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Abstract. Let F a finite field. We show that the universal characteristic factor for
the Gowers–Host–Kra uniformity seminorm Uk(X) for an ergodic action (Tg)g∈Fω of
the infinite abelian group Fω on a probability space X = (X,B, µ) is generated by
phase polynomials φ : X → S1 of degree less than C(k) on X , where C(k) depends
only on k. In the case where k � char(F) we obtain the sharp result C(k) = k.
This is a finite field counterpart of an analogous result for Z by Host and Kra
[HK]. In a companion paper [TZ] to this paper, we shall combine this result with
a correspondence principle to establish the inverse theorem for the Gowers norm in
finite fields in the high characteristic case k � char(F), with a partial result in low
characteristic.

1 Introduction

1.1 Gowers–Host–Kra seminorms. This paper is concerned with the struc-
tural theory of measure preserving actions of abelian groups. We begin with some
general definitions.

Definition 1.1 (G-systems). Let (G,+) be a locally compact abelian group. A
G-system X = (X,BX , µX , (Tg)g∈G) is a probability space X = (X,BX , µX) which
is separable modulo null sets (i.e. BX is countably generated modulo null sets), to-
gether with an action g �→ Tg of G on X by measure-preserving transformations
Tg : X → X , and such that the map (g, x) �→ Tgx is jointly measurable in g and x.
(In order to carry out certain measure-theoretical constructions such as the dis-
integration of measures with respect to a factor, we will tacitly assume that the
underlying measure spaces of the G-systems we will be dealing with are regular,
meaning that in the triple (X,B, µ), X is a compact metric space, B is the (comple-
tion of the) σ-algebra of Borel sets, and µ is a Borel measure. Since every separable
(modulo null sets) probability measure space is equivalent to a regular space (see for
example [Fu2, Prop. 5.3]), this assumption can be made without any loss of gener-
ality. Here, equivalence means equivalence of abstract σ-algebras modulo null sets;
see [Fu2, Def. 5.2] for a precise definition.
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Moreover, when dealing with factor maps between G-systems (see Definition 1.7
below) we will be assuming without specifically mentioning this that this regu-
larity assumption applies simultaneously to a G-system and its factor. (Cf. [Fu2,
Th. 5.15].))

We define the Lp spaces Lp(X) = Lp(X,BX , µX) for 1 � p � ∞ in the usual
manner (in particular, we identify any two functions in Lp(X) which agree µ-almost
everywhere). If X is a point, we write X = pt. Given any measurable φ : X → C
and h ∈ G, we define the shift Thφ := φ ◦ Th and the multiplicative derivative
∆• hφ := φ · Thφ. Similarly, if (U,+) is an abelian group and φ : X → U is a
measurable function, we define the shift Thφ := φ ◦ Th and the additive derivative
∆hφ := Thφ − φ. We observe the commutativity relations ∆• h∆• k = ∆• k∆• h and
∆h∆k = ∆k∆h for all h, k ∈ G. Observe also that for any h ∈ G, ∆• h and ∆h are
multiplicative and additive homomorphisms from the group of measurable functions
from X → C or X → U endowed with pointwise multiplication or pointwise addition
respectively, to itself.

We say that a G-system is ergodic if the only functions in L2(X) which are
invariant under the G-action (by the shifts introduced above) are the constants.

Remark 1.2. Most of our analysis will take place in the setting of ergodic systems,
but for various technical reasons we will sometimes have to work with non-ergodic
systems. In some (but not all) cases, results on ergodic systems can be extended sat-
isfactorily to the non-ergodic case using the ergodic decomposition. The hypothesis
of separability is a technical one (used in particular in Appendix C to obtain a cer-
tain measurability property), but can often be removed in applications by restricting
the σ-algebra BX to the sub-algebra generated by the functions one is interested in
studying, together with all of their shifts.

In most of our analysis, the group G will be countable, discrete and abelian
and hence has a Følner sequence, i.e. a sequence (Φn)∞n=1 of finite subsets of G
satisfying |(Φn + h)∆Φn|/|Φn| → 0 as n → ∞ for all h ∈ G. (We use |E| to denote
the cardinality of a finite set E, and ∆ to denote symmetric difference.) It is well
known that one can always choose a Følner sequence to be nested and to satisfy the
condition G =

⋃∞
n=1 Φn, and we will assume throughout this paper that the Følner

sequences we deal with have this additional property. Model examples include the
integers Z (with Φn = [−n, n]), and the (additive group of) countably infinite vector
space Fω := ⊕F ≡

⋃
n Fn over a finite field F (with Φn = Fn). For our initial

discussion we will allow G to be any countable abelian group, but we will eventually
restrict our attention to the vector space Fω. (We will also need to consider the
actions of various compact abelian groups, and in particular closed subgroups of the
Pontryagin dual F̂ω ≡∏F of Fω.) However, it may be useful for future applications
to note that several of the tools used here are in fact valid for arbitrary countable
discrete abelian G. (In fact, it seems likely that the hypothesis that G be discrete
could be dropped in much of the theory. It may also be possible to generalize from
abelian groups G to nilpotent groups G. We will not pursue these matters here.)
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This paper is concerned with the following seminorms for G-systems:

Definition 1.3 (Gowers–Host–Kra uniformity seminorms, cf. [HK]). Let G
be a countable abelian group, let X = (X,BX , µX , (Tg)g∈G) be a G-system, let
φ ∈ L∞(X), and let k � 1 be an integer. We define the Gowers–Host–Kra seminorm

‖φ‖Uk(X) of order k of φ recursively by the formula

‖φ‖U1(X) := lim
n→∞

∥∥Eh∈Φ1
n
Thφ
∥∥

L2(X)

for k = 1, and

‖φ‖Uk(X) := lim
n→∞

(Eh∈Φk
n
‖∆• hφ‖2k−1

Uk−1(X))
1/2k

for k � 1, where, for each k, Φk
1 ⊂ Φk

2 ⊂ . . . is a Følner sequence, and we use the
expectation notation Eh∈Hf(h) := 1

|H|

∑
h∈H f(h) for finite non-empty sets H and

functions f : H → C throughout this paper.

Remark 1.4. In the case of ergodic G-systems, we can use the mean ergodic
theorem to simplify the U1 norm as ‖φ‖U1(X) =

∣∣∫
X φdµX

∣∣. In the non-ergodic
case, the mean ergodic theorem gives the formula

‖φ‖U1(X) =

(
lim

n→∞

∫

X
Eh∈Φk

n
∆• hφ dµX

)1/2

and more generally

‖φ‖Uk(X) =

(
lim

nk→∞
. . . lim

n1→∞

∫

X
Ehk∈Φk

nk
. . . Eh1∈Φ1

n1
∆• hk

. . . ∆• h1φdµX

)1/2k

.

The existence of the limits (independently of the choice of Følner sequences) as
well as similar integral formulae for the higher-order Gowers–Host–Kra norms are
given for Z-actions in [HK], and for actions of a general countable abelian group in
Lemma A.18. One can also show that the Gowers–Host–Kra seminorms are indeed
seminorms on L∞(X); see Lemma A.20.

Example 1.5. Let φ : X → S1 be an eigenfunction for an ergodic G-system, thus
φ is measurable and Thφ = λ(h)φ for all h ∈ G and some character λ : G → S1,
where S1 := {z ∈ C : |z| = 1} is the unit circle. Then ‖φ‖Uk(X) = 1 for all k � 2. If
λ is trivial, then ‖φ‖U1(X) = 1 as well, otherwise ‖φ‖U1(X) = 0.

Remark 1.6. In the case when G is finite and X is just G with normalized counting
measure, the σ-algebra that consists of all subsets of G, and the translation action,
the Gowers–Host–Kra seminorms simplify to the Gowers uniformity norms

‖f‖Uk(G) =
(
Ex,h1,...,hk∈G∆• hk

. . . ∆• h1f(x)
)1/2k

.

These norms (in the special case G = Z/NZ) were first introduced by Gowers in
[G1], where he derives quantitative bounds for Szemerédi’s theorem on arithmetic
progressions in sets of positive upper density in the integers. The above seminorms in
the context of ergodic Z-systems were introduced by Host and Kra in [HK], as a tool
in the study of the ergodic averages related to Furstenberg’s ergodic theoretic proof
[Fu1] of Szemerédi’s theorem [Sz]. The Gowers uniformity norms for other finite
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abelian groups, such as finite-dimensional vector spaces Fn over a finite field F, were
studied in [GrT2,4,5], [S], [LoMS], [GW].

1.2 Universal characteristic factors. A fundamental concept in the study of
the Gowers–Host–Kra uniformity seminorms is that of the universal characteristic

factor for such norms. To describe this concept we need some notation.

Definition 1.7 (Factors). A factor Y = (Y,BY , µY , (Sg)g∈G, πX
Y ) of a G-system

X = (X,BX , µX , (Tg)g∈G) is another G-system (Y,BY , µY , (Sg)g∈G), together with a
measurable factor map πX

Y : X → Y , such that the push-forward (πX
Y )∗µX of µX by

πX
Y is equal to µY , and such that πX

Y ◦Tg = Sg◦πX
Y µX-a.e. for all g ∈ G. We will often

write (Y, (Sg)g∈G, πX
Y ), (Y, πX

Y ) or just Y, for the factor (Y,BY , µY , (Sg)g∈G, πX
Y ). If

U is a measure space and f : Y → U is a measurable map, we write (πX
Y )∗f :

X → U for the pullback (πX
Y )∗f := f ◦ πX

Y . Conversely, if f ∈ L2(X), we write
(πX

Y )∗f ∈ L2(Y) for the pushforward of f , and E(f |Y) := (πX
Y )∗(πX

Y )∗f ∈ L2(X) for
the conditional expectation of f to Y. We say that f ∈ L2(X) is BY -measurable if
f = E(f |Y), of equivalently if f = (πX

Y )F for some F ∈ L2(Y). We refer to (X, πX
Y )

as an extension of the G-system (Y,BY , µY , (Sg)g∈G). If Y is a point, (πX
pt)∗f =∫

X f dµX .
One factor Y = (Y,BY , µY , (Sg)g∈G , πX

Y ) of X is said to extend another factor
Y′ = (Y′,BY′ , µY′ , (S′

g)g∈G , πX
Y ′) of X (or equivalently, Y′ is a sub-factor of Y) if

every Y′-measurable function is also Y-measurable; in this case, we write Y � Y′.
Two factors are said to be isomorphic if they extend each other. Note that the
notion of extension is a partial order modulo measure equivalence. When we say
that a factor is maximal (resp. minimal) with respect to some property, we mean
that there is no extension (resp. sub-factor) of this factor, that obeys that property,
which is not already equivalent to that factor.

We say that a factor Y = (Y,BY , µY , (Sg)g∈G, πX
Y ) is generated by a collection

F of measurable functions f : X → C if the σ-algebra (πX
Y )−1(BY ) is generated

(modulo µX -null sets) by the pre-images of level sets Tgf
−1(V ) of functions f ∈ F ,

where g ∈ G and V ranges over Borel subsets of C. Equivalently, Y is the minimal
factor such that all functions in F are BY -measurable.

Remark 1.8. Observe that any σ-algebra B ⊂ BX which is preserved by the G-
action induces a factor Y = (X,B, µX , (Tg)g∈G, id) of X = (X,BX , µX , (Tg)g∈G)
(indeed, up to isomorphism, all factors arise in this manner, and we will often abuse
notation by identifying factors with invariant σ-algebras). In this case we see that
(πX

Y )∗f = E(f |B) and (πX
Y )∗f = f . Note that if X is separable modulo null sets,

then L2(X) is separable, hence on taking orthogonal projections L2(Y) is separable,
hence Y is also separable modulo null sets.

Remark 1.9. Observe that any factor of an ergodic G-system is also ergodic. The
converse, of course, is not true.

Proposition 1.10 (Universal characteristic factor). Let G be a countable abelian
group, let X be a G-system, and let k � 1. Then there exists a factor Z<k =
Z<k(X) =

(
Z<k(X),BZ<k

, µZ<k
, (Sg)g∈G, πX

Z<k(X)

)
of X with the property that for
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every f ∈ L∞(X), ‖f‖Uk(X) = 0 if and only if (πX
Z<k(X))∗f = 0 (or equivalently

E(f |Z<k) = 0). This factor is unique up to isomorphism.

Proof. The uniqueness of Z<k is clear; the existence follows immediately from
Lemma A.32. �

Remark 1.11. As Uk is a seminorm on L∞(X), an equivalent characterization
of Z<k is that it is the maximal factor for which ‖f‖Uk(X) = ‖E(f |Z<k)‖Uk(X) for
all f ∈ L∞(X). The factor Z<k is also referred to as Zk−1 in the literature (and in
particular in [HK]). From (A.9) we have the monotonicity Z<j � Z<k for k � j.

Example 1.12 (Universal characteristic factors for small k). Let X be a G-system,
then from the ergodic theorem we see that Z<1(X) is generated by the G-invariant
functions on X; in particular, for ergodic G-systems Z<1(X) is simply a point. Some
spectral theory also reveals (in the ergodic case) that Z<2(X) is the Kronecker factor

of X, that is, the factor generated by the eigenfunctions of X (see Example 1.5);
this system is isomorphic to (H,B, µ, (Tg)g∈G) where H is a closed subgroup of the

Pontryagin dual Ĝ of G, B the Borel σ-algebra, µ the Haar measure, and the action
of G being given by a homomorphism from G to H, acting on H by translation.

In view of Proposition 1.10 and the decomposition f = E(f |Z<k)+(f−E(f |Z<k)),
we see that any function f ∈ L∞(X) can be decomposed into a Z<k-measurable
function, plus a function with vanishing Uk norm. When coupled with an explicit
description of Z<k (as was done for k = 1, 2 in Example 1.12), this decomposition
leads to some highly non-trivial multiple recurrence and convergence theorems in
ergodic theory: see for instance [HK], [Z], [FHK], [FW]. (See also [GrT1,2,3], [GW]
for some finitary analogues of this decomposition, and some applications to additive
combinatorics and analytic number theory.)

It is thus of interest to describe the universal characteristic factors Z<k(X) as
explicitly as possible. One particular class of functions related to such factors are
the phase polynomials:

Definition 1.13 (Phase polynomials). Let G be a countable discrete abelian
group, X be a G-system, let φ ∈ L∞(X), and let k � 0 be an integer. We say that
φ is a phase polynomial of degree less than k if we have ∆• h1 . . . ∆• hk

φ = 1 µX-a.e.,
for all h1, . . . , hk ∈ G. (In particular, setting h1 = . . . = hk = 0, we see that phase
polynomials must take values in the unit circle S1 µX-almost everywhere.) We let
P<k(X) denote the set of phase polynomials of degree less than k.

We write Abr<k(X) for the factor of X generated by P<k(X), and say that X is
an Abramov system of order < k if X is “generated” by P<k(X), or equivalently if
P<k(X) spans L2(X). (It was Abramov who studied (under the name “systems with
quasi-discrete spectrum” and for Z-actions, see [A]) systems of this type.)

Example 1.14. P<0(X) consists only of the constant function 1, so the only
Abramov system of order < 0 is a trivial (one point) system. P<1(X) consists
of the G-invariant functions from X to S1 (which, in the ergodic case, are just the
constants), and only the Abramov systems of order < 1 are those for which the
action of G is trivial. In the ergodic case, P<2(X) consists of the eigenfunctions
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from Example 1.5, and so the ergodic Abramov systems of order < 2 are precisely
the Kronecker systems (i.e. systems generated by translations on compact abelian
groups). There is an analogous relationship between higher-degree phase polyno-
mials and higher-order eigenfunctions of X. Observe that every phase polynomial
φ ∈ P<k(X) takes the form φ = e(P ), where e : R/Z → S1 is the standard character
e(x) := e2πix, and P : X → R/Z is a polynomial of degree < k in the sense that
∆h1 . . . ∆hk

P = 0 for all h1, . . . , hk ∈ G.

The following observations are immediate:

Lemma 1.15 (Trivial facts about phase polynomials). Let G be a countable discrete
abelian group, X be a G-system, and let k � 0.

(i) (Monotonicity) We have P<k(X) ⊆ P<k+1(X). In particular, Abr<k(X) �

Abr<k+1(X), and an Abramov system of order < k is also an Abramov system
of order < k + 1.

(ii) (Homomorphism) P<k(X) is an abelian group under pointwise multiplication,
and for each h ∈ G, ∆• h is a homomorphism from P<k+1(X) to P<k(X).

(iii) (Polynomiality criterion) Conversely, if φ : X → C is a measurable function
such that ∆• hφ ∈ P<k(X) for all h ∈ G, then φ ∈ P<k+1(X).

(iv) (Functoriality) If Y is a factor of X, then the pullback map (πY
X)∗ is a homo-

morphism from P<k(Y) to P<k(X). Conversely, if f : Y → C is such that
(πY

X)∗f ∈ P<k(X), then f ∈ P<k(Y).

It is not hard to show that every phase polynomial of degree < k is in fact
Z<k(X)-measurable (see Lemma A.35); thus Abr<k(X) � Z<k(X). However, in the
case of Z-systems, the characteristic factor Z<k(X) also contains some functions
which do not arise from phase polynomials, even when one assumes ergodicity; this
fact was essentially first observed by Furstenberg and Weiss [FuB]. Indeed, it is not
too difficult to show (see [HK]) that any factor Y = (N/Γ, (x �→ agx)g∈Z, πX

Y ) of X
which is a < k-step nilsystem, thus N is a nilpotent Lie group of step < k, Γ is a
discrete cocompact subgroup, N/Γ is given Haar measure, and a ∈ N is a group
element, is a sub-factor of Z<k(X). The converse statement is much deeper, and is
due to Host and Kra [HK]:

Theorem 1.16 (Description of Z<k(X) for ergodic Z-systems [HK, Th. 10.1]). Let
X be an ergodic Z-system. Then Z<k(X) is the minimal factor that extends all
<k-step nilsystem factors of X. Indeed, Z<k(X) is itself the inverse limit of <k-step
nilsystems.

Remark 1.17. In the case of ergodic Z-systems, every Abramov system of order <k
is the inverse limit of <k-step nilsystems (this is implicit from [HK]). However, the
converse is not true; see [FuB] for further discussion. (For instance, the Heisenberg
system H(R)/H(Z) discussed in section 1.4 is a 2-step nilsystem which is not an
Abramov system of any order, if the underlying shifts α, β and 1 are independent
over Q.)

Remark 1.18. The finitary counterpart to Theorem 1.16, where G and X are
Z/NZ, is known as the inverse conjecture for the Gowers norm for cyclic groups
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Z/NZ, and would have a number of applications to additive combinatorics and
analytic number theory, see e.g. [GrT3]. It is currently only proven for k � 3
[GrT2].

1.3 Main result. In view of Theorem 1.16, it is natural to ask what the universal
characteristic factors Z<k(X) are for ergodic G-systems, when G is an abelian group
other than the integers Z. (The non-ergodic case can then be recovered, at least in
principle, from the ergodic case by the ergodic decomposition, though we will not
attempt to do so here.)

The main results of this paper give a sharp answer to this question in the case
when G is the (additive group of the) countably infinite vector space G = Fω over
a finite field F of characteristic ≥ k which we will refer to as the high characteristic

case. We also partially answer this question for general k:

Theorem 1.19 (Sharp description of Z<k(X) for ergodic Fω-systems in high char).
Let F be a finite field, and let X be an ergodic Fω-system. Let k � char(F). Then
for each k � 1, we have Abr<k(X) = Z<k(X).

Theorem 1.20 (Partial description of Z<k(X) for ergodic Fω-systems in low char).
Let F be a finite field, and let X be an ergodic Fω-system. Then for each k � 1, we
have Abr<k(X) � Z<k(X) � Abr<C(k)(X) for some C(k) depending only on k.

Remark 1.21. We also have a slightly more precise structural description of
Z<k(X), as a tower of abelian extensions by polynomial cocycles; see Theorems 4.8
and 8.7. The quantity C(k) can in principle be computed explicitly from the proof
of Theorem 1.20, but we have not sought to obtain the best possible value of C(k).
We believe in fact that Z<k(X) should equal Abr<k(X) for all k (not just in the high
characteristic case k � char(F)).

From Theorems 1.20, 1.19 and Proposition 1.10 we have the following immediate
corollaries:

Corollary 1.22 (Ergodic inverse Gowers conjecture – high characteristic). Let
F be a finite field, and let X be an ergodic Fω-system. Let 1 � k � char(F) and
f ∈ L∞(X) be such that ‖f‖Uk(X) > 0. Then there exists φ ∈ P<k(X) such that∫
X fφ dµX �= 0.

Corollary 1.23 (Partial ergodic inverse Gowers conjecture). Let F be a finite
field, and let X be an ergodic Fω-system. Let k � 1 and f ∈ L∞(X) be such that
‖f‖Uk(X) > 0. Then there exists φ ∈ P<C(k)(X) such that

∫
X fφ dµX �= 0.

In a companion paper [TZ], we will combine Corollary 1.22 with a version of
the Furstenberg correspondence principle, as well as the equidistribution theory in
[GrT5], to obtain a finitary counterpart to this theorem:

Theorem 1.24 (Inverse theorem for the Gowers norm over finite fields in high
characteristic [TZ]). Let F be a finite field of characteristic p, let 1 � k � char(F)
be an integer, and let δ > 0. Then there exists c = c(p, k, δ) > 0 such that for finite-
dimensional vector space G over F and any function f : G → C with ‖f‖L∞(G) � 1

and ‖f‖Uk(G) � δ, one has |Ex∈Gf(x)φ(x)| � c for some φ ∈ P<k(G).
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Remark 1.25. We conjecture that this result should in fact hold without the
restriction on the characteristic depending on k. Once this restriction is removed,
it becomes important here that the values of the phase polynomial φ be allowed
to range freely in the unit circle S1. If one constrains φ to take values in the pth

roots of unity Cp, then the claim can fail for small p, as first observed in [LoMS],
[GrT5]. However, such examples do not obstruct Theorem 1.24 from holding when
φ takes values in S1 (see [TZ] for further discussion). By using Corollary 1.23
instead of Corollary 1.22, one can obtain a partial analogue of Theorem 1.24 in the
low characteristic case k > char(F), in which P<k(G) is replaced by P<C(k)(G);
see [TZ].

