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ABSTRACT

This paper proposes a new class of bistable mechanisms:
compliant bistable mechanisms. These mechanisms gain their
bistable behavior from the energy stored in the flexible
segments which deflect to allow mechanism motion. This
approach integrates desired mechanism motion and energy
storage to create bistable mechanisms with dramatically reduced
part count compared to traditional mechanisms incorporating
rigid links, joints, and springs. This paper briefly reviews
bistable mechanism theory, introduces some additional bistable
mechanism characteristics, and integrates this theory with
compliant mechanism theory. The resulting theory of bistable
compliant mechanisms is validated by measuring the force and
motion characteristics of several test mechanisms and

comparing them to predicted values. Figure 1: A bistable light switch mechanism. The
spring forces the mechanism into either the “on” or
“off” position.
INTRODUCTION

A bistable mechanism has two stable equilibrium positions
within its range of motion. It achieves this behavior by storing mechanism theory with bistable mechanism theory.
energy during part of its motion, and then releasing it as the Bistable mechanisms have been used as switches, closures,
mechanism moves toward a second stable state. Complianthinges, or other devices where two stable positions are desired.
mechanisms, which gain motion through the deflection of their In particular, bistable mechanisms offer two distinct, repeatable
members, offer an economical way to accomplish bistable stable positions, allowing these devices to require no power
behavior. Because flexible segments store energy as theyinput to keep them in each position. Specific energy storage
deflect, a compliant mechanism can use the same segments teéharacteristics are necessary in these mechanisms to obtain the
gain both motion and two stable states, allowing a significant bistable behavior. For example, the light switch mechanism
reduction in part count. This paper discusses the theory whichshown in Fig. 1 uses a linear spring to keep the mechanism in its
explains bistable mechanism behavior, introduces compliant “on” or “off” position.
bistable mechanisms, and validates the integration of compliant ~ Several writers have discussed the qualities and applica-
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tions of bistable mechanisms. Schulze (1955) derived
equations for the design of snap-action toggles like the one
shown in Fig. 1. His equations maximized the force required to
switch the device for a given area the mechanism occupies.
Ginsberg and Genin (1984) described the theory of stability and
presented a few examples of bistable mechanisms. Artobo-
levsky (1975), Jensen (1991), and Chironis (1991) also
presented several examples of bistable mechanisms. In
addition, reliability theory was applied to the design of a
bistable mechanism by Howell et al. (1994). A planar two-
spring system with two stable positions was also investigated by
Pigoski and Duffy (1995). Various examples of bistable MEMS
have also been presented (Halg, 1990; Matoba et al., 1994;
Wagner et al., 1996).

Another class _of me_chanisms, complian_t mechanisms, gain Figure 2: A partially-compliant bistable mechanism.
some or all of their motion from the deflection of parts of the  Tpe compliant segment acts as the fourth link of a
mechanism. Compliant mechanisms offer several advantages four-bar mechanism.
over more traditional rigid-body mechanisms. For example,
compliant segments have no friction, noise, or backlash, and
they significantly reduce the total part count of the mechanism avoided by using the pseudo-rigid-body model. This model
(Sevak and McLarnan, 1974). Many compliant mechanisms canallows many different types of compliant segments to be
even be made from one piece of material which bends to achieveanalyzed as two or more rigid links joined by pin joints.
desired motion. In addition, previous work has shown that Torsional springs are placed at the pin joints to model the
compliant mechanisms can easily be designed and analyzedsegment's stiffness.  The lengths of the rigid segments,
using the pseudo-rigid-body model, which models compliant placement of the pin joints, and the spring constants of the
segments as one or more rigid segments and rigid-body jointstorsional springs may all be calculated using various model
(Howell and Midha, 1994a; Howell and Midha, 1995). Of parameters. While the model is very useful for the analysis of
course, compliance also introduces several challenges.compliant mechanisms, its true power lies in the capability it
Compliant members have only limited motion, and their gives for designing original compliant mechanisms (Jensen et
deflection requires energy input, reducing the energy which a al., 1997). A complete description of the model may be found
mechanism can output. elsewhere (Howell and Midha, 1994a; Howell and Midha, 1995;

