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A B S T R A C T  

Th& paper & a contribution to the understanding of the interaction between 
overall lateral-torsional buckling and local buckling of a beam under 
transverse loading. It concentrates on the case where the critical load for 
local buckling is smallest. Three approaches have been used." numerical 
analysis using the asymptotic theory; a qualitative analysis using an a 
priori simple discrete model; and experiments. The study suggests that just 
three modes in the asymptotic analysis are adequate to describe the inter- 
active behaviour. The resulting reduced potential energy expression is quite 
similar to that of  the a priori simple discrete model and provides insight 
into the destabilizing phenomenon. The experiments confirm these results. 
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NOTATION 

One third of  the web height in simple discrete model 
Amplitude of ith buckling mode 
Second-order coefficients in V 
Third-order coefficients in V 
Fourth-order coefficients in V 
Flange width 
Length of link 
Spring stiffness/Young's modulus 
Load vector when determining second-order fields 
Geometric stiffness matrix 
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Web height 
Stiffness of precompressed spring 
Linear stiflqless matrix 
Length 
Number of modes in the expansion 
Constraint matrix 
Vector containing Lagrange multipliers 
Conservative point load 
Critical load for local buckling 
Critical load for overall buckling 
Value of the perturbation load 
Increment of Q,, i = 1 .... ,4  
Rotation representing torsion 
Rotation representing vertical deflection 
Rotation representing lateral deflection 
Shortening of original neutral axis 
Local buckling amplitudes 
Torsional stiffness 
ith buckling mode 
Initial post-buckling field 
Second-order field 
Precompression of springs 
Potential energy 

Load parameter 
ith critical value of 2 
Perturbation value of 2 

I INTRODUCTION 

Non-linear interactions between buckling modes, representing one type of 
coupled instabilities of str.uctures, are important from a practical point of 
view since if these occur, the post-buckling response may differ signifi- 
cantly from the uncoupled situation. Koiter was the first to formulate a 
general asymptotic theory of mode interactions for continua.~ He estab- 
lished that mode interactions have a destabilizing influence, which for 
certain types of structure gives rise to a significant reduction in the load- 
bearing capacity. This in turn explained the discrepancy between critical 
loads obtained from bifurcation theory and critical loads observed in 
experiments, particularly for shells. This approach provided a strongly 
reduced potential energy function, the variables being the amplitudes of 
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the relevant buckling modes. A comparable theory was independently 
developed by Thompson and Hunt for a priori discrete systems. 2 

In comparison with the widely used continuation procedure, the asymp- 
totic approach can provide some additional information such as the shape 
of the worst imperfection; it also enables classification of the buckling 
problem in terms of catastrophe theory as described, for example, by 
Thompson and Hunt, 3 thereby giving insight into the mechanism of the 
non-linear mode interaction. This paper is an attempt to add to this insight. 

In the original theory, the number of discrete equilibrium equations 
derived from the reduced potential energy expression equalled the multi- 
plicity of the buckling load. Early analytical investigations concentrated 
predominantly on the interaction between local and overall buckling for 
compressed structural members; consequently, the number of discrete 
equilibrium equations in most cases was two. 4 

However, when combining the asymptotic approach with a finite 
element discretization, many critical loads are involved. 5 Koiter suggested 
a method of handling nearly coincident critical loads, while Byskov and 
Hutchinson presented a formulation for well-separated critical loads. 6 It 
has also been shown experimentally that interaction between well-sepa- 
rated critical loads c a n  o c c u r .  7 

These developments prompted us to investigate which buckling modes 
are relevant for describing the post-buckling behaviour correctly. It is 
surmised that a limited number of modes might suffice, an idea which is 
supported by the following statement of Potier-Ferry: ~ 'The most typical 
feature of instability theory is that its fundamental characteristics can be 
found in very simple models. Moreover, any complicated structural 
system is equivalent in some sense to one of these simple models, at least 
in the neighbourhood of a critical stateL 

A finite element program for determining the initial post-buckling 
behaviour of folded plate structures under arbitrary load distribution is 
being developed. Using this program, the rarely investigated interaction 
between overall lateral-torsional buckling and local buckling for beams 
under transverse loading is being explored. In addition, a simple discrete 
model has been analysed and experiments have been carried out. The 
present study is limited to the case where the critical load pertaining to 
local buckling is smaller than the critical load for overall buckling. 

