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Abstract

This paper considers a range of stochastic models which give the same reserve estimates as the chain-ladder technique.
The relationship between the models described by Renshaw and Verrall (Renshaw, A.E., Verrall, R.J., 1998. British Actuarial
Journal 4, 903–923) and Mack (Mack, T., 1993. ASTIN Bulletin 23, 213–225) is explored in more detail than previously.
Several new models are suggested and some new ways to allow for negative incremental claims for the chain-ladder technique
and other claims reserving methods are put forward. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The chain-ladder technique is an algorithm for producing estimates of outstanding claims, ignoring any tail
factors. In accordance with the chain-ladder technique, this paper does not consider projecting outstanding claims
beyond the latest development year which has already been observed.

One of the reasons why the chain-ladder technique excites controversy is that there is no definitive source in which
it is defined. It has simply emerged as an algorithm which can be used to produce reserve estimates. From the point of
view of obtaining reserve estimates, this is of little significance: it is possible to define various models which give the
same reserve estimates as the chain-ladder technique. Renshaw and Verrall (1998) and Mack (1993) are examples of
papers which explore models which produce the same estimates of outstanding claims as the chain-ladder technique,
although the generalised linear modelling approach of Renshaw and Verrall requires certain positivity constraints.
These positivity constraints can be overcome by a reparameterisation of the model, and the reserve estimates of the
chain-ladder technique reproduced in all cases. As England and Verrall (1999) have commented, the construction
of models which merely produce the same reserve estimates as the chain-ladder technique “may seem like a futile
exercise” at first sight. However, there are a number of reasons why this is not the case. Firstly, the chain-ladder
technique gives only a point estimate of the outstanding claims and no indication of the likely variability of the
actual outcome around the reserves. Secondly, in any data analysis exercise, it is important to understand the model

E-mail address:r.j.verrall@city.ac.uk (R.J. Verrall).

0167-6687/00/$ – see front matter ©2000 Elsevier Science B.V. All rights reserved.
PII: S0167-6687(99)00038-4



92 R.J. Verrall / Insurance: Mathematics and Economics 26 (2000) 91–99

being used and the data for which it is suitable. In order to go beyond the simple reserve estimates of the chain-ladder
technique, it is necessary to specify a stochastic model. Mack (1993) and Renshaw and Verrall (1998) are examples
of papers which do this, and this paper will give a number of other specifications of models which reproduce the
chain-ladder estimates. The various models make different assumptions and it is hoped that this paper will clarify
some of the issues confronting a practitioner when they have to decide which model to use to estimate the variability
of the chain-ladder reserve estimates.

In contrast with the chain-ladder technique, the separation technique was defined first as a stochastic model by
Verbeek (1972) and only after this was an easy algorithm produced by Taylor (1977), which is akin to the chain-ladder
technique. The chain-ladder technique and the separation technique are very closely related (see Verrall, 1996) and
the split between a stochastic model and an algorithm for producing point estimates applies to both cases. In the
case of the separation technique, a stochastic model was defined first and a simple algorithm derived later. This is a
logical way to proceed and it is possible to return to the stochastic model and adjust the assumptions in the light of
the data observed. In the days of fast computers, simple algorithms have less importance. This is the philosophy of
our approach: the most important thing is the stochastic model, and simple algorithms are useful only if computing
facilities are not available. This does not imply that the connection between the stochastic model and the reserve
estimates produced by the simple algorithm should be ignored.

We begin with a model which assumes that the data have a Poisson distribution. While this is unrealistic since it
implies that the data must be positive integers, it is straightforward to relax this, and it makes the exposition easier
to understand. Without loss of generality, we assume that the data consist of a triangle of incremental claims:{

Cij : j = 1, . . . , n − i + 1; i = 1, . . . n
}
.

The cumulative claims are defined by:

Dij =
j∑

k=1

Cik,

and the development factors of the chain-ladder technique are denoted by{λj : j = 2,. . . ,n}.

2. The Poisson model

Consider the following model, which assumes a multiplicative structure for expected incremental claims.

Cij ∼ independent Poisson withE[Cij ] = xiyj and
n∑

k=1

yk = 1. (2.1)

Clearly xi = E[Din], which is expected ultimate cumulative claims (up to the latest development year so far

observed). The parameters
{
yj : j = 1, . . . , n; ∑n

j=1 yj = 1
}

will be referred to as the “column parameters”.