Remark 1.26. Theorem 1.19 should also allow one (assuming sufficiently high char-
acteristic) to obtain a formula for the limit of multiple ergodic averages of quantities
such as c(g) := µ(A∩ T gA∩ . . . ∩ T (k−1)gA) (as in [Z]), and to be able to show that
c(g) can be approximated by a function of polynomials in g, in the spirit of the re-
sults in [BeHK]. We hope to report on these and other applications in a subsequent
paper.

1.4 The Heisenberg example. To illustrate the above results we now pause
to describe the model case of a Heisenberg system. (The discussion in this section
is not directly used in the remainder of the paper.) To simplify the discussion we
restrict attention to the k = 3 case.

We first review the more familiar case of Z-systems. For any commutative ring R,
let H(R) be the Heisenberg group

H(R) :=

⎛

⎝
1 R R
0 1 R
0 0 1

⎞

⎠ .

This is clearly a 2-step nilpotent group. The quotient space H(R)/H(Z) is then a
2-step nilmanifold that has a natural Haar measure. For fixed α, β ∈ R, the function
ψ : Z → H(R) defined by

ψ(n) :=

⎛

⎝
1 nα nγ +

(n
2

)
αβ

0 1 nβ
0 0 1

⎞

⎠ (1.1)

can be easily checked to be a homomorphism Z → H(R), and thus defines an action
(Tg)g∈Z on H(R)/H(Z); if 1, α, β are linearly independent over Q, one can show that
this action is ergodic (see e.g. [P]). The function f : H(R) → C defined by

f

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ = e
(
z − {x}y

)
, (1.2)

where {x} := x−⌊x⌋ is the fractional part of x, induces a function f : H(R)/H(Z)→C,
with

f(anx0) = e

((
n

2

)
αβ + nγ − {nα}nβ

)
(1.3)
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where x0 := H(Z) ∈ H(R)/H(Z) (one can easily check that this function is well
defined as a function on H(R)/H(Z)).

The argument on the right-hand side of (1.3) is an example of a generalized

polynomial (see [BeL]). It can be shown that the function f is asymptotically or-
thogonal to all phase polynomials of degree < 3 (in fact, it is asymptotically orthog-
onal to phase polynomials of all degrees), but that ‖f‖U3(X) > 0. For the system
X = (H(R)/H(Z), (Tg)g∈Z), the algebra generated by the function f and the eigen-
functions of the Z action (which take the form e(ax + by + θ) for integers a, b and
θ ∈ R/Z) is dense in L2(X).

One can imitate this construction for an Fω-action, for F with char F > 2.
The analogues of the ring of integers Z and the field of reals R will be the ring
F[t] :=

{∑m
i=0 ait

i : ai ∈ F
}

of polynomials in one variable and the field F((t)) :={∑m
i=−∞ ait

i : ai ∈ F
}

of Laurent polynomials of one variable, respectively. The
analogue of the torus R/Z is the abelian group F((t))/F[t]. If x =

∑m
i=−∞ ait

i is
an element of F((t)), we write ⌊x⌋ :=

∑m
i=0 ait

i ∈ F[t] for the “integer part”, and
{x} := x − ⌊x⌋ for the “fractional part”.

Observe that as an additive group, F[t] is isomorphic to Fω, and so an ergodic
F[t]-system is also an ergodic Fω-system. Consider the homogeneous space X :=
H(F((t)))/H(F[t]); this is a “manifold” over the base field F((t)) and comes with a
natural Haar measure. For fixed α, β ∈ F((t)), the function ψ : F[t] → H(F((t)))
defined by (1.1) is still a homomorphism, and thus defines an action (Tg)g∈F[t] on
X as before. If we define f : H(F((t))) → C by (1.2), then this function again
induces a well-defined function on X and we have the formula (1.3) as before with
x0 := F[t] ∈ X.

Thus far, the Fω-action case has proceeded in exact analogy with the Z-action
case. However, the key difference between the two case is that the phase P (n) :=
n2αβ + nγ − {nα}nβ on the right-hand side of (1.3) is not just a generalized poly-
nomial; it is a genuine polynomial, indeed one easily checks the identity ∆h1∆h2∆h3P
= 0 for all h1, h2, h3 ∈ F[t]. (This ultimately stems from the fact that the maps
x �→ ⌊x⌋ and x �→ {x} are genuine homomorphisms in the Fω-action case (where
there is no “carry” operation), whereas they are only “approximate” homomor-
phisms in the integer case.) Thus the system X = (X, (Tg)g∈F[t]) is isomorphic

to the system ((T(F))2 × T(F), (Tg)g∈Fω), where T(F) := FZ ≡ F((t))/F[t] is the

Pontryagin dual F̂ω of Fω, and the Fω-action is given by

Tg

(
(x, y), z

)
=

(
(x, y) + (gα, gβ), z + gγ +

(
g

2

)
αβ + [gα]y − gβ{x} − {gα}gβ

)

for x, y ∈ T(F) ≡ F((t))/F[t] and g ∈ Fω ≡ F[t]. For any character χ of T(F),
χ ∈ T̂(F), the function z �→ χ(z) lies in P2(T(F)). By Fourier decomposition, any
function in L2(X) can be written as

∑
χ∈T̂(F) fχ(x, y)χ(z), where fχ(x, y)∈L2(T(F)2).

Since for any χ, the function fχ(x, y) is defined on a Kronecker system (arising from
the eigenfunctions (x, y) �→ e(ax + by) for a, b ∈ F[t]), we have fχ ∈ Z<2(X). It fol-
lows that X is an Abramov system of order < 3 and is thus equal to Z<3(X) by The-
orem 1.20. This latter fact can also be checked by calculating the Gowers–Host–Kra
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seminorms directly. The reader may also wish to verify Theorem 4.8 explicitly for
this example.

The main point of the example above is that it demonstrates the peculiarities of
the polynomial aspect of nilpotency in the case of an Fω-action.

Prop. 6.1 −−−−→ Thm. 5.4 ←−−−− Prop. 7.1
�⏐⏐

⏐⏐�

Lems. 5.1, 5.3 −−−−→ Thm. 4.5 −−−−→ Lem. 4.7 −−−−→ Thm. 4.8
⏐⏐�

Prop. 4.4 −−−−→ Thm. 3.8 −−−−→ Thm. 3.3 ←−−−− Prop. 3.4
⏐⏐�

[TZ], [GrT5] −−−−→ Thm. 1.24 ←−−−− Thm. 1.20

Figure 1: Logical dependencies in the proofs of key theorems in the paper in the
general characteristic case (ignoring the material in the appendices, which are
used throughout the paper). Theorem 4.8 is also used inductively to establish
Propositions 6.1, 7.1. The high-characteristic case follows a similar logic.

1.5 Overview of the structure of the paper. The bulk of the paper will be
devoted to the proof of Theorems 1.20, 1.19. We first prove Theorem 1.20, and then
specialize to the high characteristic case. The proof will be established via a series
of reductions. The main task is to establish the inequality Z<k(X) � Abr<C(k)(X)
for some C(k) depending on k, which will imply that Z<k(X) is generated by poly-
nomials of high degree. Thus we do not need to keep careful track of the degree of
the polynomials that arise in our analysis, except to ensure that they are bounded.
The next few steps closely follow the approach of Host and Kra [HK]. Namely,
by following the methods in [HK], one can reduce matters to understanding a cer-
tain type of cocycle f : Fω × X → S1 on a structured type of ergodic Fω-system X;
specifically, one needs to show that any (Fω,X, S1)-cocycle of type < k on an ergodic
Fω-system of order < k (see Definition 3.1) is cohomologous to a (Fω,X, S1)-phase
polynomial; see Theorem 4.5. (All definitions for the terms used here are given later
in the paper, when these results are formalized.) As mentioned earlier, the degree
of this polynomial is not too important so long as it is bounded.

By an inductive hypothesis one can understand the underlying system X reason-
ably well; it turns out to be a finite tower of abelian group extensions, each of which
is given by a cocycle which is cohomologous to a polynomial.

To proceed further one needs to understand the condition that a cocycle f :
Fω × X → S1 has bounded type. By definition, this means that a certain “iterated
derivative” d[k]f of that cocycle is a coboundary. It turns out that the underlying
system X can be expressed as an abelian extension X = Y×ρU of a simpler system Y,
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where U = (U, · ) is a compact abelian group. The group U then acts freely on X by
the action Vu : (y, v) �→ (y, uv), with this action commuting with the action of Fω.
One can differentiate the cocycle f repeatedly in the “vertical” direction by using
the operation ∆• uf(g, x) := f(g, Vux)/f(g, x). It turns out that each such vertical
differentiation reduces the type of the cocycle; iterating this, one concludes that one
can find an m such that ∆• t1 . . . ∆• tmf is a cocycle of type < 0 (i.e. a coboundary) for
every t1, . . . , tm ∈ U . In other words, one has an equation of the form

∆• t1 . . . ∆• tmf(g, x) = ∆• gFt1,...,tm(x) :=
Ft1,...,tm(Tgx)

Ft1,...,tm(x)
(1.4)

for some functions Ft1,...,tm(x). A key technical point is that while the function
Ft1,...,tm(x) is a priori only measurable in x, it can be made to be measurable in the
parameters t1, . . . , tm also (see Lemma C.4). This will be rather important for us as
we will be relying quite heavily on the measurability property in our arguments. (For
instance, we will need a variant of the classical Steinhaus theorem that asserts that if
A is a measurable subset of a compact abelian group U with positive measure, then
the difference set A − A contains a neighborhood of the origin (cf. Lemma D.1).
Curiously, analogous results are exploited in the additive-combinatorial approach
to the Gowers inverse problem (see e.g. [GrT2]), where they go by the name of
“Bogolyubov-type lemmas”.)

We would like to use the equation (1.4) to show that f itself is a coboundary,
up to a polynomial error. The idea is to “integrate” the derivatives ∆• t1 , . . . ,∆• tm

one at a time. At any intermediate stage of this process, one will have obtained
another function f̃ : Fω ×X → S1 which differs from f (multiplicatively) by a phase
polynomial, and which obeys an equation of the form

∆• t1 . . . ∆• tj f̃(g, x) = ct1,...,tj (g, x)∆• gFt1,...,tj(x) (1.5)

for some 0 � j � m, some functions Ft1,...,tj (x), some phase polynomials ct1,...,tj ,
any t1, . . . , tj ∈ U , g ∈ G, and almost all x ∈ X. A technical point here is that
whereas the original function f was a cocycle in Fω, the new function f̃ need not be;
however, it turns out that the Fω-cocycle property is not actually needed in the rest
of our analysis; indeed, as we shall shortly see, we can rely primarily on the cocycle
behavior in tj instead. (Indeed, there seem to be significant technical difficulties if
one attempts to work purely within the world of cocycles, stemming ultimately from
the fact that Fω is not finitely generated. For instance, it appears quite difficult to
show that the abstract nilpotent group G[k] defined in [HK] acts transitively in the
non-finitely generated case.)

The left-hand side of (1.5) exhibits some “linearity” in tj, thanks to the cocycle
equation ∆• tj+t′j

f = (∆• tj Vt′j
f)∆• t′j

f . This induces some approximate linearity proper-

ties on Ft1,...,tj . One can conjugate Ft1,...,tj to upgrade this approximate linearity to
genuine linearity (here we crucially exploit the measurability of all our objects with
respect to t1, . . . , tj), at least for t1, . . . , tj in an open subgroup U ′ of U (here we
rely heavily on the finite characteristic of Fω, which forces U to be a torsion group,
so that every open neighborhood of U contains an open subgroup). It still remains
to handle the behavior in the quotient group U/U ′, but this is a finite abelian group
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and can be worked out explicitly, splitting this group as the product of finite cyclic
groups and “straightening” the various actors in (1.5) along each such group. At the
end of the day, one is able to “integrate” and remove one of the derivatives in (1.5),
at the cost of introducing an additional U -invariant factor on the right-hand side (cf.
the classical “+C” ambiguity when solving an equation d

dxf = F by integration).
However, this additional factor (which basically lives on Y rather than on X) can
be shown to be cohomologous to a polynomial by an induction hypothesis, and so
can be absorbed into the other terms on the right-hand side. One can then iterate
this procedure until the number j of derivatives in (1.5) reaches zero, at which point
we obtain the desired characterization of f .

The high-characteristic case k � char(F) (i.e. Theorem 1.19) follows a similar
logic, but one has to be much more careful in keeping track of the degrees and types
of the various objects that arise in the proof, thus requiring “exact” counterparts of
many of the lemmas used in the above analysis. The high-characteristic hypothesis
is used to ensure that all the polynomials which appear take values in a coset of the
cyclic group Cp, and have constant “integral” along various lines (see Lemma D.3
for a more precise statement.)

Remark 1.27. As mentioned above, our approach largely follows that of Host
and Kra [HK], although the abstract nilpotent structure group G[k], which plays a
central role in [HK], is not used explicitly in this paper (although of course we will
be exploiting several symmetries of the cubic measure µ[k], particularly with respect
to “vertical rotations”, which can be viewed as special elements of this structure
group). Furthermore, the heart of the Host-Kra argument (the “lifting” proposition
in [HK, Prop. 10.10]) does not have an equivalent in our context due to the fact
that the group Fω is not finitely generated. As discussed above, the emphasis is
instead on solving various equations of “Conze–Lesigne” type[CL]. In this respect,
the arguments here share some features in common with [Z] as well as [HK].

Remark 1.28. One curious distinction between the finite-characteristic case and
the Z-action case is that in the former case (and assuming sufficiently high char-
acteristic), the systems Zk(X) are toral systems rather than inverse limits of such
systems.
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2 Abelian Cohomology

Throughout the paper we will be relying heavily on the language of abelian coho-
mology of dynamical systems. We record the key definitions here; further discussion
of these concepts can be found in Appendix B.

Definition 2.1 (Abelian cohomology). Let G be a countable discrete abelian
group, let X = (X,BX , µX , (Tg)g∈G) be a G-system, and let (U, · ) be a compact
abelian group.

• We let M(X, U) denote the set of all measurable functions φ : X → U , with
two functions φ, φ′ : X → U identified if they agree µX-almost everywhere;
this is an abelian group under pointwise multiplication. We refer to elements
of M(X, U) as (X, U)-functions.

• We let M(G,X, U) denote the set of all measurable functions ρ : G×X → U ,
with two functions ρ, ρ′ : G × X → U identified if ρ(g, x) = ρ′(g, x) for all
g ∈ G and almost every x ∈ X; this is an abelian group under pointwise
multiplication. We refer to elements of M(G,X, U) as (G,X, U)-functions.

• We let Z1(G,X, U) denote the subgroup of M(G,X, U) consisting of those
(G,X, U)-functions that obey the cocycle equation ρ(g+g′, x)=ρ(g, Tg′x)ρ(g′, x)
for all g, g′ ∈ G and almost every x ∈ X. We refer to elements of Z1(G,X, U)
as abelian (G,X, U)-cocycles, or cocycles for short.

• If ρ is an abelian (G,X, U)-cocycle, we define the abelian extension X×ρ U of
X by ρ to be the product space (X × U,BX × BU , µX × µU ) with shift maps
(x, u) �→ (Tgx, ρ(g, x)u) for g ∈ G, where µU is normalized Haar measure
on U . Note that this is indeed an extension of X, with the obvious factor map
πX×ρUX : (x, u) �→ x.

• If F is a (X, U)-function, we define the derivative ∆• F of F to be the (G,X, U)
function ∆• F (g, x) := ∆• gF (x) = F (Tgx)/F (x). We refer to F as an antideriva-

tive of ∆• F . We write B1(G,X, U) = ∆• M(X, U) denote the space of all deriva-
tives; this is a subgroup of Z1(G,X, U). We refer to elements of B1(G,X, U)
as (G,X, U)-coboundaries, or coboundaries for short.

• More generally, if B is a G-invariant subset of X, we say that a (G,X, U)-
function ρ is a (G,B,U)-coboundary if there exists some measurable F : B → U
such that ρ(g, x) = ∆• gF (x) = F (Tgx)/F (x) for all g ∈ G and µX-almost every
x ∈ B. We refer to F as an antiderivative of the coboundary.

• We say that two (G,X, U)-functions ρ, ρ′ are (G,X, U)-cohomologous (or co-

homologous for short), if ρ/ρ′ ∈ B1(G,X, U). Note that we do not require ρ, ρ′

to be cocycles here, though clearly any function cohomologous to a cocycle is
again a cocycle.

Remark 2.2. Observe that if ρ and ρ̃ are cohomologous, then X×ρ U and X×ρ̃ U
are measure-equivalent systems. Thus, from the perspective of measure equivalence,
(X,G,U) cocycles ρ are only determined up to their representative [ρ]G,X,U in the
cohomology group H1(G,X, U) := Z1(G,X, U)/B1(G,X, U). As usual we have the
short exact sequence

0 −→ B1(G,X, U) −→ Z1(G,X, U) −→ H1(G,X, U) −→ 0 .
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Remark 2.3. We will primarily be working with (G,X, U)-cocycles, but for techni-
cal reasons related to the fact that Fω is not countably generated, we will also need
to work in the more general setting of (G,X, U)-functions. In practice, however,
these functions will be “close” to coboundaries in various senses (for instance, they
may differ from a coboundary by a polynomial function).

Remark 2.4. We caution that abelian extensions of ergodic G-systems are not
necessarily ergodic.

We will need several technical results concerning abelian cohomology groups,
which we have collected in Appendix B, and which we will refer to as necessary in
the main text of the paper.

3 Reduction to Abelian Extensions of Order < k + 1

Recall the definition of Z<k(X) from Proposition 1.10. Before starting the proof of
Theorem 1.20, we make a basic definition:

Definition 3.1 (System of order < k). Let k � 1, and let G be a countable
discrete abelian group. A G-system X is said to be of order < k if Z<k(X) = X.

Example 3.2. Trivial systems are of order < 1; Kronecker systems are of order
< 2. From (A.9) we see that for any system X, Z<k(X) is of order < k, and that
any system of order < k is automatically of order < k + 1.

By Theorem A.35, every Abramov system of order < k is also a G-system of
order < k. This and (A.9), will allow us to immediately derive Theorem 1.20 from
the following claim:

Theorem 3.3 (First reduction). Let F be a finite field, let k � 1, and let X
be an ergodic Fω-system of order < k. Then X is an Abramov system of order
< Ok(1). (Here and in the sequel, we use Ok(1) to denote any quantity bounded by
C(k) for some constant C(k) depending only on k, and similarly for other choices
of subscripts in the O( ) notation.)

To prove Theorem 3.3, we will in fact prove a more precise statement. We will use
the language of abelian cohomology, in particular the notions of (G,X, U)-functions,
(abelian) (G,X, U)-cocycles, (G,X, U)-coboundaries, and extensions X ×ρ U of a
G-system X by a cocycle ρ : G × X → U , where U is a compact abelian group; see
Definition 2.1 for full details.

The following basic fact was established by Host and Kra [HK]:

Proposition 3.4 (Order < k + 1 systems are abelian extensions of order < k
systems [HK, Prop. 6.3]). Let G be a discrete countable abelian group, let k � 1,
and let X be an ergodic G-system of order < k + 1. Then X is an abelian extension
X ≡ Z<k(X) ×ρ U of the order < k system Z<k(X) for some compact abelian
group U and some (G,Z<k(X), U)-cocycle ρ. (All topological groups in this paper
are assumed to be Hausdorff.)
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Definition 3.5 (Phase polynomials, II). Let (G,+) be a discrete countable abelian
group, let X = (X,BX , µX , (Tg)g∈G) be a G-system, let (U, · ) be a compact abelian
group, and let k � 1.

• We let P<k(X, U) denote the set of all (X, U)-functions φ satisfying the equa-
tion ∆• h1 . . . ∆• hk

φ(x) = 1 for µX -a.e. x and for all h1, . . . , hk ∈ G, where
∆• hφ(x) := φ(Thx)/φ(x), and we identify functions that agree µX-almost every-
where. We refer to elements of P<k(X, U) as (X, U)-phase polynomials of degree

< k.

• We let P<k(G,X, U) denote the set of all (G,X, U)-functions ρ satisfying the
equation ∆• h1 . . . ∆• hk

ρ(g, x) = 1 for µX-a.e. x and for all g, h1, . . . , hk ∈ G,
where ∆• hρ(g, x) := ρ(g, Thx)/ρ(g, x), and where we identify functions that
agree µX-almost everywhere for each g ∈ G. We refer to elements of
P<k(G,X, U) as (G,X, U)-phase polynomials of degree < k. We refer to el-
ements of the intersection P<k(G,X, U)∩Z1(G,X, U) as (G,X, U)-phase poly-

nomial cocycles of degree < k.

Example 3.6. If X is ergodic, then all phase polynomials of degree < 1 are constant
in the X variable, and so P<1(X, U) ≡ U and P<1(G,X, U) ≡ M(G,U) in this case
(for the definition of M(G,U) see Definition 2.1).

Remark 3.7. Observe that P<k(X, U) and P<k(G,X, U) are subgroups of M(X, U)
and M(G,X, U) respectively. This definition is of course closely related to Defi-
nition 1.13; indeed, we observe that P<k(X) ≡ P<k(X, S1). Also observe that a
(G,X, U)-function ρ is a phase polynomial coboundary of degree < k if and only if
it is a derivative ρ(g, x) = ∆• gF (x) of a (X, U)-phase polynomial F of degree < k+1.
Indeed, we have the short exact sequence

0 −→ P<1(X, U) −→ P<k+1(X, U)
∆·−→ P<k(G,X, U) ∩ B1(G,X, U) −→ 0 , (3.1)

and similarly

0 −→ P<1(X, U) −→ M(X, U)
∆·−→ B1(G,X, U) −→ 0

(for the definitions of M(X, U), B1(G,X, U) see Definition 2.1).

Using Proposition 3.4 and Fourier analysis, we can reduce matters to studying
projections of abelian cocycles to the unit circle. More precisely, in future sections
we will show the following result.

Theorem 3.8 (Second reduction). Let F be a finite field, let k � 1, and let X
be an ergodic Fω-system of order < k, and let X ×ρ U be a (possibly non-ergodic)
abelian extension of X by a (Fω,X, U)-cocycle which is of order < k + 1. Then
for every character χ ∈ Û (i.e. every continuous homomorphism χ : U → S1), the
(Fω,X, S1)-cocycle χ◦ρ is cohomologous to a (Fω,X, S1)-phase polynomial of degree
< Ok(1), i.e. χ ◦ ρ ∈ P<Ok(1)(F

ω,X, S1) · B1(Fω,X, S1) for all χ ∈ Û .

