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Abstract. The use of Multiple Kernel Learning (MKL) for Support
Vector Machines (SVM) in Machine Learning tasks is a growing field
of study. MKL kernels expand on traditional base kernels that are used
to improve performance on non-linearly separable datasets. Multiple ker-
nels use combinations of those base kernels to develop novel kernel shapes
that allow for more diversity in the generated solution spaces. Customis-
ing these kernels to the dataset is still mostly a process of trial and error.
Guidelines around what combinations to implement are lacking and usu-
ally they requires domain specific knowledge and understanding of the
data. Through a brute force approach, this study tests multiple datasets
against a combination of base and non-weighted MKL kernels across a
range of tuning hyperparameters. The goal was to determine the effect
different kernels shapes have on classification accuracy and whether the
resulting values are statistically different populations. A selection of 8
different datasets are chosen and trained against a binary classifier. The
research will demonstrate the power for MKL to produce new and effec-
tive kernels showing the power and usefulness of this approach.

1 Introduction

Support Vector Machines are one of the many methods in Machine Learning
used as a discriminative classification algorithm. They are a form of supervised
learning that allows the categorisation of inputs based on their position in a
feature space. They traditionally address binary classification problems by sep-
arating data points in the solution hyperspace by means of a hyperplane. The
goal is to generate the maximal margin between the hyperplane and the closest
points of each category being classified. When a hyperplane cannot be found,
which can adequately separate the data points, a kernel can be used [16]. Kernels
are used in SVMs to allow non-linearly separable data points to be mapped to a
higher, and potentially infinitely higher dimensional space [22]. Using the kernel
trick this can be done with relatively low computation cost as the simple inner
product of vectors. In the case of Mercer compliant kernels [16] , which are the



focus of this study, the kernels have the property of being positive semi-definite
(PSD) that guarantees a convex solution space. A PSD matrix is defined as one
that has only positive eigenvalues. It’s resultant convex space guarantees a search
minimum and it reduces the search requirements of non-convex solution spaces
associated with methods such as Artificial Neural Networks (ANNs). Multiple
Kernel Learning is an expansion on these base kernels and used when the tra-
ditional kernels, such as Radial Based Functions or Polynomial expansions, are
insufficient. Properties of PSD kernels is that the product of two will always pro-
duce another semi-definite kernel. This allows for a broad range of combinations
and shapes of kernel to be used against data that is difficult to classify. Previous
studies on Multiple Kernel Learning have focused on a few themes, the use of a
genetic algorithm for hyperparameters selection [8], genetic algorithms for ker-
nel selection, the weighted combination of multiple kernels to determine kernel
shape [23], and large scale kernel combinations [1] [6]. These approaches focus on
specifics of the MKL implementation for a chosen task such as image identifica-
tion [21] or landslide detection [13]. They are also generally more specific in the
choice of kernel combinations and commonly focus on combinations of two dif-
ferent base kernel types. The computation time of constructing the kernels and
testing them against the data is a prohibitive feature of the MKL research and
the sparse knowledge around global kernel shape approaches makes the scope
of research quite broad. The fundamental question of whether the MKL kernel
will produce novel results is not explicitly addressed and that is the goal of this
research.
This paper is structured as follows. Section 2 will address the previous work
done in this field and the varying approaches used in relation to their strength
and weaknesses regard computation time and performance. Section 3 will detail
the approach put forward in the paper and address the choice for experimental
design, evaluation methods used, and datasets chosen. Sections 4 and 5 will deal
with the results, and what conclusions can be drawn from them, respectively.

2 Related Work

SVM optimisation is based on the configuration and adjustment of hyperpa-
rameters along with the kernel choice when the data is non-linearly separable.
Additional hyperparameters also come into play regarding the kernels themselves
with specific values needed based on type. Multiple approaches to tuning these
hyperparameters have been used to overcome what was originally described by
Boser [2] as needing direct configuring and altering. This problem of tuning is
described by Diosan [5] as an empirical one and should be treated in similar
ways to other problems of scale. As an example, the weight of any one hyperpa-
rameter, such as the slack variable, has a direct effect on the influence of each
support vector [20]. Slack in SVMs is the allowance given to the algorithm to
accept misclassified or anomalous data points in the training data. Similarly, the
gamma value for the kernel defines the nonlinear mapping to the higher feature
space [14]. Weighting these vital parameters, and avoiding over-weighting, then



becomes a trade-off between maximising the support vector width and reduc-
ing errors in classification [4]. The following sections will describe the different
approaches used to tackle the tuning of hyperparameters, the use of genetic
algorithms in previous MKL work, and what considerations computational com-
plexity plays in the implementation of MKLs.