Although many examples of rigid-body bistable mecha- Howell and Midha, 1996; Howell et al., 1996).
nisms exist, compliance offers a particularly efficient way to As an example, consider the compliant mechanism shown
achieve bistable behavior. As mentioned above, flexible in Fig. 2. Traditional rigid-body kinematics would classify this
members store energy as they deflect. In the proper mechanisnglevice as a structure. Only the flexibility of the compliant
configuration, a compliant segment can provide the energy segment allows it to move as a mechanism. This segment has a
needed to keep the mechanism in its two stable positions. Thus]ength of 4.32 cm, an in-plane thickness of 1.5 mm, and an out-
a compliant bistable mechanism integrates the joint which of-plane height of 5.0 mm. The material of the compliant link is
allows motion and the spring which allows energy storage into polypropylene, with E = 1.38x®®Pa. The pseudo-rigid-body
one element. This paper defines some of the basic concepts irmodel may be used to create a rigid-body equivalent
bistable mechanism theory and integrates them with compliant mechanism; that is, a mechanism with approximately the same
mechanism theory for the analysis of compliant bistable mecha-force and motion characteristics as the original compliant
nisms. mechanism. This pseudo-rigid-body mechanism is shown in

Fig. 3. In this mechanism, the compliant segment has been
replaced by two rigid segments joined by a pin joint. The model

A BRIEF REVIEW OF THE PSEUDO-RIGID-BODY gives the length of the resulting mechanism link as 3.68 cm, and
MODEL the spring constant of the torsional spring is 0.101 N-m. This

The motion of many compliant segments can be predicted mechanism will be analyzed later in the paper to demonstrate
using standard small-deflection force-deflection equations. compliant bistable mechanism theory. The pseudo-rigid-body
However, many compliant segments undergo comparatively model may then be analyzed using the principles of kinematics.
large deflections. The closed-form solution for the large This illustrates another advantage of the pseudo-rigid-body
deflection of a beam typically involves the evaluation of elliptic model concept: the ability to analyze compliant mechanisms
integrals, with a separate evaluation required for each loadingwith traditional rigid-body kinematics.
condition (Frisch-Fay, 1962). This complex process can be

I4=4.32 cm
hg =5.0 mm

< t4=1.5 mm
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rg=3.71cm Y gravity

rg = 3.68cm

rp=15cm Figure 4: An illustration of the “ball-on-the-hill”

_ analogy. Positions A and C are stable equilibrium
rp=3c Kg=0.101N-m positions. Position B is an unstable equilibrium
L position. Position D is neutrally stable.

A)

N7

Figure 3: The pseudo-rigid-body model of the

mechanism shown in Fig. 2. The length of the pseudo- is an unstable equilibrium position. Although the ball will stay
rigid joint and the value of the spring constant on the in this position if placed precisely on top of the hill, it will move
torsional spring are found using the pseudo-rigid- to a different position if any disturbance occurs. Position C is
body model. stable, while position D is neutrally stable.

The ball-on-the-hill analogy illustrates another important
concept in bistable mechanisms. As the ball moves from
position A toward position B, the vertical force required to move
the ball will increase directly as the slope of the hill increases.

THE KEY CONCEPTS IN MECHANISM STABILITY At the hill's inflection point, where its slope is greatest, the ball
This section presents the basic theory behind bistable will require the maximum force to continue its motion. Further
mechanisms. It defines mechanism stability, derives equationsmotion past this point will require decreasing force until the ball
for determining the stability of four-bar and crank-slider mecha- is in equilibrium at position B. A very small perturbation in the
nisms, and proposes key characteristics of bistable mechanismsdirection of position C will then cause the ball to move very
The methods and concepts presented in this section will bequickly into this second stable position. This rapid response is
demonstrated with a compliant bistable mechanism example inoften called “snapping.” Thus, in a bistable system, when the
the following section. unstable position is reached, a very small input will cause the
system to snap into its second stable position.
Several methods have been developed to determine the
A Definition of Stability stability of a system. Ziegler (1956) described four different,
Several different definitions of stability exist, depending on related methods for determining structural stability. In this
the application (Leipholz, 1970). The definition presented here paper, the energy method will be used. This method is based on
comes from the theory of elastic stability of structures the Lagrange-Dirichlet theorem, which states that “when the
(Timoshenko and Young, 1951; Timoshenko, 1961; Simitses, potential energy . .. has a minimum for an equilibrium position,

