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Abstract

Visual perception of faces is invariant under many trans-
formations, perhaps the most problematic of which is pose
change (face rotating in depth). We use a variation of Ga-
bor wavelet transform (GWT) as a representation frame-
work for investigating face pose measurement. Dimension-
ality reduction using principal components analysis (PCA)
enables pose changes to be visualised as manifolds in low-
dimensional subspaces and provides a useful mechanism for
investigating these changes. The effectiveness of measur-
ing face pose with GWT representations was examined us-
ing PCA. We discuss our experimental results and draw a
few preliminary conclusions.

1 Introduction

Techniques for computer vision-based automated face

recognition can be largely divided into three categories: 3D

model-based [2], 2D geometric feature-based [5, 7, 12], and

2D appearance-based matching [13, 20, 23]. We subscribe

to the view that the appearance-based approach is more

promising whilst neither 3D models nor 2D geometric fea-

tures can be extracted and matched robustly under changing

viewing conditions, in particular, face pose changes [3, 9,

26].

Face models must exhibit invariance under changes in

viewing conditions if robust recognition is to be performed.

Although it is possible that invariance under changes in il-

lumination, scale, translations and small rotations in the

image-plane can be achieved through a process of normal-
isation of face images, changes in face pose (rotation in

depth) cannot be easily “normalised”. A representation

based on specific features for all face poses may be difficult✁
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to find since different image features seem to be relevant at

different poses. For example, the shape of a silhouette helps

distinguish poses between 3/4 view and profile view (see the

last 3 frames in Figure 1) but is not of much relevance in dis-

tinguishing poses between frontal view and 3/4 view (see the

first 3 frames in Figure 1). The reverse can be said about the

relative position of the nose with regard to the eyes and the

distance between the two eyes.

Figure 1. A face rotates in depth.

A more plausible [4] and robust [3] approach for repre-

senting face images of all poses requires the extraction of

pose relevant information in a manner which is somehow

holistic and independent of any judgement of specific fea-

tures. However, this does not necessarily mean exhaustive

representation. Appearance-based face recognition need not

require every view of every person to be stored. Rather, a

canonical view can be generalised from a range of views and

the pose sphere could be represented by only a few canon-

ical views [1, 4, 14, 21]. It is unclear though how an im-

age representation can be chosen which would give the best

measurable pose distribution of faces.

We use a Gabor wavelet transform to examine face repre-

sentation. This can be regarded as part of the normalisation

process and allows us to elegantly obtain invariance under

scaling as well as changes in illumination conditions, skin

tone and hair colour. It is also used to investigate the role of

locally oriented features at a range of spatial frequencies in

selecting face pose (see Figure 3). Although similar results

could be obtained with Gaussian derivative filters as used by

Rao and Ballard [23], the formulation of the GWT is better

unified and consequently more convenient to apply.
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Principal components analysis (PCA) is widely used for

reducing the dimensionality of the representation space in

order to enable efficient matching [13]. However, faces rep-

resented by principal components are sensitive to illumina-

tion conditions, scale, translation or rotation in the image-

plane. Whilst other studies have been concerned with these

problems [6, 20], Murase and Nayar [18] have used the prin-

cipal components of many views of a single object to visu-

alise the high-dimensional manifold described by changes

due to rotation in depth and illumination conditions. The ob-

ject’s pose could then be determined by its position on this

manifold. We use PCA in a similar way to investigate the

distribution of face pose in high-dimensional representation

spaces. In particular, we investigate whether GWT repre-

sentations are helpful for distinguishing poses.

2 GWT Face Representation

A Gabor wavelet transform (GWT) enables us to obtain

image representations which are locally normalised in inten-

sity and decomposed in spatial frequency and orientation. It

thus provides a mechanism for obtaining (1) invariance un-

der intensity transformations due to illumination, skin tone

and hair colour, (2) selectivity in scale by providing a pyra-

mid representation, and more importantly for our studies, (3)

it permits investigation into the role of locally oriented fea-

tures with regard to pose changes.

Figure 2. GWT kernels for 4 orientations (only
real parts are shown).