Proof of Theorem 3.3 assuming Theorem 3.8. We induct on k. The claim is trivial
for k = 1, so suppose that k � 2 and that Theorem 3.3 has already been proven
for k − 1. By Proposition 3.4, we may assume that X = Z<k−1(X) ×ρ U for some
compact abelian group U and some (Fω, Z<k−1(X), U)-cocycle ρ.
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Let χ ∈ Û be any element of the Pontryagin dual Û of U , thus χ : U → S1 is
a character (i.e. a continuous homomorphism). Applying Theorem 3.8, we see that
there exists a measurable function Fχ ∈ M(Z<k−1(X), S1) and a (Fω,Z<k−1(X), S1)-
phase polynomial cocycle ρ̃χ of degree < Ok(1), for which we have the equation

χ ◦ ρ = ρ̃χ∆• Fχ . (3.2)

If we define φχ ∈ L∞(X) to be the function φχ(x, u) := Fχ(x)χ(u), then we see from
(3.2) that ∆• φχ = ρ̃χ, and thus (by (3.1)) φχ is a phase polynomial of degree < Ok(1).
On the other hand, Fχ(x) lies in L2(Z<k−1(X)) and can thus be approximated in
that space by finite linear combinations of phase polynomials in P<Ok(1)(X), by
the induction hypothesis. Thus we see that the characters (x, u) �→ χ(u) can also
be approximated in L2(X) by finite linear combinations of phase polynomials in
P<Ok(1)(X). Since L2(X) is generated by L2(Z<k−1(X)) and these characters, we
see that X is an Abramov system of order < Ok(1) as claimed. �

It remains to prove Theorem 3.8. This will be the objective of the next few
sections.

4 Functions of Type < k

We make a further reduction, introducing the useful notion of a function of type < k.
(This concept is essentially that of a cocycle of type k from [HK], but generalized to
non-cocycles and to more general group actions. We have replaced “k” by “< k” as
such cocycles will have “degree” strictly less than k in some sense.)

Definition 4.1 (Functions of type < k). Let (G,+) be a discrete countable
abelian group, let X = (X,BX , µX , (Tg)g∈G) be a G-system, and let U = (U, · ) be a

compact abelian group. Let k � 0, and let X[k] =
(
X [k],B[k], µ[k], (T

[k]
g )g∈G

)
be the

G-system defined in Definition A.12.

• For each f ∈ M(X, U), we define d[k]f ∈ M
(
X[k], U

)
to be the function

d[k]f
(
(xw)w∈2k

)
:=
∏

w∈2k

f(xw)sgn(w)

where sgn(w1, . . . , wk) := w1 . . . wk ∈ {−1,+1}.
• Similarly, for each ρ ∈ M(G,X, U), we define d[k]ρ ∈ M

(
G,X[k], U

)
to be the

function
d[k]ρ
(
g, (xw)w∈2k

)
:=
∏

w∈2k

ρ(g, xw)sgn(w).

• A (G,X, U)-function of type < k is any function ρ ∈ M(G,X, U) such
that d[k]ρ is a

(
G,X[k], U

)
-coboundary. We let M<k(G,X, U) denote

the space of (G,X, U)-functions of type < k, and let Z1
<k(G,X, U) :=

Z1(G,X, U)∩M<k(G,X, U) denote the space of (G,X, U)-cocycles of type < k.

Example 4.2. A (G,X, U)-function is of type < 0 if and only if it is a (G,X, U)-
coboundary, thus M<0(G,X, U) = Z1

<0(G,X, U) = B1(G,X, U).
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∆•P<k+1(X, U) −−−−→ B1(G,X, U)
⏐⏐�

⏐⏐�

P<k(G,X, U) ∩ Z1(G,X, U) −−−−→ Z1
<k(G,X, U) −−−−→ Z1(G,X, U)

⏐⏐�
⏐⏐�

⏐⏐�

P<k(G,X, U) −−−−→ M<k(G,X, U) −−−−→ M(G,X, U)

Figure 2: Inclusions between various groups of (G, X, U) functions.

We make some easy observations (see Figure 2):

Lemma 4.3 (Basic facts about functions of type < k). Let G be a countable abelian
group, let X = (X,BX , µX , (Tg)g∈G) be an ergodic G-system, let U = (U, · ) be a
compact abelian group, and let k � 0.

(i) Every (G,X, U)-function of type < k is also a (G,X, U)-function of type < k+1.
(ii) The set of (G,X, U)-functions of type < k is a subgroup of M(G,X, U) that

contains the group B1(G,X, U) of coboundaries. In particular, any function
(G,X, U)-cohomologous to a function of type < k, is also of type < k.

(iii) Let f be a (G,X, U)-function. Then f is a (G,X, U)-phase polynomial of
degree < k if and only if d[k]f = 0 µ[k]-almost everywhere. In particular, every
(G,X, U)-phase polynomial of degree < k is of type < k.

(iv) If f is a (G,X, U)-coboundary (resp. a (G,X, U)-cocycle), then d[k]f is a(
G,X[k], U

)
-coboundary (resp. a

(
G,X[k], U

)
-cocycle ). Equivalently, we have

the commuting diagram

0 −−−−→ B1(G,X, U) −−−−→ Z1(G,X, U) −−−−→ H1(G,X, U) −−−−→ 0

d[k]

⏐⏐� d[k]

⏐⏐� d[k]

⏐⏐�

0 −−−−→ B1(G,X[k], U) −−−−→ Z1(G,X[k], U) −−−−→ H1(G,X[k], U) −−−−→ 0

of short exact sequences.

Proof. We first show (i). Let f be a (G,X, U)-function of type < k, then we can
find a (X[k], U)-function F such that d[k]f(g,x) = ∆• g[k]F (x) for all g ∈ G and µ[k]-

almost all x. Expressing X[k+1] = X[k] × X[k] and using (A.2) we conclude that
d[k+1]f(g,x,x′) = ∆• g[k+1][F (x)/F (x′)] for all g ∈ G and µ[k+1]-almost all (x,x′),
and so f is of type < k + 1 as desired.

From (i) we see in particular that coboundaries, being of type < 0, are of type
< k. The claims in (ii) are then easily verified.

To show (iii), we induct on k. The claim is easy for k = 0, 1 (using ergodicity),
so suppose that k � 2 and the claim has already been shown for k − 1.

Suppose f is a (G,X, U)-phase polynomial of degree k. For any g ∈ G, ∆• gf is a
phase polynomial of degree < k− 1, and so by induction hypothesis d[k−1](∆• gf) = 1
µ[k−1]-a.e. Since d[k−1](∆• gf) = ∆• g[k−1](d[k−1]f), we conclude that d[k−1]f is invariant

under the action of the diagonal group diag(G[k−1]). By Remark A.13, d[k−1]f is



1556 V. BERGELSON, T. TAO AND T. ZIEGLER GAFA 

constant
(
µ[k−1]

)
s
-almost everywhere for Pk−1-a.e. s. By Remark A.13 again, we

conclude that d[k]f = 1 µ[k]-a.e., as desired. The converse claim follows by reversing
all the above steps.

The claim (iv) for coboundaries follows from the identity d[k]∆• gF = ∆• g[k]d[k]F ,
valid for any (X, U)-function F and any g ∈ G. The claim (iv) for cocycles is clear
from direct computation. �

The relevance of the type < k concept to us lies in the important observation
that abelian extensions of order < k + 1 arise from functions of type < k:

Proposition 4.4. Let G be a countable abelian group, and let X =
(X,BX , µX , (Tg)g∈G) be an ergodic G-system of order < k for some k � 1. Let U be
a compact abelian group, and let ρ be a (G,X, U)-cocycle such that the abelian ex-
tension X×ρU is an ergodic G-system of order < k+1. Then ρ is a (G,X, U)-cocycle
of type < k. In particular, for every character χ ∈ Û , χ ◦ ρ is a (G,X, S1)-cocycle of
type < k.

Proof. See [HK, Prop. 6.4] (the result there is only stated for Z-actions, but the proof
generalizes without difficulty). We give a brief sketch of the proof here, to indicate
why the type < k condition arises naturally. For simplicity let us take U = S1.
Let φ be the (X ×ρ U,S1)-function φ(z, u) := u, then the function J : L2(X[k]) →
L2((X×ρ U)[k]) defined by Jf(z,u) = f(z)d[k]φ(z,u) is an isometry whose range is a
closed diag

(
G[k]
)
-invariant space containing d[k]φ. On the other hand, since X×ρ U

has order < k + 1, we see from Lemma A.32 that ‖φ‖Uk+1(X×ρU) �= 0. Applying

Corollary A.21, this implies that
(
π

(X×ρU)[k]

Ik(X×ρU)

)
∗
d[k]φ �= 0. By the ergodic theorem, we

conclude that the image of J contains a diag
(
G[k]
)
-invariant function Jf . Unpacking

the definitions, this implies that f
(
T

[k]
g z
)
d[k]ρ(g, z) = f(z) for µ[k] a.e. z, which

roughly speaking asserts that ρ is of type < k on the support of f , which is a set
of positive measure. By various cocycle identities one can also conclude that ρ is
of type < k on various shifts of the support of f , which by ergodicity can be glued
together to establish a global type < k condition; see the proof of [HK, Prop. 6.4]
for details. �

In view of Proposition 4.4, Theorem 3.8 will now follow by applying the following
result to the (Fω,X, S1)-cocycle χ ◦ ρ.

Theorem 4.5 (Third reduction). Let F be a finite field, let m,k � 1, and let X
be an ergodic Fω-system of order < k. Let f ∈ M<m(Fω,X, S1) be a (Fω,X, S1)-
function of type < m. Then f is (Fω,X, S1)-cohomologous to a (Fω,X, S1)-phase
polynomial of degree < Ok,m(1). In other words,

M<m(Fω,X, S1) ⊂ P<Ok,m(1)(F
ω,X, S1) · B1(Fω,X, S1) .

Remark 4.6. When k = 1, the only ergodic Fω-systems of order 0 are trivial, and
Theorem 4.5 is easily verified in this case. Unwinding all the previous reductions,
this already establishes the k = 1 case of Theorem 1.20; thus Z<2(X) is precisely the
Kronecker system spanned by the eigenfunctions of X (i.e. the elements of P<2(X)).
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Of course, as is well known, this fact can also be established more directly by classical
spectral theory methods; see for instance the discussion just before [HK, Lem. 4.2].

While we will only need Theorem 4.5 in the case when f is a (Fω,X, S1)-cocycle
of type < m, for inductive purposes it is important that we generalize the claim to
the case where f is a (Fω,X, S1)-function of type < m.

We will prove Theorem 4.5 in later sections. For now, let us observe that we can
use Theorem 1.20 to obtain some structural control on systems of order < k. We
say that a group U is m-torsion for some m � 1 if we have um = 1 for all u ∈ U .

Lemma 4.7 (Structure groups for Fω-systems are finite torsion). Let k � 2 be such
that Theorem 4.5 holds for k− 1. Let F be a finite field of characteristic p, let X be
an ergodic Fω-system of order < k − 1, and let X ×ρ U be an abelian extension of
order < k by a compact abelian group which is also ergodic. Then U is pm-torsion
for some m = Ok(1). If p is sufficiently large depending on k, then we can take
m = 1.

Proof. Since characters separate points, it suffices to show that χ(U) is a pm-torsion
group for every character χ ∈ Û . By Proposition 4.4, χ◦ρ is a (Fω,X, S1)-cocycle of
type < k − 1, and thus by Theorem 4.5 we have χ ◦ ρ = qχ∆• F for some (Fω,X, S1)-
phase polynomial qχ of degree < Ok(1) and some (X, S1)-function F . Clearly qχ is
also a cocycle. By Lemma D.3, qχ takes values in the cyclic group Cpm for some
m = Ok(1), and for p sufficiently large depending on k, one can take m = 1.

As χ is a character, χ(U) is a compact subgroup of S1. The system X×χ◦ρ χ(U)
is then a factor of X×ρ U and is therefore ergodic. Since χ ◦ ρ = qχ∆• F , the system
X′ defined with the same set, σ-algebra, and action as the system X ×qχ S1, but
with the measure µX × µS1 replaced with the measure∫

X′

f(x, u)dµX′ :=

∫

X

∫

χ(U)
f
(
x, F (x)u

)
dµχ(U)(u)dµX (x) ,

is equivalent to X ×χ◦ρ χ(U) and thus also ergodic. On the other hand, since qχ

takes values in Cpm, any set of the form X × A, where A is invariant under Cpm,
will be invariant in X′. These two statements are only consistent with each other if
χ(U) is a subgroup of Cpm, and is thus pm-torsion, as desired. �

Theorem 4.8 (Structure theorem). Let k � 1 be such that Theorem 4.5 holds
for all smaller values of k. Let F be a finite field of characteristic p, and let X be
an ergodic Fω-system. Then Z<1(X) is trivial, and for all 2 � j � k, we can write
Z<j(X) ≡ Z<j−1(X) ×ρj−1 Uj−1 where Uj−1 is pm-torsion for some m = Ok,p(1),
and ρj−1 is a (Fω,Z<j−1(X), Uj−1)-phase polynomial cocycle of degree Ok(1). In
particular, we have

Z<k(X) ≡ U0 ×ρ1 U1 ×ρ2 . . . ×ρk−1
Uk−1

where U0 is trivial.

Proof. Fix F, X. The triviality of Z<1(X) follows from ergodicity. Now suppose
inductively that k � 2, and the claim has already been proven for smaller values of k.
By Proposition 3.4, we can write Z<k(X) ≡ Z<k−1(X)×ρk−1

Uk−1 for some compact
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abelian group Uk−1 and some (Fω,Z<k−1(X), Uk−1)-cocycle ρk−1. By Lemma 4.7,
the compact abelian group Uk−1 is thus pm-torsion for some m = Ok(1) (with
m = 1 if p is large enough). This implies (see [Mor, Ch. 5, Th. 18]) that Uk−1

is topologically isomorphic to the direct product of some cyclic p-groups Cpm for
m = Ok(1). Let χ : Uk−1 → Cpm be one of the coordinate maps. By Theorem 4.5,
χ ◦ ρk−1 is cohomologous to a (Fω,Z<k−1(X), S1)-phase polynomial cocycle qχ of
degree < Ok(1), which by Lemma D.3 also takes values some p-group Cpn for some
n = Ok(1). By increasing n if necessary we can take n � m; but note that if p is
sufficiently large depending on k then we can take n = m = 1.

By construction, there exists a (Z<k−1(X), S1)-function Fχ such that χ ◦ ρk−1 =

qχ∆• Fχ. Since (χ ◦ ρk−1)
pm

= 1, we conclude that 1 = qpm

χ ∆• F pm

χ .
We claim that there exists a (Z<k−1(X), S1)-phase polynomial F̃χ of degree

< Ok(1) such that F pm

χ = F̃ pm

χ . There are two cases. If p is sufficiently large depend-

ing on k, then qpm

χ = 1, so by ergodicity F pm

χ is constant, and the claim is trivial.

Now suppose instead that p = Ok(1). Then ∆• F pm

χ is a (Fω,Z<k−1(X), S1)-phase

polynomial of degree < Ok(1), and so (by (3.1)) F pm

χ is a (Z<k−1(X), S1)-phase
polynomial of degree < Ok(1). By Lemma D.7, we can find a (Z<k−1(X), S1)-phase
polynomial F̃χ of degree < Ok(1) such that F pm

χ = F̃ pm

χ , as claimed.
Now write q′χ := qχ∆• F̃χ and F ′

χ := Fχ/F̃χ, then we have χ ◦ ρ = q′χ∆• F ′
χ. Since

F ′
χ takes values in Cpm, and q′χ does also. By construction, q′χ is thus a (Fω,X, Cpm)-

phase polynomial of degree < Ok(1).
If we let q′ := (q′χ)χ and F ′ := (Fχ)χ, where χ ranges over all the coordinate

projection maps, then q′ is a (Fω,X, U)-phase polynomial of degree < Ok(1) and
ρ = q′∆• F ′. Thus ρ is cohomologous to a phase polynomial of degree < Ok(1), and
thus we may assume (see Remark 2.2) that ρ is equal to a phase polynomial of degree
< Ok(1). The claim then follows from the induction hypothesis. �

Our remaining task is to prove Theorem 4.5.

5 Reduction to Solving a Conze–Lesigne Type Equation

To prove Theorem 4.5 we will use two lemmas to reduce matters to solving a certain
equation of Conze–Lesigne type. The first lemma allows one to descend a type
condition on an extension to a type condition on a base, worsening the type if
necessary:

Lemma 5.1 (Descent of type). Let G be a countable abelian group, let Y be a
G-system, let k,m � 1, and let X = Y ×ρ U be an ergodic abelian extension of Y
by a (G,Y, U)-phase polynomial cocycle ρ of degree < m. Let π : X → Y be the
factor map, and let f be a (Y, S1)-function such that π∗f is of type < k. Then f is
of type < k + m + 1.

Remark 5.2. For cocycles, a more general (and stronger) statement appears in
[HK, Cor. 7.8]. However, for technical reasons, it is necessary for us to work with
more general functions than just cocycles. (But see Corollary 8.11 below.)
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Proof. Note that π∗d[k]f = d[k]π∗f is a
(
G,X[k], S1

)
-coboundary, hence a

(
G,X[k], S1

)
-

cocycle, and so (by Lemma B.1) d[k]f is a
(
G,Y[k], S1

)
-cocycle.

It is convenient to move from k to k+1. By Lemma 4.3(i), π∗f is of type < k+1,
thus we have an

(
X[k+1], S1

)
-function F such that d[k+1](π∗f)(g,x) = ∆• g[k+1]F (x)

for all g ∈ G and µ[k+1]-almost every x ∈ X [k+1].
We view X[k+1] as Y[k+1] × U [k+1]. Since the projection of µ[k+1] on Y[k+1] is

(π∗µ)[k+1], every ergodic component of X[k+1] is an abelian extension of an ergodic
component of Y[k+1], with a Mackey group M � U [k+1] (see for example [FuB]). In
other words, for each ergodic component of Y[k+1], there exists a map G : Y [k+1] →
U [k+1] such that the

(
Fω,Y[k+1], U [k+1]

)
-cocycle

ρ̃(g,y) :=
(
ρ(g,yw)

)
w∈2k+1∆• g[k+1]G(y)

takes values in M (i.e. it is a (Fω,Y[k+1],M)-cocycle). On each ergodic component
of X[k+1], if we set K(y,m) := F (y, G(y)m) then we have

d[k+1]f(g,y) =
K
(
S

[k+1]
g y, ρ̃(g,y)m

)

K(y,m)
.

If we expand into a Fourier series K(y,m) =
∑

χ∈M̂ aχ(y)χ(m) and compare Fourier
coefficients, we conclude

aχ(Sg[k+1]y)χ
(
ρ̃(g,y)

)
= d[k+1]f(g,y)aχ(y)

almost everywhere on any ergodic component. In particular, |aχ| is invariant and
thus constant a.e. on any ergodic component. We extend χ arbitrarily to a character

χ ∈ Û [k+1] ≡ Û [k+1].
On almost every component, at least one of the aχ must be non-vanishing; since

there are at most countably many characters (by the separability of X), we conclude
that for some χ ∈ Û [k+1], we have |aχ| �= 0 on a positive measure collection of ergodic
components. On each such component, if one sets b := aχ/|aχ|, we thus have

d[k+1]f(g,y) = χ
(
ρ̃(g,y)

)
∆• g[k+1]b(y) =

[ ∏

w∈2k+1

χw

(
ρ(g,yw)

)]
∆• g[k+1]Gb(y) ,

where χw are the components of χ. Thus the
(
G,Y[k+1], S1

)
-function

H(g,y) := d[k+1]f(g,y)
/ ∏

w∈2k+1

χw

(
ρ(g,yw)

)

is a (G,A, S1)-coboundary for some diag
(
G[k]
)
-invariant subset A of Y[k+1] of posi-

tive measure.
We now claim that (Th)

[k+1]
α H is also a (G,A, S1)-coboundary for every positive

side transformation (Th)
[k+1]
α H. But a computation shows that

(Th)
[k+1]
α H

H
(g, y) = ∆h[k]d[k]f

(
g, ∂(α)∗(y)

)/ ∏

w∈α

χw

(
∆hρ(g,yw)

)
.

Now we crucially use the fact that d[k]f and ρ are cocycles to write this as
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(Th)
[k+1]
α H

H
(g, y) = ∆g[k]d[k]f

(
h, ∂(α)∗(y)

)/ ∏

w∈α

χw

(
∆gρ(h,yw)

)
.

The right-hand side is then a
(
G,Y[k+1], S1

)
-coboundary, and the claim follows.

Arguing as in the proof of Proposition 4.4, we can glue various translated cobound-
aries together and conclude that H is a (G,Y, S1)-coboundary, thus d[k+1]f(g,y) is(
G,Y[k+1], S1

)
-cohomologous to

∏
w∈2k+1 χw(ρ(g,yw)). On the other hand, the

factors χw(ρ(g,yw)) are of degree < m and thus d[m]χw(ρ(g,yw)) = 0. It then
follows that d[m+k+1]f(g,y) is a

(
G,Y[m+k+1], S1

)
-coboundary, and so f is of type

< m + k + 1 as claimed. �

The second lemma allows us to reduce the type of a function by differentiation
in the vertical direction.

Lemma 5.3 (Vertical differentiation lemma). Let G be a countable abelian group,
let k � 1, and let X = Y×ρ U be a G-system of order < k for some compact abelian
U and a (G,Y, U)-cocycle ρ. Let f be a (G,X, S1)-function of type < m for some
m � 1. Then for every t ∈ U , the (G,X, S1)-function ∆• tf is of type < m−min(k,m),
where t acts on X by the action Vt : (y, u) �→ (y, tu) for y ∈ Y and u ∈ U .

Proof. By hypothesis, there exists a
(
X[m], S1

)
-function F such that d[m]f = ∆• F .

