) for 21 measurements on [-1, 1], tolerance E = 104.

The moral seems clear: for maximum stability with a fixed number of measurement

locations, we should spread the measurements over as large a region as possible. There are

limits to this approach, however. If we spread out the measurements we do gain stability,

but we will no longer be able to estimate high frequencies in the Fourier decomposition of
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S. This is illustrated by Figure 8, where we take 21 noise-free measurements on the interval

[--10, 10] and estimate S with error tolerance E = 102. In this case all of the singular values

are admissible.

0.2 _ _
0.15

/ /

........ // , , , ,

-4 -2 2 4

Figure 8: Reconstruction of S(x) for 21 measurements on [--10, 10], tolerance E = 102.

Despite the fact that the inversion is quite stable, our inability to resolve high frequencies

results in a loss of resolution of small-scale detail in the reconstruction. With regard to the

distribution of the measurement locations, the reconstruction process involves a compromise

between stability and resolution of small-scale features.

In the next series of examples we examine the dependence of the stability on w, the

frequency of the applied heat flux. W_e consider the cases w -- 0.01,0.1, 1.0, 10.0,100.0.

In each case we take 21 equally spaced temperature measurements on the interval [--5, 5].

Figure 9 shows logi0 lail versus i for each case.

2.

-2.:

-7.5

-i0

w = 0.01

w=0.1

w= 1.0

....... w= 10.0

w = 100.0

Figure 9:log10 la:i] versus i for various values of w.

The figure illustrates that higher frequencies give rise to much smaller singular values.

As before, it is instructive to consider tile case in which we have an error tolerance E and in
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the inversion process we omit those singular vectors whose singular values are less than _.

1 for E from 10 -s to 1015, forFigure 10 shows the number of singular values which exceed

each of the frequencies.

-5

20_

I I

I

11o

/I ;

-f'-- 71 / "

III_/''' I

I

7/ '!
!

I , f
5 i'0

I w = 0.01

I w=0.1
w=1.0

I w = 10.0

w = 100.0

' 1'5

Figure 10: Number of singular values with cti > -_ versus lOgl0(E ) for various values of w.

Figure 10 clearly illustrates the situation. For E = 10 -2 as before, w = 10 and w = 100

have no admissible singular values at all. The reconstruction (if carried out) is identically

zero. The smaller singular values at higher frequencies are due to the fact that at higher

frequencies the periodic heating penetrates very little into the sample and becomes more of

a "skin effect." As a result very little energy reaches the back surface and even less returns

to be measured on the top surface; at high frequencies the map taking S into d is essentially

multiplication by zero. It is interesting to note that while higher frequencies produce smaller

singular values, the condition number of 2_I for w = 100 is only 10.3, while the condition

number for w = 0.01 is 706.1. Clearly, though, it's not enough to make the condition number

small. The singular values themselves must be large enough for the inversion procedure to

be stable in the presence of a fixed noise level.

While lower frequencies make the inversion process more stable, there are limits to how

small we can make w and maintain resolution. Figure 11 illustrates a reconstruction based

on w = 0.1. The parameters are otherwise identical to those that were used to produce

Figure 5. All of the singular values are admissible. In fact, the smallest singular value is

0.063. As with the case in which the measurement locations were spread out over [--10, 10],

we lose resolution at low temporal frequencies for the input flux.
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Figure 11: Reconstruction of S(x) for 21 measurements on [--5, 5], w = 0.1, tolerance

E= 10 2.

Incorporating A Priori Information

The preceding examples illustrate that the inversion procedure involves a compromise

between stability and resolution. If the data points are too closely spaced, the inversion

procedure is unstable. If the data points are too spread out, the inversion procedure becomes

stable, but resolution is lost; measurements taken far from the support of the defect contain

little information, because the heat diffuses very rapidly. Variations in the input heating

frequency give rise to a similar phenomena. How shall we find the "best" experimental

parameters? One useful possibility is to incorporate a priori information or assumptions into

the inversion procedure. We will illustrate the idea by examining the problem under the

assumption that the defect or function S is supported in a known interval.

In the following examples we assume that the defect being imaged is supported in the

interval [--2, 2]. The only modification to the inversion procedure is that the matrix _I is

computed in accordance with equation (6.21) and the function S is estimated using equation

(6.22). We will study the stability of the inversion procedure with respect to the distribution

of the measurement locations on the top surface.

As in the previous cases, we choose measurement locations at xl = a; on the sample top

surface, where ai = --a + _a for i = 0 to 20. The heating frequency in all cases that follow
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Figure 12: Singular values a; versus i for various values of a.

is w = 1. Let us begin by examining the singular values of the inversion matrix 2_,/for a few

choices of a. In Figure 12 we plot. the quantity log10 lai[ versus i for a = 0.5, 1.0, 2.0, 5.0, 10.0.

The figure shows that the best conditioning for the inverse problem occurs at a = 2,

when the measurement locations are distributed approximately in the same interval in which

the defect is assumed to be supported. As before, closely spaced locations give rise to

an ill-conditioned problem. However unlike the previous cases widely spaced nodes also

result in poor conditioning. When /_I is computed using equation (6.21) those rows of A.I

corresponding to measurement locations far from the support of S are very nearly set to zero

since the function c(x - ai) is rapidly decreasing away from ai.