2.1 Hyperparameter Tuning

One approach used by both Shermeh [20] and Lessmann [12] to find optimal
hyperparameter values for a kernel is the grid search approach where a range
of values are iterated through to find the best solution. Alternatively, Genetic
Algorithms (GA) whereby a fitness measure is used to assess a population of
randomly chosen parameter sets applied to the SVM is also popularly used to
determine the best values. The computation cost, however, of Genetic Algorithm
Support Vector Machines (GASVMs) makes them less useful, particularly over
larger datasets, as the execution time for all the permutations becomes high.
While GASVM approaches have gained popularity in recent years, they have not
addressed general rules for the effectiveness or differentiation from base kernel
outcomes that the specific kernel combinations produce. While SVM and kernel
specific hyperparameter tuning are needed to ensure robust modeling, the use of
which kernel combinations determines what shape and eventual properties the
MKL kernel will have.

2.2 Genetic Algorithm approach to Kernel weights

The question of which kernels to combine and their effect on robust models is
another imprtant decision after hyperparameter selection and can also use GA-
SVMs to solve for more effective combinations. Polynomial and Radial Based
Function(RBF) kernels were combined by Howley [10] to identify hand-written
characters, which is an extremely well-studied problem, to see the effect of their
different weighting. The RBF kernel, or Gaussian Kernel, is known for its effec-
tiveness at handling small, high dimensionality datasets which are both notori-
ously difficult properties for a classification algorithm. Li [13] demonstrated the
RBF’s ability to perform well at nonlinear mapping while Diosan [5] highlights
its effectiveness at nonparametric classification functions. Both papers, however,
point out the conflicting trade-off that optimisation brings in gains of training
accuracy over the complexity of the model. Other approaches have also used a
weighted method to determine the role that each of the component kernels has
in the resulting MKL kernel. For example, Deng took this approach to include
higher weight based on individual features of the dataset but highlighted the
resultant search space as being a prohibitive factor [3]. Similarly to the previous
approaches, they suggested a possible approach being the use of a GASVM (Ge-
netic Algorithm SVM) to calculate the optimal solution for kernels as opposed
to hyperparameter choice, but again this comes with the high cost of compu-
tation expense and time required. Weighting can be counter productive also as



strong weighting of less optimal kernels in the MKL arrangement can under-
mine performance, as documented by by Li et al [13] in their EEG classification
MKL-SVM, and Hao’s [9] research into primal MKL.

2.3 Computational Cost

Computational cost is not only restricted to the choice of kernel combinations
or hyperparameter settings but also in either maintaining Mercer compliance
to allow simple gradient descent search or employing a more advanced search
algorithm to account for the non-convex solution space that non-Mercer kernels
produce. Ensuring the Mercer compliance can be maintained easily by making
kernels the inner product of existing Mercer compliant kernels and removing
the need for these tests that prove positive semi-definiteness. This combination
always results in a continuous, positive semi-definite kernel and due to the com-
mutative property of Mercer kernels the order of base kernels has no bearing on
the output. MKL kernels can be tested to ensure that the combinations of ker-
nels are compliant with the positive semi-definite properties of a Mercer kernel
as highlighted by Howley et al in their use of GASVMs [10].

