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ABSTRACT 
 

Single piles and pile groups are frequently subjected to high lateral forces. The 

safety and functionality of many structures depends on the ability of the supporting pile 

foundation to resist the resulting lateral forces. In the analysis and design of laterally 

loaded piles, two criterions usually govern. First, the deflection at the working load 

should not be so excessive as to impair the proper function of the supporting member. 

Second, the ultimate strength of the pile should be high enough to take the load imposed 

on it under the worst loading condition. Typically, pile length, pile section, soil type, and 

pile restraint dictate the analysis. 

This paper presents different methods, specifically Broms’ method and the p-y 

method, for both the analysis and design of laterally loaded single piles. Both linear and 

nonlinear analyses are considered. The measured results of several full-scale field tests 

performed by Lymon Reese are compared to computed results using Broms’ method of 

analysis and the p-y method of analysis. Observations are made as to the correlation 

between the results and recommendations are made as to the applicability of the accepted 

methods for the analysis and design of laterally loaded piles. 
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INTRODUCTION 

 

It is well known that pile foundations are subjected to vertical loading. In addition 

to being subjected to vertical loads, single piles and pile groups are often subjected to 

high lateral loads. These loads may be forces of nature such as wave or wind loads, man 

made loads such as mooring loads, or by lateral earth pressures. For example, structures 

constructed for offshore use are subjected to static and cyclic lateral loads caused by 

waves and wind. The safety and functionality of these structures depends on the ability of 

the supporting pile foundation to resist the resulting lateral loads. 

Pile supported retaining walls, abutments, sector gates, or lock structures 

frequently resist high lateral loads. These lateral loads may be caused be lateral earth 

pressures acting on a retaining structure, by differential fluid pressures acting on a sector 

gate or lock structure, or by horizontal thrust loads acting on abutments of bridges. 

In the analysis and design of laterally loaded piles, three criterions usually govern. 

First, the deflection at the working load should not be so excessive as to impair the proper 

function of the supporting member. Second, the ultimate strength of the pile should be 

high enough to take the load imposed on it under the worst loading condition (Broms, 

1964b). And third, the load carrying capacity of the soil should not be exceeded, allowing 

the pile to rotate freely. 
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This paper presents different methods for both the analysis and design of laterally 

loaded single piles. The methods are presented in such a way as to guide the reader from 

the original concepts and theories of the laterally loaded foundation, to the more state-of-

the-art approaches. Although each of the methods presented are well accepted in 

literature and have been used extensively to analyze the problem of the laterally loaded 

foundation, each does not provide the same information. While some methods provide 

information such as ultimate soil capacity and bending moments in the pile, others 

provide information such as lateral deflections and bending moments in the pile. It is well 

known that the problem of the laterally loaded pile is a soil-structure interaction type 

problem. Because of this, information on the lateral deflection of the pile is needed for an 

adequate analysis or design. 

This paper considers both linear and nonlinear analyses of single piles. Pile 

groups and effects of pile spacing are beyond the scope of this paper, and will not be 

considered. The measured results of several full-scale field tests performed in stiff clay 

formations and sand formations are compared to computed results using Broms’ linear 

approach and the nonlinear p-y criteria developed by Reese and Matlock. Only 

methodologies that consider the lateral deflection of the pile are included in the 

comparisons. Observations and recommendations are made as to the correlation between 

the results and the applicability and limits of the methodologies. 

 Additionally, a computer software program known as FB-Pier, developed by the 

University of Florida, is used to perform a series of sensitivity analyses. The analyses are 

performed assuming various soil and pile scenarios. The effects of varying each 
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parameter independently is studied and the observations are reported. 

 In addition to this thesis being written to fulfill the requirements of the Master of 

Science Degree, the contents of the thesis will be used to assist the New Orleans District 

of the U.S. Army Corps of Engineers. The New Orleans District is currently in a 

transition period of adapting the p-y methodologies. Previously, the New Orleans District 

designed for lateral loads on pile foundation by using either a conservative linear 

subgrade modulus method of analysis or by using battered piles. Several of the recent 

projects assigned to the New Orleans District, such as the IHNC Lock Replacement and 

the Harvey Canal Sector Gate Structure require a large footprint and large diameter piles. 

It is realized that the methods used in past designs will not be cost effective for this type 

of project. The author’s intent is for the findings reported in this paper to be used as a 

reference for future designs of laterally loaded foundations by the New Orleans District.    
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I. THEORY OF BEAM ON ELASTIC FOUNDATION 

 

The analysis of bending of beams on an elastic foundation was developed on the 

assumption that the reaction forces of the foundation are proportional at every point to the 

deflection of the beam at that point, and independent of the pressure or deflection 

occurring in other parts of the foundation. This assumption was first introduced by E. 

Winkler in 1867 (Hetenyi, 1942). Its application to soil foundations should be regarded 

only as a practical approximation. It is perhaps the simplest approximation that can be 

made regarding the nature of a supporting elastic media. 

 

However, its drawback is that the soil is not treated as a continuum, but rather as a 

series of discrete resistances. The physical properties of soil are obviously of a much 

more complex nature than that which could be accurately represented by such a simple 

mathematical relationship as the one assumed by Winkler (Hetenyi, 1942). 

 

Consider a straight beam supported along its entire length by an elastic medium 

and subjected to vertical forces acting in the principle plane of the symmetrical cross-

section. The beam will deflect producing continuously distributed reaction forces in the 

supporting media. The intensity of these reaction forces, p , at any point is proportional 

to the deflection of the beam, y , at that point. Or, kyp = , where k  is the proportionality 

constant (Hetenyi, 1942). 



  

 

2

 

 

 

 

 

 

 

 

 

The elasticity of the material assumed by this relationship can be characterized by 

a force distributed over a unit area causing a unit deflection. The constant of the 

supporting material, 0k , in units of 3in
lb , is called the modulus of subgrade reaction and 

thus k , in units of 2in
lb , will be simply 0k  multiplied by the width of the beam, b , or 

bkk 0= . By considering the equilibrium of the element in Fig. (1-1), and summing the 

forces in the vertical direction, Hetenyi (1942) presents 

0)( =−++− qdxkydxdQQQ ,      

or  qky
dx

dQ
−=          (1-1). 

 

 
Fig. (1-1) 

Equilibrium Forces on an Element 

(Hetenyi, 1942) 

 

Making use of the relationship dxdMQ = , we can write (Hetenyi, 1942),  

qky
dx

Md

dx

dQ
−==

2

2

         (1-2). 

 

Using the known differential equation of a beam in bending, M
dx

yd
EI −=








2

2

, and 

differentiating it twice, we obtain (Hetenyi, 1942) 
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2

2

4

4

dx

Md

dx

yd
EI −=          (1-3). 

 

Substituting (1-3) into (1-2), we get (Hetenyi, 1942) 

qky
dx

yd
EI +−=

4

4

         (1-4). 

 

Equation (1-4) is the differential equation for the deflection curve of a beam 

supported on an elastic foundation. For unloaded parts where 0=q , we get (Hetenyi, 

1942) 

ky
dx

yd
EI −=

4

4

          (1-5). 

 

If an axial force, xP , is introduced, then the differential equation will be (Hetenyi, 1942) 

0
2

2

4

4

=++
dx

yd
Pky

dx

yd
EI x         (1-6). 

 

It should be emphasized that for piles, the horizontal modulus of subgrade 

reaction is used and that b is the diameter of the pile for a circular section. 

Hetenyi (1942) presented a closed form solution of this differential equation for 

different types of loading and end conditions. Two such solutions, with a load or a 

moment concentrated at the end, Figs. (1-2) and (1-3) are presented here. They are of 

direct interest to pile problems and will be used later by Broms. 
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Fig. (1-2) 

Beam with Concentrated Moment at End 

(Hetenyi, 1942) 

 

 

 
Fig. (1-3) 

Beam with Concentrated Force at End 

(Hetenyi, 1942) 

 

For a beam with a free end and a concentrated load, p , at one end (Hetenyi, 1942): 

LL

xxLxxL

k

p
xy

ββ
βββββββ

22 sinsinh

'coscoshsin'coshcossinh2
)(

−
−

=     (1-7) 

 

)]'sincosh'cos(sinhsin

)'sinhcos'cosh(sin[sinh
sinsinh

12
)(

22

2

xxxxL

xxxxL
LLk

p
x

βββββ

βββββ
ββ

βθ

++

+
−

=
  (1-8) 
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LL

xxLxxLp
xM

ββ
ββββββ

β 22 sinsinh

'sinsinhsin'sinhsinsinh
)(

−
−

−=     (1-9) 

 

)]'cossinh'sin(coshsin

)'coshsin'sinh(cos[sinh
sinsinh

1
)(

22

xxxxL

xxxxL
LL

pxQ

βββββ

βββββ
ββ

−−

−
−

−=
  (1-10). 

 

For the case of an applied moment at the end , 0M , (Hetenyi, 1942)  

)]'sincosh'cos(sinhsin

)cos'sinhsin'(cosh[sinh
sinsinh

12
)(

22

2

0

xxxxL

xxxxL
LLk

M
xy

βββββ

βββββ
ββ

β

−+

−
−

=
 (1-11) 

 

 
LL

xxLxxL

k

M
x

ββ
βββββββ

θ
22

3

0

sinsinh

'coscoshsincos'coshsinh4
)(

−
+

=    (1-12) 

 

)]'sincosh'cos(sinhsin

)sin'coshcos'(sinh[sinh
sinsinh

)(
22

0

xxxxL

xxxxL
LL

M
xM

βββββ

βββββ
ββ

+−

+
−

=
  (1-13) 

 

LL

xxLxxL
MxQ

ββ
βββββββ

220
sinsinh

'sinsinhsinsin'sinhsinh
2)(

−
+

=    (1-14) 

 

where ),(xy  ),(xθ  ),(xM  and )(xQ  are the displacement, slope, moment, and shear at x, 

respectively, and 4

4EI

k
=β  

 

where k is the Modulus of Subgrade Reaction in units of  2in
lb , and EI is the flexural 

rigidity of the beam. 

 

The differential equation will be used later, with p-y curves, as input data 

representing the nonlinear relationship between soil reaction and pile deflection to solve 

for deflection and bending moments along the pile length. In the solution of the 
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differential equation, appropriate boundary conditions must be selected at the top of the 

pile to insure that the equations of equilibrium and compatibility are satisfied at the 

interface between the pile and the superstructure. The selection of the boundary 

conditions is a simple problem in some instances, for example, where the superstructure 

is simply a continuation of the pile. However, in other instances, it may be necessary to 

iterate between solutions for the piles and for the superstructure in order to obtain a 

correct solution. Such iterations may be required because the soil behavior is usually 

nonlinear (Reese, 1974). 
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II. ULTIMATE LATERAL RESISTANCE OF PILES 

 

The calculation of the ultimate lateral resistance and lateral deflection, at working 

loads of single piles driven in cohesive and cohesionless soil, is considered here based on 

simplified assumptions of ultimate soil resistance. Both free and fixed headed piles have 

been considered. These methods were used by engineers before the development of p-y 

curves. 

The ultimate lateral resistance and working load deflections of single piles depends 

on the dimensions, strength, and flexibility of the individual pile, and on the deformation 

characteristics of the soil surrounding the loaded pile. The ultimate lateral resistance of a 

laterally loaded pile will be governed by either the ultimate lateral resistance of the 

surrounding soil or by the yield or ultimate moment resistance of the pile section. Lateral 

deflections at working loads have been calculated using the concept of subgrade reaction 

taking into account edge effects both at the ground surface and at the bottom of each 

individual pile. 

 

1. General Background 

 

The simplest and direct method of estimating the ultimate lateral resistance of a pile is 

to consider the statics of the problem. For a laterally loaded pile, passive and active earth 

pressures will develop. Assuming a general distribution shown in Fig. (2-1), the pile will 
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rotate around a point at a depth rZ . The ultimate load and moment, uH and uM , to cause 

failure could be calculated by performing the following integration (Poulous, H. G., and 

Davis, E. H.): 

∫∫ −=
L

Z

u

Z

uu

r

r

ddzpddzpH
0

        (2-1) 

∫∫ +−==
L

Z

u

Z

uuu

r

r

dzdzpdzdzpeHM
0

       (2-2) 

 
Fig. (2-1) 

Unrestrained Laterally-Loaded Pile 

(Poulous, H. G., and Davis, E. H.) 

 

In the case of a uniform distribution of soil resistance with depth along the whole 

length of the pile, that is, uL ppp ==0 , the above equations yield the following 

solutions for the depth of rotation, rZ , and the ultimate lateral load, uH  (Poulous, H. G., 

and Davis, E. H.): 
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+= L

dp

H
Z

u

u
r 2

1          (2-3) 




















−








−==

2

4
1

22

2
1

dLp

M

dLp

H

dLp

eH

dLp

M

u

u

u

u

u

u

u

u      (2-4) 







 +−+






 +=

L

e

L

e

dLp

H

u

u 2
11

2
1

2

       (2-5) 

 

dLp

H

u

u  is plotted against 
L

e
 in Fig. (2-2). 

For the case of a linear variation of soil resistance with depth, from 0p  at the 

ground surface to Lp  at the pile tip, the following equations may be derived (Poulous, H. 

G., and Davis, E. H.): 

0
2

3

12
64

0

0

0

0

0

0

0

0

23

=







−
+

−







−
+







−

























+








+


















+








pp

pp

pp

pp

L

e

L

Z

L

e

pp

p

pp

p

L

e

L

Z

L

Z

L

L

L

L

r

LL

rr

    (2-6) 

and 









+−
















+
















−=

L

r

L

r

Lu

u

p

p

L

Z

p

p

L

Z

p

p

dLp

H 0

2
10

2

0 121      (2-7) 

dLp

H

u

u  is plotted against 
L

e
 in Fig. (2-2) for the case of 00 =p . 
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Fig. (2-2) 

Ultimate Lateral Resistance of Unrestrained Rigid Piles 

(Poulous, H. G., and Davis, E. H.) 