If an error magnification tolerance E is specified, we can plot the number of allowable

singular values Ct i > 1 versus lOgl0(E) for the different node spacings:

20

15

I0

5

0

/" --/--'-- 9-/ /

,/ ,//'- -J

3
/. . , , ,

2.5 5 7.5 10 12.5 15 17.5

a=0.5

a=l.0

a=2.0

a=5.0

a=lO.O

1
Figure 13: Number of singular values with ai > _ versus lOgl0(E ) for various values of a.

As expected, a = 2.0 allows more singular values for a fixed value of E than an.), other

choice for measurement spacing. It is useful to look at a few reconstructions based on this

strategy. In the two cases below we take E = 300 (so only singular values greater than _300

are admissible) and add a small amount of random noise to the data (equal to 1 percent of
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the maximum signal strength). YVe then perform a reconstruction which omits all singular

values less than E'I The function defining the back surface is S(x) = le-2(x+1)2 + _cl_-3(x-1) 2.

Figure 14 illustrates the first case using a = 2, the best choice according to Figure 13. In

this case 7 singular values are admissible.

' ' ' -'4 "

0.2

0.15

_i0°I

-2
| I

2 4

Figure 14: Reconstruction of S(x) for 21 measurements on [-2, 2], tolerance E = 300.

For a = 10 we have 4 admissible singular values and the reconstruction shown in Figure 15.

0.2

0.15

\

i \

I I

I I

I I

I l

Figure 15: Reconstruction orS(x) for 21 measurements on [--10, 10], tolerance E = 300.

The case a = 0.5 also yields 4 admissible singular values and the reconstruction shown in

Figure 16.
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Figure 16: Reconstruction of S(x) for 21 measurements on [-0.5, 0.5], tolerance E = 300.

The actual reconstructions confirm that a -- 2 yields the most desirable results. Choosing

a significantly smaller or larger than the support of S results in decreased stability and/or

accuracy for the reconstruction.

Of course, the assumption that S is supported in a given interval should be detrimental

to the reconstruction if that assumption turns out to be false. In the following case we let

S(x) ----- le-2(x+l)2 -_- _e-3(x-4) 2 and perform the reconstruction under the assumption that

S is supported in the interval [--2, 2]. We take measurements at 21 equally spaced location

between -2 and 2, the best case from above, and use an error tolerance E ----300. The result

is

0.2 ^

/%

I l

I I

0.15 I I

! I
I I

! I
! I
! I
! I

! I

.... -'4 -2 2 " 4 '

Figure 17: Reconstruction of S(x) for 21 measurements on [--2, 2], tolerance E = 300.
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The incorrect assumption obviously introduces errors into the reconstruction, although that

portion of S which is non-zero in the interval [--2, 2] is still recovered with reasonable accu-

racy.

Concluding Remarks.

In this paper we have investigated the inverse problem of recovering_an unknown bound-

ary portion of some object by applying a heat flux to an accessible portion of the boundary

and measuring the resulting temperature response. \Ve have considered a linearized version

of the problem and found that the continuous version of the inverse problem, in which one

has data at every point on the accessible portion of the surface, is extremely ill-posed. In-

deed, the linearized version requires one to solve a first kind convolution integral equation

for the unknown surface. The convolution kernel has a Fourier transform which dies rapidly

at infinity, and so the inversion is extremely sensitive to the data at high spatial frequencies.

\,Ve performed a variety of numerical studies which show that the ill-posedness is directly

reflected in the finite data version of the problem, by the rapid decay of the singular values

of the matrix which governs the inversion process. This ill-posedness depends on a num-

ber of factors; in particular, the locations of the measurements have a large effect on the

conditioning of the inverse problem, and these effects mirror the behavior of the continuous

version. We have also considered the effect of including a priori assumptions in the finite

data inversion procedure, by weighting appropriate Hilbert spaces in which the solution S

resides. The inclusion of this information can help in determining the optimal locations for

measurements on the top surface.

There are a number of interesting directions we could take from here. In our studies

we used only the input flux whose magnitude is identically one on the top surface. Similar

results can be obtained for more general fluxes, and this would allow one to study the effect

that the input heat flux has on sensitivity and resolution. The fully time-dependent case

would also be of interest. The procedure presented in this paper would also work for a full

three- dimensional problem, although qualitatively the results should be the same--the high

spatial frequencies in the back surface should be difficult to see.

As mentioned earlier, the inversion process which chooses that function with minimal L 2
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norm which is consistent with the measureddata seemsto act like a form of regularization for

the inverse problem. It would be interesting to examine in what sensethis is true, and how

it relates to more traditional forms of regularization. It is also possible (and not difficult) to

carry out the sameminimization processin higher Sobolev spaces,e.g., H 1,• and thus put a

higher "penalty" on functions with oscillations. This too would make an interesting study.

\_"e would als 9 like to examine conditions under which our inversion procedure is guaranteed

to converge to the solution of the linearized inverse problem.
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