3 Design and Methodology

The approach for this paper is to show that over a broad range of configurations,
MKL kernels are valid and novel in shape. To take in a large range of possibilities,
a broad range of parameters for the individual kernels will be selected. These will
be a choice of kernel specific parameters and tested against the various datasets.
Each of the starting, or base, kernels will be first tested against the datasets
and then each combined to give the new MKL kernels. This combination will
be guaranteed PSD, as discussed earlier, as the base kernels will be chosen from
preexisting PSD kernels. The aim will be to test the outputs of the base kernels
compared to that of the MKL kernels derived from those specific base kernels.
The goal is to move beyond most MKL approaches which use fixed or heuristic
based techniques identified by Gonen et al [7] and demonstrate the power of
combinations.
The approach used will be the CRISP DM method (Cross Industry Standard
Process for Data Mining) [19] and involves six major stages: 1)Business under-
standing, 2)Data understanding, 3)Data preparation, 4)Modelling, 5)Evaluation,
and 6)Deployment.

3.1 Business Understanding

The research hypothesis behind this study is that the accuracy of models induced
by SVM classifiers by employing base kernels is statistically significantly less than
the accuracy of models induced by employing multiple base kernels, at a 95%
confidence level. Formally: H : acc(SVM−baseKernel) <> acc(SVM−MKL),
with alpha=0.05



3.2 Data Understanding

To test the research hypothesis 8 testing datasets have been taken from the UCI
repository and are exclusively binary output variables. The datasets selected are
the Prognosis, Heart, Ionosphere, Student Math, Diagnosis, Indian Liver, Stu-
dent Portuguese, and Pima Indian sets. The datasets were chosen to be relatively
small binary sets that have a been previously used in SVM papers and could
be run against the full range of hyperparameters and kernels within the allot-
ted time. Variation of the dimensionality, post normalised ranges for standard
deviation and variance, and proportion of nominal to categorical variables were
also selected for to give a more diverse range of datasets. The focus will be on
the individual dataset responses to the different kernel structures and not the
specifics of the data.

3.3 Data Preparation

All of the datasets were formatted in the folowing ways to maintain consistency
and to make them suitable for the SVM implementation.

– Formatted to CSV file type to allow for import and to standardise to a
common file type

– Column values added from Metadata description files for easier referencing
– Categorical and non-numeric fields encoded to numeric values representing

each unique entry. This is done to allow them to be used by the SVM.
– Normalised between values of 0 and 1 across all dimension excluding on

the output/ classification variable to minimise the influence of large number
fields.

– The output variable is converted to a -1 and 1 encoding which will be used
as factors in the R code.

– Training and testing datasets are both merged as the k-fold method described
later will construct multiple training and testing groups later in the process
to ensure the quality of accuracy measurement.

3.4 Modeling

The 10-fold cross validation technique has been adopted to induce models using
the original Support Vector Machine learning algorithm. This validation tech-
nique has been chosen because it will ensure a measure of accuracy that prevents
over-fitting and maximises the variation in the relatively small datasets used.

Base Kernel Details

1. Linear Kernel
Inner product of [x,y] and c value for offset

[k(x, y) = x ∗ y + c]



2. Polynomial Kernel (Degrees 2,3,and 4)
Polynomial kernels expand the examination of similarity between entries in
the data. The hyperparameters for the polynomial kernel are the slope, the
constant C, as in the Linear Kernel , and the degree, d, of the Polynomial
used aginst the combined transposed x and y input vectors.

[k(x, y) = (xT y + c)d]

3. Gaussian Kernel
The Gaussian Kernel, also known as the Radial Based Function Kernel, is
essentially a weighted linear combination that results in a smooth function
of the Hilbert space that is defined as a Euclidean space which is complete,
separable and infinitely-dimensional.

[k(x, y) = e
−‖x−y‖2

2σ2 ]

The sigma parameter determines the width from the classifying points with
smaller sizes trending towards local classification and larger sigma for more
general classification. It is specifically important for an effective implemen-
tation as if underestimated the model becomes particularly susceptible to
noise in the training data whereas, if overestimated, it reduces the non-
linear power that is associated with Gaussian kernels.

4. Hyperbolic Tangent (Sigmoid) Kernel
The Hyperbolic Tangent, or Sigmoid Kernel, has its origins in Artificial Neu-
ral Networks (ANNs) where the sigmoid function is used by neurons in the
ANN for an activation function. It is also referred to as the Multilayer Per-
ceptron Kernel.