We perform a GWT of an image by filtering it with a

set of sinusoidally modulated Gaussian functions of differ-

ent spatial frequencies and orientations, known as Gabor

functions [8] (see Figure 2). We use a scheme proposed

by Würtz [26] in which convolutions with Gabor kernels

are performed efficiently in the Fourier domain. In this ap-

proach, a single Gabor function (the mother wavelet) is pa-

rameterised by a vector
✂☎✄✝✆✟✞✡✠✞☞☛✍✌ , defining variations in scale

and orientation. Then a GWT in [ ✎✑✏✓✒✕✔ ✄ ✆✗✖ ✘ ✌ ✒✕✏ ] is

given by [26]:✙✛✚✢✜ ✔✤✣ ✄✦✥✡✧✩★✫✪ ✎✭✬✯✮ ✜ ✔✰✎ ✂ ✣ ✮✱ ✂ ✮ ✲ ✎ ✥✡✧✩★✳✪ ✎✭✬✯✮ ✜ ✔ ✮✵✴ ✂ ✮ ✣✱ ✂ ✮ ✲
The second term results in “admissibility” i.e. zero-response

to spatially constant intensity. Figure 2 shows GWT kernels

in the image domain at 4 orientations varying by ✶✸✷✺✹ from✻ ✹ to ✼✾✽✺✷✺✹ .

Figure 3. GWT faces are both scale and ori­

entation sensitive. The top row shows the 4
orientational responses at a low center fre­

quency whilst the middle and bottom rows
give responses from higher frequencies.

In our studies, the GWT used was parameterised by ✽
spatial frequencies and ✶ orientations varying by ✶✸✷✺✹ from✻ ✹ to ✼✾✽✸✷✿✹ . A GWT image representation was comprised

of a set of 12 responses. At lower frequencies, images are

“smoothed” to a larger extent resulting in less sensitivity to

small translations in the image-plane and greater correla-

tion between nearby images in a sequence. However, using

excessively low frequencies could result in loss of relevant

spatial structure (see Figure 3).

The real and imaginary parts of the kernel responses

oscillate with their characteristic frequency making them

highly sensitive to image-plane translations and therefore

ill-suited to matching. This undesirable property can be

avoided by taking the magnitude of the responses thereby re-

moving phase information [25]. Figure 4 shows an example

of the magnitude responses of the GWT. All the experiments

done in this work are based on magnitude responses.

Figure 4. GWT magnitude responses of the
face image shown in Figure 3.

3 Face Pose Eigenspace

Given an n-frame sequence ❀ ✄❂❁ ❀✢❃✿❄☞❀❆❅❇❄✾❈❉❈✾❈❉❄❊❀✤❋❊●❇❅✍❍ of a

head rotating in depth, a Pose Eigen-Space (PES) can be

calculated by applying PCA to the set of ■ frames. Projec-

tion of each frame onto the first few eigenvectors yields a

“low-dimensional pattern vector” representation. In partic-

ular, projection onto the first three eigenvectors permits vi-

sualisation of the distribution of poses in the representation

space (see Figure 5).



A face pose distribution curve
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Figure 5. The PES of a face sequence of 60
frames rotating from profile­to­profile. Only

20 frames from the sequence are shown here.

The pose of a novel face image of the person can be

estimated by projecting it into this PES. For example, us-

ing Euclidean distance in the PES as an approximation

of Euclidean distance in the image space, the commonly

used methods of minimising the sum-of-squared-difference

(SSD) or maximising the correlation between images can be

efficiently approximated by minimising Euclidean distance

in the PES [19].

4 Face Representations for PCA

It is perhaps inappropriate to perform PCA on represen-

tations which are not invariant to changes in viewing con-

ditions. We examine three forms of face representations for

PCA. They are (1) normalised intensity faces ❏ , (2) GWT

faces ❑ ✜ ❏▲✣ , and (3) composite GWT faces ▼ ✜ ❏▲✣ (see Fig-

ure 6).

Figure 6. Left: a normalised intensity face ❏ .
Centre: a GWT face ❑ ✜ ❏✸✣ . Right: a composite

GWT face ▼ ✜ ❏▲✣ of equal dimensionality.

An image is normalised by subtracting the mean inten-

sity and dividing by its standard deviation. This corrected

variations in overall illumination intensity, camera gain and

imaging aperture
❅
. A GWT face ✮ ❑ ✜ ❏✸✣ is obtained by su-

perimposing the GWT responses. The result is similar to

the original intensity image except that intensity distribu-

tions are locally normalised. A composite GWT face ▼ ✜ ❏▲✣
of equal dimensionality to ❑ ✜ ❏✸✣ is formed by concatenating

four “oriented” 1/4 sized GWT faces, each a sub-sampled

(by a factor of four) Gabor response to a different orientation

(see Figure 6). Now, a principal component derived from

this representation can be visualised as a composite “eigen-

image” consisting of, four oriented sub-images. The mag-

nitude of each pixel in such an eigen-image is a measure of

the variability of the response of one Gabor kernel centred at

the corresponding position in the original image. The mag-

nitudes of the first eigen-image indicate where in the image-

plane which orientations encode the most information about

pose.