The column parameters can be interpreted as the proportions of ultimate claims which emerge in each development
year. This model can be reparameterised as follows:

Cij ∼ Poisson withE[Cij ] = ziyj∑n−i+1
k=1 yk

and
n∑

k=1

yk = 1. (2.2)

In this casezi = E[Di ,n − i + 1], which is the expected value of cumulative claims up to the latest development
year observed in accident yeari. Using this parameterisation, the likelihood is:

L =
n∏

i=1

n−i+1∏
j=1

[
(ziyj /Sn−i+1)

Cij e
−zi yj /Sn−i+1

Cij !

]
, whereSm =

m∑
k=1

yk. (2.3)
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Thus,

L =
n∏

i=1


z

∑n−i+1
j=1 Cij

i exp

(
−zi

∑n−i+1
j=1 yj

Sn−i+1

)
n−i+1∏
j=1

[
(yj /Sn−i+1)

Cij

Cij !

]


=
n∏

i=1


z

Di,n−i+1
i e−zi

n−i+1∏
j=1

[
1

Cij !
(yj /Sn−i+1)

Cij

]


=
n∏

i=1


z

Di,n−i+1
i e−zi

Di,n−i+1!


 Di,n−i+1!∏n−i+1

i=1 Cij !

n−i+1∏
j=1

(yj /Sn−i+1)
Cij




 . (2.4)

L can be written asL = LDLC , where

LD =
n∏

i=1

{
z
Di,n−i+1
i e−zi

Di,n−i+1!

}
, (2.5)

and

LC =
n∏

i=1


 Di,n−i+1!∏n−i+1

i=1 Cij !

n−i+1∏
j=1

(
yj

Sn−i+1

)Cij


 . (2.6)

Thus,L is the product of the likelihood ofzi and the likelihood for
{
yj : j = 1, . . . , n; ∑n

j=1 yj = 1
}
. The first

term is the probability forDi ,n − i + 1 and the second term is the probability for{Cij : j = 1,. . . ,n− i + 1}, conditional
onDi ,n − i + 1. From this, it can be seen that the maximum likelihood estimate ofzi is Di ,n − i + 1. It is also clear that

the same estimates of
{
yj : j = 1, . . . , n; ∑n

j=1 yj = 1
}

are obtained, whetherL or LC is maximised.

The connection between these estimates and the estimates of the development factors in the chain-ladder technique

is as follows. It can be shown that the column parameters of this model,
{
yj : j = 1, . . . , n; ∑n

j=1 yj = 1
}
, are

related to the development factors of the chain-ladder technique viaλj = Sj /Sj − 1 (see Verrall, 1991). Thus, the
maximum likelihood estimates of the development factors,λ̂j , can be obtained from the maximum likelihood
estimates of the column parameters in the multiplicative model,ŷj :

λ̂j =
∑j

k=1 ŷk∑j−1
k=1 ŷk

.

It can be shown that this gives the same development factor estimates as the chain-ladder technique,

λ̂j =
∑n−j+1

i=1 Dij∑n−j+1
i=1 Di,j−1

. (2.7)

Hence, in this context, the chain-ladder technique can be seen as an algorithm for producing the maximum
likelihood estimates of the column parameters for either the unconditional likelihood of{Cij : j = 1,. . . ,n− i + 1;
i = 1,. . . ,n}, L, or for the conditional likelihood, conditioning on{Di ,n − i + 1: i = 1,. . . ,n}, LC . A number of points
should be noted:
1. It should be emphasised here that this does not imply that it is necessary to view the chain-ladder estimates as

arising from this model: there certainly exist other formulations which will give rise to the same estimates of
the development factors.
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2. It is straightforward to extend the model so that it applies to positive data, which does not necessarily consist
solely of positive integers. This can be done by using the quasi-(log)-likelihood, and details are contained in
Renshaw and Verrall (1998).

3. This model is not necessarily the one which should be used for all data sets. Again, Renshaw and Verrall (1998)
contains some discussion of how to identify a suitable model to use in practice.

4. At this point, it is not clear how negative incremental claims should be dealt with. It is possible to estimate the
column parameters, and the development factors when some of the incremental claims are negative, although
certain software packages may have difficulty with this. We believe that the treatment of negative incremental
claims is a very important subject and we defer further discussion until Section 5.