 

For any general distribution of soil resistance with depth, it will be convenient to employ 

the procedure recommended by Brinch Hansen (1961). In this procedure, the center of 

rotation is determined by trial and error, such that the resulting moment, taken about the 

point of application of the load, is zero. When the center of rotation is determined, the 

ultimate lateral resistance can be obtained from the horizontal equilibrium equation. 
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This analysis holds true for rigid piles. For non-rigid piles the lesser of either the 

horizontal load causing failure in the soil along the length of the pile, or the horizontal 

load causing yielding in the pile section, should be considered. The ultimate soil 

resistance for a purely cohesive soil up  is considered generally to increase from the 

surface down to a depth of about three pile diameters and remain constant for greater 

depths. The distribution is shown in Fig. (2-10). For a general case of a φ−c  soil, 

Hansen (1961) expressed the ultimate soil resistance at any depth Z by 

cqu ckqkp +=          (2-8) 

where q is the vertical overburden pressure, c is the cohesion, and qk  and ck  are factors 

that are a function of φ  and 
d

Z
. qk  and ck  are plotted in Fig. (2-3) while the limiting 

values for the ground surface and for an infinite depth are plotted in Fig. (2-4). 



  

 

12

 

 

 

 

 

 

 

 

 

 

Fig. (2-3) 

Lateral Resistance Factors Kq and Kc 

(Brinch Hansen, 1961) 
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Fig. (2-4) 

Lateral Resistance Factors at the Ground Surface (0) and at great depth ( )∞  

(Brinch Hansen, 1961) 

 

Broms (1964a & 1964b) made some simplification to the ultimate soil resistance. 

He justified his simplification with several experiments he conducted and with test data. 

His method and its reliability is the subject of the following sections.  

 

2. Piles in Cohesive Soils 

 

The load deflection relationships of laterally loaded piles driven into cohesive soils 

are similar to the stress-strain relationships as obtained from consolidated-undrained 

tests. At loads less than 
2
1  to 

3
1  of the ultimate lateral resistance of the pile, the deflection 
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increases approximately linear with the applied load. At higher loads, the load-deflection 

relationships become non-linear and the maximum resistance is, in general, reached when 

the deflection at the ground surface is approximately equal to 20% of the diameter or side 

of the pile (Broms, 1964b). 

The possible modes of failure of laterally loaded piles are illustrated in Figs. (2-

5), (2-6), (2-7), (2-8), and (2-9) for free-headed and restrained piles, respectively. An 

unrestrained pile, which is free to rotate around its top end, is defined herein as a free-

headed pile (Broms, 1964b). 

Failure of a free-headed pile, shown in Figs. (2-5) and (2-6), takes place when (a) 

the maximum bending moment in the pile exceeds the moment causing yielding or failure 

of the pile section (this takes place when the pile penetration is relatively large), or (b) the 

resulting lateral earth pressure exceeds the lateral resistance of the supporting soil along 

the full length of the pile and it rotates as a unit, around a point located at some distance 

below the ground surface. This takes place when the length of the pile and its penetration 

lengths are small (Broms, 1964b). 
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Fig. (2-5) 

Deflection, Soil Reaction, and Bending Moment Distribution for a Short, Free-Headed 

Pile 

(Broms, 1964b) 

 
Fig. (2-6) 

Deflection, Soil Reaction, and Bending Moment Distribution for a Long, Free-Headed 

Pile 

(Broms, 1964b) 
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The failure modes of restrained piles are illustrated in Figs. (2-7), (2-8), and (2-9). 

In the case when the piles and the penetration depths are large, failure may take place 

when two plastic hinges form at the locations of the maximum positive and negative 

bending moments. Failure may also take place after the formation of the first plastic 

hinge at the top end of the pile, if the lateral soil reactions exceed the bearing capacity of 

the soil along the full length of the pile as shown in Fig. (2-8) and the pile rotates around 

a point located at some depth below the ground surface. This mode of failure takes place 

at intermediate pile lengths and intermediate penetration depths. When the lengths of the 

piles and the penetration depths are small, failure takes place when the applied lateral 

load exceeds the resistance of the supporting soil, as shown in Fig. (2-7) (Broms, 1964b). 

 
Fig. (2-7) 

Deflection, Soil Reaction, and Bending Moment 

(Broms, 1964b) 
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Fig. (2-8) 

Deflection, Soil Reaction, and Bending Moment Distribution for a Restrained Pile of 

Intermediate Length 

(Broms, 1964b) 
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Fig. (2-9) 

Deflection, Soil Reaction, and Bending Moment Distribution for a Long Restrained Pile 

(Broms, 1964b) 

 

a. Unrestrained or Free-Headed Piles 

 

The failure mechanism and the resulting distribution of lateral earth pressures 

along the laterally loaded free-headed pile driven into a cohesive soil is shown in Fig. (2-

10). The soil located in front of the loaded pile close to the ground surface moves 

upwards in the direction of least resistance, while the soil located at some depth below 

the ground surface moves in a lateral direction from the front to the back side of the pile. 

Furthermore, it has been observed that the soil separates from the pile on its backside 

down to a certain depth below the ground surface (Broms, 1964b). 
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Fig. (2-10) 

Distribution of Lateral Earth Pressures 

(Broms, 1964b) 

 

The probable distribution of lateral soil reactions is shown in Fig. (2-10b). On the 

basis of the measured and calculated lateral resistances, the probable distributions have 

been approximated by the rectangular distribution shown in Fig. (2-10c). It has been 

assumed that the lateral soil reaction is equal to zero to a depth of 1-½ pile diameters (D) 

and equal to Dcu0.9  below this depth. The resulting calculated maximum bending 

moment and required penetration depth (assuming the rectangular distribution of lateral 

earth pressures shown in Fig. (2-10c)) will be somewhat larger than that corresponding to 

the probable pressure distribution at failure. Thus, the assumed pressure distribution will 
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yield results that are on the safe side (Broms, 1964b). 

 

For short piles the distribution of soil reaction and bending moments is shown in 

Fig. (2-5). The distance f  defines the location of the maximum moment and since the 

shear there is zero (Broms, 1964b), 

Dc

H
f

u

u

9
=               (2-10) 

 

Also, taking moments about the maximum moment location (Broms, 1964b), 

( )fDeHM u 5.05.1max ++=         (2-11a) 

 

also, 

ucDgM 2

max 25.2=          (2-11b) 

 

Since gfDL ++= 5.1 , Eqns. (2-10) and (2-11) can be solved for the ultimate 

lateral load, uH . The solution is plotted in Fig. (2-11) in terms of dimensionless 

parameters 
D
L  and 

2Dc

P

u

ult (where uult HP = ), and applies for short piles in which the 

yield moment maxMM y > . This inequality should be checked using Eqns. (2-10) and (2-

11a). 

 

For long piles, the distribution of soil reaction and bending moment is shown in 
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Fig. (2-6). Eqn. (2-11b) no longer holds, and uH  is obtained from Eqns. (2-10) and (2-

11a) by setting maxM  equal to the known value of the yield moment, yM . This solution is 

 
 

Fig. (2-11) 

Ultimate Lateral Resistance for Short Piles in Cohesive Soils 

(Broms, 1964b) 



  

 

22

 

 

 

 

 

 

 

 

 

 

 
Fig. (2-12) 

Ultimate Lateral Resistance for Long Piles in Cohesive Soils 

(Broms, 1964b) 

 plotted in Fig. (2-12) in terms of dimensionless parameters 
3Dc

M

u

y
 and 

2Dc

P

u

ult (where 

uult HP = ). It should be noted that Broms solution for short piles can be recovered from 

the simple statical solution for uniform soil described previously, by using an equivalent 

length of pile equal to DL 5.1− , and an equivalent eccentricity of loading equal to 

De 5.1+ . 

 

b. Restrained or Fixed-Headed Piles 

 

Possible failure mechanisms for restrained piles are shown in Figs. (2-7), (2-8), 

and (2-9) together with assumed distribution of soil reaction and moments. For a very 

short restrained pile, failure takes place when the applied lateral load is equal to the 
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ultimate lateral resistance of the supporting soil, and the pile moves as a unit in the soil. 

The following relation holds for short piles (Broms, 1964b): 

( )DLDcH uu 5.19 −=          (2-12) 

( )DLHM u 75.05.0max +=         (2-13) 

Solutions in dimensionless terms are shown in Fig. (2-11). 

For intermediate or long piles, failure takes place when the restraining moment at 

the head of the pile is equal to the ultimate moment resistance of the pile section yM , and 

the pile rotates around a point located at some depth below the ground surface. Taking a 

moment about the ground surface (Broms, 1964b), 

( )fDDfccDgM uuy 5.05.1925.2 2 +−=       (2-14) 

 

This equation, together with the relationship gfDL ++= 5.1 , may be solved for 

uH . It is necessary to check that the maximum positive moment, at depth Df 5.1+ , is 

less than yM ; otherwise, the failure mechanism for long piles shown in Fig. (2-9) holds. 

For the latter mechanism, where two plastic hinges form along the length of the pile, the 

first is located in the section of maximum negative moment, at the bottom of the pile cap. 

The second is located at the section of maximum positive moment at the depth of 

Df 5.1+  below the ground surface. The following relation applies (Broms, 1964b): 

( )fD

M
H

y

u
5.05.1

2

+
=           (2-15). 
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Dimensionless solutions are shown in Fig. (2-12). 

 

3. Piles in Cohesionless Soil 

 

The possible modes of failure of laterally loaded piles, along with the distribution 

of soil reaction, are shown in Figs. (2-13), (2-14), (2-16), (2-17), and (2-18) for free-

headed and restrained piles driven in cohesionless soils. The mode of failure of a laterally 

loaded pile driven into a cohesionless soil will depend on the depth of embedment and on 

the degree of end restraint. 

 

The mechanism of failure and the assumed distribution of soil reaction are shown 

in Fig. (2-15). The soil located in front of the pile moves in an upward direction, whereas 

the soil located at the backside of the pile moves downward and fills the void created by 

the lateral deflection of the pile. However, at relatively large depths, the soil located in 

front of the pile will move laterally to the backside of the pile instead of upward (Broms, 

1964a). 
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Fig. (2-13) 

Failure Mode of a Short, Free-Headed Pile 

(Broms, 1964a) 

 

 
Fig. (2-14) 

Failure Mode of a Long, Free-Headed Pile 

(Broms, 1964a) 
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Fig. (2-15) 

Assumed Distribution of Soil Reactions 

(Broms, 1964a) 

 

 
 

Fig. (2-16) 

Distribution of Deflections, Soil Reactions, and Moments for a Long Restrained Pile 

(Broms, 1964a) 
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Fig. (2-17) 

Distribution of Deflections, Soil Reactions, and Moments for a Short Restrained Pile 

(Broms, 1964a) 

 

 
 

Fig. (2-18) 

Distribution of Deflections, Soil Reactions, and Moments for a Pile of Intermediate 

Length 

(Broms, 1964a) 



  

 

28

 

 

 

 

 

 

 

 

 

For a relatively short unrestrained pile, failure takes place when the pile rotates as 

a unit with respect to a point located close to its toe. The negative lateral pressures that 

develop at the toe, or tip of the laterally loaded pile are large (Broms, 1964a). 

 

For a long unrestrained pile, failure takes place when the maximum bending 

moment exceeds the yield resistance of the pile section and a plastic hinge forms at the 

section of the maximum bending moment. The lateral deflection of the pile above the 

plastic hinge will be large. For a short restrained pile, failure takes place when that load 

applied is equal to the ultimate lateral resistance of the soil. For intermediate and long 

piles, failure will take place when one or two plastic hinges form and the pile becomes 

unstable (Broms, 1964a). 

 

The following assumptions are made in the analysis by Broms (Broms, 1964a): 

1. The active earth-pressure acting on the back of the pile is neglected. 

2. The distribution of passive pressure along the front of the pile is equal to three 

times the Rankine passive pressure. 

3. The shape of the pile section has no influence on the distribution of the 

ultimate soil pressure or the ultimate lateral resistance. 

4. The full lateral resistance is mobilized at the movement considered. 

 

The simplified assumption of an ultimate soil resistance, up , equal to three times the 

Rankine passive pressure is based on limited empirical evidence from comparisons 
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between predicted and observed ultimate resistances made by Broms. These comparisons 

suggest that the assumed factor of 3 may be, in some cases, conservative, as the average 

ratio of predicted to measured ultimate loads is about 2/3. The distribution of soil 

resistance is (Broms, 1964a): 

pvu Kp '3σ=            (2-16) 

where 

='

vσ effective vertical overburden pressure 

( )
( )'sin1

'sin1
φ

φ
−

+=pK  

='φ angle of internal friction (effective stress). 

 

a. Unrestrained or Free-Headed Piles 

 

By taking moments about the toe, the free-headed pile will have an ultimate 

lateral force given by (Broms, 1964a) 

Le

KDh
H

p

u +
=

35.0 γ
         (2-17) 

This relationship is plotted in Fig. (2-19) using dimensionless parameters, 
D
L  and 

3DK

H

p

u

γ . The maximum moment occurs at a distance f  below the surface (Broms, 

1964a), where  

2
3

2 fDKH pu γ=          (2-18). 
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That is, 
γp

u

DK

H
f 82.0= . 

The maximum moment is (Broms, 1964a) 

( )feHM u 3
2

max +=          (2-19). 

 
 

Fig. (2-19) 

Ultimate Lateral Resistance for Short Piles 

(Broms, 1964a) 

 

If after use of Eqn. (2-17), the calculated value of uH  results in yMM >max  

( maxM  from Eqn. (2-19)), then the pile will act as a “long” pile, and uH  may then be 

calculated from Eqns. (2-18) and (2-19), putting yMM =max . The solutions for uH  using 

“long” piles are plotted in Fig. (2-20) in terms of 3DK

H

p

u

γ  and 
p

y

KD

M

γ4 . 
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For short piles, comparisons reveal that Broms’ assumptions lead to a higher 

value of the ultimate load than the general simple analysis. For example, for 20=
D
L  

and 0=
L
e , Broms’ solution gives a load 33% more than that derived from simple 

 
 

Fig. (2-20) 

Ultimate Lateral Resistance for Long Piles 

(Broms, 1964a) 

 

 statical analysis. 