5 Experiments

5.1 Data Preparation

Two types of image sequence were captured using Dat-

acube hardware. Firstly, several sequences of heads rotat-

ing from profile-to-profile under different lighting condi-

tions were obtained as output from a head tracking system

described elsewhere [15, 16]. These were 60 frames long

and were automatically normalised with respect to transla-

tion and scale by the tracker. An example can be seen in

Figure 5. Secondly, a set of labelled sequences of 12 people

were obtained under controlled conditions in which subjects

were asked to look at markers on the wall positioned at an-

gles from
✻ ✹ (frontal view) to ◆ ✻ ✹ (right profile view) in ✼ ✻ ✹

increments. Profile-to-profile sequences were generated by

mirroring the sequences. Each labelled sequence, therefore,

consisted of 19 frames of known pose. Figure 1 shows 6

frames from such a sequence. The sequences were cropped

manually and illumination varied between sequences. All

images were sub-sampled with spatial smoothing to ❖✿✶✳P◗❖✿✶
pixels.

In order to measure the effects of pose, other degrees of

freedom such as image-plane translations and scale changes

should be removed. An important point to note is that rota-

tion of a head results in a horizontal translation of the face in

the image-plane. This raises the problem of how to align im-

ages of different poses. Alignment of facial features results

in a sequence in which the “centroid” of the head translates

horizontally as the head rotates in depth. Alignment based

on establishing correspondences becomes problematic due

to occlusions. In the experiments described here, images❘
This is an approximation since factors such as skin tone and hair colour

also influence the first and second moments of intensity❙
A “GWT face”-like representation could also be obtained by using

symmetric filters.



are aligned approximately around the visual centroid of the

head, either automatically by the tracker or manually for the

labelled sequences.

5.2 Pose Manifold of Face Sequences

Initially, ■ -frame sequences were represented using im-

ages normalised for overall intensity. A PES was then cal-

culated by applying PCA to the set of ■ frames. Three unla-

belled sequences of the same person under different lighting

conditions were projected onto the pose eigenspace derived

from only one of these sequences. Plotted on a 3D graph

in Figure 7 are the resulting 3D pattern vectors. The three

curves form a fairly smooth manifold parameterised by pose

and illumination. In particular, the 3rd PC seems to capture

changes caused by lighting conditions. This is similar to the

manifolds obtained by Murase and Nayar [18] for various

non-face 3D objects under robotically manipulated pose and

illumination conditions. In contrast, the face sequences used

here were produced by an automatic visual tracking system

with left, right and ambient lighting. As a result, the mani-

fold shown here is less smooth, reflecting more realistic con-

ditions.

left lighting
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Figure 7. Manifold formed by three face se­

quences under different lighting conditions
rotating from profile­to­profile ( ✎❚◆ ✻ ✹ to ✴ ◆ ✻ ✹ ).

5.3 PES of Mean Intensity Faces

A straightforward way to derive a generic PES is to use a

mean sequence ❯❀ ✄ ✜ ❯❏ ❃ ❄❱❯❏ ❅ ❄❉❈✾❈❉❈✡❄❲❯❏ ❋▲●✯❅ ✣ formed by taking the

mean of normalised intensity images at each pose angle over

many different face sequences. The plot in Figure 8 shows

the pose distribution of a mean sequence formed using 11

face sequences of different people. Also plotted are the pro-

jections into this mean PES of a novel face sequence and a

non-face sequence of a fan rotating similarly from profile-

to-profile. Now, the pose of the novel face sequence can be

estimated simply by finding the nearest point along the mean

curve. This is an efficient approximation to minimising SSD

or maximising correlation between a novel face and a mean

face of known pose. The distance of the non-face object to

the faces in this PES is distinctively large for most pose an-

gles. Furthermore, it is interesting to note that while the 1st

PC separates the left and right poses, the 2nd and 3rd PCs

jointly discriminate between poses from profile to frontal

views reasonably well. This can also be observed from the

eigen-images shown above the plot. It is worth pointing out

that although we did not plot higher order PCs, it is clear that

the 4th and 5th PCs capture finer changes in pose angles.

mean face
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Figure 8. (1) Top row: the first 5 PC’s (PCs)

of the mean faces. (2) Plot: Projections onto
the first 3 PC’s of the mean face sequence, a

novel face sequence and a non­face object (a
fan) rotating from ✎❚◆ ✻ ✹ to ✴ ◆ ✻ ✹ .

5.4 PES of Mean GWT Faces

We also derived a PES based on GWT face sequences.