5. It is crucial to note that the same estimates of the development factors are obtained whether the unconditional
likelihood,L, or the conditional likelihood,LC is used. It is not possible to refer back to the original formulation
of the chain-ladder technique to decide which likelihood to use, and hence it is necessary for a decision to be
made by the practitioner.

This final point, number 5, is discussed in more detail in Section 4. First, we show how to write this model in
recursive form.

3. A recursive model

The chain-ladder technique obtains the estimate ofDi ,j (j > n− i + 1), from the observed value ofDi ,n − i + 1 in
a recursive way:

D̂i,n−i+2 = λ̂n−j+2Di,n−i+1

D̂i,j = λ̂j D̂i,j−1
(j = n − i + 3, . . . , n).

For comparison purposes, and also to inform the choice of model when some of the incremental claim amounts
are negative, it is useful to consider the model in Section 2 in recursive form. In order to do this, we use a Bayesian
formulation and concentrate on the estimation ofzi . For the purposes of simplicity of exposition, we consider just
one row of data:

Ci1, Ci2, . . . , Ci,n−i+1.

We drop thei suffix, and write the model forCj givenz(j) as:

Cj |z(j) ∼ Poisson with mean
z(j)yj

Sj

, (3.1)

wherez(j) = E[Dj ] is the expected value of aggregate claims up to development yearj. Note that in the recursive
formulation of the model, it is necessary to attach the labelj to z, since the definition ofz changes as each datum
is received. In this notation, the row parameter in Section 2 would be writtenzi(n− i + 1). z(j) can be related to
z(j − 1) as follows:

z(j) = E
[
Dj

] = E
[
Dj−1

]+ E
[
Cj

] = z(j − 1) + z(j)yj

Sj

.

Hence

z(j) = z(j − 1)

1 − (yj /Sj )
= z(j − 1)Sj

Sj−1
. (3.2)

Thus, the conditional distribution ofCj givenz(j − 1) is

Cj |z(j − 1) ∼ Poisson with mean
z(j − 1)yj

Sj−1
. (3.3)
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Now, we use the conjugate prior gamma distribution forz(j − 1), and suppose we have the distribution ofz(j − 1),
conditional on the information received up to development yearj − 1:

z(j − 1)|C1, C2, . . . , Cj−1 ∼ Γ (α, β), (3.4)

for some parametersα andβ which will be determined below. Using standard Bayesian analysis, the posterior
distribution ofz(j − 1) is

z(j − 1)|C1, C2, . . . , Cj−1, Cj ∼ Γ

(
α + Cj , β + yj

Sj−1

)
. (3.5)

Since we have a relationship betweenz(j) andz(j − 1), given in Eq. (3.2), we can obtain the distribution ofz(j),
conditional on the information received up to development yearj by a straightforward transformation as follows. If

z(j − 1) ∼ Γ (a, b) then z(j) ∼ Γ

(
a,

bSj−1

Sj

)
. (3.6)

From (3.5) and (3.6),

z(j)|C1, C2, . . . , Cj ∼ Γ

(
α + Cj ,

(
β + yj

Sj−1

)
Sj−1

Sj

)
. (3.7)

This completes a recursive estimation procedure, and we may now derive the distribution ofz(j) |C1,C2,. . . ,Cj

(for all j) by considering first the casej = 1. In order to do this, we require a suitable prior distribution forz(1). A
non-informative (improper) prior distribution isf (z(1)) ∝ z(1)−1, andC1 |z(1)∼ Poisson with meanz(1), since
y1 = S1.

Again, a standard Bayesian analysis yields the posterior distribution ofz(1), conditional onz(1):

z(1)|C1 ∼ Γ (C1, 1). (3.8)

This starts the recursion, and it straightforward to prove by induction, from (3.4) and (3.7) that

z(j)|C1, C2, . . . , Cj ∼ Γ (Dj , 1). (3.9)

This is true forj = 1, as can be seen from (3.8), suppose it is true forj − 1. Then from (3.7)

z(j)|C1, C2, . . . , Cj ∼ Γ

(
Dj−1 + Cj ,

(
1 + yj

Sj−1

)
Sj−1

Sj

)
,

and hencez(j) |C1,C2,. . . ,Cj ∼ Γ (Dj ,1), as required.
Now consider the distribution ofCj , conditional on the information received up to development yearj − 1. For

this, it is necessary to integrate outz(j − 1)as follows:

f (Cj |C1, C2, . . . , Cj−1) =
∫

f (Cj |z(j − 1))f (z(j − 1)|C1, C2, . . . , Cj−1)dz(j − 1). (3.10)