 

b. Restrained or Fixed-Headed Piles 

 

Similarly for fixed headed piles, the horizontal equilibrium will give (Broms, 

1964a) 

pu DKLH 2
2

3 γ=           (2-20). 
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This solution is plotted in dimensionless form in Fig. (2-19). The maximum moment is 

(Broms, 1964a) 

LHM u3
2

max =           (2-21). 

If the maxM  exceeds yM , then the failure mode in Fig. (2-18) is relevant. From Fig. (2-

18), for horizontal equilibrium: 

 ( ) up HKDLF −= 2
2

3 γ         (2-22). 

 

Taking moments about the top of the pile, and substituting for F from Eqn. (2-22), 

( ) LHKDLM upy −= 35.0 γ         (2-23). 

Hence, uH  may be obtained. 

 

This equation only holds if the maximum moment at depth f  is less than yM , 

the distance f  being calculated from Eqn. (2-18). For the situation shown in Fig. (2-16), 

where the maximum moment reaches yM  at two locations, it can be found that 

( ) yu MfeH 23
2 =+          (2-24). 

Dimensionless solutions from this equation are shown in Fig. (2-20). 

 

4. Correlation with Test Results 

 

The ultimate lateral resistances have been compared with some available test data 

(Broms, 1964a and Broms, 1964b). The average measured ultimate lateral resistances 

exceeded the calculated resistances by more than 50 percent for cohesionless soil. 
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However, the measured ultimate lateral resistances of piles tested by Walsenko were 

found to be only 2/3 of the calculated resistances. These piles were embedded in a fine 

gravel with a reported angle of internal friction of °= 45φ  as measured by direct shear 

tests. Frequently it is difficult to measure accurately the shearing strength of gravel by 

means of direct shear tests. If a value of °= 35φ  is taken as the angle of internal friction, 

then the average ratio 
calc

test

p
p

 is increased to 1.43, a value that compares well with the 

remainder of the test data. The conclusion that can be drawn from this comparison is that 

the ultimate resistance of laterally loaded piles can be estimated conservatively assuming 

an ultimate lateral soil reaction equal to three times the Rankine lateral earth pressure. 

 

Comparisons have been made by Broms between maximum bending moments 

calculated from the above approach and values determined experimentally from the 

available test data. For cohesionless soils, this ratio ranged between 0.54 and 1.61 with an 

average value of 0.93 (Broms, 1964a). For cohesive soils, the ratio of calculated to 

observed moment ranged between 0.88 and 1.19, with an average value of 1.06 (Broms, 

1964b). While good agreement was obtained, it was pointed out by Broms that the 

calculated maximum moment is not sensitive to small variations in the assumed soil-

resistance distribution. 

 

5. Load-Deflection Prediction 

 

At working loads, the deflection of a single pile or of a pile group can be 
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considered to increase approximately linearly with the applied loads. Part of the lateral 

deflection is caused by the shear deformation of the soil at the time of loading and part by 

consolidation and creep subsequent to loading. The deformation caused by consolidation 

and creep increases with time. 

 

It will be assumed in the following analysis, that the lateral deflections and 

distribution of bending moments and shear forces can be calculated at working loads by 

means of the theory of subgrade reaction. Thus, it will be assumed that the unit soil 

reaction p  (in inlb ) acting on a laterally loaded pile increases in proportion to the 

lateral deflection y  (in inches) expressed by the equation 

yKp 0=           (2-25) 

where the coefficient 0K  (in 2inlb ) is defined as the coefficient of subgrade reaction. 

The numerical value of the coefficient of subgrade reaction varies with the width of the 

loaded area and the load distribution, as well as with the distance from the ground surface 

(Broms, 1964b). 

 

It will be assumed that for clay, the modulus is constant with depth and that for 

granular soils, the modulus increases linearly with depth. For real soils, the relationship 

between soil pressure p  and deflection y  is non-linear with the soil pressure reaching a 

limiting value when the deflection is sufficiently large. The more satisfactory approach to 

deflection prediction is to perform a non-linear analysis. However, if linear theory is to be 
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used, it is necessary to choose appropriate secant values of the subgrade modulus. Reese 

and Matlock argue that the adoption of a linearly increasing modulus of subgrade 

reaction with depth takes some account of soil yield and nonlinearity, as values of the 

secant modulus near the top of the pile are likely to be very small, but will increase with 

depth because of both a higher soil strength and lower levels of deflection. Reese and 

Matlock’s argument is most relevant to piles in sand and soft clay. In some cases, for 

example, relatively stiff piles in over-consolidated clay at relatively low load levels, the 

assumption of a constant subgrade modulus with depth may be more appropriate. 

 

Solutions for the simple cases of constant subgrade modulus with depth, and 

linearly increasing modulus with depth are described below. For horizontal load H  

applied at ground level to a free-headed or unrestrained pile of length L , the following 

solutions are given by Hetenyi, and shown before, for horizontal displacement y , slope 

θ , moment M , and shear Q  at a depth z  below the surface (Hetenyi, 1964): 

yHk
K

H
y ⋅=

β2
         (2-26a) 

Hk
K

H
θ

βθ ⋅=
22

         (2-26b) 

MHk
H

M ⋅−=
β

         (2-26c) 

QHkHQ ⋅−=           (2-26d) 

where β , yHk , Hkθ , MHk , and QHk  are coefficients used with horizontal loads H  and 
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are described previously, and where 

dKK h=           (2-27) 

=hK  horizontal subgrade reaction (in 3inlb ) 

=d  diameter of pile (in inches) 

 

The corresponding expressions for moment loadings 0M  applied at the ground 

surface are as follows (Hetenyi, 1964): 

yMk
K

M
y ⋅=

2

02 β
         (2-28a) 

Mk
K

M
θ

β
θ ⋅=

3

04
         (2-28b) 

MMkMM ⋅= 0          (2-28c) 

QMkMQ ⋅= β02          (2-28d) 

 

Solutions for the case of a fixed-head or restrained pile may be obtained from the 

above solutions for a free-head pile by adding to the solutions for horizontal loading H , 

the solutions for an applied moment of (Hetenyi, 1964) 

( )
( )






=
=









−=

0

0

2
0

zk

zkH
M

M

H

θ

θ

β
        (2-29) 

This will be the applied moment to produce zero slope at the pile head.  

For deflections and rotations at the soil surface, plots are shown in Fig. (2-21). 
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For a free-headed or unrestrained pile, for constant hK  (Barber, 1953), 

deflection  M

h

H

h

I
dLK

M
I

dLK

H
ρρρ ⋅








+⋅








=

2

0      (2-30a) 

rotation      M

h

H

h

I
dLK

M
I

dLK

H
θθθ ⋅








+⋅








=

2

0      (2-30b) 

For a fixed-headed pile, which is free to translate but not to rotate (Barber, 1953), 

deflection  F

h

I
dLK

H
ρρ ⋅








=         (2-31) 

where 

H = applied horizontal force at the ground surface 

M0 = applied moment at the ground surface 

d = diameter of the pile 

L = length of the pile 

HI ρ , MI ρ , HIθ , MIθ , and FI ρ  = deflection and rotation influence factors from Fig. (2-21) 
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Fig. (2-21) 

Top Deflection and Rotation for Lateral Loads on Vertical Piles for Constant kh 

(Barber, 1953) 

 

For a free-headed pile, of embedded length L, subjected to a horizontal load H at an 

eccentricity e above the ground surface, the following limiting solutions apply for 

horizontal displacement and rotation at the ground line, for a constant hK  (Broms, 

1964b): 

 

1. Rigid pile  (holds if 5.1<Lβ ) 

dLK

L

e
H

h







 +

=
5.114

ρ        (2-32a) 
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2

216

dLK

L

e
H

h







 +

=θ        (2-32b) 

 

2. Infinitely long pile  (holds if 5.2>Lβ ) 

( )
dK

eH

h

12 +
=

ββρ        (2-33a) 

 

( )
dK

eH

h

ββθ 212 2 +
=        (2-33b) 

 

For a fixed-headed pile, the limiting solutions are (Broms, 1964b): 

1. Rigid pile  (holds if 5.0<Lβ ) 

dLK

H

h

=ρ         (2-34) 

2. Infinitely long pile  (holds if 5.1>Lβ ) 

dK

H

h

βρ =         (2-35) 

 

For linearly varying hK  with depth, Terzaghi expressed the variation as follows 

(Broms, 1964a): 







=
d

z
nK hh           (2-36) 

where 

=hn  coefficient of subgrade reaction at a depth of unity below the ground surface 
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(units of 3length
force

) 

=z      depth below ground surface 

=d      pile diameter 

 

No convenient closed form solutions are available for this case, but the following 

limiting solutions apply for free-headed piles (Broms, 1964a): 

1. Rigid pile  ( 0.2max <z ) 

hnL

L

e
H

2

33.1118 





 +

=ρ        (2-37a) 

hnL

L

e
H

3

5.1124 





 +

=θ        (2-37b) 

2. Infinitely long pile  ( 0.4max >z ) 

( ) ( ) ( ) ( ) 5
3

5
2

5
2

5
3

6.14.2

EIn

He

EIn

H

hh

+=ρ      (2-38a) 

( ) ( ) ( ) ( ) 5
4

5
1

5
3

5
2

74.16.1

EIn

He

EIn

H

hh

+=θ      (2-38b) 

 

For fixed-headed piles (Broms, 1964a): 

1. Rigid pile  ( 0.2max <z ) 
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hnL

H
2

2
=ρ         (2-39) 

2. Infinitely long pile  ( 0.4max >z ) 

( ) ( ) 5
2

5
3

93.0

EIn

H

h

=ρ        (2-40) 

 

For the above solutions, maxz  is defined as  

T
Lz =max           (2-41) 

where 

51









=

hn

EI
T           (2-42) 

=EI  Flexural rigidity of the pile 

 

 Solution for pile head deflection and slope are plotted in Fig. (2-22). The actual 

slope and deflection are given by Eqns. (2-30) and (2-31), except that dK h  is now 

replaced by Lnh  in the denominator of these equations. 
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Fig. (2-22) 

Top Deflection and Rotation for Lateral Loads on Vertical Piles for kh Proportional to 

Depth 

(Barber, 1953) 
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6. Correlation with Test Data 

 

In cohesive soils the lateral deflection at workings loads can be calculated by the 

methods previously presented if the stiffness of the pile section, the pile diameter, the 

penetration depth, and the average unconfined compressive strength of the soil are known 

within the significant depth (Broms, 1964b).  

 

The lateral deflections calculated from Eqns. (2-32a), (2-34), (2-33a), and (2-35) have 

been compared with the test data (Broms, 1964b). The measured lateral deflections at the 

ground surface varied between 0.5 to 3.0 times the calculated deflections. Broms noted 

that the calculated lateral deflections for short piles are inversely proportional to the 

assumed coefficient of subgrade reactions and thus to the measured average unconfined 

compressive strength of the supporting soil. Thus, small variations of the measured 

average unconfined compressive strength will have large effects on the calculated lateral 

deflections. Broms also noted that agreement between measured and calculated lateral 

deflections improves with decreasing shear strengths of the soil. The cohesive soils 

reported with a high unconfined compressive strength have been preloaded by 

desiccation and it is well known that the shear strength of such soils is erratic and may 

vary appreciably within short distances due to the pressure of shrinkage cracks (Broms, 

1964b). 

 

Test data (Broms, 1964a) indicates that the proposed method can be used to calculate 

the lateral deflection at working loads (at load levels equal to one-half to one-third the 
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ultimate lateral capacity of a pile) when the unconfined compressive strength of the soil is 

less than about 1.0 tsf. However, when the unconfined compressive strength of the soil 

exceeds about 1.0 tsf, it is expected that the actual deflections at the ground surface may 

be considerably larger than the calculated lateral deflections due to the erratic nature of 

the supporting soil (Broms, 1964a). 

 

For cohesionless soils, the calculated lateral deflections have been compared with 

some available test data on free-headed and restrained steel, reinforced concrete, and 

timber piles driven or jetted into dense, medium, or loose cohesionless soils. The 

calculated lateral deflections depend on the stiffness of the pile sections, the relative 

density of the soil surrounding the test piles and on the degree of end restraint. The 

calculated lateral deflections in almost all cases considerably exceeded the measured 

lateral deflection. 

 

However, Broms noted that only an estimate of the lateral deflection is required 

for most problems and that the accuracy of the proposed methods of analysis is probably 

sufficient for this purpose. Additional test data would be required to determine the 

accuracy and the limitations of the proposed methods used with cohesionless soils. 
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III. P-Y CURVES 

 

 The differential equation for solving the problem of laterally loaded deep 

foundations has been shown and analyzed before: 

0
2

2

4

4

=++
dx

yd
PyE

dx

yd
EI xs         (3-1) 

 Approximate solutions for the equation can sometimes be obtained by the use of 

non-dimensional relationships. A more favorable approach is to write the differential 

equation in difference form and to obtain solutions by the use of a computer. Some of the 

computer programs available for this type of analysis include L-Pile, FB-Pier, and CLM 

2.02. 

 The numerical description of the soil modulus, sE , in this equation is 

accomplished best by a set of curves that relates the soil reaction to pile deflection. If 

such a set of curves can be predicted, the differential equation can be solved to yield 

deflection, pile rotation, bending moment, shear, and soil reaction of any load capable of 

being sustained by the deep foundation. 

 Most of the recent research on laterally loaded piles has been in the development 

of such curves. Some of the important research was conducted to solve the problem in the 

design and construction of piles in many offshore installations. In such installations, 

cyclic loadings from wind and waves associated with hurricanes or otherwise play a 



  

 

46

 

 

 

 

 

 

 

 

 

major role in the design criteria, along with the static loading. 