1976; Ginsberg and Genin, 1984). When a system is in a statehe equilibrium position is stable” (Leipholz, 1970; Lagrange,

of equilibrium, whether loaded or unloaded, “if . . . ‘small' 1788). Therefore, to establish the stability of a mechanism, the
external disturbances are applied and the structure reacts bysotential energy of the mechanism must be plotted over the
simply performing oscillations about the . . . equilibrium state, mechanism's motion. Any local minima represent stable

the equilibrium is said to betable” (Simitses, 1976). However,  positions. The next section shows how this may be done for an
if the small external disturbances cause the system to divergearbitrary compliant mechanism whose pseudo-rigid-body model
from its equilibrium state, then the equilibrium position is resembles a four-bar mechanism. The equations for finding the

unstable If, on the other hand, the system reacts to the distur- potential energy of an arbitrary slider-crank mechanism are also
bances and stays in the disturbed position, then the equilibriumpresented.

position isneutral For each of these definitions, the external
disturbances may be as small as desired (Simitses, 1976).

The stability of a system may be illustrated using the well- Potential Energy and Moment Equations for a Pseudo-
known “ball-on-the-hill” analogy. This analogy is illustrated in  Rigid-Body Four-Bar Mechanism
Fig. 4. Position A is a stable equilibrium position. If it is Figure 5 shows a pseudo-rigid-body model of a compliant
shifted from this position by a small amount, it will tend to mechanism with arbitrary link lengths and angles. The pseudo-
return to position A or oscillate around it. However, position B rigid-body model resembles a four-bar mechanism. A moment
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The stability of the mechanism can also be determined
analytically. The principle of virtual work can be used to find
the values of arbitrary moments or forces required to keep a
mechanism in a particular position (Howell and Midha, 1994b).
For analyzing the bistable characteristics of the mechanism,
however, only the value &fl,, as shown in Fig. 5, is necessary.
This moment represents the moment that must be applied to the
input link to keep the mechanism in a given position. At the
equilibrium positions, its value will be zero. TRk curve may
be found by realizing that it is the first derivative of the energy
curve with respect to the angle of the input link. This may be
proved by considering the equation for work put into the system:

8,
Figure 5: A pseudo-rigid-body model of an arbitrary V = J— M,de (4)
compliant mechanism which behaves as a four-bar E

20

mechanism. Torsional springs at each joint simulate
the effects of compliant segments. For purpose of the

discussion, link two is the input link, by taking the derivative of this equation, it may be seen that

_— =M 5
acts on link two, the input link. A torsional spring at each of the de, 2 ®)

four pin joints allows energy to be stored as the mechanism

moves. The torsional springs represent the stiffness of aassuming that the moment at the initial position is zero.
compliant segment, as specified in the pseudo-rigid-body ThereforeM, is equal to the first derivative of the energy with
model. The energy stored in each spring may be found from  respect to the angle of the input link. This means that

1
V, = SKW? 1) dy, dy, dy,
2 My = Koy + qu"zd—ez + K3L|"3d—92 + K4‘“4d—92 (6)

where V is the potential energyK is the torsional spring
constant, and} is the angular deflection of each torsional The derivatives in Eg. (6) may be evaluated using Eq. (2) and

spring. For each spring shown in the figure, the additional formulas (Paul, 1979; Erdman and Sandor, 1997)
Yy = 6,-0, do; _ 1,8in(6,-6,) @
90, 32 T L oin(B.—0.)
Wz = (B,620)~(85-039) o 9 "55in(03-04)
W3 = (85=8,9) —(83-039) and

Wy = 6,-84
de, ho. = r,sin(6;-9,) ®)
where the “0” subscript symbolizes the initial (undeflected) d—62 42 = r,sin(6,—6;)
value of the angle (Howell and Midha, 1994b). The total

potential energy of the system may then be given as As mentioned previously, the valueM$ will be zero at all

equilibrium positions. The stability of the equilibrium position
-1 be determined by considering the sign of the second deriv-
V = (K W2+ K2 + K p2 + K, P2 3 may be y g g
2( LWt KWz + Kag +KeW2) 3 ative of the energy curve at that point. The second derivative is