There is a subtle difference in the treatment here from Section 2. Sincez(j) is a random variable,Cj are only
independent conditional onz(j). It is well known that (3.10) gives a negative binomial distribution, in this case with
parametersp = (Sj−1/Sj ) andk= Dj − 1:

f (Cj |C1, C2, . . . , Cj−1) = Γ (Dj )

Cj !Γ (Dj−1)

(
Sj−1

Sj

)Dj−1
(

yj

Sj

)Cj

. (3.11)
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Thus, in recursive form, the mean and variance ofCj , conditional on the information received up to development
yearj − 1 are

Dj−1yj

Sj−1
and

Dj−1yjSj

(Sj−1)2
, respectively. (3.12)

Again, this can be generalised by appealing to the quasi-(log)-likelihood, and it represents a further formulation
of a stochastic model which will give the same estimates of outstanding claims as the chain-ladder technique.

Finally, we write the recursive model in terms of the development factors,λj (= Sj /Sj − 1). Cj |C1,C2,. . . ,Cj − 1
has mean and variance

(λj − 1)Dj−1 and λj (λj − 1)Dj−1, respectively. (3.13)

Hence, noting thatDj = Dj − 1 + Cj , the mean and variance ofDj |C1,C2,. . . ,Cj − 1 are

λjDj−1 and λj (λj − 1)Dj−1, respectively. (3.14)

These moments define a recursive model which will reproduce the reserves given by the chain-ladder technique.
Certain positivity constraints exist, and this is discussed further in Section 5. The fact that the model can be
reparameterised as in (3.14), with the mean in a particularly simple form, is one of the key reasons why the
chain-ladder technique is easy to apply. It happens because the column parameters represent separate factors, and
can be replaced by another set of factors, the development factors. This point is discussed further in Section 6. We
first consider the conditional and unconditional likelihoods in more detail.

4. The conditional and unconditional likelihoods

Section 2 has shown that the development factors of the chain-ladder technique can be obtained by using either
the conditional likelihood,LC , or the unconditional likelihood,L. If the conditional likelihood is used, then the
latest cumulative claims in each row,Di ,n − i + 1, are conditioned on. Thus, the estimates of outstanding claims can
be obtained from the development factors, or the column parameters, and the values ofDi ,n − i + 1 (which have been
conditioned on). If the unconditional likelihood is used, the same estimates of the column parameters (and hence
the development factors) are obtained, and the maximum likelihood estimate ofzi is Di ,n − i + 1. Thus, the estimates
of the outstanding claims will be the same whichever approach is taken. The fitted values will be the same under
the conditional likelihood or the unconditional likelihood. However, the standard errors of the predicted values, the
root mean squared prediction errors and the measures of the variability of the reserves will be different in each case.
If the conditional likelihood is used, it is only necessary to estimate then− 1 column parameters (equivalently the
n− 1 development factors). If the unconditional likelihood is used, there aren more parameters to estimate, making
a total of 2n− 1 parameters. The additional parameters are{zi = E[Di ,n − i + 1]: i = 1,2,. . . ,n}, the likelihood forzi

is (z
Di,n−i+1
i e−zi /Di,n−i+1!) and the maximum likelihood estimate ofzi is easy to obtain (̂zi = Di,n−i+1). Thus,

no additional computational work is required and it will not be clear whetherzi is being estimated orDi ,n − i + 1
conditioned on, if a simple algorithm is used. This is certainly the case with the chain-ladder technique.

The implication of using the conditional likelihood, and conditioning on{ Di ,n − i + 1: i = 1,. . . ,n}, is that these
values are fixed. No other values would have been possible under the claims process being studied. If the uncon-
ditional likelihood is used, then{Di ,n − i + 1: i = 1,. . . ,n} are treated as the realised values of the random variables
which have been obtained in this case. Thus, the standard errors, reserve mean square prediction errors, etc. will be
larger in the latter case. Thus, the difference between the two cases is that the former assumes that the row totals
are the only ones which could have been attained, while in the latter, the row totals could have been different, but
their expected values are estimated by the observed values.



R.J. Verrall / Insurance: Mathematics and Economics 26 (2000) 91–99 97

It is possible to take the same approach as was adopted in Section 3 with the (non-recursive) model of Section
2, and integrate out the row parameter,xi or zi . Whichever is chosen gives the same distribution forCij . Using the
model formulation of (2.2),

Cij ∼ Poisson with

E
[
Cij

] = ziyj∑n−i+1
k=1 yk

and from (3.9)

z(j)|C1, C2, . . . , Cj ∼ Γ (Dj , 1).