 

1. Pile Deflection-Soil Reaction 

 

The idea of p-y curves is presented in Fig. (3-1). Fig. (3-1a) shows a section 

through a pile at a depth below the ground surface. The behavior of a stratum of soil at a 

depth 1x  below the surface will be discussed. Fig. (3-1b) shows a possible earth pressure 

distribution around the pile after installation, but before applying a lateral load to the pile. 

The earth pressure distribution in Fig. (3-1b) assumes that the pile was perfectly straight 

prior to driving and that there was no bending of the pile during driving. While neither of 

these conditions is precisely met in practice, it is believed that in most instances the 

assumption can be made without serious error. 

 The deflection of the pile through a distance iy , as shown in Fig. (3-1c), would 

generate unbalanced soil pressures against the pile, perhaps as indicated in the figure. 

Integration of the soil pressures around the pile would yield an unbalanced force ip  per 

unit length of the pile. The deflection of the pile could generate a soil resistance parallel 

to the axis of the pile, however, it is assumed that such soil resistance would be quite 

small and it can be ignored in the analysis. As shown in Fig. (3-1), the deflection of iy  is 

the distance the pile deflects laterally as being subjected to a lateral load. The soil 

resistance ip  is the force per unit length from the soil against the pile, which develops as 

a result of the pile deflection. 

The set of curves shown in Fig. (3-2) would seem to imply that the behavior of 
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the soil at a particular depth is independent of the soil behavior at all other depths. That 

assumption is not strictly true. However, it has been found by experiment (Matlock, 

1970) that for the patterns of pile deflections that can occur in practice, the soil 

 

   
 

     Fig. (3-1)                  Fig. (3-2) 

Graphical Definition of p and y         Set of “p-y” Curves 

(Reese, 1974)                (Reese, 1974) 

reaction at a point is dependent essentially on the pile deflection at that point and not on 

the pile deflection above or below. Thus, for purposes of analysis, the soil can be 

removed and replaced by a set of discrete mechanisms with load-deflection 

characteristics of a character such as shown in Fig. (3-2) (Reese, 1974). 

The proper form of the p-y relation is influenced by a great many factors, 

including (1) natural variation of soil properties with depth, (2) the general form of the 

pile deflection, (3) the corresponding state of stress and strain throughout the effected soil 
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zone, and (4) the rate and sequence and history of cyclic loadings. 

If the soil behavior at each depth can be reduced to a single p-y curve the analysis 

and design of complex loading can be achieved. For cyclic wave loading it would be 

hopeless to attempt to follow analytically the continuous path of soil response. What is 

needed for design will be a quasi-static approximation of the lower bound of soil 

resistance under an indefinitely large number of loading cycles. 

In the remainder of this chapter, the recommended procedure for computing and 

constructing p-y curves in the cases of sand, soft clays, and stiff clays are described. The 

methods presented are based on results of full-scale tests of instrumented piles. 

Description of instrumentation, soil conditions, and procedure of testing at the different 

sites considered are included also. 

2. P-Y Curves for Sand Deposits 

A series of tests were conducted on two 24-inch diameter test piles installed at a 

site where the soil consisted of clean fine sand to silty fine sand (Reese, 1974). Two types 

of loadings were employed, static loading and cyclic loading. The data was analyzed and 

families of curves were developed which showed the soil behavior presented in terms of 

soil resistance p  as a function of pile deflection y . 

The experiments entailed the application of known lateral loads in the field to 

full-sized piles, which are instrumented for the measurement of bending moment along 

the length of the piles. In addition to the measurements of the load at the ground line, 

measurements were made of the pile head deflection and the pile head rotation. Two 
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types of loading were employed, static and cyclic. 

Two piles were driven open-ended at the test site on Mustang Island near Corpus 

Christi, Texas. The water table was maintained above the ground surface during loading 

to simulate conditions which would exist at an offshore location. For each type of 

loading, a series of lateral loads were applied, beginning with a load of small magnitude. 

A bending moment curve was obtained for each load; thus, the experiments resulted in a 

set of bending moment curves along with the associated boundary conditions for each 

type of loading. 

Soil studies were made at the site involving the use of undisturbed sampling. 

Laboratory studies were performed. The sand at the test site varied from clean fine sand 

to silty fine sand, both having relatively high densities. The sand particles by inspection 

through a microscope were found to be subangular with a large percentage of flaky 

grains. The angle of internal friction φ  was determined to be °39  and the value of the 

submerged unit weight 'γ  was found to be 66 3ftlb  (Reese, 1974). 

 

a. Elastic Modulus 

 

A typical p-y curve is shown in Fig. (3-3). The initial portion of the curve is 

essentially a straight line, as defined by the modulus siE . This portion of the curve can be 

thought to represent the elastic behavior of the soil. Terzaghi suggested numerical values 

of siE  as a function of the unit weight and the relative density of sand. He suggested that 

siE  is zero at the ground surface and increases linearly with depth (Terzaghi, 1955). His 
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suggestion was based on the fact that experiments had shown that the initial slope of a 

laboratory stress-strain curve for sand is a linear function of the confining pressure. 

siE  is given by the following equation: 

kxEsi =  

where 

 k = a coefficient, 3inlb  

 x = depth below ground surface, in  

 
 

Fig. (3-3) 

Typical “p-y” Curve 

(Reese, 1974) 

 

The value of k  recommended by Terzaghi are shown in Table 1. The values of k  

obtained from the Mustang Island test for the static case were 2.5 times the highest value 

reported by Terzaghi. The values for the cyclic case were 3.9 times the highest value 
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given by Terzaghi. With regard to recommended values, it is proposed by Reese that the 

values of k  shown in Table 2 and 3 be used. These values of k  are recommended for 

static and cyclic loading (Reese, 1974 and Reese, 1984). An examination of the shape of 

the p-y curves which are recommended in Fig. (3-7) shows that the initial straight-line 

portions of the curves (where sE  is constant with deflection) governs for only small 

deflections. Therefore, the initial slope of the p-y curve influences analyses only for the 
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TABLE 1 

Terzaghi’s Values of k for Submerged Sand (Reese, 1974) 

 

TABLE 2 

Recommended Values of k for Submerged Sand based of Pile Tests Performed at 

Mustang Island for Static and Cyclic Loading (Reese, 1974) 

 

Relative Density Loose Medium Dense 

Recommended 

values of k (lbs/in
3
) 

20 60 125 

 

TABLE 3 

Recommended Values of k for Sand Above the Water Table (Reese, 1984) 

 

Relative Density Loose Medium Dense 

Recommended 

values of k (lbs/in
3
) 

25 90 225 

 

Relative Density Loose Medium Dense 

Range of values of 

k (lbs/in
3
) 

 

2.6 – 7.7 7.7 – 26 26 – 51 
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very smallest loads. In more normal cases, a secant modulus, such as the one defined by 

snE  shown in Fig. (3-3), controls the analyses. Because the initial portion of the p-y 

curve has little influence on most analyses and because of the relatively small amount of 

data on the early portions of the curves, it was thought to be undesirable to recommend 

different values of k  for static and for cyclic loading. 

 

b. Soil Resistance 

Referring to Fig. (3-3), it may be seen that soil resistance p  attains a limiting 

value defined as the ultimate soil resistance up . Soil mechanics theory can be applied to 

derive equations for up  for two cases, near the ground surface and at a depth. 

The ultimate soil resistance near the ground surface is computed using the free 

body shown in Fig. (3-4). As may be seen in the figure, the total ultimate lateral 

resistance ptF  on the pile section is equal to the passive force pF  minus the active force 

aF . The force aF  may be computed from the Rankine’s theory, using the minimum 

coefficient of active earth pressure. The passive force pF  may be computed from the 

geometry of the wedge, assuming the Mohr-Coulomb failure theory to be valid for sand. 

By referring to Fig. (3-4), it can be seen that the shape of the wedge is defined by the pile 

diameter b , the depth of the wedge H , and by the angles α  and β . It is assumed that 

no frictional resistance occurs on the base of the pile; therefore, there is no tangential 

forces on the surface CDEF. The normal force nF  on planes ADE and BCF can be 
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computed using a coefficient for the lateral earth pressure at rest. If the force nF  is 

known, the force sF  can be computed using Mohr-Coulomb theory (Reese, 1974). 

Referring to Fig. (3-4b), the direction of the force φF  on the plane AEFB is 

known from theory; that is, the force acts at an angle φ  from the normal to the plane, 

 

 

Fig. (3-4) 

Assumed Passive Wedge-type Failure. (a) General shape of wedge.  (b) Forces on 

wedge.  (c) Forces on pile 

(Reese, 1974) 

 

where φ  is the angle of internal friction of the sand. The weight of the wedge W  can be 

computed from the unit weight of the sand γ . For sand below the water table, the 

submerged unit weight should be used. With the above information, the force tF  can be 

computed using equations of statics. Therefore, the soil resistance ptF  against the pile 

may be computed as indicated previously. The soil resistance per unit length of the pile at 
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any depth may be found by differentiating the force ptF  with respect to the depth H . The 

result of that differentiation is shown in eqn. (3-3). 

( )

( ) 
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   (3-3) 

The values of the parameters in this equation can be determined from theory and 

experimental data. The angle β  is approximated by the following equation: 

2
45

φβ +=           (3-4) 

 This value for β  is that which would be obtained from Rankine’s Theory for the 

passive pressure condition and for the two-dimensional case. The Rankine conditions are 

not satisfied; however, some model experiments indicate that eqn. (3-4) gives a fairly 

good approximation of the slope of the failure surface (Reese, 1974). 

 Values of the angle α  have been determined from results of model tests with a 

small flat plate in sand. From these model tests, Bowman states that α  is probably a 

function of the void ratio of the sand, with values ranging from 
3

φ
 to 

2
φ

 for loose sand 

to φ  for dense sand (Bowman, 1958). 

 Measurements at the soil surface around laterally loaded tubular model piles gave 

values for α  as high as the value of φ  for dense sand. Contours of the wedge that formed 

in front of the test piles at Mustang Island indicated that the value of α  was equal to 
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about 
3

φ
 for static loading and about 

4
3φ

for cyclic loading. 

 The value of the coefficient of earth pressure at rest is dependant on the void ratio 

or relative density of the sand and the process by which the deposit was formed. Terzaghi 

and Peck state that the value of the coefficient of earth pressure at rest is about 0.4 for 

loose sand and about 0.5 for dense sand (Terzaghi, 1948). In the absence of precise 

methods for determining relative density in the field, especially when soil deformations 

are large, a value of 0.4 for 0K  was selected in computing the ultimate soil resistance 

near the ground surface. The value of α  selected for this computation was 
2

φ
. The 

angle of internal friction φ  was taken as °39  as indicated previously. 

 The coefficient aK  in eqn. (3-3) is the Rankine coefficient of minimum active 

earth pressure and is given by the following equation: 

)
2

45(tan 2 φ−=aK          (3-5) 

With regard to the use of theory for computing the ultimate lateral resistance against the 

pile at a considerable depth below the ground surface, the model shown in Fig. (3-5) is 

employed. In this model, the soil is assumed to flow in the horizontal direction only. 

Referring to the model, Block 1 will fail by shearing along the dashed lines allowing the 

soil in that block to follow the pile. Block 2 will fail along the dashed line as shown. 

Block 3 will slide horizontally. Block 4 will fail as shown, and Block 5 will be in the 

failure condition as the pile pushes against it. In this simplified model it is assumed that 
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the cylindrical pile can be simulated by a rigid block of material (Reese, 1974). 

 With regard to the stresses 1σ  at the back of the pile, it is reasoned that this stress 

cannot be less than the minimum active earth pressure (Reese, 1974). Otherwise, the soil 

could slump from the ground surface with a vertical motion, which is expressly 

eliminated in the model which was selected. With a value of 1σ , the other stresses can be 

computed using Mohr-Coulomb Theory. Using the model shown, the ultimate soil 

resistance at a depth such that there is horizontal flow around the pile may be computed 

by 

( ) βφγβγ 4

0

8 tantan1tan HbKHbKP acd +−=      (3-6) 

 
Fig. (3-5) 

Assumed Mode of Soil Failure by Lateral Flow around the Pile.  (a) Section 

through the pile.  (b) Elevation of the pile. 

(Reese, 1974) 
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For the Mustang Island test, values of cP  were computed using Eqns. (3-3) and 

(3-6). These values are shown plotted in Fig. (3-6). The values of the parameters used in 

making the computations are as follows (Reese, 1974): 

( )

ftb

submerged
ft

lbs

K

2

2
45

66

4.0

2

39

3

0

=

+°=

=

=

=

°=

φβ

γ

φα

φ

 

 The symbol tX  shown in Fig. (3-6) defines the intersection of Eqns. (3-3) and (3-

6). 
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Fig. (3-6) 

Ultimate Soil Resistance vs. Depth from Theory 

(Reese, 1974) 

 

c. Construction of the p-y Curve 

A study of the families of p-y curves developed from the experiments for both 

static and cyclic loading shows that the characteristic shape of the curves may be 

represented by the curves shown in Fig. (3-7). The curves consist of three straight lines 

and a parabola. The initial straight portion of the p-y curve represents “elastic” behavior 

of the sand and the horizontal portion represents “plastic” behavior. These two straight 

lines are joined with a parabola and a sloping straight line. The parabola and the 

intermediate straight line were selected empirically to yield a shape consistent with the 
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experimental p-y curves. The slope of the initial portion of the curves may be obtained  

 
Fig. (3-7) 

Typical Family of p-y Curves for proposed Criteria 

(Reese, 1974) 

from Table 2 or 3. The paragraphs below present the procedure for obtaining information 

for plotting the other portions of the curves (Reese, 1974). 