Let α be a m − min(k,m)-dimensional side of 2m. By Lemma A.23(iv), the side

transformation (Vt)
[m]
α leaves µ[m] invariant, and commutes with the diag

(
G[k]
)
-

action. Thus we have d[m](Vt)
[m]
α f = ∆• (Vt)

[m]
α F . Dividing through, we conclude

d[m] (Vt)
[m]
α f

f
= ∆•

(Vt)
[m]
α F

F

and so d[m] (Vt)
[m]
α f
f is a

(
G,X[m], S1

)
-coboundary. This expression can be rewritten

as

d[m] (Vt)
[m]
α f

f
=
(
∂(α)∗

)∗(
d[m−min(k,m)]∆• tf

)
,

and so (∂(α)∗)
∗
(
d[m−min(k,m)]∆• tf

)
is a (G,X[m], S1)-coboundary, and thus a(

G,X[m], S1
)
-cocycle, which (by Lemma B.1) implies that d[m−min(k,m)]∆• tf is a(

G,X[m−1], S1
)
-cocycle. Applying Lemma B.10, we conclude that d[m−min(k,m)]∆• tf

is in fact a (G,X[m−min(k,m)], S1)-coboundary, and so ∆• tf is of type < m−min(k,m)
as desired. �

Because of these two lemmas, Theorem 4.5 will follow from

Theorem 5.4 (Fourth reduction). Let k � 2 and m � 1, and assume that
Theorem 4.5 has already been proven for all smaller values of k. Let F be a finite
field, and let X be an ergodic Fω-system of order < k. Write X = Z<k−1(X)×ρ U for
some abelian (Fω,Z<k−1(X), U)-cocycle ρ. Let f ∈ M<m(Fω,X, S1) be a function
of type < m, be such that

∆• tf ∈ P<m(Fω,X, S1) · B1(Fω,X, S1)
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for all t ∈ U (i.e. ∆• tf is always cohomologous to a phase polynomial of degree < m).
Then f is cohomologous to Pπ∗f̃ for some P ∈ P<Ok,m(1)(F

ω,X, S1), and some

(Fω,Z<k−1(X), S1)-function f̃ , where π is the factor map from X to Z<k−1(X).

Proof of Theorem 4.5 assuming Theorem 5.4. Let k, m, F, X, f be as in
Theorem 4.5. We can assume inductively that Theorem 4.5 has already been proven
for smaller values of k.

We claim for each 0 � j � m that

∆• t1 . . . ∆• tjf ∈ P<Ok,m,j(1)(F
ω,X, S1) · B1(Fω,X, S1) (5.1)

for all t1, . . . , tj ∈ U .
We establish this by downward induction on j. When j = m, the claim follows

by m applications of Lemma 5.3 (and no P<Ok,m,j(1)(F
ω,X, S1) term appears in this

case). Now suppose that 0 � j < m and the claim (5.1) has already been shown for
j+1. Applying Theorem 5.4, we see that for all t1, . . . , tj , ∆• t1 . . . ∆• tjf is (Fω,X, S1)-

cohomologous to Pt1,...,tjπ
∗f̃t1,...,tj for some Pt1,...,tj ∈ P<Ok,m,j(1)(F

ω,X, S1) and f̃ ∈
M(Fω,Z<k−1(X), S1).

Since f is of type < m, and the U action commutes with the G action, we
see that ∆• t1 . . . ∆• tjf is also of type < m. By Lemma 4.3(ii) and (iii), we conclude

that the (Fω,X, S1)-function π∗f̃t1,...,tj is of type < Ok,m,j(1). Applying Lemma 5.1,

we conclude that the (Fω,Z<k−1(X), S1)-function f̃t1,...,tj is of type < Ok,m,j(1).

Applying the inductive hypothesis, we conclude that f̃t1,...,tj is (Fω,Z<k−1(X), S1)-
cohomologous to a (Fω,Z<k−1(X), S1)-phase polynomial of degree < Ok,m,j(1). By
functoriality, this implies that π∗f̃t1,...,tj is (Fω,X, S1)-cohomologous to a (Fω,X, S1)-
phase polynomial of degree < Ok,m,j(1). Since ∆• t1 . . . ∆• tjf was (Fω,X, S1)-cohomo-

logous to Pt1,...,tjπ
∗f̃t1,...,tj , the claim (5.1) follows.

Theorem 4.5 now follows by specializing (5.1) to the case j = 0. �

It remains to establish Theorem 5.4.

6 Reduction to a Finite U

The purpose of this section is to obtain the following reduction.

Proposition 6.1 (Reduction to finite U). In order to prove Theorem 5.4, it
suffices to do so in the case when U is finite.

Proof. Fix k, and assume that Theorem 5.4 has already been proven in the case of
finite U . Let m, F,X, ρ, U, f be as in Theorem 5.4. By Theorem 4.8 we may assume
that ρ is a (Fω,Z<k−1(X), U)-phase polynomial of degree < Ok,p(1). By hypothesis,
for each t ∈ U there exists qt ∈ P<m(Fω,X, S1) and Ft ∈ M(X, S1) such that

∆• tf = qt∆• Ft . (6.1)

By Lemma C.4 we can take qt, Ft to be measurable with respect to t.
The next step is to linearize qt on an open subgroup of U , by arguing as follows.

Let t, u ∈ U . Then the cocycle identity ∆• tuf = (∆• t(Vuf))∆• uf and (6.1) give

qtu∆• Ftu = (Vuqt)qu∆•
(
(VuFt)Fu

)
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and hence

∆•
Ftu

(VuFt)Fu
∈ P<m(Fω,X, S1)

and thus (by (3.1)), the function

φt,u :=
Ftu

(VuFt)Fu
(6.2)

is a (X, S1)-phase polynomial of degree < m + 1.
Let ε > 0 be a small number. By Lusin’s theorem, the function t → Ft is equal

to a uniformly continuous function (in L2(X)) outside of an open set E of measure
O(ε) in U . In particular, there exists an open neighborhood U ′ of the identity in U
such that Ftu and VuFt both lie within O(ε) of Ft whenever u ∈ U ′ and t, tu �∈ E.
In particular, we see that φt,u lies within O(ε) of Fu when u ∈ U ′ and t, tu �∈ E.
Applying Lemma C.1 and taking ε small enough, we conclude that for each u ∈ U ′

there exists φ′
u ∈ P<m+1(X, S1) such that φt,u/φ′

u is constant whenever t, tu �∈ E.
Arguing as in the proof of Lemma C.4 we can ensure that u �→ φ′

u is measurable.
Now let u, v ∈ U ′. From (6.2) we have the second-order cocycle identity

φuv,wφu,v = φu,vwVuφv,w for all w ∈ U . If ε is small enough, we can find w so
that w, vw, uvw �∈ E. We conclude that

φu,v = c(u, v)
φ′

uVuφ′
v

φ′
uv

(6.3)

for some constant c(u, v). If we then set F ′
u := Fu/φ′

u and q′u := qu∆• φ′
u for u ∈ U ,

then q′u is a (G,X, S1)-phase polynomial of degree < m, and we conclude from (6.1)
that

∆• uf = q′u∆• F ′
u (6.4)

for all u ∈ U , while from (6.2), (6.3) we have ∆• F ′
uv

(VuF ′
v)F ′

u
= 1 and thus (by (6.4))

q′uv

(Vuq′v)q
′
u

= 1 (6.5)

for u, v ∈ U ′.
Now we make a crucial use of the finite characteristic hypothesis. By Lemma 4.7,

U is pn-torsion for some n = Ok(1). By Lemma D.1, we conclude that U ′ contains
an open subgroup of U ; by reducing U ′ if necessary, we may assume that U ′ is in
fact equal to an open subgroup.

Now we pass from U to U ′ as follows. By Lemma D.2, we may write U =
U ′ × W for some finite group W (shrinking U ′ if necessary). We can then factorise
X = Z<k−1(X) ×ρ U as X = Y ×ρ′ U ′, where Y := Z<k−1(X) ×ρ′ W and ρ′, ρ′′ are
the projections of ρ to U ′ and W respectively. Note that ρ′ is a (Fω,Y, U ′)-phase
polynomial of degree < Ok(1) (since ρ is also).

Applying Lemma B.6 once for each g ∈ Fω and then pasting together, we may
write q′u = ∆• uQ for all u ∈ U and some (G,X, S1)-phase polynomial Q of degree
< Ok,m(1). If we let f ′ be the (Fω,X, S1)-function f ′ := f/Q, we thus conclude
from (6.4) that ∆• uf ′ = ∆• F ′

u for all u ∈ U ′.
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The compact abelian group U acts freely on X in a manner commuting with
the G action, and so the compact abelian subgroup U ′ does also. We can thus
apply Lemma B.8 and conclude that f ′ is (Fω,X, S1)-cohomologous to a (Fω,X, S1)-
function f ′′ which is invariant with respect to some open subgroup U ′′ of U ′.

Let σ : U → U/U ′′ be the quotient map, let X′ := Z<k−1(X) ×σ◦ρ U/U ′′, and let
π : X → X′ be the associated factor map. Then we can write f ′′ = π∗f̃ for some
(Fω,X′, S1)-function f̃ . By functoriality, X′ is of order < k.

By construction, π∗f̃ is cohomologous to f ′ = f/Q. Since f has type < m and
Q is a phase polynomial of degree < Ok,m(1), we see from Lemma 4.3(ii) and (iii)
that π∗f̃ is a (Fω,X, S1)-function of type < Ok,m(1).

From (6.1) and the polynomial nature of Q, we know that π∗∆• tf̃ = ∆• tπ
∗f̃

is (Fω,X, S1)-cohomologous to a (Fω,X, S1)-phase polynomial of degree < Ok,m(1).
By Lemma B.11, ∆• tf̃ is thus (Fω,X′, S1)-cohomologous to a (Fω,X′, S1)-phase poly-
nomial of degree < Ok,m(1), times a function of the form χ ◦ ρ ◦ πX′

Z<k−1(X) for some

χ ∈ Û . But recall that ρ is a (Fω,Z<k−1(X), U)-phase polynomial of degree < Ok(1).
We conclude that ∆• tf̃ is (Fω,X′, S1)-cohomologous to a (Fω,X′, S1)-phase polyno-
mial of degree < Ok,m(1). We can now invoke Theorem 5.4 for the finite group
U/U ′′ and conclude that f̃ is (Fω,X′, S1)-cohomologous to P

(
πX′

Z<k−1(X)

)∗
f̃ ′ for some

(Fω,X′, S1)-phase polynomial P of degree < Ok,m(1), and some (Fω,Z<k−1(X), S1)-
function f̃ ′. Since f is cohomologous to Qπ∗f̃ , we obtain the desired factorization
of f required to establish Theorem 5.4. �

7 The Finite Group Case

Proposition 7.1 (The finite case). Theorem 5.4 is true when U is finite.

Proof. Let k,m, F,X, ρ, U, f be as in Theorem 5.4, and let p be the characteristic of F.
By Lemma 4.7, U is a finite abelian group which is pn-torsion for some n = Ok(1),
and so by the classification of finite abelian groups we may assume that

U = Cpn1 × . . . × CpnN

for some 1 � n1, . . . , nN � Ok(1) and some finite (but unbounded) N . When p is
large enough, depending on k, we can take n1 = . . . = nN = 1.

Let e1, . . . , eN be the standard set of generators of U . By hypothesis, for every
1 � j � N we can find pj ∈ P<m(Fω,X, S1) and Fj ∈ M(X, S1) such that

∆• ejf = pj∆• Fj . (7.1)

The idea here is to express Fj as ∆• ejF times a polynomial error, for some F inde-
pendent of j; we will then “integrate” this to express f as ∆• F times a polynomial
error, times a function invariant under e1, . . . , eN ; this is basically what we need to
establish Theorem 5.4.

We turn to the details. The first task is to measure two potential obstructions
to Fj being expressible as ∆• ejF (modulo polynomial errors), namely the obstruc-
tion coming from the torsion of U , and the obstruction coming from the multi-
dimensionality of U .
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Observe that we have the telescoping identity

pnj−1∏

t=0

Vet
j
∆• ejf = 1 (7.2)

and thus by (7.1)

∆•
pnj−1∏

t=0

Vet
j
Fj ∈ P<m(Fω,X, S1)

and so (by (3.1)) we have

pnj−1∏

t=0

Vet
j
Fj ∈ P<m+1(X, S1) . (7.3)

Note, conversely, that
∏pnj−1

t=0 Vet
j
Fj needed to be polynomial in order to have any

chance to express Fj as ∆• ejF times a polynomial.
Suppose now that p is sufficiently large depending on k, so that nj = 1. By

Lemma D.3 we have
∏pnj−1

t=0 Vet
j
pj = 1, and hence by (7.2), (7.1), we may now

strengthen (7.3) to

∆•
pnj−1∏

t=0

Vet
j
Fj = 1 .

In a similar fashion, from the commutation identity ∆• ei∆• ejf/∆• ej∆• eif = 1 for
any 1 � i, j � N , we see from Lemma B.5(i) and (7.1) that

∆•

(
∆• eiFj

∆• ejFi

)
∈ P<m−1(F

ω,X, S1)

and hence by (3.1) we have

∆• eiFj

∆• ejFi
∈ P<m(Fω,X, S1) . (7.4)

Again, observe that ∆• eiFj/∆• ejFi had to be polynomial in order to have a chance to
express Fi, Fj as ∆• eiF , ∆• ejF modulo polynomials.

We now clean up the first condition (7.3). We claim that there exists a ej-

invariant phase polynomial Ψj ∈ P<Ok,m(1)(X, S1) such that
∏pnj−1

t=0 Vet
j
Fj = Ψpnj

j .

When p is sufficiently large depending on k, then as observed before,
∏pnj−1

t=0 Vet
j
Fj

is constant, and the claim is trivial, so suppose instead then p = Ok(1). By (7.3),

the (X, S1)-function
∏pnj−1

t=0 Vet
j
Fj is polynomial of degree < m + 1. By inspection,

it is also ej-invariant. Quotienting out by the ej action, applying Corollary D.7, and
pulling back, we obtain the claim in this case.

If we then write F̃j := Fj/Ψj, then by construction we have

pnj−1∏

t=0

Vet
j
F̃j = 1 (7.5)
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and
∆• ejf ∈ (∆• Fj) · P<Ok,m(1)(F

ω,X, S1) , (7.6)

while from (7.4) we have

∆• ei F̃j

∆• ej F̃i

∈ P<Ok,m(1)(F
ω,X, S1) . (7.7)

Note from (7.5) and Lemma D.3 that the F̃i take values in CpM for some M =
Ok,m(1); when p is sufficiently large depending on k, m, then we can take M = 1.

Recall that in the N -dimensional Euclidean space RN , a (smooth) vector field

(F̃i)1�i�N which obeys the curl-free condition ∂Fi
∂xj

− ∂Fj

∂xi
= 0 can be expressed as a

gradient F̃i = ∂F/∂xi, where F can be given explicitly by the formula

F
(
(t1, . . . , tN )

)
:=

N∑

i=1

∫ ti

0
F̃i

(
(t1, . . . , ti−1, t

′
i, 0, . . . , 0)

)
dt′i .

If in addition the F̃i are periodic modulo ZN , and obey the necessary condition∫ 1
0 F̃i(x + tiei)dti = 0 for all 1 � i � N and x ∈ RN , then the function F defined

above is also periodic modulo ZN and descends to the torus RN/ZN .
We can perform exactly the same construction in our finite multiplicative setting.

By Theorem 4.8, we may write X = Z<k−1(X)×ρ U where ρ is a (Fω,Z<k−1(X), U)-
phase polynomial cocycle of degree < Ok(1). We adopt the notation

[t1, . . . , tN ] := et1
1 . . . etN

N

for any integers t1, . . . , tN , thus for instance [t1, . . . , tN ] is periodic in tj with
period pnj . We let F be the (X, S1) function defined by the formula

F
(
y, [t1, . . . , tN ]

)
:=

N∏

i=1

∏

0�t′i<ti

F̃i

(
y, [t1, . . . , ti−1, t

′
i, 0, . . . , 0]

)

for y ∈ Z<k−1(X) and t1, . . . , tN ∈ Z, with the convention that
∏

0�t′i<ti
at′i

:=
(∏

ti�t′i<0 at′i

)−1
when ti is negative. Note from (7.5) that the right-hand side here

is periodic in tj with period pnj , and so F is well-defined. Since the F̃i take values
in a cyclic group CpM , F does also.

Now we compute a derivative of F . We clearly have

∆• ejF
(
y, [t1, . . . , tN ]

)
=

N∏

i=1

∏

0�t′i<ti

∆• ej F̃i

(
y, [t1, . . . , ti−1, t

′
i, 0, . . . , 0]

)

for any 1 � j � N . On the other hand, we have the telescoping identity

N∏

i=1

∏

0�t′i<ti

∆• eiF̃j

(
y, [t1, . . . , ti−1, t

′
i, 0, . . . , 0]

)
= F̃j

(
y, [t1, . . . , tN ]

)/
F̃j(y, 1)
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and thus

∆• ejF
(
y, [t1, . . . , tN ]

)
=

F̃j(y, [t1, . . . , tN ])

F̃j(y, 1)

N∏

i=1

∏

0�t′i<ti

ωij

(
y, [t1, . . . , ti−1, t

′
i, 0, . . . , 0]

)

(7.8)
where ωij := ∆• ej F̃i/∆• eiF̃j .

Since ρ has degree < Ok(1), the map (y, u) �→ u is a (X, U)-phase polynomial of
degree < Ok(1), which implies for any fixed 1 � i � N and 0 � t′i < pni that the
map (y, [t1, . . . , tN ]) �→ [t1, . . . , ti−1, t

′
i, 0, . . . , 0] is also a (X, U)-phase polynomial of

degree < Ok(1), since the map from [t1, . . . , tN ] to [t1, . . . , ti−1, t
′
i, 0, . . . , 0] is a homo-

morphism. By Lemma B.5(iii), we conclude that the functions (y, [t1, . . . , tN ]) �→
F̃i(y, [t1, . . . , ti−1, t

′
i, 0, . . . , 0]) are (X, S1)-phase polynomials of degree < Ok,m(1) for

all 1 � i � N . The map (y, [t1, . . . , tN ]) �→ ti is also a (X, S1)-phase polynomial of
degree < Ok,m(1). Also, by (7.7), the ωij are (X, S1)-phase polynomials of degree
< Ok,m(1). We now claim that

(
y, [t1, . . . , tN ]

)
�→
∏

0�t′i<ti

ωij

(
y, [t1, . . . , ti−1, t

′
i, 0, . . . , 0]

)

is also a (X, S1)-phase polynomial of degree < Ok,m(1).
When p = Ok,m(1), this claim follows from Corollary D.6, so suppose now that

p is sufficiently large depending on k,m. Then ωij(y, [t1, . . . , ti−1, t
′
i, 0, . . . , 0]) is

a phase polynomial of degree Ok,m(1) in t′i that takes values in Cp. By Taylor
expansion we may thus write

ωij

(
y, [t1, . . . , ti−1, t

′
i, 0, . . . , 0]

)
=

∏

0�j�Ok,m(1)

[
∆• j

ei
ωij(y, [t1, . . . , ti−1, 0, 0, . . . , 0])

](t′i
j )

and thus
∏

0�t′i<ti

ωij

(
y, [t1, . . . , ti−1, t

′
i, 0, . . . , 0]

)

=
∏

0�j�Ok,m(1)

[
∆• j

ei
ωij(y, [t1, . . . , ti−1, 0, 0, . . . , 0])

]( ti
j+1).

The claim now follows from Lemma B.5.
Inserting the above claim into (7.8) we conclude that

F̃j ∈ ∆• ejF (π∗F ′
j) · P<Ok,m(1)(F

ω,X, S1)

where F ′
j(y, u) := F̃j(y, 1), and hence by (7.6)

∆• ejf ∈ (∆• ej∆• F ) · (π∗∆• F ′
j) · P<Ok,m(1)(F

ω,X, S1) .

Thus if we set f ′ := f/∆• F , then f is cohomologous to f ′ and

∆• ejf
′ ∈ (π∗∆• F ′

j) · P<Ok,m(1)(F
ω,X, S1) . (7.9)

Now we need to work on the F ′
j term. From the telescoping identity∏

0�tj<pnj V
e
tj
j

∆• ejf
′ = 1 and (7.9), we have

π∗∆• (F ′
j)

pnj ∈ P<Ok,m(1)(F
ω,X, S1) ;
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pushing forward by π and then using (3.1), we conclude

(F ′
j)

pnj ∈ P<Ok,m(1)

(
Fω,Z<k−1(X), S1

)
.

In the case that p is sufficiently large depending on k,m, we see from Lemma D.3
that we have the improvement π∗∆• (F ′

j)
pnj

= 1, and so (F ′
j)

pnj
is constant in this

case.
We now claim that F ′

j = qjF
′′
j , where qj ∈ P<Ok,m(1)(F

ω,Z<k−1(X), S1) and F ′′
j

takes values in Cpnj . For p sufficiently large depending on k,m, this is immedi-
ate from the previous discussion; for p = Ok,m(1), the claim follows instead from
Corollary D.7.

Inserting this claim back into (7.9) we obtain

∆• ejf
′ ∈ (π∗∆• F ′′

j ) · P<Ok,m(1)(F
ω,X, S1) . (7.10)

Now let F ∗ be the (X, S1)-function F ∗(y, [t1, . . . , tN ]) :=
∏N

j=1 F ′′
j (y)tj ; this is

well-defined since F ′′
j takes values in Cpnj . We observe that π∗∆• F ′′

j = ∆• ej∆• F ∗.

Thus if f ′′ := f ′/F ∗, then f ′′ is (X, S1)-cohomologous to f and
∆• ejf

′′ ∈ P<Ok,m(1)(F
ω,X, S1) for all 1 � j � N . By repeated use of the cocycle

identity ∆• uu′f ′′ = (∆• uf)Vu(∆• u′f) we conclude that ∆• uf ′′ ∈ P<Ok,m(1)(F
ω,X, S1)

for all u ∈ U . Applying Lemma B.6 once for each g ∈ Fω we may thus write
∆• uf ′′ = ∆• uP for some P ∈ P<Ok,m(1)(F

ω,X, S1). Thus f ′′/P is U -invariant, and so

f ′′ = Pπ∗f̃ for some (Fω,Z<k−1(X), S1)-function f̃ , and Proposition 7.1 follows. �

From Proposition 7.1 and Proposition 6.1, we obtain Theorem 5.4, and thus
Theorem 3.3.

8 The High-Characteristic Case

We now develop high-characteristic analogues of the above theory, establishing the
sharp Theorem 1.19 instead of Theorem 1.20 in this setting. The arguments here
will be similar to those used to prove Theorem 1.20; the main new difficulty is to
be careful to not lose anything in the degree of various functions beyond what is
absolutely necessary.