The values of eacly may be found using kinematic analysis for
all positions of the mechanism, allowing a graph of potential
energy to be constructed. Any positions corresponding to local
minima are stable positions; any local maxima represent
unstable equilibrium positions.
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2

3?\; = Ky +Kp(1-2hg, +hg) —yhy,) (9)
2
+ K3[hZ, = 2hyohsy + 3, + W3(hy, —hyy)]
+ Ky(hz + Wghy,)
where
, dh r,rcos(6,—0 il
h =_32=—2M(h ~1) (10) , _ - .
32 de, rsLsin(6;-86,) 42 Figure 6: A pseudo-rigid-body model of an arbitrary
: compliant mechanism which behaves as a slider-crank
sin(8,—6,)cos(6;-86,) . . . L
_ = (hgy— h42)} mechanism. Torsional springs at the revolute joints,
sirf(6;—-8,) as well as the linear spring attached to the slider,

represent compliant segments.

= 1)

hy = = = .
42748,  r,lsin(6,-0,) V= %(Kllp% + K W2 + K2 + K, u2) (12)
sin(63—92)cos(63—64)(h h )}
sirf (6, - 6;) 2 In this case,

When the value o, is zero, the equilibrium position will
be stable if the second derivative of potential energy is positive. Wy = 8,-65
If the second derivative of potential energy is negative, the W, = (8,-0,0) —(85—050)
equilibrium position is unstable, and if it is zero, the equilibrium (13)
position is neutrally stable. W3 = 83-05

As the mechanism moves from one stable position to W, =y~

another, the absolute value &1, will increase to some

maximum before decreasing down to zero at the unstable ) ] o )

position. This maximum moment represents the largest momentWherery is defined in Fig. 6 (Howell and Midha, 1994b). The
that must be applied to the input link to make the mechanism Values of the various angles may be found for each position of
snap into its second position. This important value may be the mechanism using kinematic analysis. The monit
called the “critical moment,” o, if a force is applied instead, the equired to keep the mechanism in position can also be found,
“critical force.” using®, as the generalized coordinate, as

In addition, a high value of the second derivative at a stable
position means that the energy curve is changing very rapidly at _ dy, dw, dy,
that point. This means that the restoring force returning the Mz = KWy # KZLIJZd_ez * K3w3d_92 +K4L|"4d_92
mechanism to that position is relatively high. Thus, the value of
the second derivative at a stable position may be called thegyaluation of the derivatives in Eq. (14) requires the formulas
stable position’s “stiffness,” where a high stiffness corresponds (Howell and Midha, 1994b)
to a rapidly increasing restoring force.

(14)

15
Potential Energy and Moment Equations for a Slider- (15)
Crank Mechanism

Figure 6 shows an arbitrary slider-crank mechanism, with

. . . |and
springs placed to represent compliant segments. The potentia
energy of this system may also be found from
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dry _ 1,sin(8,-6,)

Energy and Moment Curves of a Four-Bar

. = 16 0.0
de, o1 cosh, (16) | ——
Finally, the second derivative of the potential energy may be E
found from 5 e
-1p0 )zyo 50 CE‘B\M:z‘o/m ; A 20 40 60 80 100

d2V 2 ' / P ;\M

a2 = Kl + K2(1 - 2932 + g32 - LIJ2932) (17) / ) Potential Energy (N-m)

dez 0015 Crank Moment (N-m)

/ o2 Second Derivative
+ K3(g§2 + L|J3g£,’2) + K4(g]2_2 + LIJ4g£|.2) Deflection of Second Link (de grees)
Figure 7: The energy and crank moment curves for the
where mechanism shown in Fig. 2. The second derivative of
energy is also shown.
2 .
g. = d_e3 _ r_ZDsme2 i coseztane3g 0 18) _ o o
32 d62 r, tosh, cosp, 32 * The stiffness of a stable equilibrium position is equal to the
value of the second derivative of potential energy at that

d position.

an These statements are all demonstrated in the following
5 example.
,o_dn ) .
gy = 902 = —1,C080, —I305,C080;5—r303,SiNB;  (19)
2 A COMPLIANT BISTABLE MECHANISM EXAMPLE

These equations will allow the analysis of the energy states of a

slider-crank mechanism.