2 AN OUTLINE OF THE ASYMPTOTIC APPROACH 

A finite element program is being developed for the initial post-buckling 
analysis of elastic prismatic plate structures under conservative loading, 
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controlled by a single loading parameter 2. The plate elements are based 
on the Kirchhoff plate theory. The formulation of Byskov and Hutchinson 
has been used, since it is known that even modes pertaining to well-sepa- 
rated critical loads may lead to interaction. 7'9 For additional details on the 
asymptotic approach, see Refs 5, 10 and I1. 

The system is described by a potential energy expression that is expan- 
ded up to and including fourth-order displacements terms. Bifurcation 
points are characterized by the vanishing of the quadratic terms of the 
potential energy. Thus the first numerical step involves the solution of the 
linear, generalized eigenvalue problem 

(K + ,~iG)ui - 0 (1) 

and provides a (pre-selected) number of critical loads ,;~i and pertinent 
buckling modes ui. 

According to the asymptotic theory, the initial post-buckling field Au 
can be written as 

Au - aiui + aia/u(/0u (2) 

where the second-order fields u u and the amplitudes a~ have still to be 
determined. It is assumed that the contribution of the second-order 
fields is small in comparison with the first-order contribution. Koiter's 
original formulation was based on coinciding critical loads. All perti- 
nent modes should be inserted into eqn (2). Thus, theoretically, there 
was no problem of choice. The same held for the (semi)analytical 
analyses of  uniformly compressed structural members, where tit least 
two, sometimes three, sinusoidal modes were taken into account a 
priori. In a more general finite element analysis, however, a whole 
spectrum of critical loads may occur, and the question arises as to 
which modes should be put in the linear part of  the post-buckling field. 
This question will be discussed later. 

The second numerical step involves determination of the second-order 
fields u u at fixed amplitudes a~ and expansion load 2p. Usually an ortho- 
gonality condition 

u)l Ku,i - 0 (3) 

between the modes u/< and the second-order fields uii is imposed. This 
constraint is conveniently taken into account by means of Lagrange 
multipliers. The requirement that the resulting Lagrangian functional be 
stationary leads to the following linear equation system: 

K + ).pG 

LPuJ 
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where the vectors pgj contain the Lagrange multipliers; the constraint 
matrix M and the 'load vectors' f,.i result from the potential energy 
expression now augmented with cubic and quartic terms. The appearance 
of the stability matrix K + 2pG in this set of equations indicates that the 
solution requires specific care if the perturbation load factor 2p is close to 
some of the critical loads 2i. Relevant problems in the solution of system 
(4) will be addressed elsewhere. 12 Once the second-order fields have been 
obtained, the potential energy is only a function of the amp itudes a; and 
the load parameter 2, and looks like 

V[ai; )L] = -~ = 1 - ~ a la t  + Aiikaia/ak + Aiiklaiaiakal (5) 

The third step involves solution of the equilibrium (amplitude) equa- 
tions generated from eqn (5). Koiter described how the direction of the 
equilibrium path with the steepest descent or smallest rise could be 
found, l0 

If it is admissible to insert a small number of modes into eqn (2) in the 
case of a general FE post-buckling analysis, the FE model, initially 
comprising many degrees of freedom, would be reduced to a very simple 
model also described by eqn (5). This could correspond to the aforemen- 
tioned statement of Potier-Ferry. The simple model would make the initi- 
ally complicated model more tractable for interpretation; the mixed 
coefficients Agik and/or Aijk~, for instance, indicate whether there is 
coupling between buckling modes or not. As will be demonstrated in the 
section on the simple discrete model, the modes that are involved in 
buckling may not be restricted to the modes inserted into the linear part of 
eqn (2), but the second-order fields u,-j may also contain relevant buckling 
modes. 

3 N U M E R I C A L  ANALYSIS 

A simply supported aluminium ( E =  70GPa,  v =  0-3) T-beam was 
analysed as a test case. The dimensions of the cross-section are presented 
in Fig. 1, and were chosen such that for the shorter beams local flange 
buckling would occur first, while buckling is initiated by an overall 
lateral-torsional mode for the longer ones. Dimensioning of this beam 
was based on estimates of the behaviour by assuming distortion-free 
lateral-torsional buckling and sinusoidal local buckling. Since the local 
buckling load is strongly influenced by the free width of the flange, the 
overlap between flange and web consisted of  orthotropic elements having 
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Fig. 1. (a) Cross-section; h 50 mm, h : 30 mm, t r= 0-5 mm, t,, : 2-0 ram. (b) Esti- 
mated buckling loads and the results o f  finite element computations.  

a high rigidity in the transverse direction. The beam was loaded by a 
transverse force at midspan and in a direction that induced compression in 
the flange. 