[k(x, y) = tanh(αxT y + c)]

The Sigmoid Kernel is very effective but is not guaranteed to be positive semi
definite at higher levels. These higher levels will be avoided for the purposes of
this study in order not to affect Mercer conditions.

Hyperparameter Ranges Hyperparameters used across the kernels are:

– Slack: it determines the cost of improperly labelled data points. Range: (0.1,
1, 10, 100, 1000)

– Tolerance: required for termination of SVM. Range:(0.1, 0.01, 0.001, 0.0001,
0.00001)

– Sigma: parameter for Gaussian kernel. Range: (.01,0.1,0.2,0.5,0.7,0.9).
– Offset: add an additional offset to data points. Range: (1,2,3)
– Scale: used by the Sigmoid and Polynomial. Range: (1,2,3)
– Degree: used as the power for the Polynomial kernel. Range: (2,3,4)

Novel kernels will be named based on their basic kernel components and will
total 11 unique combinations all tested again every configuration of hyperpa-
rameters. They will be referred to going forward as LinSigGauPoly(LSGP),
LinSigGau(LSG), LinSigPoly(LSP), LinGauPoly(LGP), SigGauPoly(SGP), Lin-
Sig(LS), LinGau(LG), LinPoly(LP), SigGau(SG), SigPoly(SP), and GauPoly(GP).



3.5 Evaluation

Due to the fact that 10-fold cross validation has been used in the training phase,
10 surrogate models have been produced. Therefore, a distribution of 10 classifi-
cation accuracies for each combination of dataset, hyper-parameters and kernel,
is available for comparison purposes [17]. The Kruskal Wallis test has been cho-
sen to compare obtained distributions of accuracies and to test the research
hypothesis. In particular, the distributions obtained when using combination of
multiple simple kernels is compared against the distributions of accuracies ob-
tained when employing these individual kernels alone. This method allows for
an analysis of variance that is not restricted to normal distributions of equal
size. The Kruskal Wallis technique allows for non-parametric analysis of vari-
ance [11]. This means that the distribution of values does not need to be normal
and also accommodates differing sample sizes for comparison. Both character-
istics are needed in the case of the SVM outputs as there are non-normal, and
occasionally bimodal, distributions of cross validation results for certain kernels
across the hyperparameter range. The range of hyperparameters themselves are
also kernel specific which will result in differing population sizes that need to
be compared. As an example the Linear/Vanilla kernel doesn’t take in kernel
specific hyperparameters but instead just requires the slack and tolerance values
to be tested which totals only 24 combinations. Other kernels, however, such
as Lin, Sig, Gau, Poly will require the entire range of combinations resulting
in over 4000 results per dataset. The Kruskal Wallis test is run across each of
the 8 datasets and compares each base kernel with the kernels that have it as
a component part. An example would be all the result for Polynomial Kernel
against the Ionosphere dataset compared to those of the LinPoly kernel which
is composed, in part, by the Polynomial kernel. A threshold of 95 percent con-
fidence is required to establish if the distributions match and therefore show a
lack of a novel solution space

4 Results

4.1 Cross Validation

Results show (Table 1) the classification accuracies obtained across selected
datasets, base kernels and combined kernels. It also placed these accuracies in
context by comparing them with those obtained in another similar studies in
the literature (GMKL) [15]. The SimpleMKL [18] package, which is very pop-
ular method, has also been included with comparable results although over a
different set of hyperparameters and completion criteria.
Cross validation is used as it gives an indication of a kernels tendency to overfit.
Within our results we see multiple ’error’ values for the SVM that represent the
best outcome achieved in fitting to the dataset which return a zero value. This
represents one hundred percent classification accuracy for the training values.
The cross validation being much higher than this zero value indicated that the
kernel shape has been over fitted to the training set and therefore under-performs



Dataset GMKL SimpleMKL Base Kernel MKL
Gaussian SigGau

WPBC 79.0 76.7 83.9 82.9
Gaussian SigGauPoly

Iono 93.0 91.5 96.2 96.2
Polynomial LinGau

Liver 72.7 65.9 72.5 72.0
Polynomial LinPoly

Pima 77.2 76.5 78.4 78.4
Table 1. Base Kernel and MKL Kernel performance

when presented with novel data. The role of particular kernels and hyperparam-
eters is not in the scope of this specific research but there are trends visible in
the data showing a tendency to overfit when the slack value is set too high. This
makes intuitive sense as a high punishment for incorrect value will tend to force
the SVM to over accommodate mislabels or outliers. The cross validated SVMs
results will be using the second evaluation stage as the populations, per kernel
and dataset, that need to be compared to the base kernel values.