A Summary of Bistable Mechanism Behavior

The key bistable mechanism characteristics may be summa-

rized with the following statements:

* A mechanism will have a stable equilibrium position when
the first derivative of the potential energy curve is zero and
the second derivative of the potential energy curve is posi-

tive.

* A mechanism will have an unstable equilibrium position

In the mechanism shown in Fig. 2, the compliant segment
oscillates as the crank turns. Because the compliant link is
undeflected for two different crank positions, this mechanism is
bistable. As explained previously, its pseudo-rigid-body model
is shown in Fig. 3. For the purpose of this analysiss defined
as the crank angle, shown in Fig. 5, &) is defined as the
change in crank angle, 85 - 8,0, wherebB, is the initial crank
angle.

Using the mechanism shown in Fig. 3, the potential energy
and crank torque curves may be calculated using the methods
outlined in the preceding section. The valuegpfy,, W3, and
W, all come from kinematic analysis, whitg = K, = K3 = 0.

K, is given by the pseudo-rigid-body model (see Fig. 3) as
0.101 N-m. Equations (3) through (11) may be evaluated for

and the second derivative of the potential energy curve is

negative.

* A mechanism will have a neutrally stable equilibrium posi-

moment, and second derivative of potential energy as a function
of 8, are shown in Fig. 7.
These curves show that the mechanism will be stable when

tion when the first derivative of the potential energy curve is A8, = 0°, corresponding to position A in Fig. 7, and when
zero and the second derivative of the potential energy curve A8, = -79, corresponding to position B. The mechanism is

is also zero.

* Because two local minima must always contain one local
maximum between them, an unstable or neutrally stable
position will always occur between any two stable states.

* The critical moment (the maximum load required for the

shown in the second stable equilibrium position in Fig. 8. The
mechanism also has an unstable positioAGat=-45°, corre-
sponding to position C in Fig. 7. When moving from position A
to position B, the critical moment is about 0.004 N-m, as shown
at D in Fig. 7. When moving from position B to position A, the

mechanism to change stable states) may be found by evaluateritical moment is about 0.0065 N-m, as shown at E.

ing the moment curve when the second derivative of poten-

tial energy is zero.

This mechanism has two unstable equilibrium positions and
two stable equilibrium positions. However, the energy stored in
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Mech A Mech B Mech C

Figure 9: The three test mechanisms. The pseudo-
rigid-body models of the three mechanisms are shown
in Fig. 10.

Figure 8: The mechanism shown in Fig. 2 in its second

stable position. -7
!
/
/
the unstable position a8, =-45° is much lower than the /
energy stored at the other unstable position. This is because the I
compliant segment has a much smaller deflection at this 77

unstable equilibrium condition. For this reason, the mechanism
would most likely be actuated by turning the crank clockwise

from the first position, shown in Fig. 2, into the second stable Figyre 10: The pseudo-rigid-body models of the three

position shown in Fig. 8. test mechanisms.
The stiffness of the stable positions may also be found from

Eqg. (9). Whem8, = 0°, the value of the second derivative of

energy is 0.017N-m/rad. ANB,=-7%, the stiffness is  measure the mechanisms’ motion while a force meter measured
0.068 N-m/rad. This means that the instantaneous slope of thethe force required to actuate each mechanism. For all cases,
moment curve is four times higher at the second stable position,three measurements were made of the force-deflection data of
indicating that the equivalent restoring moment at the input link the mechanism, and the three results were averaged. The force-
will be about four times higher if the mechanism is perturbed in deflection results were compared to the predictions of finite
this position. Note that this does not relate to the critical element analysis and the pseudo-rigid-body model.
moment required to cause the mechanism to snap into its other  The pseudo-rigid-body model of each mechanism is shown
position. Rather, it expresses the rate at which the restoringin Fig. 10. Mechanisms A and C are modeled by four-bar
moment initially increases. mechanisms, while mechanism B is modeled by a crank-slider
mechanism.  These models were used to analyze each
mechanism using the methods outlined in the preceding