Two beams having lengths of 520 and 570mm were modelled, and 
the computed buckling loads are shown in Tables I and 2. It is obvious 
that the lowest mode must be taken into account for describing the 
post-buckling behaviour of  a perfect structure. If one looks only at the 
magnitude of  the critical loads, at least the second mode could linearly 
contribute to the post-buckling field and the other modes would be 
'passive', in the language of  Thompson and Hunt. Tables I and 2, 
however, show the symmetry properties of the local modes too. From 

TABLE I 
Lowest Buckling Modes  o f  the 520 mm Long T-Beam 

Mode no. Load 7~l'pe <?/ntode Svnnm'trv properties with respect to 

M id.vmn 14"eh 

1 1183 N Local Symmetric  
2 1184 N Local Asymmetr ic  
3 1211 N Local Symmetric  
4 1212 N Local Asymmetr ic  
5 1331 N Local Asymmetr ic  
6 1331 N Local Symmetric  
7 1356 N Overall Symmetric 

Asymmetr ic  
Asymmetr ic  
Symmetric 
Symmetric 

Asymmetmc 
Asymmetr ic  
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TABLE 2 
Lowest Buckling Modes of the 570 mm Long T-Beam. 

135 

Mode no. Load Type o/' mode Symmetry properties with respect to 

Mid,pan Web 

1 1067 N Local Symmetric Asymmetric 
2 1068 N Local Asymmetric Asymmetric 
3 1092 N Local Symmetric Symmetric 
4 1093 N Local Asymmetric Symmetric 
5 1110 N Overall Symmetric 
6 1192 N Local Asymmetric Asymmetric 
7 1192 N Local Symmetric Asymmetric 

previous experiments (in pure bending) and the simple discrete model 
(with two coinciding local critical loads), it is known that local flange 
buckling triggered overall lateral-torsional buckling, leaving one flange 
half unbuckled. 7 A comparable phenomenon cannot happen by adding 
the second mode to the first one. Only a combination of the first and 
third modes can lead to a similar phenomenon.  Whereas in the simple 
discrete model the local critical loads were assumed to have the same 
value, the numerical model produced a spectrum of  nearly coinciding 
critical loads. Two different approaches were used for solving the 
reduced set of equilibrium equations: 

(!) the small difference between the critical loads is taken into account, 
leading to a secondary bifurcation on a path corresponding purely 
to the lowest local mode; 

(2) the value of the second local critical load is replaced by the value of 
the lowest one, leading to a compound bifurcation point. 

Results of both approaches are reproduced in Fig. 2 for the case of the 
520-mm beam; the results of the first approach are drawn with solid lines, 
while dashed lines indicate the second approach. The figure shows that the 
amplitudes of the asymmetric mode 1 and the symmetric mode 3 become 
identical, thus leaving one flange half unbuckled. The lowest and the third 
buckling modes are shown in Fig. 3. It is interesting to note that the 
interaction between the two local modes is comparable to the behaviour of 
the well-known Augusti model.13 

Since overall buckling is also involved in this problem, it remains to 
be decided whether its critical load can be considered to be close to the 
lowest one or not. Strictly speaking, if mode interaction occurs, a mode 
pertaining to a separated critical load will be passive. On the other hand, 
one could consider this situation to be a perturbation of the case of  coin- 
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Fig. 2. The 520 mm beam: relationship between post-buckling amplitudes. 

ciding critical loads. The latter approach was chosen and the overall mode 
was added into the linear combination, which after ignoring relatively 
small terms gave for the potential energy 

V(ai, a3, ai)=~ 1 - ~  aT+ 1 ~ aT+ 1 - : -  a7 
. / . : /  J 

"~ 4 + A13iala3ai + Aitlla 4 + Ai 33a~ + A3333a3 (6) 

where i is equal to 5 for the 570-mm beam and 7 for the 520-mm beam. 
The cubic cross-term shows that all three modes are coupled. The 
deformed shape of  the 520-mm beam, obtained after adding the contri- 
butions of  the relevant modes, is given in Fig. 4. 