8.1 Preliminary reductions. Just as Theorem 1.20 follows from Theorem 4.5,
Theorem 1.19 will follow from

Theorem 8.1 (First reduction of high-characteristic case). Let F be a finite field,
let 1 � k � char(F), and let X be an ergodic Fω-system of order < k − 1. Let
f ∈ Z1

<k(F
ω,X, S1) be a (Fω,X, S1)-cocycle of type < k. Then f is (Fω,X, S1)-

cohomologous to a (Fω,X, S1)-phase polynomial of degree < k.

The deduction of Theorem 1.19 from Theorem 8.1 is completely analogous to
the corresponding derivation of Theorem 1.20 from Theorem 4.5 and is omitted.
It remains to establish Theorem 8.1. It should not be surprising that this will be
accomplished by an induction on k. But it will also be convenient to induct on a
secondary parameter j, measuring the order of X. For technical reasons, in this
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induction the function f will no longer be a cocycle, but instead have two weaker
properties, which we refer to as being a quasi-cocycle and a line cocycle respectively:

Definition 8.2 (Quasi-cocycles). Let G be a countable abelian group, let X be
an ergodic G-system, and let f be a (G,X, S1)-function. Let k ≥ 0. We say that f
is a (G,X, S1)-quasi-cocycle of order < k if, for every g, g′ ∈ G, one has

f(g + g′, x) = f(g, Tg′x)f(g′, x)pg,g′(x)

for some pg,g′ ∈ P<k(X, S1).

Examples 8.3. A (G,X, S1)-cocycle is precisely a (G,X, S1)-quasi-cocycle of order
< 0. Every quasi-cocycle of order < k is of course a quasi-cocycle of order < k + 1;
in particular, cocycles are quasi-cocycles of every order. Every (G,X, S1)-phase
polynomial of order < k is also a (G,X, S1)-quasi-cocycle of order < k. The space
of (G,X, S1)-quasi-cocycles of order < k form a group. One can of course define
this concept for compact abelian groups other than S1, but we will only need the
S1 quasi-cocycles in our arguments.

Definition 8.4 (Line cocycle). Let F be a finite field of characteristic p, let X be
an ergodic Fω-system, and let f be a (Fω,X, S1)-function. We say that f is a line

cocycle if for every g ∈ Fω,
∏p−1

j=0 f(g, Tgj x) = 1 for µ-a.e. x.

Example 8.5. Every (Fω,X, S1)-cocycle is a line cocycle, and the set of line cocycles
forms a group. In particular, any function cohomologous to a line cocycle is again a
line cocycle.

It is clear that Theorem 8.1 then follows from the j = k case of

Theorem 8.6 (Second reduction of high-characteristic case). Let F be a finite
field, let 1 � j, k � char(F), and let X be an ergodic Fω-system of order < j.
Let f ∈ M<k(F

ω,X, S1) be a (Fω,X, S1)-function of type < k which is also a line
cocycle and a quasi-cocycle of order < k − 1. Then f is (Fω,X, S1)-cohomologous
to a (Fω,X, S1)-phase polynomial P of degree < k; furthermore, P takes values in
the cyclic group Cp = {z ∈ S1 : zp = 1}.

8.2 Vertical differentiation. We now begin the proof of Theorem 8.6. We
first deal with the easy case k = 1. In this case, f is a quasi-cocycle of order < 0,
and is thus a cocycle. By hypothesis, d[1]f is a

(
Fω,X[1], S1

)
-coboundary, which

by Lemma B.9 implies that f is cohomologous to a constant c(g), thus f(g, x) =
c(g)∆• gF (x) for some (X, S1)-function F . Since f is a cocycle, c is a character, and
thus takes values in Cp, and the claim follows.

Now suppose that 2 � k � char(F) and assume inductively that the claim has
already been proven for smaller values of k. In particular, Theorem 8.1 holds for
smaller values of k. On the other hand, by repeating the proof of Theorem 4.8, we
have the following structure theorem:

Corollary 8.7 (Exact structure theorem, high characteristic). Let F be a finite
field, and let 1 � k � char(F) be such that Theorem 8.1 holds for all values smaller
equal than k. Let X be an ergodic Fω-system. Then Z<1(X) is trivial, and for all



GAFA AN INVERSE THEOREM FOR THE ERGODIC Fω UNIFORMITY SEMINORMS 1569

2 � j � k, we can write Z<j(X) ≡ Z<j−1(X) ×ρj−1 Uj−1, where Uj−1 is char(F)-
torsion and ρj−1 is a (Z<j−1(X), Uj−1)-phase polynomial of degree < j − 1. In
particular, we have

Z<k(X) ≡ U0 ×ρ1 U1 ×ρ2 . . . ×ρk−1
Uk−1

where U0 is trivial.

Note that the torsion of the groups Uj here is just char(F) rather than a power of
char(F), due to the high-characteristic hypothesis (see Lemma 4.7). By hypothesis,
Corollary 8.7 is applicable for our fixed value of k.

When j = 1, then X is a point, and the claim is trivial. Now suppose 2 � j �

char(F) and assume inductively that the claim has already been proven for the same
value of k and all smaller values of j.

We first deal with the low-order case j � k, returning to the high-order case
j > k later. We use Corollary 8.7 to write X = Z<j−1(X) ×ρj−1 Uj−1.

Let t ∈ Uj−1. We observe the following properties of the (Fω,X, S1)-
function ∆• tf :

Lemma 8.8 (Exact differentiation). ∆• tf is a line cocycle, is of type < k − j + 1,
and is a quasi-cocycle of order < k − j.

Proof. The first claim follows from the fact that f is a line cycle, and that the
action Vt of t on X commutes with the Fω action. The second claim follows from
Lemma 5.3.

Finally, we prove the quasi-cocycle claim. As the action Vt of t commutes with
the action of Fω, it suffices from Definition 8.2 to show that ∆• t maps P<k−1(X, S1)
to P<k−j(X, S1).

Let f ∈ P<k−1(X, S1), then by Lemma 4.3(iii), d[k−1]f = 0 µ[k−1]-a.e. Let α be

a (k − j)-face of 2k−1. By Lemma A.23(iv), (Vt)
[k−1]
α preserves µ[k−1]. We conclude

that (Vt)
[k−1]
α

(
d[k−1]f

)
= 0 µ[k−1]-a.e. Dividing these two equations, we conclude

that
(Vt)

[k−1]
α

(
d[k−1]f

)/(
d[k−1]f

)
=
(
∂(α)∗

)∗(
d[k−j]∆• tf

)
= 0

µ[k−1]-a.e. Since ∂(α)∗ pushes forward µ[k] to µ[k−j] (see Lemma A.15), we conclude
that d[k−j]∆• tf = 0 µ[k−j]-a.e.. Applying Lemma 4.3(iii) again we conclude that
∆• tf ∈ P<k−j(X, S1) as required. �

By the induction hypothesis, ∆• tf is (Fω,X, S1)-cohomologous to a (Fω,X, S1)-
phase polynomial qt of degree < k − j + 1 which takes values in Cp. Since ∆• tf is a
line cocycle and a quasi-cocycle of order < k − j, qt is also.

8.3 Reduction to the finite U case. We now argue (as in Proposition 6.1)
that in order to conclude the proof of Theorem 8.6, it suffices to do so in the case
when the vertical structure group Uj−1 is finite.

To do this, we follow the procedure as in Proposition 6.1, to make qt a U ′-
cocycle for an open subgroup U ′ of Uj−1. Note that the modifications done to qt in
this procedure are by Fω-cocycles of degree < k − j + 1, so none of the properties
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of qt are damaged (it is still a k− j +1 side cocycle, a line cocycle, and of the correct
degree).

As in Proposition 6.1, we can write Uj−1 = U ′×W for some finite W , and write
X = Y ×ρ′ U ′, where Y := Z<j−1(X) ×ρ′′ W and ρ′, ρ′′ are the projections of ρj−1.
Note that as ρj−1 is of degree < j, ρ′ is also. We write x ∈ X as x = (y, u) for y ∈ Y
and u ∈ U ′.

We now invoke the following variant of Lemma B.6 which is more efficient with
the degree.

Proposition 8.9 (Exact integration). Let G be a countable abelian group, let
j � 0, let U be a compact abelian group, and let X = Y×ρU be an ergodic G-system
with Y � Z<j(X), where ρ a (G,Y, U)-phase polynomial cocycle of degree < j. For
any t ∈ U , let pt(x) be a (X, S1)-phase polynomial of degree < l, and suppose
that for any t, s ∈ U , pt·s(x) = pt(Vsx) · ps(x). Then there exists a (X, S1)-phase
polynomial Q(x) of degree < l + j such that ∆• tQ(x) = pt(x). Furthermore, we can
take Q(y, uu0) := pu(y, u0) for some u0 ∈ U .

Remark 8.10. In the converse direction, one can show (by using the properties of
the nilpotent group G[k] studied in [HK]) that if Q has degree < l + j, then ∆• tQ has
degree < l. This may explain the terminology “exact”.

We will prove this proposition in section 8.6. Assuming it for now, we see (by
applying it once for each g) that we can write qt = ∆• tQ for all t ∈ U ′ and some
(Fω,X, S1)-phase polynomial of degree < k, such that Q(g, y, uu0) = qu(g, y, u0) for
all y ∈ Y , u ∈ U ′, and some u0 ∈ U ′. Since qt takes values in Cp, we see that Q does
also.

We now claim that Q is a (Fω,X, S1)-quasi-cocycle of order < k − 1. Indeed, for
any g, h ∈ G and x = (y, uu0) ∈ X, we have

Q(g + h, x)

Q(g, x)Q(h, Tgx)
=

Q(g + h, x)

Q(g, x)Q(h, x)∆• gQ(h, x)

=
qu(g + h, y, u0)

qu(g, y, u0)qu(h, y, u0)∆• gQ(h, x)

=
qu(g + h, y, u0)

qu(g, y, u0)qu(h, Tgy, ρj−1(g, y)u0)

qu(h, Tgy, ρj−1(g, y)u0)

qu(h, y, u0)∆• gQ(h, x)

= Pu,g,h(y, u0)
∆• gqu(h, x)

∆• gQ(h, x)

where Pu,g,h(x) := qu(g + h, x)/qu(g, x)qu(h, Tgx). Fix g, h. Since qu and Q are
(Fω,X, S1)-phase polynomials of degree < k − j + 1 and < k respectively, we see
that ∆• gqu(h, x)/∆• gQ(h, x) is a phase polynomial in x of degree < k − 1. Also, as qu

is a quasi-cocycle of order < k − j, we see that Pu,g,h is a (X, S1)-phase polynomial
of degree < k − j. Since qu is a cocycle in u, Pu,g,h is also. Applying Proposition
8.9 we conclude that Pu,g,h(y, u0) is a (X, S1)-phase polynomial of degree < k − 1.
Putting this all together we see that Q(g + h, x)/Q(g, x)Q(h, Tgx) is a (X, S1)-phase
polynomial of degree < k − 1, and the claim follows.
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Write f ′ := f/Q, then (as in Proposition 6.1) f ′ is a (Fω,X, S1)-function with the
property that ∆• uf ′ is a (Fω,X, S1)-coboundary for all u ∈ U ′. Applying Lemma B.8
just as in Proposition 6.1, we conclude that f ′ is (Fω,X, S1)-cohomologous to an
(Fω,X, S1)-function f ′′ which is invariant with respect to some open subgroup U ′′

of U ′. Thus we can write f ′′ = π∗f̃ for some (Fω,X′, S1)-function f̃ , where X′ :=
Z<j(X)×σ◦ρ<j−1 Uj−1/U

′′, σ : Uj−1 → Uj−1/U
′′ is the quotient map, and π : X → X′

is the factor map.
Since Q takes values in Cp and is of degree < p, we see from Lemma D.3 that

Q is a line cocycle. Since π∗f̃ is cohomologous to f/Q, we conclude that π∗f̃ , and
hence f̃ , are also line cocycles. Similarly, since f,Q are (Fω,X, S1)-quasi-cocycles of
order < k−1, π∗f̃ is also, which implies in turn that f̃ is a (Fω,X′, S1)-quasi-cocycle
of order < k − 1 (cf. Lemma B.1).

From Lemma 4.3(iii) see that Q has type < k. Since f also has type < k, we
conclude that π∗f̃ has type < k also. We now use the following variant of Lemma5.1,
which does not concede any losses in the type:

Proposition 8.11 (Exact descent). Let G be a discrete countable abelian group
and k � 0. Let X be an ergodic G-system of order < k. Let Y be a factor of X,
with factor map π : X → Y. Suppose that f is a (G,Y, S1)-quasi-cocycle of order
< k. If π∗f is of type < k, then f is of type < k.

We will prove this proposition in section 8.7. Assuming it for now, we conclude
that f̃ is of type < k. Observe that X′ is an extension of Z<j−1(X) = Z<j−1(X

′)
by a finite abelian group by a cocycle of degree < j − 1. If Theorem 8.6 (for this
choice of k and j) has already been established in the case when Uj−1 is finite,
then f̃ is (Fω,X′, S1)-cohomologous to a (Fω,X′, S1)-phase polynomial of degree
< k. Pulling this back by π, we conclude that f ′′ is (Fω,X, S1)-cohomologous to a
(Fω,X, S1)-phase polynomial of degree < k. Since f ′′ is (Fω,X, S1)-cohomologous
to f/Q, and Q is also a (Fω,X, S1)-phase polynomial of degree < k, we conclude
that f is (Fω,X, S1)-cohomologous to a (Fω,X, S1)-phase polynomial of degree < k,
and Theorem 8.6 follows.

The remaining tasks (in the low-order case j � k) are to verify Theorem 8.6 in
the case of finite Uj−1, and to also verify Proposition 8.9 and Proposition 8.11.

8.4 The finite group case. We now establish Theorem 8.6 in the case when
Uj−1 is finite. This is the analogue of Proposition 7.1, but our arguments here are
somewhat simpler thanks to the high characteristic (which allows us to use the full
power of Lemma D.3).

Since Uj−1 is finite and p-torsion, we can write Uj−1 = CL
p for some finite L.

We will now induct on the dimension L. The case L = 0 is trivial, so suppose
inductively that L � 1 and that the claim has already been proven for L − 1. We
write Uj−1 = CL−1

p ×〈e〉, where e is a generator of Cp. Recall that ∆• ef is (Fω,X, S1)-
cohomologous to a (Fω,X, S1)-phase polynomial qe of degree < k− j +1 which takes
values in Cp. We now extend this from e to 〈e〉 in a manner which is a cocycle with
respect to this parameter.
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Fix qe, and then define the (Fω,X, S1)-function qes for all 0 � s < p by the
formula qes(g, x) :=

∏s−1
i=0 qe(g, V i

e x). Since qe is a (Fω,X, S1)-phase polynomial of
degree < k − j + 1, qes is also. Since ∆• ef is (Fω,X, S1)-cohomologous to qe, we see
from the cocycle identity

∆• esf(g, x) =

s−1∏

i=0

∆• ef(g, V i
e x) (8.1)

that ∆• uf is (Fω,X, S1)-cohomologous to qu for all u ∈ 〈e〉.
By repeated application of Lemma 8.8, we know that qe has degree < p with

respect to differentiation ∆• e in the e direction. By Lemma D.3, we conclude that∏p−1
i=0 qe(g, V i

e x) = 1, and thus the qes form a cocycle in the es variable, in the sense
that

quv(g, x) = qu(g, x)qv(g, Vux) (8.2)

for all g ∈ Fω, u, v ∈ 〈e〉, and µ-a.e. x. Applying Proposition 8.9, we may find a
(Fω,X, S1)-phase polynomial Q of degree < k such that qu = ∆• uQ for all u ∈ 〈e〉.
Since qe takes values in Cp, Q does also, and thus (by Lemma D.3) is a line cocycle.

By repeating the arguments in the previous section, we also see that Q is a
(Fω,X, S1)-quasi-cocycle of order < k − 1.

Recall that ∆• ef is (Fω,X, S1)-cohomologous to qe = ∆• eQ, thus we can find an
(X, S1)-function Fe such that ∆• ef = (∆• eQ)∆• Fe. Using the cocycle identity (8.1)
for f and Q we conclude that ∆•

∏p−1
i=0 V i

e Fe = 1 and thus by ergodicity,
∏p−1

i=0 V i
e Fe

is equal to some constant in S1. Taking pth roots, we can express this constant as
cp for some c ∈ S1; dividing the Fe by this constant (which does not affect any of
the properties of Fe), we may take c = 1, thus

∏p−1
i=0 V i

e Fe = 1. If we then define
Fes :=

∏s−1
i=0 V i

e Fe for 0 � s < p, then the Fes form a cocycle in the es variable in
the sense of (8.2). Applying Lemma B.4, this cocycle is a coboundary, thus we can
write Fe = ∆• eF for some (X, S1)-function F . We conclude that ∆• e

f
Q∆• F = 1, thus

f/Q is cohomologous to a function which is 〈e〉-invariant. We can now argue as in
the preceding subsection (with 〈e〉 playing the role of U ′′) to deduce Theorem 8.6
for Uj−1 = CL

p from the corresponding claim for Uj−1 = CL−1
p , which we have by

induction. This establishes Theorem 8.6 in the low order case j � k, contingent on
Propositions 8.9 and 8.11.

8.5 The high-order case. We now modify the above arguments to deal with the
high-order case j > k. We need a key definition: we say that a 2k-tuple (fw)w∈2k

of (Fω,X, S1)-functions fw for w ∈ 2k is a good (Fω,X, S1)-tuple if the following
properties hold:

(i) Each fw is a line cocycle and a (Fω,X, S1)-quasi-cocycle of order < k − 1.
(ii) For each face α of 2k,

∏
w∈α fw is a (Fω,X[k], S1)-cocycle.

(iii)
∏

w∈2k fw is a (Fω,X[k], S1)-coboundary.

From the hypothesis we see that (f sgn(w))w∈2k is a good (Fω,X, S1)-tuple. Ob-
serve also that if (fw)w∈2k is a good (Fω,X, S1)-tuple, and we replace one or more
of the fw by a (Fω,X, S1)-cohomologous function, then we still obtain a good
(Fω,X, S1)-tuple.
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We now claim the following proposition:

Proposition 8.12 (Descent of good tuples). Let 1 � k < j � char(F), and let X =
Z<j−1(X)×ρj−1 Uj−1 be an ergodic Fω-system of order < j. Suppose that (fw)w∈2k

is a good (Fω,X, S1)-tuple. Then there exists a good (Fω,Z<j−1(X), S1)-tuple
(f̃w)w∈2k such that for every w, fw is (Fω,X, S1)-cohomologous to (πX

Z<j−1(X))
∗f̃w,

where πX
Z<j−1(X) : X → Z<j−1(X) is the factor map.

Proof. As in previous arguments, we first reduce to the case when Uj−1 is finite, and
then establish the finite case.

If t ∈ Uj−1, then by Lemma A.23(iv), the transformation (Vt)
[k]
{w} preserves µ[k]

for every w ∈ 2k. Arguing as in the proof of Lemma 8.8, we thus conclude that ∆• tfw

is a (Fω,X, S1)-coboundary for every w ∈ 2k. By repeatedly applying Lemma B.8,
we conclude that there exists an open subgroup U ′′ of Uj−1 such that each fw is
(Fω,X, S1)-cohomologous to an U ′′-invariant function, which we can write as π∗f̃w

for some (Fω,X′, S1)-function f̃w, where X′ := Z<j(X)×σ◦ρ<j−1 Uj−1/U
′′, σ : Uj−1 →

Uj−1/U
′′ is the quotient map, and π : X → X′ is the factor map, thus we have

fw = (π∗f̃w)∆• Fw for some (X, S1)-functions Fw.
Arguing as in section 8.3 (and using Lemma B.1), we see that the tuple (f̃w)w∈2k

obeys properties (i) and (ii) of being a good (Fω,X′, S1)-tuple. Unfortunately, it need
not obey (iii); we know that

⊗
w π∗f̃w is a

(
Fω,X[k], S1

)
-coboundary, but this does

not automatically imply that
⊗

w f̃w is a
(
Fω, (X′)[k], S1

)
-coboundary. However, in

the high-order case j > k, we see from Lemma A.36 that X[k] is an abelian ex-

tension X[k] = Z<j−1(X)[k] ×
ρ
[k]
<j−1

U
[k]
j−1, where the (Fω,Z<j−1(X)[k], U

[k]
j−1)-cocycle

ρ
[k]
<j−1 =

⊗
w∈2k ρ<j−1 is the tensor product of 2k copies of the (Fω,Z<j−1(X), Uj−1)-

cocycle ρ, and similarly for (X′)[k]. Applying Lemma B.11, we conclude that⊗
w∈2k f̃w is

(
Fω, (X′)[k], S1

)
-cohomologous to χ[k] ◦ ρ[k] ◦

(
πX′

Z<j−1(X)

)[k]
for some

character χ[k] ∈ ̂
U

[k]
j−1, where πX′

Z<j−1(X) : X′ → Z<j−1(X) is the factor map. We can

factorize the latter as a tensor product

χ[k] ◦ ρ[k] ◦ (πX′

Z<j−1(X))
[k] =

⊗

w∈2k

χw ◦ ρ<j−1 ◦ πX′

Z<j−1(X) =:
⊗

w∈2k

pw

for some characters χw ∈ Ûj−1. We thus see that
⊗

w f ′
w is a

(
Fω, (X′)[k], S1

)
-

coboundary. Since ρ<j−1◦πX
Z<j−1(X) is a (Fω,X, S1)-coboundary (being the derivative

of the coordinate function (y, u) �→ u), we see that π∗pw is also a (Fω,X, S1)-
coboundary. Thus fw is (Fω,X, S1)-cohomologous to π∗f ′

w. Also, since (f̃w)w∈2k

obeys properties (i), (ii), of being a (Fω,X′, S1)-good tuple, (f ′
w)w∈2k does also.

Since we have already established (iii), we conclude that (f ′
w)w∈2k is a (Fω,X′, S1)-

good tuple. Thus Proposition 8.12 for Uj−1 will follow from that for Uj−1/U
′′, thus

reducing matters to the case when Uj−1 is finite.
We now repeat the arguments from section 8.4. As in that section, we can write

Uj−1 = CL
p = CL−1

p × 〈e〉 for some e ∈ Cp and induct on L. Arguing as in the

start of this proof (i.e. using the invariance of µ[k] with respect to (Ve)
[k]
{w}), we
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know that ∆• efw is a (Fω,X, S1)-coboundary, thus we can find a (X, S1)-function
Fe,w such that ∆• efw = ∆• Fe,w. Using the cocycle identity (8.1), this implies that

∆•
∏p−1

i=0 V i
e Fe,w = 1 and so (by ergodicity)

∏p−1
i=0 V i

e Fe,w is constant. Dividing Fe,w

by the pth root of this constant as in section 8.4 we may thus take
∏p−1

i=0 V i
e Fe,w = 1.