 When the computed values of the ultimate soil resistance were compared with the 

measured values, it was found that the agreement was poor. The poor agreement 

prevailed even though the effect of the friction against the pile wall was considered and 

even though other parameters were varied through a reasonable range. It was, therefore, 

decided to adjust the ultimate resistance according to the observed values, in the 

following manner (Reese, 1974): 

cu APP =           (3-7) 

where 
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=uP  ultimate resistance in proposed criteria, lbs/in 

=cP  ultimate resistance from theory, lbs/in 

 =A empirical adjustment factor 

 Values of A  were obtained by dividing the observed ultimate soil resistances by 

the computed ultimate soil resistances for the Mustang Island tests. Values were obtained 

for sA , the static case, and for cA , the cyclic case. Plots of sA  and cA  versus the non-

dimensional depth 
b
x  are shown in Fig. (3-8). It should be noted again that observed 

values of ultimate resistance were obtained to a relatively shallow depth. eqn. (3-7), with 

values of A  for either the static or the cyclic case, can be used to compute the ultimate 

soil resistance to be used in the development of p-y curves (Reese, 1974). 

 In the preceding sections, the magnitude of the ultimate soil resistance and the 

slope of the initial straight-line portion of the curve were obtained. It remains to establish 

values of p and y corresponding to points k  and m  as shown in Fig. (3-7) and to 

establish the values of y  corresponding to point u . These points define the intermediate 

portion of the p-y curve which can be represented by a parabola connecting points k  and 

m  (Reese, 1974). 

 For the results of the Mustang Island, it was found that the values of my  and uy  

were 0.4 in. and 0.9 in., respectively. The respective values of 
b
y

 were 
60

1  and 
80

3 . 

The value of mp  was obtained from the p-y curves, for both static and cyclic loading. 
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From these values, values of the parameter B  were computed as follows (Reese, 1974): 

 
c

m

P

P
B =          (3-8) 

Values of B  for both static and cyclic cases are shown in Fig. (3-9). Thus, from the  

 
Fig. (3-8) 

Non-dimensional Coefficient, A, for Ultimate Soil Resistance vs. Depth 

(Reese, 1974) 
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Fig. (3-9) 

Non-dimensional Coefficient, B, for Ultimate Soil Resistance vs. Depth 

(Reese, 1974) 

values of cP , computed by eqn. (3-3) or eqn. (3-6), values of mP  can be obtained for any 

pile in any soil by using the empirical relationships that are given (Reese, 1974). 

 The p-y curve can now be completed by constructing a parabola between points 

k  and m . This was accomplished by constructing a parabola, passing through the origin, 

and connecting at point m  with a slope equal to that of the straight line from m  to u . 

The intersection of this parabola with the initial straight-line portion of the p-y curve 

established point k  (Reese, 1974).  

d. Step-by-Step Procedure 

For convenience in making computations for a family of p-y curves, the following 
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step-by-step procedure is presented (Reese, 1984). A typical family of such curves is 

shown in Fig. (3-7). 

1. Obtain values for significant soil properties and pile dimensions, φ , γ , 

and b . 

2. Use the following for computing soil resistance: 
2

φα = , 
2

45
φβ += , 

4.00 =K , and 




 −=

2
45tan 2 φ

aK . 

3. Use the following equations for computing soil resistance: 

a. Ultimate resistance near ground surface. 

( )

( ) 
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 (3-9) 

b. Ultimate resistance well below the ground surface. 

 ( ) βφγβγ 4

0

8 tantan1tan HbKHbKP acd +−=      (3-10) 

4. Find the intersection, tX , of the equation for the ultimate soil resistance 

near the ground surface and the ultimate soil resistance well below the 

ground surface. Above this depth use eqn. (3-3), below this depth use eqn. 

(3-6). 

5. Select one depth at which a p-y curve is desired. 

6. Establish uy  at 
80

3b . Compute up  by the following equation: 
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cu APP =         (3-7) 

Use the appropriate values of A  from Fig. (3-8), for the particular 

nondimensional depth, and for either the static or cyclic case. Use the 

appropriate equation for cP , eqn. (3-3) or eqn. (3-6) by referring to 

computation in step 4. 

7. Establish my  as 
60
b . Compute mp  by the following equation: 

cm BPp =         (3-8) 

Use the appropriate values of B  from Fig. (3-9), for the particular 

nondimensional depth, and for either the static or cyclic case. Use the 

appropriate equation for cP . 

8. Establish the slope of the initial portion of the p-y curve by selecting the 

appropriate value of k  from Table 2 or 3. Use the equation, 

ykxp )(=   

9. Select the following parabola to be fitted between points k  and m : 

nCyp
1

=          (3-11) 

10. Fit the parabola between points k  and m  as follows: 

a. Get slope of line between points m  and u  by, 

mu

mu
mu

yy

pp
k

−
−

=        (3-12) 

b. Obtain the exponent of the parabolic section by, 
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mmu

m

yk

p
n =         (3-13) 

 

 

c. Obtain the coefficient C  as follows: 

n
m

m

y

p
C

1
=         (3-14) 

d. Determine point k on the curve as, 

1−







=

n
n

k
kx

C
y         (3-15) 

where k  is obtained from Table 2 or 3. 

e. Compute appropriate numbers of points on the parabola by using eqn. 

(3-11). 

This completes the development of the p-y curve for the desired depth. Repeating 

the steps above for each depth desired can develop any number of curves. 

e. Limitations 

The following limitations were taken from Reese, 1974: 

1.    The soil is assumed to be cohesionless sand. A soil that is predominately 

granular but contains a sufficient amount of clay to give some cohesion would 

behave entirely different than cohesionless sand. 

2.    The pile is assumed to have been driven so that the sand is densified rather 
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than loosened during installation. The proposed method does not apply to piles 

that have been installed by jetting. 

3.    The pile is assumed to be essentially vertical. However, it is believed that the 

method can be used to predict the behavior of batter piles if the batter is not to 

severe. 

3. P-Y Curves in Soft Clay 

A research program was performed by Matlock to solve the problems pertinent to 

the design of laterally loaded piles in soft, normally consolidated marine clay (Matlock, 

1970). The program was oriented mainly for offshore structures and has included field 

tests with an instrumented pile and laboratory model testing. Three types of loading were 

considered: (1) short-term static loading, (2) cyclic loading, and (3) subsequent reloading 

after cyclic loading. The research included extensive field-testing with an instrumented 

pile, experiments with laboratory models and parallel development of analytical methods 

and correlations. 

The steel test pile was 12.75 inches in diameter and 35 pairs of electric resistance 

strain gages were installed in the 42 foot embedded portion. The pile was calibrated to 

provide extremely accurate determinations of bending moment. Gage spacing varied 

from 6 inches near the top to 4 feet in the lowest section. 

Free-headed tests were done with only lateral loads applied at the mud line. As 

shown in Fig. (3-10), restrained-headed loadings utilized a framework to simulate the 

effect of a jacket-type structure. The load from hydraulic rams was transmitted to the pile 
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by a walking beam and loading strut. For cyclic loadings, the peak forward and reverse 

loads during cycling were automatically controlled. 

Precise determination of the bending moments during all static loadings allowed 

differentiation to obtain curves of the distribution of soil reaction along the pile to a very 

satisfactory degree of accuracy. Integration of the bending moment diagrams provided 

the deflected shape of the pile. For illustrative purposes, see Fig. (3-10b). Loads were 

increased by increments, and for any selected depth, the soil reaction p  may be plotted 

as a function of pile deflection y . These experimental p-y curves are the principle basis 

for the development of design procedures. 

The pile was driven twice and two complete series of free-headed loadings, one 

static and one cyclic, were performed at Lake Austin. At a site near the mouth of the 

Sabine River there were four primary series of test loadings, two static and two cyclic, 

with each type tested under both free-headed and restrained-headed conditions. In 

addition to these, numerous variations were tried including tests with sand, artificially 

softened clay, and the use of sand and pea gravel to restore the loss in resistance of the 

pile caused by previous cyclic loadings. 

Some laboratory experiments were performed which are helpful in explaining the 

nature of the deterioration of resistance under cyclic loading. Fig. (3-11a) shows one of 

the types of laboratory loadings that were performed, the lateral displacement of a rigid 

rod embedded in soft clay. The cavity shown behind the rod is typical of field tests also. 

Fig. (3-11b) shows one recorded cycle of load versus deflection and clearly indicates the 
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Fig. (3-10) 

Arrangements for Field Tests at Sabine using Restrained-head Lateral Loading 

(Matlock, 1970) 

reduced resistance encountered by a segment of a pile in moving through the slack zone 

produced by a previous loading. As the control point is moved to larger deflections, the 

cavity is extended (Matlock, 1970). 
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Fig. (3-10b) 

Form of the Results Obtained from a Laterally Loaded Pile. 

(Prospect, 2003) 
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Fig. (3-11) 

Laboratory Model Studies. 

(a) Test specimen.  (b)  A typical loading cycle. 

(Matlock, 1970) 
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a. Soil Resistance 

In conventional soil mechanics, most problems involving load capacity of soils 

are handled by consideration only of ultimate strength characteristics. In contrast, with 

long piles laterally loaded, the static ultimate soil resistance is seldom achieved except 

very near the surface; the allowable stresses in the pile are usually reached first, with 

most of the soil still in a pre-plastic state of strain. Nevertheless, a rational and orderly 

prediction of soil deformation characteristics for various loading conditions should start 

with an estimate of static ultimate resistance. 

In soft clay, soil is confined so that plastic flows around a pile occur only in 

horizontal planes. The ultimate resistance per unit length of pile may be expressed as 

cdNp pu =          (3-16) 

where c  is the soil strength, d  is the pile diameter, and pN  is a non-dimensional 

ultimate resistance coefficient. A consensus of the investigators appears to indicate that 

for soft clay soil flowing around a cylindrical pile at a considerable depth below the 

surface, the coefficient should be 

 9=pN            (3-17) 

Very near the surface, the soil in front of the pile will fail by shearing forward and 

upward and the corresponding value of pN  reduces to the range of 2 to 4, depending on 

whether the pile segment is considered as a plate with only frontal resistance or whether 

it is a square cross section with soil shear acting along the sides. For a cylindrical pile, a 
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value of 3 is believed to be appropriate. The resistance should be expected to vary from 

this value at the surface to the maximum indicated by eqn. (3-17) at some depth rX , 

which is termed the depth of reduced resistance. Within the upper zone, resistance to 

vertical movement is provided by the overburden pressure xσ  from the soil itself and by 

resistance developed by deformation within the surrounding soil mass. This resistance 

increases with distance from the free soil surface. The following equation appears to 

describe this variation to a satisfactory degree of approximation: 

 
d

x
J

c
N x

p ++=
σ

3         (3-18) 

 The first term expresses the resistance at the surface, the second term gives the 

increase with depth due to overburden pressure, and the third term may be thought of as 

the geometrically related restraint that even a weightless soil around a pile would provide 

against upward flow of the soil. The equation corresponds closely to one developed by 

Reese who considered a failing prism or wedge of soil ahead of the pile. However, 

Reese’s value of J  was 2.8, which does not agree with experimental results. Therefore, 

the coefficient J  must be determined empirically. 

 Fortunately, the third term in eqn. (3-18) represents only a part of the total 

ultimate resistance coefficient pN , and according to Matlock, because it contains the 

depth x , it becomes relatively insignificant in the more important upper layers. From 

experimental evidence, a clear distinction cannot be made between contributions of the 

first and last terms in eqn. (3-18). 
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 Studies based on the Sabine data indicate that a value of J  equal to 

approximately 0.5 is satisfactory when used in eqn. (3-18). A lower value of about 0.25 

fits the Lake Austin data somewhat better, which may be a consequence of the stiffer clay 

at that site. 

 If the soil strength and the effective unit weight γ  are constant with depth, the 

value of the depth at which the value of pN  becomes equal to the maximum of 9 is 

obtained by the simultaneous solutions of Eqns. (3-17) and (3-18): 

 

J
c

d

d
xr

+
=

γ
6

         (3-19) 

 The coefficient J  and the resulting values of rx  should be thought of as rational 

but essentially empirical parameters by which correlations have been made between 

prediction methods and the available field results. Where soil properties undergo 

considerable variation with depth, it appears reasonable to consider the soil as a system of 

thin layers with rx  computed as a variable with depth according to the properties of each 

layer (Matlock, 1970). 

b. Construction of the P-Y Curve 

The following section presents a summary taken from Matlock’s 1970 paper of 

the recommended procedure for constructing p-y curves for the three different loading 

conditions is given in Fig. (3-12). In a given problem, the appropriate form selected from 

Fig. (3-12) is applied at numerous depths to produce a family of p-y curves. The basis for 
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the construction will be described briefly. 

The curves are in non-dimensional form with the ordinates normalized according 

to the static ultimate resistance up  determined as described above for each depth. The 

horizontal coordinate is the pile deflection divided by the deflection at point c, where the 

static resistance is one-half of the ultimate static resistance. The form of the pre-plastic 

portions of the static resistance curve, up to point e in Fig. (3-12), is based on semi 

logarithmic plots of the experimental p-y curves, which fall roughly along straight lines at 

slopes yielding the exponent of 
3

1 . Thus, the point of intersection with the plastic 

branch at point e will always occur at a horizontal coordinate of 8. The value of the pile 

deflection at point c is based on concepts given by Skempton by which he combines 

elasticity theory, ultimate-strength methods, and laboratory soil properties, to estimate 

short-term load-settlement characteristics of a buried strip footing in clay soil. The strain 

50ε  is that which occurs at one-half of the maximum stress on a laboratory stress-strain 

curve. It may be determined by dividing the shear strength c  by an estimated secant 

modulus cE  or it may be taken directly from stress-strain curves. Based on Skempton’s 

recognition that the ratio 
c

Ec  falls between 50 and 200 for most clays, a value for 50ε  

may be assumed between 0.005 and 0.020, the smaller value being applicable to brittle or 

sensitive clays and the larger to distributed or remolded soil or unconsolidated sediments. 
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Fig. (3-12) 

Criteria for Predicting p-y Curves for  (a) Short-term static loading, (b) 

Equilibrium under initial cyclic loading, and (c) Reloading after cycling 

(Matlock, 1970) 
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An intermediate value of 0.010 is probably satisfactory for most purposes, according to 

Skempton (Matlock, 1970). Using Skempton’s approach, the deflection sought is 

approximately 

dyc 505.2 ε=           (3-20) 

The modifications to the static p-y curve to express the possible deterioration due 

to cycling are shown in Fig. (3-12b). According to the curve, substantial deflections are 

possible, up to point d, without any deterioration in resistance as compared to the static 

curve. At this point the resistance under cyclic loading has reached a maximum even at 

greater depths. At shallow depths further reductions in resistance are provided which are 

more severe with increasing and decreasing depth. Complete loss in resistance is assumed 

to occur at the soil surface when deflections at that point reach cy15 . For deflections 

greater than cy15 , the pseudo-plastic resistance is established by 

ru x

x

p

p
72.0=          (3-21) 

The complete effect can be seen more readily from the family of cyclic p-y curves in Fig. 