4 E X P E R I M E N T A L  V A L I D A T I O N  

The numerically simulated behaviour  of  the aluminium T-beams was 
also verified experimentally. The test beams were built up from a thin 
flange, carefully machined from sheet metal and glued to a relatively 
stiff web in order to provide both flange and web with a uniform 
thickness. The test rig has been described earlier. 7 The dead-loading 
was replaced by a device for prescribing the vertical displacement at 
midspan. An air bearing enabled nearly frictionless lateral movement  
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Fig. 3. Local modes I and 3:520 mm beam. 
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Fig. 4. Deformed shape on the post-buckling path at a load level of 1141 N, 520 mm 
beam, magnification ×10. 

while keeping the direction of loading vertical. The overall buckling 
components,  namely the lateral displacement of the centre of gravity of 
the cross-section and the rotation, were measured by means of displa- 
cement transducers at midspan. The non-periodic local buckling was 
measured by means of a video tracking system (Fig. 5) recording the 
position of an array of retro-reflective markers, glued to the rim of the 
flange. After processing, including subtraction of the rigid body 
motions of the relevant cross-sections, true local buckling properties 
were obtained. 

Both measured and calculated values will be given in the graphs. It 
should be borne in mind that numerical predictions based on a perfect 
beam will be compared with measurements of a beam having unknown 
imperfections. For the shorter beams under consideration, the magnitudes 
of the measured overall displacements were very small. Figure 6 shows the 
lateral deflection of the centre of gravity at midspan representing the 
overall amplitude, as a function of the load. Figure 7 shows the maximum 
flange deflection as a function of the load. Here the influence of imper- 
fections is less pronounced. Figure 8 shows the relationship between the 
maximum flange deflection and the overall amplitudes. The overall 
imperfections spoil the picture to some extent, but the passive behaviour 
of the overall mode is still discernible. 
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Fig. 5. Camera for measuring the non-periodic local buckle. 
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Fig. 6. Load vs lateral deflection. The solid lines are the numerical computations for a 
perfect beam model and the experiments are shown by lines with markers. 

6 T H E  S I M P L E  D I S C R E T E  M O D E L  

A s i m p l e  d i s c r e t e  m o d e l ,  F i g .  9, c o m p r i s i n g  a priori  t w o  c o i n c i d i n g  l o c a l  

m o d e s  a n d  o n e  o v e r a l l  l a t e r a l - t o r s i o n a l  m o d e  w a s  a n a l y s e d  t o  e n h a n c e  
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Fig. 7. Load vs maximum flange deflection. The solid lines are the numerical computa- 
tions for a perfect beam model and the experiments are shown by lines with markers. 
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Fig. 8. Relationship between the lateral deflection and the maximum flange deflection. 

insight into bo th  the physical behav iour  and the behav iour  o f  the eqns (4) 
govern ing  the second-order  fields. G o o d  qual i ta t ive agreement  between 
this model  and buckl ing exper iments  in pure  bending has a l ready been 
repor ted  in Ref. 7, which also gives a more  extensive descr ipt ion o f  the 
model .  The  lef t -hand suppor t  al lowed the model  to ro ta te  abou t  its axis, 
coun te rac ted  by a spring having a tors ional  stiffness St. The  two linear 
springs, each having a stiffness E, p rovided  the model  with vertical stiff- 
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-'°2 

Qs B 

Fig. 9. Simple discrete model. 

ness 2hZE and lateral stiffness 2b2E; however, in the flanges each spring 
was in series with another precompressed spring, of stiffness k. The 
precompression u0 was achieved by means of the rigid links. The overall 
lateral-torsional buckling was characterized by the rotation QI and the 
lateral bending Q3. The independent angles Q5 and Q6 characterized the 
local buckling of the flanges, angle q2 representing the incremental vertical 
deflection, and displacement Q4 being a shortening of the axis. The para- 
meters were chosen in such a way that the model behaved like a real beam. 
The expansion of the potential energy around the fundamental state 
QF = pl/(2hZE) proved to be: 

1 A 2 1 1 1 As~Q~ + 66Q6 + A:~5~Q3Q~ V(Q,3, Qs, Q 6 ) = ~  A3:~Q:~ +~ ~ 

l , 1 l 
+5 + ..-, A555 Q  + 

1 
+ ~ A6666Q 4 (7) 

The terms A355 = 2bdE and A366 =-A355 in eqn (7) are the only ones 
representing coupling between lateral torsional buckling (amplitude Q3) 
and the two independent local buckling modes Q5 and Q6. In the previous 
numerical model we utilized a local mode which was symmetric with 
respect to the web and one which was asymmetric. This can be simulated 
in the simple discrete model by making 

i I 
Q5 -- ~ (Q~ + Q~) Q6 -- ~ (Q~ - Q~) 
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where Q~ causes asymmetric local buckling and Q(~ symmetric local buck- 
ling. Then the new cubic cross-term hdEQ3Q~Q~ will be obtained. 