EXPERIMENTAL VALIDATION sections. This process will be explained in more detail for each
The example presented above and the method used to solvenechanism.

it depend on accurate modeling of compliant bistable mecha-
nisms. To test the predictions of the pseudo-rigid-body model
for bistable mechanisms, several test mechanisms werepmechanism A
designed and fabricated. The model is accurate if it successfully Four different configurations of mechanism A were tested.
predicts the force required to create a given deflection in the Table 1 shows the dimensions of each variation, where the
bistable mechanism. Therefore, the motion of each mechanismdimensions are defined in Fig. 11. The differences among the
and the force required to produce that motion were measuredfour mechanisms are the length of the input link and the
and compared to the predictions of the pseudo-rigid-body model thickness of the compliant segment. Each of these four mecha-
and finite element analysis. Three basic types of test mecha-nisms was tested by pushing or pulling the coupler point, point
nisms were used, as shown in Fig. 9. Each of these mechanism®, and recording its motion and the force required to keep the
has two stable positions. mechanism in each position. The position and force were
For testing, each mechanism was milled out of quarter-inch measured in five degree increments of the crank angle over the
polypropylene using a three-axis mill. Each mechanism was range of motion between the two stable positions. Figure 12
then placed on a breadboard, and potentiometers were used tshows the results for mechanism A2, and the results for the

Mech A Mech B Mech C
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Table 1: The dimensions of the variations of
Mechanism 1.

Mech. | Mech. Mech. Mech.

Al A2 A3 A4
r{, cm 11.3 11.3 11.3 11.3
rp, cm 7.6 7.6 59 5.9
rs, cm 11.5 11.5 11.5 11.5
Ly, cm | 10.8 10.8 10.8 10.8
ty,cm | 0.19 0.24 0.19 0.24
az,cm | 5.7 5.7 5.7 5.7
bz, cm | 5.6 5.6 5.6 5.6

L~

Figure 11: The dimensions of mechanism A.

Force-Deflection of Mechanism A2

2 T T T T T T ‘_~_ 7\_-7._\7'
< 60 75 90 105 120 1357|150
8
o
('R
2’ —PRBM
c N
T 5 1 = Measured
rrrrrrr FEM
-20

Input Angle (degrees)

Figure 12: The input force on the coupler point
required to keep mechanism A2 in position.

other three mechanism variations are similar. Full results for all
test mechanism variations are reported by Opdahl (1996). As

Table 2: Comparison of the measured critical force
with the predicted values. All values are in Newtons.

PRBM FEA Measured
Mech A1 | 0.34 0.32 0.33
Mech A2 | 0.74 0.97 0.76
Mech A3 | 0.46 0.44 0.42
Mech A4 | 0.99 0.98 0.85

Figure 13: The labels for the dimensions for
mechanism B.

the graph shows, the pseudo-rigid-body model accurately
predicted the mechanism’s movement in response to an input
force. The error in the measurements is £0.15 N. The results of
the finite element modeling also lie along the predictions of the

model.

Table 2 compares the critical force of each mechanism
variation as measured, predicted by the model, and predicted by
finite element analysis. The data is given for the critical force as
the mechanism moves from its first stable position (shown in
Fig. 11) to its second stable position. Once again, the two
predictions and the measured value correlate very accurately.

Mechanism B
Figure 13 shows the dimensions of mechanism B. Two

variations of this mechanism were tested; their dimensions are
given in Table 3. The only difference between the two varia-
tions is the thickness of the compliant segment. To test these

Copyright © 1998 by ASME



Table 3: The dimensions of the two variations of
mechanism B.

Mech. B1 Mech. B2
Ly, cm 13.49 13.49
Ly, cm 9.65 9.65

rz, cm 7.62 7.62

74 7\
t,, cm 0.20 0.31 < L, 4%

Figure 15: Symbolic dimensions for mechanism C.

Force-Displacement for Mechanism B1 . .