(3-26) (Matlock, 1970). 

 There are three aspects of the cyclic construction procedure, which are primarily 

empirical, at least from a quantitative standpoint. These are (1) the position of the cyclic 

deterioration threshold (point d) along the pre-plastic portion of the static p-y curve, (2) 

the value of the deflection fy , and (3) the manner in which the final resistance fp  is 
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adjusted with depth according to eqn. (3-21). The depth rx  represents what is in reality a 

rather indefinite point of transition from a condition of incomplete vertical restraint to 

one where plastic flow is confined to horizontal planes. Furthermore, it is a quantity taken 

from static-loading correlations. The use of rx  in eqn. (3-21) is based primarily on 

intuition and judgment, but is supported as being satisfactory by comparisons of 

computed results versus experimental results (Matlock, 1970). 

 After any particular point, such as point A in fig. (3-12c), has been reached along 

a p-y curve, rebound to zero resistance is assumed to occur along a line parallel to a 

secant through point c. The resulting slack zone and reloading path are indicated in fig. 

(3-12c). This construction is the basis for the p-y family in fig. (3-13). The deflection for 

each depth must be known from a solution for the maximum loading condition in order to 

establish the modified return branch for each curve (Matlock, 1970). 

c. Step-by-Step Procedure 

A step-by-step procedure for constructing p-y curves in soft clay is given below. 

For short term, static loads: 

1. Obtain the best possible estimate of the variation of shear strength and  
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PILE DEFLECTION y, INCHES 

 

Fig. (3-13) 

Force-deformation Curves Predicted for Reloading after Prior Cyclic Loading to 

13.5 kips,  (a) Typical construction, (b) Complete family of curves 

(Matlock, 1970) 
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effective unit weight with depth. Also obtain the value of 50ε , the strain 

corresponding to one-half the maximum principle stress difference. If no 

values of 50ε  are available, typical values suggested by Skempton are 

given in Table 4 or Table 5. 
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TABLE 4 

Recommended Values of 50ε  (Desai, 1977) 

 

 

 

 

 

 TABLE 5 

  

 

 

 

 

 

 

 

 

Representative Values of 50ε  (Prospect, 2003) 

Consistency of clay 
50ε  

c
Ec  

Soft 

 

Medium 

 

Stiff 

0.020 

0.010 

 

0.005 

50 

100 

200 

Shear Strength, psf
50ε , % 

250-500 

 

500-1000 

 

1000-2000 

 

2000-4000 

 

4000-8000 

2 

1 

 

0.7 

 

0.5 

 

0.4 
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2. Compute the ultimate soil resistance per unit length of shaft up , using the   

smaller of the values given by: 

  cd
d

x
x
c

pu 





 ++= 5.03

γ
      (3-22) 

 

  and cdpu 9=         (3-23) 

   

  where  

 

  =γ  average effective unit weight from ground surface to p-y curve depth 

 

  =x  depth from ground surface to p-y curve 

 

  =c  shear strength at depth x  

 

  =d  width of pile 

 

 3. Compute the deflection 50y  at one-half the ultimate soil resistance from  

 

  dy 5050 5.2 ε=         (3-24) 

 

 4. Points describing the p-y curve are now computed from 

 

  
3

1

50

5.0 







=

y

y

p

p

u

       (3-25) 

 

For cyclic loading: 

 1. Construct the p-y curve in the same manner as for short-term static loading 

for values of p  less than up72.0 . 

 2. Solve eqn. (3-22) and eqn. (3-23) simultaneously to find the depth rx  

where the transition occurs. If the unit weight and shear strength are 
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constant in the upper zone, then 

   
cd

cd
xr

5.0

6

+
=

γ
       (3-26) 

 3. If the depth to the p-y curve is greater than or equal to rx , p  is equal to 

up72.0  for all values of y  greater than 503y . 

 4. If the depth to the p-y curve is less than rx , the value of p  decreases from 

up72.0  at 503yy =  to the value given by the expression below at 

5015yy = : 

  
r

u
x

x
pp 72.0=        (3-21) 

  The value of p  remains constant beyond 5015yy = . 

d. Observations from Field Testing 

Matlock developed these design criteria based on the results of the Sabine tests. 

Matlock’s observations resulted in the following principle conclusions (Matlock, 1970): 

1. The resistance-deflection (p-y) characteristics of the soil are highly non-

linear and inelastic. 

2. Within practical ranges, the fundamental resistance-deflection 

characteristics of the soil appear to be independent of the degree of pile-

head restraint. 

3. A principle effect of cyclic loading appears to be the permanent physical 
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displacement of the soil away from the pile in the direction of loading. It is 

not clear what contribution to this effect was provided by loss in strength 

within the soil mass. Although no significant amount of mixing of water 

and soil was directly evident, the cyclic shear reversals in the soil mass 

may have caused some structural deterioration in the clay. 

4. The permanent displacement of the soil created a slack zone in the 

resistance-deflection characteristics. On reloading the pile with forces less 

than previously attained maximum values, the slack-zone effect was 

manifested by much greater bending moments than obtained with similar 

loading during the initial cyclic series. 

5. Although significant changes occurred with continued repetition of load 

cycles, at any given magnitude of lateral load (except the highest) the 

behavior of the pile-soil system tended to stabilize. Such equilibrium 

response was usually attained to a practical degree in less than 100 cycles. 

It was demonstrated at Lake Austin and confirmed at Sabine Pass that a period of 

rest does not provide any restoration of soil resistance at the top of the pile. Subsequent 

deposition of clay or clay slurry in the cavity is not followed by any significant gain in 

strength because of the absence of sustained consolidating forces. Only by maintaining 

granular material in the cavity was the resistance improved or restored (Matlock, 1970). 

4. P-Y Curves in Stiff Clay 

Experiments were conducted by Lymon C. Reese and aimed at developing criteria 
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for predicting the behavior of stiff clay around a deep foundation subjected to lateral 

loads. Similar to the research conducted by Matlock, the basic concern was in short-term 

static and cyclic loadings. The experiments involved the loading in the field of a deep 

foundation that is instrumented so that bending moments can be measured along the 

length of the foundation (Reese, 1975). 

The deep foundation that was tested was a drilled shaft, constructed by drilling an 

open hole with a diameter of 30 inches, to a depth of 42 feet below the surface. An 

instrumented column and a reinforcing steel cage were placed in the hole and the hole 

was then filled with a tremie-placed concrete. Using a short cylindrical form, the shaft 

was extended 2 feet above the ground surface, for a total length of 44 feet (Reese, 1975). 

The instrumented column was a steel pipe with a wall thickness of ¼ inches, and 

an outside diameter of 10-¾ inches. The wall thickness was selected such that the flexural 

stiffness of the instrumented column was about equal to the flexural stiffness of the 

concrete it replaced (Reese, 1975). 

 To install strain gages for measuring the bending moments in the drilled shaft, 

the pipe for the instrumented column was split longitudinally, and two strain gages, with 

their axes parallel to the axis of the pipe, were mounted on each half of the pipe at each 

gage level. At each level, four gages were connected in a bridge circuit to give the 

maximum sensitivity to the bending. The strain gages were spaced at 15-inch intervals for 

the top 2/3 of the shaft and at 30-inch intervals in the bottom 1/3 (Reese, 1975). 

The soil profile at the site consisted of 28 feet of stiff to very stiff red clay, 2 feet 
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of interspersed silt and clay layers, and very stiff tan silty clay to a depth of 42 feet. The 

water table was at a depth of 18 feet at the time of the field test (Reese, 1975). 

Unconsolidated-undrained triaxial compression tests were performed on 

undisturbed samples taken at the test site, with the confining pressures made equal to the 

effective overburden pressure. The shear strength in the upper 20 feet, the zone of most 

importance in lateral behavior, varied widely, due in part to the slickenside structure of 

the sample. But, according to Reese, there was no discernable pattern of strength 

variation with depth. The average undrained shear strength in the upper 20 feet was 1.1 

tsf. A secant modulus intersecting the stress-strain curve at ½ the maximum principle 

stress difference was used to describe the stiffness of the soil, cE . The overall pattern 

shows a decreasing soil stiffness with depth (Reese, 1975). 

To define the stress-strain relationship in nondimensional terms, the applied 

principle stress difference was divided by the maximum principle stress difference, and 

the strain was divided by the strain at ½ the maximum, 50ε . The values of 
( )

( )
max31

31

σσ
σσ

−
−

 

and 
50ε
ε

 were determined for all tests. These values were plotted, and the equation of the 

curve was found to be 

 
( )

( )
2

1

50max31

31 5.0 







=

−
−

ε
ε

σσ
σσ

        (3-27) 

The average value of 50ε  was 0.005 
in

in  (Reese, 1975). 
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 Several of the samples were subjected to repeat loading. The additional 

deformation under repeated loading was dependant upon the stress level. Reese found 

that at high stress levels, repeated loadings would probably reduce the shear strength of 

the sample, thus giving an erroneous value of the stress ratio (Reese, 1975). 

a. Step-by-Step Procedure 

A step-by-step procedure for constructing p-y curves in stiff clay is given below 

(Reese, 1975). 

For short term, static loads: 

1. Obtain the best possible estimate of the variation of shear strength and 

effective unit weight with depth. Also obtain the value of 50ε , the strain 

corresponding to one-half the maximum principle stress difference. If no 

values of 50ε  are available, use a value of 0.005 or 0.010, the larger value 

being the more conservative. 

2. Compute the ultimate soil resistance per unit length of shaft up , using the 

smaller of the values given by eqn. (3-22) and (3-23). In the use of eqn. (3-

22), the shear strength is taken as the average from the ground surface to 

the depth being considered. 

3. Compute the deflection 50y  at one-half the ultimate soil resistance from 

eqn. (3-24). 

 4. Points describing the p-y curve are computed from 
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=

y
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p
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u

       (3-28) 

5. Beyond 5016yy = , p  is equal to up  for all values of y . 

For cyclic loads: 

1. Construct the p-y curve in the same manner as for short-term static loading 

 as described previously. 

2. Determine the number of times the design lateral load will be applied to 

the deep foundation. 

3. For several values of 
up

p
, obtain the value of C . The parameter 

describing the effect of repeated loading on deformation from a 

relationship developed by laboratory test or, in the absence of test, is given 

by 

 

4

6.9 







=

up

p
C         (3-29) 

4. At the values of p  corresponding to the values of 
up

p
, selected in step 3, 

compute new values of y  for cyclic loading from 

 NCyyy sc log50+=        (3-30) 

 where 

 =cy  deflection under N  cycles of load 
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 =sy  deflection under short-term static load 

 =50y  deflection under short-term static load at ½ ultimate resistance 

 =N  number of cycles of load application 

5. The cyp −  curve defines the soil response after N  cycles of load. 

5. Correlation with Test Results  

In this section, the close agreement between test results and analytical 

computations, using the previously proposed methods for relating the soil reaction to the 

pile deflection for various deposits of soil, is demonstrated. The correlation is done with 

the specific test sites described previously. Bearing in mind that deposits are distinctive, 

with characteristics depending on many factors, some empirical coefficients could be 

revised. This problem will be dealt with later. 

From the sets of experimental bending moment curves described previously, 

values of p  and y  at points along the pile can be obtained by solving the following 

equations (Reese, 1974): 

( )
∫ ∫=

EI

xM
y           (3-31) 

( )xM
dx

d
p

2

2

=           (3-32) 

Approximate boundary conditions must be used and the equations must be solved 

numerically. 

 According to Reese, the solution of eqn. (3-31) for values of y  can normally be 
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accomplished with appropriate accuracy. However, analytical difficulty is encountered in 

the solution of eqn. (3-32). If extremely accurate values of bending moment are available, 

the double differentiation can be performed numerically (Reese, 1974). 

 The procedure employed for obtaining the soil resistance curves involved the 

prior assumption that the soil modulus could be described as a function of depth by a 

two-parameter, nonlinear curve. The two parameters were computed from the 

experimental data, allowing the soil reaction curve to be computed analytically (Reese, 

1974). 

a. Sand Deposits 

Reese compared calculated values of moment, deflection and slope with the field 

measurements. Lateral load versus measured and computed values of maximum moment 

for the static tests is shown in Fig. (3-14). Lateral load versus measured and computed 

values of deflection at the ground line for the static tests is shown in Fig. (3-15). Lateral  
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Fig. (3-14) 

Comparison between Measured Results of Mustang Island Tests and Results 

Computed with Proposed Criteria; Pile 1 Maximum Moment 

(Reese, 1974) 

 

 
 

Fig. (3-15) 

Comparison between Measured Results of Mustang Island Tests and Results 

Computed with Proposed Criteria; Pile 1 Deflection at Ground Line 

(Reese, 1974) 
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Fig. (3-16) 

Comparison between Measured Results of Mustang Island Tests and Results 

Computed with Proposed Criteria; Pile 1 Slope at Ground Line 

(Reese, 1974) 

 

 

 
 

Fig. (3-17) 

Comparison between Measured Results of Mustang Island Tests and Results 

Computed with Proposed Criteria; Pile 2 (N = max) Maximum Moment 

(Reese, 1974) 
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Fig. (3-18) 

Comparison between Measured Results of Mustang Island Tests and Results 

Computed with Proposed Criteria; Pile 2 (N = max) Deflection at Ground Line 

(Reese, 1974) 

 

 

 
 

Fig. (3-19) 

Comparison between Measured Results of Mustang Island Tests and Results 

Computed with Proposed Criteria; Pile 2 (N = max) Slope at Ground Line 

(Reese, 1974) 
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load versus measured and computed values of slope at the ground line for the static tests 

is shown in Fig. (3-16). Similar plots for the cyclic loading are shown in Fig. (3-17), (3-

18), and (3-19) (Reese, 1974). 