Next it will be shown that a second-order field may contain a passive 
mode, but that the accuracy of that mode will depend upon the proper 
choice of the perturbation load P r  If the critical load for local buckling 
PL is reached first, the coordinates Qt, q2, Q3 and Q4 will be passive. These 
coordinates were eliminated from the original potential energy expression 
still containing all coordinates (see eqn A7 in Ref. 7) by requiring the 
potential energy V to be stationary with respect to these passive coordi- 
nates. That gave 

i) V PI 
OQ, - ° ~ Q' = S ,  Q3 (8) 

0 V d 
Oq2 - O ~ q2 = ~ (Qg + Q{) (9) 

ow _ o ~ Q3 - A335 Q~ A366 Q2 (10) 
OQ3 2A33(P) 2A33(P) 

0 V d 
- -  0 =~ Q4 = (Q~ + Q~) (l l) )- 

OQ4 

where A33(P) is the stability coefficient for the overall mode 
(Qt, Q3) ¢ (0, 0). The reduced potential energy then becomes 

1 l ~ 1 , 4 
V(Qs, = A.Q  + A6 Q , + A..Q  

1 ") "~ ~ * 4 
+3 As566Q~Q~ + A6~Q~ (12) 

where the new quartic coefficients can be expressed in terms of the old 
ones according to 

A~55 
A~sss = A5555 - 3 - -  (13) 

A33(P) 

The latter expression demonstrates the detstabilizing influence caused by 
the presence of the cubic coefficient. Now the second-order fields are 
determined in an analogous way to the asymptotic approach used in the 
numerical analysis. The active buckling modes are 

,d= [o,o,o,o, Q ,O] 

,,J= [o,o,o,o,o, Qd 
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The post-buckling field is described by 

AQ _- Q + q (14) 

wi th Q = ul + uz, and as q must be orthogonal to Q, the second-order 
field looks like 

qr = [ql, q2, q3, q4, 0, 0] 

If this field is put into the original potential and only terms in Q~qi and q~ 
are retained, minimization of the potential energy at fixed amplitudes Q5 
and Q6 gives 

0 h2E 0 q2 
Pl 0 2b2E q3 

2 o o o ~ EJ q4 

adE(Q~ + Q26) ] 

- bdE(Q~ - Q )I 
- dE(Q  + J 

(15) 

which is solved at a fixed perturbation load Pp, giving 

q, = -[Ppl/St]q3 q2 = [d/(6a)](Q~ + Q~) 

q3 = -[bdE/A33(Pp)](Q~ - Q6) q4 = (d/3)(Q~ + Q26) 

These equations are quite similar to the ones obtained earlier and confirm 
that the second-order fields may contain passive modes. The only differ- 
ence is that the variable load P is replaced by the fixed perturbation load 
Pp. For the 'incremental deflection' q2 and the 'membrane action' Q4, 
there is no difference at all. If the reduced potential energy is derived by 
using the relationships between active and passive coordinates, one 
obtains 

1 1A 2 ~4A** /-14 V(Qs,  Q 6 )  = ~ AssQ~ + -~ 66Q6 -b- ,~5555~5 

, 
Z'15566 ~d'5 ~ 6  -~- ~ 6666 ~'6 

..~_ A** t-~2/-12 ,4** tq 4 (16) 

with, for instance 

A555s = A~5~5 + (pp/)2 I - P 2 
A33(Pp) 

If the perturbation load level Pp equals the relevant load level, the coeffi- 
cients will be the same. 
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6 C O N C L U S I O N S  

The exploratory numerical simulations and experiments presented here 
confirm that it might be possible to describe with only a few buckling 
modes the initial post-buckling behaviour comprising non-linear mode 
interactions. However, selection of  proper modes from the numerically 
obtained spectrum of  modes requires insight into the buckling phenom- 
enon at hand. The reduced potential energy expression obtained from the 
numerical model is very similar to that of  the a priori simple discrete 
model and provides insight into the interactive buckling behaviour. The 
small set of  non-linear equilibrium equations resulting from the numerical 
model can easily be solved, even providing secondary bifurcation points. 
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