Applying Lemma B.4 as in section 8.4, we can write Fe,w = ∆• eFw for some (X, S1)-
function Fw. We conclude that ∆• e(fw/∆• Fw) = 1, i.e. fw is cohomologous to an
e-invariant function. From this we see (as in the reduction to the finite Uj−1 case)
that Proposition 8.12 for CL

p will follow from Proposition 8.12 for CL−1
p . Since this

proposition is trivial when L = 0, the claim follows. �

Applying this proposition iteratively, starting with the good (Fω,X, S1)-tuple
(f sgn(w))w∈2k and decrementing j, we see that there exists a good (Fω,Z<k(X), S1)-
tuple (f̃w)w∈2k such that f sgn(w) is (Fω,X, S1)-cohomologous to

(
πX
Z<k(X)

)∗
f̃w for

all w ∈ 2k.
We now invoke the following lemma:

Lemma 8.13 (Cauchy–Schwarz–Gowers for finite type). Let G be a countable
abelian group, let k � 0, let X be an ergodic G-system of order < k, and for each
w ∈ 2k, let fw be a (G,X, S1)-quasi-cocycle of order < k such that

⊗
w fw is a(

G,X[k], S1
)
-coboundary. Then each fw is of type < k.

We prove this lemma later in section 8.7. Assuming it for now, we conclude in
particular that f̃−1 is of type < k. It is also a line cocycle and a (Fω,Z<k(X), S1)-
quasi-cocycle of order < k − 1. Since we have already established Theorem 8.6
in the case j = k, we conclude that f̃−1 is is (Fω,Z<k(X), S1)-cohomologous to a
(Fω,Z<k(X), S1)-phase polynomial P of degree < k that takes values in Cp. Since
f is (Fω,X, S1)-cohomologous to

(
πX
Z<k(X)

)∗
f̃−1, we conclude that f is (Fω,X, S1)-

cohomologous to the (Fω,X, S1)-phase polynomial
(
πX
Z<k(X)

)∗
P , and Theorem 8.6

then follows.
Our remaining tasks are to prove Proposition 8.9, Proposition 8.11, and Lem-

ma 8.13.

8.6 Exact integration. In this subsection we establish Proposition 8.9. We
begin with the analogue of Lemma B.5.

Lemma 8.14 (Refined composition of polynomials). Let G be a countable abelian
group, let j � 0, let U be a compact abelian group, and let X = Y ×ρ U be an
ergodic G-system such that Y � Z>j(X). For any t ∈ U , let pt be a (X, S1)-phase
polynomial of degree < l for some l � 1, and suppose that for any t, s ∈ U , we have
the cocycle property

pt·s(x) = pt(Vsx) · ps(x) . (8.3)

Let r be a (X, U)-phase polynomial of degree < m for some 1 � m � j + 1. For any
x ∈ X, write x = (y, u), y ∈ Y, u ∈ U .

(i) The function (y, u) �→ pr(y,u)(y, u) is a (X, S1)-phase polynomial of degree
< l + m − 1.

(ii) More generally, if q is a (X, U)-phase polynomial of degree < j + 1, then
(y, u) �→ pr(y,u)(y, uq(y, u)) is a (X, S1)-phase polynomial of degree < l+m−1.
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Proof. We prove (i) and (ii) simultaneously by induction on l. If l = 1, then pt is a
constant (by ergodicity), and so the map t �→ pt is a homomorphism, and the claim
(i) then easily follows. Also in this case (ii) is clearly equivalent to (i).

Now suppose inductively that l � 2, and that the claim has already been proven
for l − 1. We now induct on m. When m = 1 then r is constant, and (i) is clear.

Now we show (for any m) that (i) implies (ii). Suppose first that l � j. Then
pt is measurable with respect to Abr<l(X) � Abr<j(X), and hence measurable with
respect to Z<j(X) (and hence Y) by Lemma A.35. In particular, pt is U -invariant,
and (i) and (ii) are clearly equivalent. Now suppose instead that l > j. The action
of U preserves Z<j(X), and thus by Lemma A.23(iv), the measure µ[l] is invariant

under the face transformations (Vu)
[l]
α for any (l − j)-face α and any u ∈ U . As

U is abelian, this implies that µ[l] is invariant under any (Vuw
)w∈2l , where the uw

obey the conditions
∏

w∈α u
sgn(w)
w = 1 for every (j + 1)-face α. Since q has degree

< 1, we conclude (by Lemma 4.3(iii)) that µ[l] is invariant under (Vq(yw,uw))w∈2l for

µ[l]-a.e. (yw, uw)w∈2l . On the other hand, since pt has degree < l for every t ∈ U ,
we have

∏
w∈2l pt(yw, uw)sgn(w) = 1 µ[l]-a.e. for such t by Lemma 4.3(iii). We

conclude that
∏

w∈2l pt(yw, uwq(yw, uw))sgn(w) = 1 µ[l]-a.e. By one last application
of Lemma 4.3(iii) we obtain that (y, u) �→ pt(y, uq(y, u)) is of degree < l. The claim
(ii) now follows from (i).

Finally, we assume that (i) (and hence (ii)) have been proven for m−1, and then
establish (i) for m. Let F be the (X, S1)-function F (x) := pr(x)(x). From (8.3) we
have

F (Tgx) = pr(x)∆· gr(x)(Tgx) = pr(x)(Tgx)p∆· gr(x)(Vr(x)Tgx) ,

and thus (since the action of U commutes with that of G)

∆• gF (x) =
(
∆• gpr(x)

)
(x)
(
Tgp∆· gr(x)

)(
Vr(x)x

)
.

Observe that for each t ∈ U , ∆• gpt is a (X, S1)-phase polynomial of degree < l − 1,
and that ∆• gpt obeys (8.3). By the induction hypothesis (i) with l replaced by l− 1,
(∆• gpr(x))(x) is a (X, S1)-phase polynomial of degree < l + m − 2. Similarly, Tgpt

is a (X, S1)-phase polynomial of degree < l that also obeys (8.3), ∆• gr is a (X, U)-
phase polynomial of degree < m− 1, and r has degree < j + 1 by hypothesis on m.
Applying the induction hypothesis (ii) with m replaced by m− 1, we conclude that
(Tgp∆· gr(x))(Vr(x)x) is a (X, S1)-phase polynomial of degree < l+m−2. Putting this
all together, we see that ∆• gF has degree < l + m − 2 for all g, and thus (by (3.1))
F has degree < l + m − 1, establishing (i) as required. �

Now we can prove Proposition 8.9.

Proof of Proposition 8.9. Write x = (y, u), y ∈ Y, u ∈ U . Take Q(y, uu0) :=
pu(y, u0) for u0 ∈ U a generic point (actually we can take u0 = 1 since polynomials
are continuous). Now as in Lemma B.6, ∆• tQ(x) = pt(x). It remains to show that
Q has degree < l + j. But this follows from Lemma 8.14(ii) with r(y, u) := u/u0,
q(y, u) := u0/u, and m := j + 1; note that as ρj has degree < j, r and q have degree
< j + 1. �
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8.7 Exact descent. We now prove Proposition 8.11 and Lemma 8.13. As noted
already in Remark 5.2, an exact descent result for cocycles already appears in [HK,
Cor. 7.8]; Proposition 8.11 can be viewed as an extension of that result to quasi-
cocycles.

Our main tool for both of these tasks is the following equivalent characterization
of the finite type condition.

Lemma 8.15 (Characterization of finite type). Let G be a countable abelian group,
let k � 0, let X be an ergodic G-system of order < k, and let f be a (G,X, S1)-quasi-
cocycle of order < k − 1. Let Φn be a Følner sequence for G. Then the following
two statements are equivalent:

(i) f is of type < k (i.e. d[k]f is a (G,X[k], S1)-coboundary).
(ii) For all x in a set of positive µ[k]-measure, lim supn→∞

∣∣Eg∈Φnd[k]f(g,x)
∣∣ �= 0.

Proof. We first show that (i) implies (ii). By hypothesis, we have d[k]f(g,x) =

F
(
T

[k]
g x
)
F (x) for all g ∈ G, µ[k]-a.e. x, and some

(
X[k], S1

)
-function F . We rear-

range this as

f(g, x−1) = F
(
(Tgxw)w∈2k

)
F
(
(xw)w∈2k

) ∏

w∈2k\−1

fw(g, xw)

where each fw is either equal to f or its complex conjugate.
As X is of order < k, we see from Definition A.29 that any measurable function

on X[k] that depends only on the first coordinate x−1, is equal µ[k]-a.e. to a function
that is independent of this coordinate. Since these two classes of functions together
generate all measurable functions on X[k], we conclude that all measurable functions
on X[k] are equal µ[k]-a.e. to a function independent of the first coordinate. In
particular, we may assume without loss of generality that F is independent of the
first coordinate.

Let ε > 0 be a small number. By definition of the product σ-algebra, we can
approximate F up to an error which is O(ε) in L2(X[k]) by a function F̃ bounded
in magnitude by 1 of the form F̃ ((xw)w∈2k) =

∑N
j=1

∏
w∈2k\−1 Fj,w(xw) for some

functions fj,w ∈ L∞(X) with norm ‖fj,w‖L∞(X) � 1 and some finite N . We conclude

that f(g, x−1) differs by O(ε) in L2(X[k]) from the function

N∑

j=1

N∑

j′=1

∏

w∈2k\−1

Fj,w(Tgxw)Fj′,w(xw)fw(g, xw) .

On the other hand, f has magnitude 1. We conclude (for ε small enough) that
∣∣∣∣

N∑

j=1

N∑

j′=1

∫

X[k]

f(g, x−1)
∏

w∈2k\−1

Fj,w(Tgxw)Fj′,w(xw)fw(g, xw) dµ[k]

∣∣∣∣ �
1

2

and thus by the pigeonhole principle that∣∣∣∣
∫

X[k]
f(g, x−1)

∏

w∈2k\−1

Fj,w(Tgxw)Fj′,w(xw)fw(g, xw) dµ[k]

∣∣∣∣ �
1

2N2
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for some j, j′ (depending on g). Applying the Cauchy–Schwarz–Gowers inequality
(A.4) we conclude that ‖f(g, · )‖Uk(X) � 1/2N2 for all g ∈ G; the point here is that
the lower bound is uniform in g. Applying Lemma A.18, we conclude that

∫

X[k]

d[k]f(g,x) dµ[k]
�

(
1

2N2

)2k

for all g ∈ G. Averaging this over a Følner set Φn, we conclude in particular that
∫

X[k]

∣∣Eg∈Φnd[k]f(g,x)
∣∣dµ[k]

�

(
1

2N2

)2k

for all n. From the monotone convergence theorem we conclude that
∫

X[k]

lim sup
n→∞

∣∣Eg∈Φnd[k]f(g,x)
∣∣dµ[k]

�

(
1

2N2

)2k

and (ii) follows.
Now we show that (ii) implies (i). We will use some arguments related to

those used to prove Proposition 4.4. We first observe from Definition 8.2 and
Lemma 4.3(iii) that d[k]f is a

(
G,X[k], S1

)
-cocycle. This allows us to build the

circle extension X[k] ×d[k]f S1 of X[k]. Applying the ergodic theorem to the ver-
tical function (x, u) �→ u in this extension, we conclude that the limit F (x) :=
limn→∞ Eg∈Φnd[k]f(g,x) exists µ[k]-a.e., and is invariant under the diagonal action
of G. By (ii), F is non-zero on a set A of positive measure in X[k], which we can
take to be invariant under the action of G. In particular, A corresponds to some set
B ∈ Ik(X) with Pk(B) > 0, where Pk is the restriction of µ[k] to Ik(X).

Since d[k]f is a
(
G,X[k], S1

)
-cocycle, we have d[k]f(g + g′,x) =(

d[k]f(g,x)
)
d[k]f
(
g′, T

[k]
g x
)
. Averaging g′ over the Følner sequence Φn and taking

limits, we conclude that F (x) =
(
d[k]f(g,x)

)
F
(
T

[k]
g x
)
. This implies that d[k]f is a

(G,B, S1)-coboundary.
Now let α be any face of 2k. From Definition 8.2 and Lemma 4.3(iii) we see that

d[k−1]f is also a
(
G,X[k−1], S1

)
-cocycle, and thus (∂(α)∗)

∗d[k−1]f is a
(
G,X[k], S1

)
-

cocycle. This implies that

(Th)
[k]
α d[k]f(g,x)

d[k]f(g,x)
= ∆• g[k]

(
∂(α)∗

)∗
d[k−1]f(h,x)

for every h ∈ G, and so (Th)
[k]
α d[k]f is

(
G,X[k], S1

)
-cohomologous to d[k]f . In partic-

ular, d[k]f is a
(
G, (Th)

[k]
α B,S1

)
-coboundary. Using the same gluing argument used

in the proof of Proposition 4.4 we conclude that d[k]f is a
(
G,X[k], S1

)
-coboundary,

and the claim follows. �

We can now prove Proposition 8.11 and Lemma 8.13.

Proof of Proposition 8.11. By hypothesis and Lemma 8.15, we have

lim sup
n→∞

∣∣Eg∈Φnd[k]π∗f(g,x)
∣∣ �= 0

for all x in a set of positive measure in X[k].
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By Lemma A.22, Y[k] is a factor of X[k]. Let π[k] be the factor map, then we have
d[k]π∗f =

(
π[k]
)∗

d[k]f . We conclude that lim supn→∞

∣∣Eg∈Φnd[k]f(g,y)
∣∣ �= 0 for all

y in a set of positive measure in Y[k].
Since X is of order < k, Y is also. The claim then follows from another application

of Lemma 8.15. �

Proof of Lemma 8.13. By hypothesis, we have
⊗

fw(g,x) = F
(
T

[k]
g x
)
F (x) for some(

X [k], S1
)
-function F . Arguing exactly as in the proof of Lemma 8.15, we see that for

all x in a set of positive µ[k]-measure, lim supn→∞

∣∣Eg∈Φnd[k]f−1(g,x)
∣∣ �= 0. Applying

Lemma 8.15, we conclude that f−1 is of type < k as desired. The corresponding
claims for the other fw are established similarly. �

The proof of Theorem 1.19 is now complete.

Appendices

A General Theory of Gowers–Host–Kra Seminorms

In this appendix we set out the general “soft” theory of the Gowers–Host–Kra semi-
norms. The theory for Z-systems is discussed in detail in [HK]. This theory carries
over without any difficulties to other discrete abelian groups, such as Fω, but for the
convenience of the reader we reproduce the theory from [HK] here.

Throughout this appendix, (G,+) is a fixed countable abelian group, the system
X = (X,BX , µX , (Tg)g∈G) is a fixed G-system, and k � 1 is a fixed integer.

A.1 The cubic construction. The first step is to construct the cubic spaces
and measures from [HK], generalized from Z-actions to G-actions. We slightly mod-
ify the terminology and notation of [HK] to make it compatible with standard no-
tation of the theory of cubic complexes (see section E).

Definition A.1 (The discrete cube and its faces). Let 2k denote the set {−1, 1}k,
which we equip with the lexicographic order. One can identify 2k with the vertices of
the standard cube Ik := {(x1, . . . , xk) ∈ Rk : −1 � xi � 1}. Under this identification
we will refer to 2k as the standard discrete (k-dimensional) cube. We will denote the
elements of 2k by w = (w1, . . . , wk). For each j = 1, . . . , k, the sets β+

j := {w ∈ 2k :

wj = 1}, β−
j := {w ∈ 2k : wj = −1} correspond to the sets of vertices on opposite

sides of the cube Ik. We will refer to β+
j , β−

j as opposite sides or parallel sides of 2k,

and to the β+
j as the positive sides.

More generally, for any 0 � l � k, define an l-dimensional face or l-face to be
any set formed by intersecting k − l distinct non-parallel sides. Thus 2k has one
k-face, 2k faces of dimension k−1 (i.e. the sides β±

j ), k2k−l faces of dimension (k−l),

and so forth down to 2k faces of dimension 0 (which are the vertices of the discrete
cube).

Let α be an l-face. Enumerating the elements of α in lexicographic order gives a
natural bijection ∂(α) : α → 2l, which we call the coordinate map of α, which maps
the faces of 2k, which are subsets of α, to the faces of 2l.
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Definition A.2 (Cubic complexes). Let S be an arbitrary set. We write S[k] :=

S2k
for the set of functions s : 2k → S. For each 0 � l � k and each l-face α, we

let ∂(α)∗ : S[k] → S[l] be the pushforward map given by the formula ∂(α)∗(s)(w) :=
s(∂(α)−1(w)) for all w ∈ 2l. For any 1 � j � k and sign ±, we abbreviate the cubic

boundary map ∂(β±
j )∗ : S[k] → S[k−1] as ∂±

j = ∂±
j,k.

Example A.3. If k = 2, then

∂−
1

(
s(−1,−1), s(−1,1), s(1,−1), s(1,1)

)
=
(
s(−1,−1), s(−1,1)

)

∂+
1

(
s(−1,−1), s(−1,−1), s(1,−1), s(1,1)

)
=
(
s(1,−1), s(1,1)

)

∂−
2

(
s(−1,−1), s(−1,1), s(1,−1), s(1,1)

)
=
(
s(−1,−1), s(1,−1)

)

∂+
2

(
s(−1,−1), s(−1,1), s(1,−1), s(1,1)

)
=
(
s(−1,1), s(1,1)

)
.

Remark A.4. For future reference we make the trivial observation that the map
s �→ (∂−

k+1s, ∂
+
k+1s) is a bijection between S[k+1] and S[k] × S[k].

Definition A.5 (Face groups). Let G be a (possibly non-abelian) group with

identity idG, and let α be a face of 2k. For every g ∈ G, we let g
[k]
α ∈ G[k] denote the

group element whose components
(
g
[k]
α

)
w

for w ∈ 2k are defined to equal g when

w ∈ α, and to equal idG otherwise. The map g �→ g
[k]
α is a bijection from G to

the face group G
[k]
α :=

{
g
[k]
α : g ∈ G

}
� G[k]. When α is a side (resp. a positive

side) we refer to G
[k]
α as a side group (resp. a positive side group); when α = 2k is

the entire cube we refer to G
[k]

2k as the diagonal group and denote it as diag
(
G[k]
)
,

and abbreviate g
[k]

2k as g[k]. We also write ∂[k]G (resp. ∂
[k]
+ ) for the subgroup of G[k]

generated by all the side groups (resp. all the positive side groups).

Example A.6. For k = 2, the group ∂[2]G is generated by
⋃

g∈G

{
(idG, idG, g, g), (g, g, idG, idG), (idG, g, idG, g), (g, idG, g, idG)

}
g∈G

while the group ∂
[2]
+ G is generated by

⋃
g∈G{(idG, idG, g, g), (idG, g, idG, g)}g∈G.

Remark A.7. For future reference we observe that the side group ∂[k]G is the

group generated by the positive side group ∂
[k]
+ G and the diagonal group diag

(
G[k]
)
.

Definition A.8 (Face actions). Let G be a group acting on a space X by trans-
formations Tg : X → X for g ∈ G. Then G[k] acts on X [k] in the obvious manner,

with the action T
[k]
g of a group element g = (gw)w∈2k ∈ G[k] mapping each point

(xw)w∈2k ∈ X [k] to (Tgw(xw))w∈2k . If α is a face, we abbreviate the face transfor-

mation T
[k]

g
[k]
α

as (Tg)
[k]
α , thus

(
(Tg)

[k]
α

)
g∈G

is an action of G on X [k]. If α is a side

(resp. a positive side), we refer to (Tg)
[k]
α as a side transformation (resp. positive side

transformation), and if α = 2k is the entire cube, we refer to (Tg)
[k]

2k as a diagonal

transformation and abbreviate it further as (Tg)
[k].
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Example A.9. If k = 2, then

(Tg)
[2]

β−
1

(
x(−1,−1), x(−1,1), x(1,−1), x(1,1)

)
=
(
Tgx(−1,−1), Tgx(−1,1), x(1,−1), x(1,1)

)

and similarly

(Tg)
[2]

β+
2

(
x(−1,−1), x(−1,1), x(1,−1), x(1,1)

)
=
(
x(−1,−1), Tgx(−1,1), x(1,−1), Tgx(1,1)

)
.

Finally,

(Tg)
[2]
(
x(−1,−1), x(−1,1), x(1,−1), x(1,1)

)
=
(
Tgx(−1,−1), Tgx(−1,1), Tgx(1,−1), Tgx(1,1)

)
.

Remark A.10. For future reference we observe that all positive side maps preserve
the (−1, . . . ,−1) coordinate of X [k].

We recall the notion of a relative product:

Definition A.11. Let G be a countable group, and let X1,X2 be two G-systems
with a common factor Y. Let π1 : X1 → Y and π2 : X2 → Y be the factor maps.
For i = 1, 2, let µXi,y represent the disintegration of µXi with respect to Y , thus

∫

Xi

(π∗
i f)F dµXi =

∫

Yi

f(y)

(∫

Xi

F dµXi,y

)
dµY (y)

for all f ∈ L∞(Y), F ∈ L∞(Xi). It is well known that this disintegration exists and
is unique up to almost everywhere equivalence.

Let µX1 ×Y µX2 denote the measure defined by the formula

µX1 ×Y µX2(A) :=

∫
µX1,y ×Y µX2,y(A)dµY (A.1)

for A ∈ BX1 × BX2; this is known as the relatively independent joining of µX1 and
µX2 over µY . We refer to the G-system

X1 ×Y X2 :=
(
X1 × X2,BX1 × BX2, µX1 ×Y µX2,diag(G × G)

)

where diag(G × G) denotes the diagonal action of G, as the relative product of X1

and X2 with respect to Y.

Now we can introduce the cubic measure spaces of Host and Kra.