The recursive model used in Section 3 enables us to formulate a model in which the row totals are not conditioned
on. Their estimates enter the model implicitly. Thus, integrating outzi , Cij has a negative binomial distribution,
with parametersp = (1/(1 + (yj /Sn−i+1))) andk= Di ,n − i + 1. Hence, the mean and variance ofCij are

Di,n−i+1yj∑n−i+1
k=1 yk

and
Di,n−i+1yj∑n−i+1

k=1 yk

(
1 + yj∑n−i+1

k=1 yk

)
, respectively. (4.1)

Thus, the column parameters (equivalently the development factors) can be estimated from either (3.13), (3.14)
or (4.1). These represent the same model written in different forms. Clearly, the recursive formulation has the
simplest form. In particular the mean for cumulative claims is straightforward, and this is one of the reasons why the
chain-ladder technique appears simple and easy to understand. However, the implications of using the chain-ladder
technique, in terms of the variability of the reserve, are not obvious unless an analysis such as that carried out in
this paper is done. Also, the chain-ladder technique copes with negative incremental claims, in that estimates of
development factors and reserves can still be produced. Again, the implications of using the chain-ladder technique
for data containing negative incremental claims requires close examination, and this is the subject of the next section.

5. Treatment of negative incremental claims

We begin this section by restating the recursive model derived in Section 3, and reinstating the notation of Section
2, which applies to data suffixed byi andj. Cij |Ci1,Ci2,. . . ,Ci ,j − 1 has mean and variance

(λj − 1)Di,j−1 and λj (λj − 1)Di,j−1, respectively, (5.1)

and the mean and variance ofDij |Ci1,Ci2,. . . ,Ci ,j − 1 are

λjDi,j−1 and λj (λj − 1)Di,j−1, respectively. (5.2)

Notice that ifλj < 1, the variance is negative and the model breaks down.λj < 1 implies that incremental claims
in columnj (or at least some of them) are negative. This is the point at which estimation for data which includes
negative incremental claims can break down. Clearly, the assumptions of the stochastic model underlying (5.1) and
(5.2) have been violated. The recursive distribution of the data has to be adjusted to allow for the data received,
which does not support the stochastic model being used. It is necessary to use a distribution whose support is not
restricted to the positive real line, and a suitable candidate is the normal distribution. We can imagine that some
refinements of this are likely to be suggested, to allow for the fact that the distribution of the data is unlikely to be
symmetrical. However, it is possible to replace (5.2) by a normal distribution, whose mean is unchanged, but whose
variance is altered to accommodate the case whenλj < 1. Preserving as much ofλj (λj − 1)Di ,j − 1 as possible, we
would expect the variance to be proportional toDi ,j − 1, with the constant of proportionality depending onj. This
givesDij |Ci1,Ci2,. . . ,Ci ,j − 1 is approximately normally distributed, with mean and variance

λjDi,j−1 and φjDi,j−1, respectively. (5.3)
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This is equivalent to the model of Mack (1993), except that Mack regarded it as a non-parametric model. An
important point to notice is that the variability of the estimate of the expected row total is still included in the
variance of this estimate. The only time this is not the case is in the conditional model, with likelihoodLC . In other
words,Di ,j − 1 is an estimate ofzi(j − 1), and is not being conditioned on.

Of the two recursive models, (5.2) and (5.3), the first is preferable because it is not necessary to estimate the
parameters in the variance. Of course, the distributional assumptions underlying (5.2) should be checked in the
usual way, by, for example, examining appropriate residuals. This is part of the modelling process, and it may lead
to the modelling distribution being altered. The model defined by (5.3), and used by Mack (1993) represents an
extreme case of this, in which the form of the variance has to be abandoned and the variance estimated from the data.
This is necessary when the claims data have been contaminated by, for example, reinsurance recoveries, accounting
procedures, or when incurred data (incorporating estimates of claims) have been used.