In addition to the comparisons shown, measured and computed moment curves 

are shown for the maximum load in Fig. (3-20) for the static test on pile #1, and in Fig. 

(3-21) for the cyclic test on pile #2. The agreement between the measured and computed 

values in all cases are acceptable, indicating that Reese’s recommendations for the p-y 

curves in sand are valid at least for the Mustang Island test. All the known parameters, 

which influence the problem, are included in these recommendations, allowing these 

recommendations to be applied to the analysis of any laterally loaded pile in sand (Reese, 

1974). 
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Fig. (3-20) 

Comparison between Measured Maximum Moment of Mustang Island Tests and 

Results Computed with Proposed Criteria; Pile 1  

(Reese, 1974) 

 

 

 

 
 

Fig. (3-21) 

Comparison between Measured Maximum Moment of Mustang Island Tests and 

Results Computed with Proposed Criteria; Pile 2 (N = max)  

(Reese, 1974) 
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b. Soft Clay Deposits  

Fig. (3-22) shows a family of p-y curves for short-term static loading conditions, 

which had been developed according to the data and conditions of the Sabine test, 

performed by Matlock. The ultimate resistance up  for the 432-inch depth is based on 

9=pN . All depths greater than 120 inches are found to have rx  values less than the 

depth considered. The ultimate resistance values for all shallower depths were determined 

using eqn. (3-18). From laboratory stress-strain data, a value of 0.007 was selected for the 

strain 50ε , or cε  as shown in the figure. The value of cy  is therefore 0.223 inches as 

indicated in the figure. The pre-plastic portion of each p-y curve follows the prescribed 

cubic parabola form (Matlock, 1970). 

Matlock used a computer program to make repeated trial and error adjustments 

until compatibility was achieved. The resulting solution and comparison with typical field  
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Fig. (3-22) 

Predicted Family of p-y Curves for Sabine Clay for Short-term Static Loading 

(Matlock, 1970) 
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Fig. (3-23) 

Predicted Bending Moments for Sabine Restrained-head Static Loadings, 

Compared with Experimental Results 

(Matlock, 1970) 
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Fig. (3-24) 

Predicted Bending Moments for Sabine Free-head Static Loadings, Compared 

with Experimental Results 

(Matlock, 1970) 

 

results are shown in Figs. (3-23) and (3-24). The figures indicate a satisfactory 

correlation. For the Lake Austin tests, an average value of 0.012 for cε  was estimated 

from the soil stress- strain curves. The result with the ultimate resistance predicted 

according to eqn. (3-18) and with the vertical restraint factor J  equal to 0.5, produced 

slightly unconservative results as shown in Fig. (3-25). This appears to be corrected by 
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changing J  to 0.25 as shown by the second set of curves in the figure (Matlock, 1970). 

 

 
 

Fig. (3-25) 

Comparison of Computed and Experimental Results for Lake Austin Free-head 

Static Tests 

(Matlock, 1970) 

For the cyclic loading tests, the method described in Fig. (3-12) is used to develop 

the p-y curves for the Sabine test conditions shown in Fig. (3-26). Comparisons are 

shown in Figs. (3-27) and (3-28) for the restrained head cyclic loadings and the free-head 

cyclic loadings, respectively. Agreement between computed and experimental results is 

generally good, and since these satisfactory results are obtained over a considerable range 
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of loadings and for two different restraint conditions gives encouragement that the 

correlation is a satisfactory one for similar types of clay (Matlock, 1970). 

 

 
 

Fig. (3-26) 

Predicted Cyclic p-y Curves for Sabine Clay and 12.75-inch Dia. Test Pile, based 

on Static p-y Curves of (a) Typical example, (b) Complete family of Curves 

(Matlock, 1970) 
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Fig. (3-27) 

Comparison of Computed and Experimental Bending Moments for Sabine 

Restrained-head Cyclic Loadings 

(Matlock, 1970) 
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Fig. (3-28) 

Comparison of Computed and Experimental Bending Moments for Sabine Free-

head Cyclic Loadings 

(Matlock, 1970) 

At the Lake Austin site where the clay was jointed and fissured, the shear 

deformation and slip was highly concentrated along planes of weakness. Accordingly, it 

would be reasonable that cyclic deterioration would begin at considerably smaller pile 

deflections and that deterioration would be relatively more significant as deflections 

increase. Computed and experimental results are compared for three of the Lake Austin 

loadings in Fig. (3-29). To reach the degree of agreement that is shown, it was necessary 

for Matlock to modify the p-y construction procedure from that used for the Sabine 
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correlation. The deflection dy  was taken to equal cy5.0  instead of cy3  and the deflection  

 
 

Fig. (3-29) 

Comparison of Computed and Experimental Bending Moments for Lake Austin 

Cyclic Loadings, based on p-y Curves Adjusted for Jointed Clay 

(Matlock, 1970) 

fy was taken to equal cy10  instead of cy15 . Thus, the method for predicting minimum 

cyclic p-y curves is believed to be a satisfactory correlation for homogeneous marine 

clays. A more conservative version would be needed for jointed or fissured clays 

(Matlock, 1970). 

For piles under reloading, a special set of p-y curves has been constructed and 

shown in Fig. (3-13). The curves are based on the predicted cyclic curves previously 
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shown for the Sabine clay in Fig. (3-26). The curves are intended to represent the 

modifications caused by prior free-head cyclic loading to 13.5 kips. As an example, point 

A in Fig. (3-13a) is established along the cyclic loading p-y curve according to the 

deflection at that depth which was previously computed for the 13.5 kip loading. The 

original cyclic curve is considered to be obliterated at all smaller deflections. Rebound 

and subsequent reloading are assumed to occur along line AB, which is parallel to a 

secant through point C. For deflections less than that at point B, a zero resistance is 

assumed. The curves for other depths were determined in a similar manner. No change 

was made for the curve at the 432-inch depth since the prior deflection did not exceed the 

value dy  required for cyclic deterioration (Matlock, 1970). 

Static reloading after cyclic loading was performed during the Sabine tests and the 

results are available for comparison with computed behavior. Fig. (3-30) shows the 

bending moment curve computed with a lateral load of 8 kips and using the family of p-y 

curves of Fig. (3-13). The agreement with the corresponding experimental curve was seen 

to be very good (Matlock, 1970). 

To illustrate the significant changes which are caused, an experimental curve from 

the initial cyclic loading to 8 kips is shown. The bending stresses for an 8 kip lateral load 

are almost doubled because of the intervening loading to 13.5 kips (Matlock, 1970). 
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Fig. (3-30) 

Comparison Between Experimental and Computed Results for Reloading to 8 

kips After Prior Cycling with a 13.5-kip Lateral Load 

(Matlock, 1970) 

 

c. Stiff Clay Deposits  

The proposed predictions for the p-y curve for stiff clay is based on a small 

amount of experimental data; therefore, the method should be used with great care until 

additional data allows the method to be validated. 

Correlation between computed and measured values of deflection and moment, 

for the lateral loading test of the drilled shaft mentioned previously, was good. Table 6 

and Fig. (3-31) show the comparison. 
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TABLE 6 

Comparison of Computed and Measured Values of Top Deflection and Max Moment 

(Reese, 1975) 

 

 

 

 
 

Fig. (3-31) 

Computed and Measured Values of Bending Moment vs. Depth for Loading in a 

Stiff Clay Foundation 

(Reese, 1975) 
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IV. DETERMINATION OF SOIL MODULUS 

 

The determination of the soil modulus with sufficient accuracy helps in reaching a 

realistic result for the problem of laterally loaded piles. The soil modulus has been the 

subject of many researches and many recommendations have been presented. 

The determination of the soil modulus, also known as the modulus of elasticity of 

the soil or modulus of subgrade (soil) reaction, is generally carried out by either direct 

means or indirect means. One direct mean would consist of having a full-scale lateral 

load test on a pile. This is the most direct mean but it is the most time consuming and 

expensive. It would only be feasible for large-scale projects. 

Other direct means would be the results of in-situ tests such as a plate-loading test 

or a pressuremeter test. Recent advances have been made in the determination of the soil 

modulus by using an in-situ testing instrument known as a flat dilatometer. Each of these 

in-situ tests is relatively inexpensive. 

Indirect means to determine the soil modulus would include empirical correlation 

with other soil properties, mainly the stress-strain relationship, which is most relevant.  

Terzaghi, in 1955, considered that for clays, the coefficient of subgrade reaction is 

essentially the same both horizontally and vertically, and is independent of depth. He 

suggested the following conservative relationship for the coefficient of subgrade reaction, 

hk  for laterally loaded foundations: 
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 ( )1

5.1

1
sh k

d
k 






=         (4-1) 

where 

 =1sk  constant of vertical subgrade reaction for a square plate, 1 ft. wide 

=d  width or diameter of the load area in feet 

Table 7 shows Terzaghi’s values of 1sk . Adaptation of the coefficient of subgrade 

reaction to fit the soil modulus, sE , leads to 

 dkE hs =          (4-2) 

sE  is by definition the ratio between the pressure at any point of the surface of contact 

and the pile deflection produced by the load application at that point, 

yEp s−=            (4-3) 

The value of sE  would be constant only if the soil were a perfectly elastic material. 

However, it is known that sE  generally increases with depth, and at a given depth it 

becomes smaller as the deflection increases. 

 Terzaghi also showed that for a cohesionless soil, the modulus of subgrade 

reaction would increase approximately linearly with depth and decrease linearly with the 

width d  of the load area, as expressed in Eqn. (2-36). 

 Broms related hk  for clays to the secant modulus 50E  at half the ultimate stress in 

an unconsolidated-undrained test as 
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d

E
kh

5067.1=          (4-4) 

Calculation of the modulus of subgrade reaction by these methods is only 

approximate and can be used only as an estimate. However, if it is required to determine 

the lateral deflection accurately, a field test should be performed. 
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TABLE 7 

Terzaghi’s Values of 1sk  

TERZAGHI'S THEORY  ( 1sk =48qu) 

 SOFT/MED STIFF VERY STIFF 

        qu (psf) 200-2000 2000-4000 4000-8000 

1sk   (pci) 5.6-56 56-111 111-222 
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V. COMPARISON OF THE VARIABLES OF LATERALLY LOADED 

FOUNDATIONS 

 

The problem of the laterally loaded foundation involves many variables. These 

variables include but are certainly not limited to the unit weight of the soil, the internal 

angle of friction of the soil, the soil modulus, the diameter of the pile, the length of the 

pile, and of course the load itself. Although it is well known that many of these properties 

are not independent of each other, in order to study the effect of altering each variable, 

the variables must be treated as independent parameters. Due to the complex nature of the 

laterally loaded foundation, a computer program such as FB-Pier or L-Pile can be used to 

aid in the effort. 

The appendix of this thesis presents the results of several scenarios in which one 

of the variables is allowed to vary, while the others remain constant. The computer 

program FB-Pier is used for these analyses. The first analysis presents the alteration of 

the p-y curve in sand as each parameter is varied. The next analysis presents an example 

problem in which a pile is laterally loaded in a uniform sand foundation and as each 

parameter is allowed to vary, the effects on the pile deflection and bending moment are 

observed. Finally, an example problem is presented in which a pile is laterally loaded in a 

soft clay foundation and as each parameter is allowed to vary, the effects on the pile 

deflection and bending moment are observed. 

From the analysis of the impacts of the variables on the p-y curve in sand, several 
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conclusions can be made. By allowing the pile diameter only to vary, it is evident that the 

initial portion of the p-y curve is independent of the pile diameter. Also evident is that the 

nonlinear portion of the p-y curve will have a larger soil resistance when the pile 

diameter increases at a shallow depth. But at a certain greater depth, the nonlinear portion 

of the p-y curve will decrease in soil resistance as pile diameter increases. Allowing the 

soil modulus only to vary, it is apparent that this variable has little effect on Reese’s Sand 

Model. 

The next analysis compares the pile deflection and bending moment of the pile 

while varying each parameter independently. The scenario included a single free-headed 

pile of 0.5m diameter subjected to a lateral load at the ground surface. The pile was 

driven in uniform sand with the ground water located at the ground surface. The soil 

parameters, internal angle of friction, unit weight, and subgrade modulus, were each 

varied independently, while the other parameters remained constant. Reese’s Sand Model 

was used in this analysis. 

From the analysis, it is apparent that varying the subgrade modulus alone causes 

only minor, if any, changes in the pile deflection and bending moment of the pile. Also, 

changing the unit weight of the sand does not appear to have a significant effect on the 

results. The internal angle of friction of the sand proves to have a significant influence on 

the pile deflection and the bending moment of the pile. 

It is known that these soil parameters are not independent of each other. 

Therefore, an analysis was made comparing the effects of a pile driven in loose sand, and 
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medium sand, and dense sand. The parameters of these materials were assumed based on 

values accepted in literature. It can be seen from this analysis, and in comparison with the 

previous analyses where the parameters were allowed to vary independently, that the 

effects of each parameter is uncertain when considered alone, and that these parameters 

are correlated with each other. It is evident that the pile deflection and the bending 

moment of the pile is interdependent on each of these soil properties. 

The final analysis shown in the appendix of this thesis makes use of Matlock’s 

Soft Clay Below the Water Table Model. This analysis is similar in that it also compares 

the pile deflection and bending moment of the pile while varying each parameter 

independently. The scenario included a single free-headed pile of 12in diameter subjected 

to a lateral load at the ground surface. The pile was driven in a soft clay foundation with 

the ground water located at the ground surface. The soil and pile parameters, shear 

strength, soil strain, pile diameter, and pile length, were each varied independently, while 

the other parameters remained constant. The final comparison shows the load condition 

varying, from a static load to a cyclic load. 