Definition A.12 (Cubic measure spaces [HK, §3]). Let X = (X,BX , µX , (Tg)g∈G)
be a G-system. For each k � 0, we endow X [k] with the product σ-algebra B[k] :=
(BX)2

k
, and define the cubic measures µ[k] and σ-algebras Ik ⊂ B[k] inductively as

follows:

• Set I0 to be the σ-algebra of invariant sets in X, and µ[0] to be µX .
• Once µ[k] and Ik are defined, we identify X [k+1] with X [k] × X [k] as per

Remark A.4, and define µ[k+1] := µ[k] ×Ik
µ[k] to be the relatively indepen-

dent joining of µ[k] with itself over Ik. We then let Ik+1 = Ik+1(X) be the
σ-algebra of invariant sets of the system X[k+1].

We then define the G-system X[k] as X[k] := (X [k],B[k], µ[k], (T
[k]
g )g∈G), i.e BX[k] =

B[k] and µX[k] = µ[k].
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Remark A.13. From construction we see that

µ[k+1] =

∫

X[k]

(
µ[k]
)
s
×
(
µ[k]
)
s
dPk(s) (A.2)

where

µ[k] =

∫ (
µ[k]
)
s
dPk(s) (A.3)

is the ergodic decomposition of µ[k] with respect to the diagonal action
(
T

[k]
g

)
g∈G

of G.

The cubic measures have a useful symmetry property:

Lemma A.14 (Symmetry of cubic measures [HK, Prop. 3.7]). The measure µ[k] is
invariant under all the symmetries of the cube 2k (which act in an obvious manner
on X[k]).

The cubic measures also behave well with respect to passage to subcubes.

Lemma A.15 (Cubic complex structure [HK, Cor. 3.8]). Let 0 � l � k, and let
α be an l-face of 2k. Then the map ∂(α)∗ : X[k] → X[l] is a factor map from X[k]

to X[l].

Example A.16. Let X = (X,BX , µX , (Tg)g∈G) be an ergodic G-system. For k = 1
we have µ[1] = µX × µX , X[1] = (X × X,BX × BX , µX × µX , (Tg × Tg)g∈G), and
I1 is the σ-algebra of measurable subsets of X × X that are invariant under the

action of T
[1]
g = Tg × Tg, for all g ∈ G. Now if µX × µX = µ[1] =

∫ (
µ[1]
)
s
dP1(s) is

the ergodic decomposition of µX × µX with respect to the action of
(
T

[1]
g

)
g∈G

, then

µ[2] =
∫ (

µ[1]
)
s
×
(
µ[1]
)
s
dP1(s).

Example A.17. Let G be a finite abelian group, and let X be G with the translation
action, normalized counting measure, and the discrete σ-algebra. Then µ[k] is the
normalized counting measure on the space of cubes{

(x + h1w1 + · · · + hkwk)(w1,...,wk)∈2k : x, h1, . . . , hk ∈ G
}

and Ik is the σ-algebra consisting of subsets of G[k] which are invariant
under the diagonal translations (xw)w∈2k �→ (xw + h)w∈2k for h ∈ G. Thus,
the probability space

(
X [k],B[k], µ[k]

)
is measure isomorphic to the space Gk+1 =

{(x, h1, . . . , hk) : x, h1, . . . , hk ∈ G} with the discrete σ-algebra and normalized
counting measure, whilst

(
X [k],Ik, µ

[k]
)

is measure isomorphic to the space Gk =
{(h1, . . . , hk) : h1, . . . , hk ∈ G} with the discrete σ-algebra and normalized counting
measure.

A.2 Existence of the seminorms. The objective of this section is to establish
that the Gowers–Host–Kra seminorms from Definition 1.3 are in fact well-defined,
and to relate them to the cubic measures just constructed.

For w = (w1, . . . , wk) ∈ 2k denote sgn(w) :=
∏k

i=1 wi ∈ {−1, 1}. For any
functions fw : X → C, w ∈ 2k we denote by

⊗
w∈2k fw : X [k] → C the tensor

product ⊗

w∈2k

fw

(
(xw)w∈2k

)
:=
∏

w∈2w

fw(xw) .
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Lemma A.18. Let f ∈ L∞(X). The limits in Definition 1.3 exist and do not depend
on the choice of Følner sequences. Furthermore, if fw := f when sgn(w) = 1, and
fw := f̄ when sgn(w) = −1 (f̄ denotes the complex conjugate of f), then

‖f‖2k

Uk(X) =
(
πX[k]

pt

)
∗

( ⊗

w∈2k

fw

)
=

∫

X[k]

⊗

w∈2k

fw dµ[k].

Proof. We prove this by induction on k. For k = 1 this follows from the mean
ergodic theorem. Assume the induction hypothesis holds for k − 1. Then

Eh∈Φk
n
‖∆• hf‖2k−1

Uk−1(X) = πX[k−1]

pt∗

( ⊗

w∈2k−1

fw · Thf̄w

)

= Eh∈Φk
n

∫ ( ⊗

w∈2k−1

fw

)
·
( ⊗

w∈2k−1

Thf̄w

)
dµ[k−1]

= Eh∈Φk
n

∫ ( ⊗

w∈2k−1

fw

)
· T [k]

h

( ⊗

w∈2k−1

f̄w

)
dµ[k−1].

Since µ[k−1] is invariant with respect to the action of
(
T

[k]
g

)
g∈G

, by the ergodic
theorem the above averages converge to∫

πX[k−1]

Ik−1∗

( ⊗

w∈2k−1

fw

)
· πX[k−1]

Ik−1∗

( ⊗

w∈2k−1

f̄w

)
dµ[k−1]

=

∫ ( ⊗

w∈2k−1

fw

)( ⊗

w∈2k−1

f̄w

)
dµ[k]

=
( ⊗

w∈2k

fw

)
dµ[k] = πX[k]

pt∗

( ⊗

w∈2k

fw

)

thus closing the induction. �

Remark A.19. The above expression is used in [HK] as the definition of the Uk(X)
norm.

We record some basic properties of the Gowers–Host–Kra seminorms:

Lemma A.20 (Basic properties of Uk [HK, Lem. 3.9] (see also [G1, Lem. 3.8,3.9])).
(i) For any 2k-tuple (fw)w∈2k of functions fw ∈ L∞(X), we have the Cauchy–

Schwarz–Gowers inequality∣∣∣∣
∫

X[k]

⊗

w∈2k

fw dµ[k]

∣∣∣∣ �
∏

w∈2k

‖fw‖Uk(X) . (A.4)

(ii) The function f �→ ‖f‖Uk(X) is a seminorm on L∞(X).
(iii) We have the monotonicity property

‖f‖Uk(X) � ‖f‖Uk+1(X) . (A.5)

Corollary A.21. Let f ∈ L∞(X). Then ‖f‖Uk(X) = 0 if and only if(
πX[k−1]

Ik−1

)
∗

∏
w∈2k−1 fw = 0 µ[k−1]-a.e., where fw is as in Lemma A.18.



GAFA AN INVERSE THEOREM FOR THE ERGODIC Fω UNIFORMITY SEMINORMS 1583

Proof. Using (A.2) and Lemma A.18, we can write

‖f‖2k

Uk(X) =

∫

X[k−1]

∣∣∣
(
πX[k]

Ik−1

)
∗

∏

w∈2k−1

fw

∣∣∣
2
dµ[k−1]

and the claim follows. �

The above construction is functorial:

Lemma A.22 (Functoriality [HK, Lem. 4.5]). If Y = (Y,BY , µY , πX
Y ) is a factor

of X, then Y[k] =
(
Y [k],B[k]

Y , µ
[k]
Y , (πX

Y )[k]
)

is a factor of X[k], and for every f ∈ L∞(Y)
one has ‖(πX

Y )∗f‖Uk(X) = ‖f‖Uk(Y).

If X is ergodic with respect to G, it is certainly not the case in general that X[k] is
ergodic with respect to the diagonal action diag

(
G[k]
)
. Nevertheless there are some

other important ergodicity-preserving properties of the above construction:

Lemma A.23 (Ergodicity-preserving properties [HK]). Let X be an ergodic G-
system, and let k � 1.

(i) X[k] is ergodic with respect to the action of ∂[k]G.

(ii) The measure Pk is ergodic with respect to the action of ∂
[k]
+ G.

(iii) For any measure-preserving transformation u : X → X that commutes with

the G-action, and any side α, the side transformation u
[k]
α preserves µ[k].

(iv) More generally, if u : X → X is a measure-preserving transformation that
commutes with the G-action and leaves Z<l(X) invariant for some 1 � l � k,

and α is a k − l-dimensional face of 2k, then u
[k]
α preserves µ[k].

Proof. For (i), see [HK, Cor. 3.5]; for (ii), see [HK, Cor. 3.6]. For (iii) and (iv), see
[HK, Lem. 5.5]. �

A.3 Dual functions. A “soft” way to describe the universal characteristic fac-
tors Z<k(X) is via the convenient device of dual functions.

Definition A.24 (Dual functions). Let X = (X,BX , µX , (Tg)g∈G) be a G-system,
and let {Φi

n}∞n=1, i = 1, . . . , k, be k Følner sequences in G. Define the nonlinear
operators Dk : L∞(X) → L∞(X) inductively by setting D1f := 1 and Dkf :=
limn→∞ Eh∈Φk

n
Thf · Dk−1(∆• hf) for k > 1, where the limit is in L2(X).

Remark A.25. The limits above exist, as in Lemma A.18, by repeated applications
of the ergodic theorem. Indeed, we easily verify that

Dkf =
(
πX[k]

X

)
∗

( ⊗

w∈2k\{−1}

fw

)
(A.6)

where −1 := (−1, . . . ,−1) and the factor map is given by (xw)w∈2k �→ x−1 (i.e. the
pushforward map ∂({−1})∗). As a consequence we have

‖f‖2k

Uk(X) =

∫

X
fDkf dµX (A.7)

and similarly (by repeated applications of the Cauchy–Schwarz inequality) that∫

X
f1Dkf2 dµX � ‖f1‖Uk(X) · ‖f2‖2k−1

Uk(X) . (A.8)
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Example A.26. When k = 2, we have

D2f := lim
m→∞

lim
n→∞

Eh2∈Φ2
m

Eh1∈Φ1
n
(Th2f)(Th1f)Th1+h2f .

The limit above is a repeated limit, but a posteriori, using Theorem 1.20, one can
show that the double (simultaneous) limit exists as well, and both limits coincide,
by modifying the proof of [HK, Th. 1.2], and similarly for higher values of k. We
omit the details.

Example A.27. If G is a finite abelian group, and X is G with the translation
action, then for any f : G → C, the dual function Dkf : G → C is given by the
formula

Dkf(x) = Eh1,...,hk∈G

∏

(w1,...,wk)∈{0,1}k\{0}k

Cw1+...+wk−1f(x + w1h1 + . . . + wkhk)

where C : z �→ z is the complex conjugation operator. Dual functions in this setting
play an important role in the finitary theory of arithmetic progressions and similar
patterns; see [GrT1].

Remark A.28. From Lemma A.22 we have the functoriality propertyDk((π
X
Y )∗f) =

(πX
Y )∗Dkf whenever Y is a factor of X and f ∈ L∞(Y).

Definition A.29 (Universal characteristic factor [HK, Def. 4.1]). We let Z<k =
Z<k(X) be the sub-σ-algebra of BX consisting of all sets B ∈ BX such that(
πX[k]

X

)−1
(B) is µ[k]-a.e. equivalent to a set A in X[k] which does not depend on

the first coordinate x−1 (or equivalently, the set is invariant under the face trans-

formation g
[k]
{−1} for all g ∈ G).

Example A.30. Let X be an ergodic G-system. Then Z<1(X) is trivial. One can
use classical arguments to show that Z<2(X) is the Kronecker factor (i.e. the factor
generated by the eigenfunctions of X); see the discussion just before [HK, Lem. 4.2].

Remark A.31. It is easy to see that Z<k(X) is an invariant sub-σ-algebra and
therefore a factor. As the function on the right-hand side of (A.6) does not depend
on the first coordinate, we see that the dual function Dkf lies in Z<k(X) for all
f ∈ L∞(X).

Lemma A.32 (Z<k is universal [HK, Lem. 4.3]) . For any f ∈ L∞(X), we have
‖f‖Uk(X) = 0 if and only if (πX

Z<k(X))∗f = 0.

Remark A.33. From this lemma and Remark A.31 it is not hard to show that
Z<k(X) is in fact generated by the dual functions Dkf for f ∈ L∞(X), although we
will not use this fact here.

Note that Lemma A.32 immediately implies Proposition 1.10 in the introduction.
From this lemma and (A.5) we also have

Z<j

(
Z<k(X)

)
= Z<j(X) (A.9)

for 0 < j � k (cf. [HK, Cor. 4.4]).
From Lemma A.32 and Lemma A.22 one can show that universal characteristic

factors are functorial:
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Lemma A.34 (Functoriality [HK, Prop. 4.6]). If Y = (Y,BY , µY , πX
Y ) is a factor

of X, then Z<k(Y) is a factor of Z<k(X) for any k � 1. In fact, for any f ∈ L∞(Y),
(πX

Y )∗f is Z<k(X)-measurable if and only if f is Z<k(Y)-measurable.

If φ ∈ L∞(X) is a phase polynomial of degree < k, an easy induction on k
using Definition 1.13 and Definition A.24 shows that φ = Dkφ. As a consequence of
this and Remark A.31 we obtain the easy direction of Theorem 1.20, valid for any
discrete abelian group G:

Lemma A.35. Every phase polynomial of degree at most < k is Z<k-measurable,
or in other words P<k(X) ⊂ L2(Z<k(X)) (or Abr<k(X) � Z<k(X)).

Suppose that fw is a function in L∞(X) for each w ∈ 2k. From Definition A.29
and Lemma A.14 we see that the quantity

∫
X[k]

⊗
w∈2k fw dµ[k] does not change if

we replace one of the fw by E(fw|Z<k). In particular we have∫

X[k]

⊗

w∈2k

fw dµ[k] =

∫

X[k]

⊗

w∈2k

E(fw|Z<k) dµ[k].

Thus for instance Dkf = DkE(f |Z<k) for all f ∈ L∞(X) (and indeed Z<k can be
characterized as the minimal factor with this property). Another corollary of the
above formula is

Lemma A.36 [HK, Prop. 4.7(1)]. The measure µ[k] is a conditional relative prod-

uct over Z [k]
<k(X). In other words, one has a representation of the form µ[k] =

∫
Z

[k]
<k(X)

(⊗
w∈2k νz,w

)
dσ(z), where σ is the restriction of µ[k] to Z [k]

<k, and for each

z ∈ Z [k]
<k(X) and w ∈ 2k, νz,w is a probability measure on X which depends mea-

surably on z.

B Abelian Cohomology

In this section we collect some basic facts about abelian cohomology (as defined in
section 2) that we will need in the paper. Much of this machinery is essentially from
[HK], but for the convenience of the reader (and given that we are generalizing from
Z-actions to more general countable abelian actions) we present the details here.

The reader may wish to review the definitions in Definition 2.1 before proceeding
with the rest of this section.

We begin with the following trivial but useful lemma:

Lemma B.1 (Cocycles and pullbacks). Let G be a locally compact group, let X
be a G-system, and let Y be a factor of X with factor map π. Let f be a (G,Y, U)-
function for some abelian group U . Then f is a (G,Y, U)-cocycle if and only if π∗f
is a (G,X, U)-cocycle.

Next, we recall that cohomology is trivial for free actions:

Definition B.2 (Free action). Let X = (X,BX , µX , (Tg)g∈G) be a G-system. The
action of G is said to be free if X is measure-equivalent to a system of the form Y ×G,
where the action of a group element g ∈ G is given by the map (y, h) �→ (y, gh).
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Remark B.3. If G acts freely on X, then so does any compact abelian subgroup
of G.

Lemma B.4 (Free actions of compact abelian groups have no cohomology [HK,
Lem.C.8]). Let G be a compact abelian group, and let X be a G-system in which
the action of G is free. Then every (G,X, S1)-cocycle is a (G,X, S1)-coboundary. In
other words, Z1(G,X, S1) = B1(G,X, S1), or equivalently H1(G,X, S1) = 0.

There is an analogue of Lemma B.4 in the polynomial category. To state it, we
first need a useful algebraic lemma.

Lemma B.5 (Composition of polynomials is again polynomial). Let G be a count-
able abelian group, let U, V be abelian groups, and let X = Y ×ρ U be an ergodic
abelian extension of a G-system Y by a (Y, U)-phase polynomial ρ of degree < k for
some k � 1.

(i) If p is a (X, V )-phase polynomial of degree < d, and u ∈ U , then ∆• up is a
(X, V )-phase polynomial of degree < d − 1.

(ii) If p is a (X, V )-phase polynomial of degree < d, and v1, . . . , vj are a collection of
(X, U)-phase polynomials of degrees < d1, . . . , < dj , then the (X, V )-function
P (y, u) := (∆• v1(y,u) . . . ∆• vj(y,u)p)(y, u) is a (X, V )-phase polynomial of degree
Od,j,d1,...,dj

(1).
(iii) If p is a (X, V )-phase polynomial of degree < d, v1, . . . , vj are a collection of

(X, U)-phase polynomials of degrees < d1, . . . , < dj , and s is a (X, U)-phase
polynomial of degree < d′, then the (X, V )-function

P (y, u) :=
(
∆• v1(y,u) . . . ∆• vj(y,u)p

)(
y, s(y, u)

)

is a (X, V )-phase polynomial of degree Od,j,d1,...,dj ,d′,k(1).
(iv) For each u ∈ U , let qu be a (X, V )-phase polynomial of degree < m which

obeys the U -cocycle equation

quv = (Vuqv)qu (B.1)

for all u, v ∈ U . Suppose that v1, . . . , vj are a collection of (X, U)-phase poly-
nomials of degrees < d1, . . . , < dj , and r, s are (X, U)-phase polynomials of
degree < d′, < d′′ respectively, then the map

P (y, u) :=
(
∆• v1(y,u) . . . ∆• vj(y,u)qr(y,u)

)(
y, s(y, u)

)

x is a (X, V )-polynomial of degree Od,j,d′,d′′,k(1).

Proof. We prove (i) by induction on d. Indeed, the claim is trivial for d = 1 by
ergodicity, and for d > 1 we have by induction that ∆• g∆• up = ∆• u∆• gp is a phase
polynomial of degree < d − 2 for all g ∈ G, and thus by (3.1) ∆• up is a phase
polynomial of degree < d − 1 as claimed.

We prove (ii) by a triple induction. First, the claim is trivial when d = 1, so sup-
pose that d > 1 and the claim has already been shown for d−1. For j � d the claim
follows from the previous claim, so now assume that j < d and the claim has already
been proven for j + 1. Finally, the claim is clear when d1 + . . . + dj = 0, so suppose
inductively that d1 + . . . + dj > 0 and the claim has already been proven for smaller
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values of d1 + . . . + dj . Consider the derivative ∆• gP for some g ∈ G. Some com-
putation shows that this expression can be written as (∆• v1(y,u) . . . ∆• vj(y,u)∆• gp)(y, u),
times a product of finitely many expressions of the form (∆• v′1(y,u) . . . ∆• v′

j′
(y,u)p)(y, u)

where j′ is either larger than j, or j = j′ and the total degree of v′1, . . . , v
′
j is less than

that of v1, . . . , vj. Using the various induction hypotheses we conclude that ∆• gP is
a (X, S1)-phase polynomial of degree Od,d1,...,dj

(1), and the claim follows from (3.1).
Claim (iii) is proven by the same inductive argument as the previous claim;

the non-linear nature of s(y, u) introduced some new terms when one differentiates,
but all such terms increase the number j of vertical derivatives (and only involve
polynomials in the subscripts, thanks to the polynomial nature of s and ρ) and so
can be safely handled by the induction hypothesis.

Finally, we prove claim (iv). The case d′ = 0 follows from the previous claim, so
suppose that d′ > 0 and the claim has already been proven for the smaller values
of d′. For g ∈ G, we take a derivative ∆• gP . One obtains essentially the same terms
that appeared in the previous claim, plus (thanks to the cocycle equation (B.1))
some additional terms involving q∆· gr(y,u). But such terms can be dealt with by the
induction hypothesis. �

Lemma B.6 (Polynomial integration lemma). Let G be a countable abelian group,
let m,k � 1, and let X = Y ×ρ U be an ergodic abelian extension of a G-system
Y by a (G,Y, U)-phase polynomial cocycle ρ of degree < k. Let V be a locally
compact abelian group. For each u ∈ U , let qu be a (X, V )-phase polynomial of
degree < m which obeys the U -cocycle equation (B.1) for all u, v ∈ U . Then there
exists a (X, V )-phase polynomial Q of degree < Om,k(1) such that qu = ∆• uQ for all
u ∈ U .

Proof. Let u0 be a generic element of U , and define the (X, V )-function Q by the
formula Q(y, vu0) := qv(y, u0). for all y ∈ Y and v ∈ U . Observe that for any u ∈ U ,
we have

∆• uQ(y, vu0) =
quv(y, u0)

qv(y, u0)
= qu(y, vu0)

thanks to (B.1). Thus we have qu = ∆• uQ for all u ∈ U .
The fact that Q is a (X, V )-phase polynomial of degree Om,k(1) follows from the

j = 0 case of Lemma B.5(iv). �

Remark B.7. One can improve the degree bounds in Lemma B.5 and Lemma B.6
if one assumes that Y = Z<j(X) for some j; see Lemma 8.14 and Proposition 8.9.

We will also need another result in a similar spirit.

Lemma B.8 (Straightening nearly translation-invariant cocycles [HK, Lem.C.9]).
Let G be a countable abelian group, let X be an ergodic G-system, let K = (K, · )
be a compact abelian group acting freely on X and commuting with the G action,
and let ρ be an (G,X,H)-function for some compact abelian H such that ∆• kρ :
(g, x) �→ ρ(g, Tkx)/ρ(g, x) is a coboundary for all k ∈ K. Then ρ is cohomologous to
a (G,X,H)-function which is invariant with respect to some open subgroup U of K.
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We will also take advantage of a useful splitting lemma.

Lemma B.9 (Splitting lemma [HK, Lem.C.5] (see also [MoS])). Let G be a
countable abelian group, let X be an ergodic G-system. Let f : X → S1 be a
(G,X, S1)-cocycle such that d[1]f is a (G,X[1], S1)-coboundary. Then f is (G,X, S1)-
cohomologous to a constant cocycle (i.e. a cocycle that is independent of the X
coordinate). In other words, we have an exact sequence

H1(G,pt, S1) −→ H1(G,X, S1) −→ H1
(
G,X[1], S1

)
.

where the first map is the map induced by the factor map πX
pt, and the second map

is the map induced by the derivative map f �→ d[1]f .