The non-recursive model (4.1), can also be adjusted to accommodate negative incremental claims by replacing it
with the following.Cij is approximately normally distributed, with mean and variance

Di,n−i+1yj∑n−i+1
k=1 yk

and φjDi,n−i+1, respectively. (5.4)

In the cases of the models in which the variance is defined in terms of new sets of parameters, (5.3) and (5.4),
these parameters must be estimated from the data. This means that these models have more parameters than models
such as (2.1), or the models considered in Section 3. Clearly, this is a disadvantage of these models, but it may be a
price that must be paid in order to deal with negative incremental claims. If the data satisfy the positivity conditions
of Renshaw and Verrall (1998), then that approach is preferable. Alternatively, a model using a (quasi) negative
binomial likelihood in either recursive or non-recursive form could be adopted. Mack (1993) provides one method
of estimating the extra parameters needed in the variance in (5.3), which is not necessarily the one which we would
employ. However, these models are all robust to negative incremental claims and give the same reserve estimates
as the chain-ladder technique.

6. Conclusions

This paper has considered a range of stochastic models which give the same reserve estimates as the chain-ladder
technique. It has been shown that the model used by Renshaw and Verrall (1998), reparameterised as a multiplicative
model, can be written in recursive form. This recursive model has been related to the approach adopted by Mack
(1993), and it is shown that the latter paper includes an estimate of the expected cumulative claims, up to the latest
accident year so far observed, in the estimation of outstanding claims.

This paper has also shown that the chain-ladder estimates of the development factors may be regarded as the
maximum likelihood estimates from the unconditional model, or from the conditional model, conditioning on the
latest cumulative claims in each accident year. It is argued that the standard errors and measures of reserve variability
from the recursive model, and the approach of Mack (1993) do not condition on the latest cumulative claims in each
accident year.

Which approach should be taken in practice? We do not believe that one particular model should be used in all
situations. The flexibility of generalised linear models is a great advantage which allows the practitioner to explore
different underlying distributions and run-off shapes in order to get a good understanding of the data. This can be
done easily with standard statistical software, and it is our belief that this represents the best approach for data
which satisfies the positivity requirements. Data sets, such as incurred claims, which contain a significant number
of negative incremental claims require careful consideration. It can be seen that the model defined in (5.3) has the
simplest structure and will be the easiest model to fit. The non-recursive model may have some advantages: it may
be easier, for example, to find a parametric run-off shape for the parametersyj than for the parametersλj . We
do not think that a model should be recommended simply because it can be fitted to all data sets: the practitioner
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should examine the assumptions of the model and consider carefully the implications for the data and the reserves.
Nevertheless, the following generalised linear model can be fitted to all data:

Ci,j ∼ N((λj − 1)Di,j−1, φijDi,j−1), (6.1)

φij ∼ Gamma, with log link function and linear predictorγj . (6.2)

Cumulative claims could be used instead of incremental claims (it makes no difference):

Di,j ∼ N(λjDi,j−1, φijDi,j−1). (6.3)

It should be noted that any model which has a multiplicative structure can be written in the recursive form given by
(4.1). For example, the Hoerl curve, withE[Cij ] = xiyj , where

yj = αj exp(β(j − 1)), (6.4)

can be written in recursive form. The link ratios in this case can be written as:

λj =
∑j

k=1 yk∑j−1
k=1 yk

, (6.5)

whereλj is now not a factor, but is parameterised according to (6.4). It may be simpler to consider a model where
the delay is treated as continuous, and use ratios of integrated gamma functions:

λj =
∫ j

0 αxexp(β(x − 1))dx∫ j−1
0 αxexp(β(x − 1))dx

. (6.6)

The chain-ladder technique is simple to fit because, when using a factor in each column, rather than a parametric
form such as the Hoerl curve, the model is simple to reparameterise. In other words, (6.5) can be used to estimated
the parametersλj and the original column parameters can be reconstructed easily from these. When considering
(6.6), the model is non-linear in terms of the parametersα andβ, unless some simplified (linear) version of (6.6) can
be found. It is clear also thatλj ≥ 1, when it is defined by (6.6), a restriction which does not apply to (6.3). Thus,
the chain-ladder technique allows negative incremental claims. Of course, it is possible that a simple adjustment to
(6.6) could be found to allow a Hoerl-type run-off shape to be fitted to data containing negative incremental claims.

It is hoped that this paper has explained why the chain-ladder technique works, and has cast some further light
on the advantages and disadvantages of using it. It is also hoped that the model represented in (6.1)–(6.3) will be
useful in practice, and that further development of models useful to practitioners (particularly for data containing
negative incremental claims) will be forthcoming from the approach used here.
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