1 Force-Displacement for Mechanism C
= %57 € 04— :
s 3
o 0 w w w S 530 130
3 5
S 051 2 4 6 12 4
= £ -10
g 19 PRBM T

-1.5 4 = Measured ] PRBM
P FEM $-20 s Measured
,,,,,,, FEM
Displacement (cm) -25
Input Angle (derees)
Figure 14: Force-displacement data for mechanism . ] ]
B1. Figure 16: The results of testing for mechanism C.

mechanisms, they were pushed at the location shown by thesecond stable position. This critical force was found to be

applied force in Fig. 13. The horizontal displacement of this 2.3 N. The pseudo-rigid-body model predicted a value of

point and the force required to produce this horizontal 2.46 N, and finite element analysis predicted 2.38 N. These

displacement were recorded. The force was measured forresults show that the pseudo-rigid-body model can be used to
0.25 cm increments of horizontal displacement. The result for design and analyze bistable mechanisms with a good degree of
mechanism B1 is shown in Fig. 14. The measurement error in@ccuracy.

this figure is also about £0.15 N. The graph shows that the

pseudo-rigid-body model closely predicts the actual force-

deflection curve of the mechanism. Results for mechanism B2 CONCLUSION
are very similar (Opdahl, 1996). Bistable mechanisms provide an excellent way to make

switches, relays, closures, and many other useful devices. These
mechanisms use a form of energy storage to create two stable

Mechanism C positions. Because compliant mechanisms inherently store
The dimensions of mechanism C are given symbolically in energy in their flexible members, they are particularly well-

Fig. 15. The values are: L;=85cm, r,=3.0cm, suited for bistable mechanisms. The pseudo-rigid-body model

Lz=11.1cm,L,=85cm, andlg,p=0.8cm. In addition, allows the modeling of such mechanisms as rigid-body mecha-

0, =90 degrees and, =82 degrees. This mechanism was nisms whose behavior can be analyzed using rigid-body
tested by pushing on the end of link two, labeled point P in the kinematics. In addition, the torsional spring constants given by
figure. The force required to keep the mechanism in position the model provide a way to easily incorporate considerations of
was recorded for five degree increments of the crank angle. Thepotential energy into the analysis. By coupling the rigid-body

result is shown in Fig. 16. The measurement error is also aboutkinematics with calculations of potential energy and the moment
0.15N. In addition, the critical force was measured as the required to move a compliant mechanism to a particular
mechanism went from the position shown in Fig. 15 to its position, a mechanism’s bistable characteristics can be found.
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Specifically, the location of the equilibria, the determination of  Howell, L.L. and Midha, A., 1995, “Parametric Deflection
each equilibrium position’s stability, and the maximum force or Approximations for End-Loaded, Large-Deflection Beams in
moment required to snap between two stable states may beCompliant MechanismsASME Journal of Mechanical Design
found from the equations presented here. This maximum forceVol. 117, No. 1, pp. 156-165.

or moment has been called the “critical force” or “critical Howell, L.L. and Midha, A., 1996, “Parametric Deflection
moment.” The “stiffness” of a stable position has been defined Approximations for Initially Curved, Large-Deflection Beams in
as the second derivative of the potential energy curve at thatCompliant MechanismsProceedings of the 1996 ASME Design
point. Engineering Technical Conferen¢&5-DETC/MECH-1215.

An example has also been presented to demonstrate the Howell, L.L, Midha, A., and Norton, T.W., 1996, “Evaluation
application of this method to the analysis of a compliant bistable of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body
mechanism, and the testing of several compliant bistable mechaModel of Large-Deflection Compliant Mechanism#&SME
nisms has been reported. The testing established the validity ofJournal of Mechanical Desigivol. 118, No. 1, pp. 126-131.
the use of the pseudo-rigid-body model for bistable mechanism Jensen, P.W., 199Classical and MOdern Mechanisms for
analysis. This result paves the way for future studies into type Engineers and Inventorarcel Dekken, Inc., New York.
and dimensional synthesis of compliant bistable mechanisms. Jensen, B.D., Howell, L.L., Gunyan, D.B., and Salmon, L.G.,
This will allow the design of compliant bistable mechanisms 1997, “The Design and Analysis of Compliant MEMS Using the
with specified stable states and desired critical moments which Pseudo-Rigid-Body Model,Microelectomechanical Systems

do not exceed some maximum strength.
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