The second picture in Figure 6 shows an example of a GWT

face. Similarly to the last experiment, we obtained a mean

sequence ❯❀✯❳ ✄ ✜ ❯❑✫❃✸❄ ❯❑❨❅❇❄❉❈✾❈❉❈✡❄ ❯❑✫❋✩●✯❅✾✣ by taking the mean

GWT face at each pose angle over 11 sequences of differ-

ent people. Figure 9 shows the pose distribution curve of

this mean GWT sequence and the projections of two GWT

face sequences into this PES. Compared with the PES of the

mean intensity faces, the pose distributions in both 2nd and

3rd PC dimensions are more linear. This may be due to the

fact that the GWT faces are less sensitive to changes in il-

lumination and differences in local features. However, PES



of GWT faces is more sensitive to translations in the image-

plane.

mean GWT face
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Figure 9. Pose distribution curves of (1) the
mean GWT face representation of 11 face se­

quences (2) two test GWT face sequences. All

3 are projected into the mean GWT PES.

5.5 PES of Composite GWT Faces

We performed PCA similarly to the last two experiments

with the composite GWT representation. Here, only a sin-

gle spatial frequency was used to simplify the computation.

Figure 10 shows the first 5 principal components of the mean

composite GWT sequence. It is interesting to notice that

while the sub-image of the 1st PC corresponding to horizon-

tal orientation plays an important role in dividing the pose

angles into two groups, the sub-image of the 1st PC corre-

sponding to vertical orientation has relatively little signifi-

cance. However, vertical orientation becomes a dominant

factor in separating pose angles in all the other PCs. This

is due to the fact that all the sequences used in our exper-

iments are strictly based on face rotation from profile-to-

profile. This suggests that when face sequences contain pose

changes arising from diagonal rotations, the sub-images of

PCs that correspond to ✶✸✷✿✹ and ✼✾✽✸✷✿✹ orientations may be-

come more significant in separating poses. Figure 10 also

shows pose distribution curves in the PES of the mean com-

posite GWT faces. This plot reinforces our observations re-

garding the eigen-images. Compared to both PES of the

mean intensity and GWT faces, the pose distribution curves

are well linearised. As a result, the pose angles are clearly

divided into two groups at the frontal view and are almost

symmetrically distributed along two lines, clearly separable

and easily measurable.

mean composite GWT face
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Figure 10. (1) The first 5 PC’s of the mean com­

posite sequence. The 4 sub­images corre­

spond to Gabor responses at
✻ ✹ (horizontal),✶✸✷✿✹ , ◆ ✻ ✹ (vertical) and ✼❩✽✺✷✺✹ . (2) Projections of

the mean composite GWT face sequence and

two test face sequences into the mean PES.

6 Conclusions

In this paper, we addressed the issue of measuring

face pose. We introduced a composite face representation

scheme based on a Gabor wavelet transform in order to

both normalise intensity and scale and to investigate the

role of locally oriented features in regularising pose distri-

butions. We used pose eigenspaces based on principal com-

ponents analysis to represent and interpret the distribution of

pose changes from continuous face sequences of rotations in

depth.

In particular, we have shown that pose changes of a con-

tinuous face rotation in depth form a smooth curve in pose

eigenspace. Whilst the first principal component (PC) of

this eigenspace divides all poses from profile-to-profile into

two symmetric parts centred at the frontal view, the remain-

ing PCs differentiate poses between profile to frontal views.

The third PC also seems to capture changes in illumination.

Furthermore, it seems that the pose distribution curves

of faces in the pose eigenspace are distinctively different

from those of non-face objects. Although GWT representa-



tion reduces the complexity of pose distributions, it is sen-

sitive to translational changes in the image-plane. More in-

terestingly though, the composite GWT representation gives

a highly linear pose distribution. It appears that the Gabor

kernels of different orientation play some role in “regularis-

ing” pose distributions. This is computationally attractive

for determining poses of novel faces. With further study,

such a representation could be used to construct a simple but

generic face pose eigenspace which in turn can be used to es-

timate poses of unknown faces. This can be done by project-

ing novel face images into the eigenspace and determining

their positions along the pose distribution manifold by sim-

ply measuring Euclidean distance to the manifold [18]. Al-

ternatively, the manifold could be modelled probabilistically

by a set of covariance matrices at different poses before be-

ing used to measure poses based on computing Mahalonobis

distance [17, 24].

As a final note, it is worth mentioning that in this pa-

per, pose estimation has been treated essentially as a pat-

tern recognition task. There clearly exist, however, a va-

riety of spatial and temporal contextual cues such as body

pose and continuity of pose change which could be used

[1, 10, 11, 22]. This will be one of the main focuses of our

future work.
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