Lemma B.10 (Cohomology of X [l] injects into cohomology of X [k] [HK, Lem. C.7]).
Let G be a countable abelian group, let X be an ergodic G-system, let U be a
compact abelian group, and let k � l � 0. Let α be an l-face of 2k, thus by
Lemma A.15 ∂(α)∗ : X[k] → X[l] is a factor map. Let f be a

(
G,X[l], U

)
-cocycle

such that the
(
G,X[k], U

)
-cocycle (∂(α)∗)

∗f is a
(
G,X[k], U

)
-coboundary. Then f is

also a (G,X[l], U)-coboundary. In other words, we have an exact sequence

0 −→ H1
(
G,X[l], U

)
−→ H1

(
G,X[k], U

)
.

Now we see how cohomology on an abelian extension relates to cohomology on
the base space.

Lemma B.11 (Descent lemma). Let k � 1, let G be a countable abelian group, and
let X = (X,BX , µX , (Tg)g∈G) be an ergodic G-system. Let ρ be an abelian (G,X, U)-
cocycle for some compact abelian U . Let φ : U → V be a surjective measurable
homomorphism from U to another compact abelian group V , and let π

X×ρU
X×φ◦ρV be

the associated factor map (x, u) �→ (x, φ(u)). Suppose that f is a (G,X×φ◦ρ V, S1)-

function is such that
(
π

X×ρU
X×φ◦ρV

)∗
f is (G,X ×ρ U,S1)-cohomologous to

(
π

X×ρU
X×φ◦ρV

)∗
p

for some (G,X×φ◦ρ V, S1)-function p. Then f is (G,X×φ◦ρ V, S1)-cohomologous to

p
(
χ ◦ ρ ◦ π

X×φ◦ρV
X

)
for some character χ ∈ Û .

Proof. Let us first consider the case when V (and φ) is trivial, so that f is now a
(G,X, S1)-function. By hypothesis, there exists a (X×ρ U,S1)-function F such that

f(g, x) = p(g, x)
F (Tgx, ρ(g, x)u)

F (x, u)

for all g ∈ G and almost every x ∈ X, u ∈ U . We rearrange this as

F
(
Tgx, ρ(g, x)u

)
= F (x, u)p(g, x)f(g, x) . (B.2)

We perform a Fourier expansion in U , obtaining

F (x, u) =
∑

χ∈Û

Fχ(x)χ(u)

for some Fχ ∈ L∞(X), not all identically zero. Comparing Fourier coefficients in
(B.2), we conclude that Fχ(Tgx)χ ◦ ρ(g, x) = Fχ(x)p(g, x)f(g, x) for all g ∈ G and
χ ∈ Û , and µX-almost every x ∈ X. In particular this shows that the function |Fχ|
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is G-invariant and thus (by ergodicity) constant. Thus there exists χ ∈ Û such that
|Fχ| is almost everywhere non-vanishing. We can then write

f(g, x) = p(g, x)χ ◦ ρ(g, x)
Fχ(Tgx)

Fχ(x)
.

This completes the proof in the case when V is trivial.
To handle the general case we perform a lifting trick. Observe that the system

X′ := X ×ρ⊕φ◦ρ U × V is a simultaneous extension of both X ×ρ U and X ×φ◦ρ V .

Since
(
π

X×ρU
X×φ◦ρV

)∗
f is (G,X ×ρ U,S1)-cohomologous to

(
π

X×ρU
X×φ◦ρV

)∗
p, we see that

(
πX′

X×φ◦ρV

)∗
f is (G,X′, S1)-cohomologous to

(
πX′

X×φ◦ρV

)∗
p. Writing X′ as an extension

of X ×φ◦ρ V by the cocycle ρ ◦ π
X×φ◦ρ

X , and applying the previous result, we obtain
the claim. �

C A Measurable Selection Lemma

Suppose that G is a countable abelian group and X is an ergodic G-system. In our
arguments we will frequently have a family of (G,X, S1)-functions hu, parameterized
in some measurable fashion by a parameter u in a compact abelian group U , such
that hu takes values in Pk(G,X, S1) · B1(G,X, S1). In other words (by the axiom
of choice), for each u, we may find ψu ∈ Pk(G,X, S1) and Fu ∈ M(X, S1) such that
for each u ∈ U , we have the equation

hu = ψu∆• fu . (C.1)

Unfortunately, due to the use of the axiom of choice, it is not necessarily the case
that the functions ψu and Fu that arise here are measurable. Fortunately, one can
resolve this problem by using some separation properties of phase polynomials and
the hypothesis that X is separable. The basic tool here is the following (cf. [GrT5,
Lem. 7.1]):

Lemma C.1 (Separation lemma). Let G be a countable abelian group, let X =
(X,BX , µX , (Tg)g∈G) be an ergodic G-system, let k � 1, and let φ,ψ ∈ P<k(X) be
such that φ/ψ is non-constant. Then ‖φ − ψ‖L2(X) �

√
2/2k−2.

Remark C.2. The constant
√

2/2k−2 can be improved slightly, but for our purposes
any quantity that is independent of X would suffice here.

Proof. By dividing φ,ψ by ψ we may assume ψ = 1.
The claim is vacuous when k = 1. When k = 2 we argue as follows. For any

h ∈ G we have ∫

X
φdµX =

∫

X
Thφdµ =

∫

X
(∆• hφ)φdµX . (C.2)

If φ is a phase polynomial of degree < 2, then ∆• hφ is constant; if φ is non-constant,
then (by ergodicity) ∆• hφ is not identically 1 for at least one h. Thus

∫
X φ dµX = 0

and so ‖φ − 1‖L2(X) =
√

2, and the claim follows.
Now suppose inductively that k � 3 and the claim has already been proven

smaller values of k. Suppose for contradiction that there was a non-constant
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φ ∈ P<k(X) such that ‖φ − 1‖L2(X) <
√

2/2k−2. Arguing as in (C.2) we conclude

that ‖(∆• hφ)φ − 1‖L2(X) <
√

2/2k−2 for all h, and thus by the triangle inequality

‖∆• hφ − 1‖L2(X) =
∥∥(∆• hφ)φ − φ

∥∥
L2(X)

<
√

2/2k−3 .

But ∆• hφ ∈ P<k−1(X). By the induction hypothesis we conclude that ∆• hφ is constant
for every h, or in other words that φ ∈ P<2(X). The claim then again follows from
the induction hypothesis. �

Since L2(X) is separable, we conclude

Corollary C.3 (At most countably many polynomials modulo constants). Let G
be a countable abelian group, let X = (X,BX , µX , (Tg)g∈G) be an ergodic G-system,
let k � 1. Then the collection P<k(X), after quotienting out by constants, is at most
countable.

We are now ready to establish the measurable selection lemma.

Lemma C.4 (Measurable selection lemma). Let G be a countable abelian group.
Let X be an ergodic G-system, and let k � 1. Let U be a compact abelian group.
If u → hu is a Borel measurable map from U to P<k(G,X, S1) · B1(G,X, S1) ⊂
M(G,X, S1) (where we give the latter the topology of convergence in measure),
then there is a Borel measurable choice of fu, ψu (as functions from U to M(X, S1)
and P<k(G,X, S1) respectively) obeying (C.1).

Proof. For each u ∈ U , write

Ωu :=
{
f ∈ M(X, S1) : hu/∆• f ∈ P<k(G,X, S1)

}
,

then Ωu is non-empty for each u by hypothesis. Also, if fu, f ′
u ∈ Ωu, then ∆• (fu/f ′

u) ∈
P<k(G,X, S1), and so (by (3.1)) fu/f ′

u ∈ P<k+1(X); reversing this argument, we
conclude that Ωu is a coset of P<k+1(X) in M(X, S1) for each u.

As L2(X) is separable, one can find a countable sequence F1, F2, . . . ∈ M(X, S1)
which is dense in M(X, S1). For each u, let nu be the first integer such that there
exists k � 1 and fu ∈ Ωu with ‖fu − Fnu‖L2(X) <

√
2/2k+1; this integer exists by

density, and clearly depends in a measurable fashion on u. By Lemma C.1 and the
triangle inequality, we see that the fu ∈ Ωu which lie within

√
2/2k+1 of Fnu are all

constant multiples of each other. There is thus a unique fu ∈ Ωu which minimizes
the distance ‖fu−Fnu‖L2(X). Selecting this fu (and then solving for ψu using (C.1))
we obtain the claim. �

Remark C.5. One can also establish this result using a general measure selection
result of Dixmier (see e.g. [BK, Th. 1.2.4]) together with Lusin’s theorem and Corol-
lary C.3; we omit the details. One can also appeal to the descriptive set theory of
Polish groups, see e.g. [HK, App.A].

D Finite Characteristic Algebra

In this appendix we collect some algebraic facts that exploit the finite characteristic
of the underlying field F (or the finite torsion of various abelian groups).
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D.1 Compact abelian torsion groups. Recall that a group U is m-torsion if
we have um = 1 for all u ∈ U .

Lemma D.1 (Open sets of torsion groups contain open subgroups). Let U be a
compact abelian m-torsion group for some m � 1. Let V be an open neighborhood
of the identity in U . Then V contains an open subgroup W of U .

Proof. We will use a Fourier-analytic method. As V is an open neighborhood
of the origin, one can find another open neighborhood V ′ of the origin such that
V ′ − V ′ ⊂ V .

Let µ be the Haar measure on U , then µ(V ′) > 0. Let ε > 0 be a small number
(depending on µ(V ′)) to be chosen later. By Fourier analysis, we can approximate
the indicator function 1V ′ to within ε in L2(U)-norm by some linear combination
F of finitely many characters χ1, . . . , χn ∈ Û , where n is finite but potentially
unbounded. Since U is m-torsion, each character χj takes on at most m values,
with each level set of χj being a coset of an open subgroup of U . If we let W be
the intersection of the kernels of all the χj , then W is also an open subgroup of U ,
and F is constant on every coset of W . Since F approximates 1V ′ to within ε, we
conclude (if ε is sufficiently small depending on µ(V ′)) that there exists a coset of
W on which V ′ has density greater than 1/2. But then this forces W ⊂ V ′−V ′ and
hence W ⊂ U , as desired. �

Lemma D.2 (Splitting lemma). Let U be a compact abelian m-torsion group
for some m � 1. Let W be an open subgroup of U . Then there exists a splitting
U = W ′×Y , where W ′ is an open subgroup of W , and Y is a finite abelian m-torsion
group.

Proof. It is known (see e.g. [Mor, Ch. 5, Th. 18]) that a compact abelian m-torsion
group U is topologically isomorphic to the direct product of cyclic m-torsion groups.
(In particular, the bounded torsion allows us to avoid having to deal with procyclic
groups which are not direct products of cyclic groups.) Thus W must contain a
cylinder neighbourhood W ′ of the origin, i.e. a cofinite sub-product of these cyclic
groups. Since one clearly has the desired splitting U = W ′×Y , the claim follows. �

D.2 Polynomials are discretely valued. An important fact about phase poly-
nomials over Fω, which is not true for polynomials over some other groups G (such
as the integers Z), is that such polynomials only take finitely many values. More
precisely, if we let Cn := {z ∈ C : zn = 1} denote the cyclic group of nth roots of
unity, we have

Lemma D.3 (Phase polynomials over Fω are discretely valued). Let F be a finite
field of characteristic p, and let X = (X,BX , µX , (Tg)g∈Fω) be an ergodic Fω-system.

(i) If f ∈ P<k(X, S1) for some k � p, then fp ∈ P<k−p+1(X, S1).
(ii) If f ∈ P<k(X, S1) for some k � 1, then (after multiplying f by a con-

stant), f takes values in Cp⌊(k−2)/(p−1)�+1 . In other words, P<k(X) = S1 ·
P<k(X, Cp⌊(k−2)/(p−1)�+1).

(iii) If f ∈ P<k(X, S1) for some k � 1, and f takes values in Cp⌊(k−2)/(p−1)�+1, then

for any g ∈ Fω,
∏p−1

i=0 T i
gf takes values in Cp⌊k/p�.
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(iv) If f ∈ P<k(F
ω,X, S1) is a cocycle for some k � 1, then f takes values in

Cp⌊k/p�+1.

Proof. To prove (i), it suffices to verify it in the case k = p, since the higher cases
then follow by induction and from the identity ∆• g(f

p) = (∆• gf)p. Taking logarithms,
it suffices to show that if F : X → R/Z is a polynomial of degree < p, then pf is
constant.

Let g ∈ G. Since T p
g f = f and Tg = 1 + ∆g, we conclude using the binomial

formula that
∑p

i=0

(
p
i

)
∆i

gf = f. Since f has degree < p, ∆p
gf = 0. We conclude that

p∆gf +

(
p

2

)
∆gf + . . . + p∆p−1

g f = 0

which we rewrite as (
1 +

p − 1

2
∆g + · · · + ∆p−2

g

)
∆gpf = 0 .

Inverting the expression in brackets using Neumann series (and using the fact that
∆p−1

g annihilates ∆gpf) we conclude that ∆gpf = 0 for any g, thus by ergodicity
pf is constant as claimed.

To prove (ii), we first observe that it suffices to prove the claim for k of the form
k = pm + 1 for integer m. But the claim is trivial for m = 1, and from (i), we see
that the claim for m implies the claim for m + 1, and so (ii) follows by induction.

To prove (iii), it suffices to do so for k of the form k = pm−1 for some integer m,
since the claim is trivial otherwise. By (i), the claim for m implies the claim for m−1,
so it suffices to verify the case m = p−1. Taking logarithms, it suffices to show that
if F : X → R/Z is a polynomial of degree < p− 1 with pF = 0, then

∑p−1
i=0 T i

gF = 0.

But writing Tg = 1 + ∆g we obtain the identity
∑p−1

i=0 T i
g =

∑p−1
i=0

( p
i+1

)
∆i

g and

the claim follows, since
(

p
i+1

)
is a multiple of p for all 0 � i < p − 1, and ∆p−1

g

annihilates F .
To prove (iv), observe from the cocycle equation that

∏p−1
i=0 f(g, T i

gx) = 1 for
all g ∈ Fω and almost all x ∈ X. On the other hand, from (ii) we know that
for fixed g, f(g, ·) is equal to a constant cg times a polynomial taking values in

Cp⌊(k−2)/(p−1)�+1, so by (iii),
∏p−1

i=0 f(g, T i
gx) is equal to cp

g times a quantity in Cp⌊k/p�.
Thus cg ∈ Cp⌊k/p�+1, and the claim follows. �

Remark D.4. The claims are sharp. For instance, in the characteristic 2 space Fω
2

(which acts on itself by translations), the function φk : (x1, x2, . . .) �→ e2πi(
∑∞

j=1 |xj |)/2k

for k � 1, where x �→ |x| is the obvious map from F2 to {0, 1}, is a phase polynomial
of degree k which takes values in C2k , but in no smaller group.

D.3 Roots of phase polynomials. We now develop some machinery that will
allow us to take mth roots of phase polynomials and still obtain a phase polynomial.
It will be convenient to use the notation Oa1,...,ak

(1) to denote a quantity bounded in
magnitude by some constant C(a1, . . . , ak) depending only on a1, . . . , ak. Through-
out this appendix, F is a finite field of characteristic p, and X is an Fω-system.

For any cyclic p-group Z/pmZ, and any 0 � j � m − 1, let bj = bj,m : Z/pmZ →
{0, 1, . . . , p − 1} be the jth digit map, thus x =

∑m−1
j=0 bj(x)pj for all x ∈ Z/pmZ.
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Recall that a map P : X → H into an additive group H is a polynomial of degree
< d if we have ∆g1 . . . ∆gd

P = 0 for all g1, . . . , gd ∈ G.

Proposition D.5 (Digits of polynomials are polynomials). Let P : X → Z/pmZ be
a polynomial of degree < d, and let Z/plZ be a cyclic group. Embed {0, 1, . . . , p−1}
into Z/plZ in the obvious manner. Then for any 0 � j < m−1, bj(P ) is a polynomial
of degree < Ol,d,p,j(1).

Proof. We may assume inductively that the claim is already proven for smaller
values of d; for the same value of d and smaller values of l; or the same value of d
and l and smaller values of j. We abbreviate Ol,d,p,j(1) as O(1).

From primary school arithmetic we know that we have a formula of the form

bj(x + y) = bj(x) + bj(y) + cj

(
b0(x), . . . , bj−1(x), b0(y), . . . , bj−1(y)

)

− pcj+1

(
b0(x), . . . , bj(x), b0(y), . . . , bj(y)

)

for some “carry bit” functions cj : {0, 1, . . . , p − 1}2j → {0, 1}. Applying this with
P and ∆gP for some group element g we conclude

bj(TgP ) = bj(P ) + bj(∆gP ) + cj

(
b0(P ), . . . , bj−1(P ), b0(∆gP ), . . . , bj−1(∆gP )

)

− pcj+1

(
b0(P ), . . . , bj(P ), b0(∆gP ), . . . , bj(∆gP )

)

and so

∆g

(
bj(P )

)
= bj(∆gP ) + cj

(
b0(P ), . . . , bj−1(P ), b0(∆gP ), . . . , bj−1(∆gP )i

)

− pcj+1

(
b0(P ), . . . , bj(P ), b0(∆gP ), . . . , bj(∆gP )

)
.

By the induction hypothesis on d, bj(∆gP ) is already a polynomial of some degree
O(1). By the induction hypothesis on j, b0(P ), . . . , bj−1(P ), b0(∆gP ), . . . , bj−1(∆gP )
are also polynomials of degree O(1). The carry function cj , by Lagrange interpola-
tion, can be expressed as a polynomial in Z/plZ of its arguments; the key point here
is that as the arguments lie in {0, . . . , p−1}, the denominators in the Lagrange inter-
polation formula contain no factors of p and are thus invertible. We thus conclude
that cj(b0(P ), . . . , bj−1(P ), b0(∆gP ), . . . , bj−1(∆gP )) is also a polynomial of degree
O(1).

Finally, by the induction hypothesis on l, we know that

b0(P ), . . . , bj(P ), b0(∆gP ), . . . , bj(∆gP )

are polynomials of degree O(1) in Z/pl−1Z, and thus by arguing as before

cj+1(b0(P ), . . . , bj(P ), b0(∆gP ), . . . , bj(∆gP ))

is a polynomial of degree O(1) in Z/pl−1Z. This implies that

pcj+1

(
b0(P ), . . . , bj(P ), b0(∆gP ), . . . , bj(∆gP )

)

is a polynomial of degree O(1) in Z/plZ.
Putting all this together we see that ∆g(bj(P )) is a polynomial of degree O(1) for

all g, and hence bj(P ) is a polynomial of degree O(1), thus closing the induction. �
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Corollary D.6 (Functions of phase polynomials are phase polynomial). Let
φ1, . . . , φm be (X, S1)-phase polynomials of degree < d for some d,m � 1, let n � 1,
and let F (φ1, . . . , φm) be some function of φ1, . . . , φm taking values in the cyclic
group Cpn . Then F (φ1, . . . , φm) is a (X, S1)-phase polynomial of degree Op,d,m,n(1).

Proof. We have the freedom to rotate each of the φj by a constant. By Lemma D.3,
this allows us to assume that all the φ1, . . . , φm take values in Cpd (say), thus φj =

e(Pj/p
d) for some additive polynomials Pj : X → Cpd of degree < d. Now observe

that F can be viewed as a e(G((bi(Pj))0�i<d;1�j�m)/pn) for some function G :
{0, . . . , p − 1}md → Z/pnZ. By Lagrange interpolation, G can be viewed as the
restriction of a polynomial from (Z/pnZ)md to Z/pnZ with degree Od,m,p,n(1). The
claim now follows from Proposition D.5. �

We isolate one special case of Corollary D.6:

Corollary D.7 (Phase polynomials have phase polynomial roots). Let φ be a
(X, S1)-phase polynomial of degree < d for some d � 1, and let n � 1. Then there
exists a phase polynomial ψ of degree Od,n,p(1) such that ψn = φ.

Proof. By rotating φ by a constant and using Lemma D.3, we may assume that
φ takes values in Cpm for some m = Od,p(1). If n is not divisible by p, then n is
invertible in Cpm and the claim is immediate, so it suffices to check the case when
n is a power of p. But then the claim follows immediately from Corollary D.6. �

Another interesting consequence of Corollary D.6 (or Proposition D.5) is that
phase polynomials can always be expressed in terms of Cp-valued polynomials of
higher degree.

Corollary D.8 (Representation of phase polynomials by Cp-valued phase polyno-
mials). Let φ be a (X, S1)-phase polynomial of degree < d for some d � 1. Then φ
can be expressed as a function of Od,p(1) many Cp-valued (X, S1)-phase polynomials
of degree < Od,p(1).

E Connection with Cubic Complexes

In this appendix we point out some connections between the notions of polynomiality
and type in this paper with the theory of cubic complexes as used in topology, as
set out in [MP], in analogy with the more well-known simplicial complexes used in
that field. This material is not used elsewhere in this paper.

Abstractly, a cubic complex is a sequence of spaces X [k],X [k−1], . . . ,X [0], to-
gether with maps ∂(α)∗ : X [k] → X[l] for every l-face α of 2k, such that one has the
relation ∂(α)∗∂(β)∗ = ∂(∂(β)(α))∗ whenever k � l � m, β is an l-face of 2k, and α
is an m-face of 2l (so that ∂(β)(α) is an m-face of 2k. Note that the concrete cubic
complex defined in Definition A.2 is of this form.

Let X be an ergodic G-system for some countable abelian group G, and let
U = (U,+) a locally compact abelian group, which we now express additively for
compatibility with [MP]. By Lemma 4.3(iii), a (G,X, U)-function f is an a (G,X, U)-
polynomial of degree < k if and only if d[k]f = 0 µ[k]-almost everywhere. In the
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language of [MP], this is equivalent to f being of degree < k in the sense of cubic
complexes.

In the case that U is uniquely divisible by 1, . . . , k (i.e. for every 1 � j � k
and u ∈ U there is a unique solution u/j ∈ U to the equation j(u/j) = u), one
can express the operator d[k] : M(G,X, U) → M(G,X[k], U) as the composition
of the k differentiation operators d : M(G,X[j−1], U) → M(G,X[j], U) defined by
df(g, x) := 1

j

∑j
i=1(f(g, ∂+

i x) − f(g, ∂−
i x)).
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