From the analyses in which the pile properties are allowed to vary, it is evident 

that the pile length had very little effect on the pile deflection and the moment 

distribution. It can be seen that any part of the pile below a depth of 30ft is not 

contributing to the moment capacity. In contrast, the pile diameter is shown to have a 

great influence on the pile deflection and the moment distribution. It is seen that as the 

diameter increases, the deflection decreases and the moment distribution increases. This 
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is attributed to an increase in pile stiffness and also an increase in the area of resisting 

soil. 

From the analysis allowing the shear strength to vary alone, it is evident that the 

shear strength has a great influence on the deflection. As the shear strength increases, 

deflection decreases. This is because as the soil gets stronger, its resistance to movement 

increases. Also note that the pile has some deflection all the way down to approx. 30 ft of 

the total 42 ft long pile for all shear strength values. This is because the depth of 

deflection is more dependent on pile diameter than shear strength. It can also be seen that 

as the shear strength increases, the maximum moment decreases and moves closer to the 

surface. The moment increases as the shear strength decreases because the pile is forced 

to take on more of the moment, as the soil gets weaker. 

In the analysis in which the soil strain is allowed to vary independently, it is 

apparent that as the ε50 value increases, the deflection increases. This is because the ε50 is 

the strain at the midway point of the initial portion of the p-y curve; therefore as this 

value increases, the more deflection the pile will experience for a given load. Also 

evident is that as the ε50 value increases, the maximum moment, and the depth at which it 

occurs, will also increase. This is because the moment arm will increase as the strain in 

the soil increases because of the greater displacement in the weaker soil. 

It the final comparison in which the load condition is varied, it is evident that the 

deflection for the cyclic loading case is about two times that of the static loading case. 

This is because of a gap produced during the cycled load. Due to the nature of Matlock’s 
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soft clay model, the clay tends to stay in a deformed shape as the pile is cycled in the 

other direction. Therefore as the pile completes one cycle it will have to move through 

the gap before it is pushed against the clay again, causing the pile to gradually push the 

clay out of the way and allow the pile to deflect more. It is also evident that the moment 

produced during the cycled load is approximately twice as much as the moment produced 

during the static loading. This is because the moment arm in the cycled case is larger than 

the static case due to the gap created. 
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VI.    COMPARISON BETWEEN P-Y CURVES AND BROMS’ APPROACH 

 

Many different methods of analysis have been proposed to solve the problem of a 

laterally loaded pile (or drilled shaft), where the problem can be generally defined as 

computing pile deflections and bending moments as a function of depth below the ground 

surface. Some methods are based on the theory of subgrade reaction and on simplifying 

assumptions such as assuming a variation of the subgrade modulus with depth and that 

soil is linearly elastic (Broms, 1964). These assumptions reduce the difficulty in 

obtaining a solution to the problem, but according to Reese (1979), errors of an unknown 

magnitude are introduced into the solution. A comparison is made here between the 

results presented earlier in the p-y curve chapter, where actual measured responses of 

tested piles are compared to those calculated using nonlinear variations, and those 

yielding from the use of Broms’ assumptions. 

Reese (1974) presented the results of a series of field tests that were conducted to 

develop criteria for the design of laterally loaded piles in sand. Two 24-inch diameter 

piles with 3/8 inch wall thickness and of A-53 grade B seamless steel, embedded 69 feet, 

were instrumented with strain gages for measuring bending moments and deflection at 

Mustang Island, Texas, and a complete description of it was presented by Cox and Reese 

(1974). 
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Laboratory tests were run on samples from two borings, and soil properties 

determined from these tests included grain size distribution, natural densities, and 

minimum and maximum densities. The soil was classified as medium dense sand in the 

top 20-foot layer, to dense sand in the rest of the formations, with an angle of internal 

friction, °= 39φ  and a submerged unit weight of 366
ft

lbs=γ . The results for the 

ground line deflection are shown in Fig. (3-15) and Fig. (3-18), and compared to those 

computed with the proposed criteria of the p-y curve. 

Table 2 gives the recommended value hk  for dense sand as 3125
in

lbs . Using this 

value of hk  in Eqn. (2-30a), and varying H  from 10 kips to 60 kips, the comparison 

could be made between the p-y approach and Broms’ approach. Table 8 shows this 

comparison. As can be seen from this table, Broms’ approach gives close results for the 

elastic range loads. As we move to the inelastic range, errors would exceed 50%. 
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TABLE 8 

Comparison of Ground Deflection, Using p-y and Broms’ Approaches For a Sand 

Foundation 

Horizontal Load, 

H (kips) 

Measured 

Deflection (Fig. 3-

15), in 

Computed 

Deflection (Fig. 3-

15), in 

Computed 

Deflection Broms’ 

Approach, in 

60 1.19 1.23 0.48 

50 0.89 0.93 0.40 

40 0.62 0.63 0.32 

30 0.40 0.40 0.24 

20 0.21 0.21 0.16 

10 0.07 0.07 0.08 

 

In another test site in Houston, Texas, a drilled shaft with a diameter of 30-inches, 

drilled to a depth of 42 feet below the ground surface, was tested (Reese, 1975). The soil 

profile at the site was classified as stiff to very stiff red clay. A more detailed description 

of the site and instrumentation was given earlier in the section titled “P-Y Curves in Stiff 

Clay.” The average undrained shear strength (cohesion) was found to be 1.1 tsf. 

According to Reese (1979), a value of 31000
in

lbs  for hk  is recommended for 

this type of clay. Calculation of the deflection using Eqn. (2-30a) would give 0.020 
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inches, and 0.100 inches, for a 10-ton and 50-ton loading, respectively. The measured 

deflection according to Table 6 gave 0.02 inches and 1.16 inches for these respective 

loadings. It is obvious from Table 9 that Broms’ approach gave close results when the 

applied loading was in the range of the working load of 10 tons. As the load gets higher, 

results begin to conflict, especially in this type of material. 

 

TABLE 9 

Comparison of Ground Deflection, Using p-y and Broms’ Approaches for a Stiff Clay 

Foundation 

Horizontal Load, 

H (tons) 

Measured 

Deflection (Tab. 6), 

in 

Computed 

Deflection (Tab. 6), 

in 

Computed 

Deflection Broms’ 

Approach, in 

50 1.16 0.875 0.100 

40 0.586 0.540 0.080 

30 0.254 0.292 0.060 

20 0.090 0.114 0.040 

10 0.020 0.027 0.020 
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VII.  CONCLUSIONS AND RECOMMENDATIONS 

 

The problem of a deep foundation subjected to a lateral loading involves the 

interaction of soil and structure. The solution to the problem usually requires the use of 

iterative techniques because soil response is a nonlinear function of the deflection of the 

foundation. 

Some approximate predictions of the ultimate lateral capacity can be reached by 

logical and experienced assumptions of soil resistance and its distribution along the pile 

length. In most cases, a simplified solution of the problem, sufficiently accurate for all 

practical purposes, can be obtained by solving a differential equation of the fourth order. 

Very often, ready-made solutions in the form of diagrams or formulas can be used 

to provide sufficiently accurate answers, within the “working load” range. Material 

constants appearing in these solutions can be determined from lateral load tests on actual 

piles. For some soils types, there are also established means of predicting these material 

constants from the laboratory or in situ measured deformation characteristics of soils. 

Broms limited his method for calculating deflection to the working load range, 

which is normally considered to be 1/3 to 1/2 of the computed ultimate pile capacity. In 

the working load range, Broms assumed that the soil was linearly elastic. Even though 

cohesive soil is not linearly elastic in the working load range, Broms’ assumption 

probably leads to only minor errors. However, Broms’ method for cohesive soil is limited 
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because in many instances it is desirable to obtain the response of a pile for a full range of 

loads. Also, to simplify the analysis, Broms assumed that for cohesive soils, the subgrade 

modulus was constant with depth. 

In sand soils the assumption of linearly varying soil modulus is useful in practice 

according to Reese and Matlock (1956), but the value of sE  will decrease substantially as 

the lateral load is increased. This might have contributed to the discrepancy between 

results when the load increased. Broms’ method of solution is easy to use, and can 

produce a preliminary estimate of the ultimate collapse load or of the maximum bending 

moment for a pile in cohesionless soil. If a better estimate of the pile behavior is required, 

a computer program in conjunction with nonlinear soil resistance-deflection curves 

should be used, such as L-Pile or FB-Pier. The method of p-y curves can be improved as 

more information is gained on the behavior of full-scale piles under lateral loadings. 

A valid solution to the problem of the laterally loaded deep foundation requires, 

as for other boundary-value problems, the satisfaction of the conditions of equilibrium 

and compatibility. It is important, however, to be able to accurately determine soil 

properties and predict soil response. As more knowledge is gained concerning the 

prediction of soil behavior, new knowledge can be incorporated into the analytical 

procedures. 
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IX. APPENDIX 

 

Impact of Variables 
 
Situation: 
 
Submerged medium dense sand 
 
γ’ = Varied 
 

φ = 35
o 

 
k = 16300 kN/ m3 

 
Pile diameter = 1.0m 
 
Depth = 2.0m          
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
             

γ’ = 20 kN/m
3

γ’ = 18 kN/m
3

γ’ = 16 kN/m
3

γ’ = 10 kN/m
3
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Impact of Variables 
 
Situation: 
 
Submerged medium dense sand 
 

γ’ = 9.8 kN/ m3
 

 

φ = Varied
 

 
k = 16300 kN/ m3 

 
Pile diameter = 1.0m 
 
Depth = 2.0m          
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
             

φ = 40
o

φ = 35
o

φ = 30
o

φ = 25
o
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Impact of Variables 
 
Situation: 
 
Submerged medium dense sand 
 

γ’ = 9.8 kN/ m3
 

 

φ = 35
o
 
 

 
k = Varied

 

 
Pile diameter = 1.0m 
 
Depth = 2.0m          
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
            
             

k =   5,400 kN/ m3

      16,300 kN/ m3

      34,000 kN/ m3

      60,000 kN/ m3
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Impact of Variables 
 
Situation: 
 
Submerged medium dense sand 
 

γ’ = 9.8 kN/ m3
 

 

φ = 35
o
 
 

 
k = 16300 kN/ m3 

 
Pile diameter = Varied 
 
Depth = 2.0m          
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Impact of Variables 
 
Situation: 
 
Submerged medium dense sand 
 

γ’ = 9.8 kN/ m3
 

 

φ = 35
o
 
 

 
k = 16300 kN/ m3 

 
Pile diameter = Varied 
 
Depth = 12.0m 
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Impact of Variables 
 
Situation: 
 
Submerged medium dense sand 
 

γ’ = 9.8 kN/ m3
 

 

φ = 35
o
 
 

 
k = 16300 kN/ m3 

 
Pile diameter = 1.0m  
 
Depth = Varied 
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Example Problem in FB-Pier 

 
Problem overview 
 

• Single free head pile (Diameter = 0.5m) subjected a lateral load 
at the ground surface 
 

• Uniform sand 
 

• Water table at the ground surface 
 
 

Objective 
 

 To study the effects of the soil properties (internal friction angle φ, 

subgrade modulus k, and unit weight γ) on the behavior of Reese’s Sand Model 
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Comparison of Pile Deflection and Bending Moments with Varying Friction 

Angle 

 
• Change the internal friction angle φ alone 
• Subgrade modulus k = 16.3 MN/m3 

• Unit weight γ = 18.7 kN/m3 
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Comparison of Pile Deflection and Bending Moments with Varying 

Subgrade Modulus 

 
• Change subgrade modulus k alone 
• Internal friction angle φ = 33° 

• Unit weight γ = 18.7 kN/m3 
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Comparison of Pile Deflection and Bending Moments with Varying Unit 

Weight 

 
• Change unit weight γ alone 
• Internal friction angle φ = 33° 

• Subgrade modulus k = 16.3 MN/m3 
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Comparison of Pile Deflection and Bending Moments with Uniform Sands 

 
Soil properties:

 Loose sand Medium sand Dense sand 

Internal friction angle φ (°) 29.5 33 38 

Subgrade modulus k (MN/m3) 
 

5.4 16.3 34 

Unit weight γ (kN/m3) 16 18.7 21 
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Example Problem in FB-Pier 
 

Problem overview 
 
�Single free head pile (Diameter = 12in) subjected a lateral load  
at the ground surface 
 
�Soft clay foundation 
 
�Water table at the ground surface 

 

 

Objective 
 To study the effects of the soil properties and pile properties (shear 
strength, soil strain e50, pile diameter, and pile length) on the behavior of 

Matlock’s Soft Clay below the Water Table Model 
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Comparison of Pile Deflection and Moment Distribution with Varying Pile 

Length 

 
• Change the pile length alone 
• Shear Strength c = 300 psf 

• Soil Strain ε50 = 1% 

• Pile Diameter = 12 in 
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Comparison of Pile Deflection and Moment Distribution with Varying Pile 

Diameter 
• Change the pile diameter alone 
• Shear Strength c = 300 psf 

• Soil Strain ε50 = 1% 

• Pile Length = 42 ft 
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Comparison of Pile Deflection and Moment Distribution with Varying Shear 

Strength 

 
• Change the shear strength alone 
• Pile Diameter = 12 in 

• Soil Strain ε50 = 1% 

• Pile Length = 42 ft 
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Comparison of Pile Deflection and Moment Distribution with Varying Soil 

Strain 

 
• Change the soil strain alone 
• Pile Diameter = 12 in 

• Shear Strength c = 300 psf 

• Pile Length = 42 ft 
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Comparison of Pile Deflection and Moment Distribution with Varying Load 

Conditions 

 
• Change the load conditions alone 
• Pile Diameter = 12 in 

• Shear Strength c = 300 psf 

• Pile Length = 42 ft 

• Soil Strain ε50 = 1% 
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