4.2 Kruskal Wallis Analysis

The Kruskal Wallins test is performed against each kernel/dataset combination
to determine statistically significant differences in the combined kernels output
results and that of the base kernels used in their creation

H = (N − 1)

∑g
i=1 ni(r̄i· − r̄)2∑g

i=1

∑ni
j=1(rij − r̄)2

,

This method allows for an analysis of variance (ANOVA) that is not restricted
to normal distributions of equal size. The test will result in a p value which will
allow a rejection or acceptance of the null or alternate hypothesis set out in the
business understanding section.
Of the 224 results there were only 8 populations which show a distribution
unchanged through the addition of another kernel. The 8 ranges of accuracies,
produced by the new kernels, that didn’t show a new distribution are highlighted
in bold below (Table 2). This shows that for the Maths dataset the gaussian
kernel was the only one unchanges in some MKl instance. For the Iono, Liver, and
Pima the Sigmoid base kernel was the one without changes in some cases and for
the Diag dataset the Polynomial had this property. All other 216 combinations
produced a new solution space as a result of being combined with another Mercer
Kernel.

4.3 Summary of findings, strengths and limitations

The findings of the study means that the expansion of the base kernels using
additional base kernel(s) does result in a unique range of cross validated results



Base LSGP LSG LGP SGP LG SG GP
Math Gau <0.01 0.66685 0.01632 0.73788 0.80290 0.03859 0.73731

LSGP LSG LSP SGP LS SG SP
Iono Sig <0.01 <0.01 0.86221 <0.01 <0.01 <0.01 <0.01
Liver Sig 0.02753 0.05394 <0.01 0.01759 0.21516 0.01934 0.08873
Pima Sig 0.02017 <0.01 0.01120 <0.01 0.08193 <0.01 <0.01

LSGP LSP LGP SGP LP SP GP
Diag Poly <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.12087

Table 2. Base Kernel and MKL Kernel performance

in the vast majority of cases. Most of the p-values related to the comparison of
models trained with a base kernels and models trained by adding another base
kernel were less than 0.00001. Despite findings strongly support the research
hypothesis, these do not give any insight on the impact of multiple kernel on the
enhancement of classification accuracies. The confidence in the results can only
be stated for the small datasets used relatively balanced target variables. While
characteristics of the dataset were noted at the start phase for dimensionality,
proportion of categorical fields, and range of values pre and post normalisation,
these factors have not been analysed as part of this research and a further in-
vestigation is needed to understand how the classification accuracies change and
whether dataset properties have a predictable response to the MKL expansions.
However, this empirical study does have an impact in validating kernels as viable
and distinct kernels for use in SVMs.

5 Conclusion

The conclusion of this study finds that for the vast majority of base kernel result
across the varying datasets, the combination with an additional base kernel or
base kernel combination resulted in a statistically significant different range of
cross validated accuracies. This helps to further validate the use of multiple
kernel learning as a solution to inseparable data through the use of combined
conventional kernels. It further opens up investigation into how certain data sets
might respond to different kernel shapes based on the dataset properties. Future
work should be around investigating the specific hyperparameters role, alongside
the dataset characteristics. While this study concentrated on accuracy as the
measure of the populations of output, additional work could investigate the ways
in which the distributions were altered, positively or negatively, to determine
patterns and trends that could help with future MKL creation. The datasets
in this study were also relatively small, however, later implementations should
address the computational cost using higher performing machines to incorporate
larger datasets. Differing proportions of output variables should also be tested
and, with it, an examination into the role of kernel shape in accommodating
datasets with high sensitivity and specificity requirements. As noted before, when
increasing the data size and the balance of outcomes, seed values should be set in



the code to ensure the SVM runs against the same partitions of data when using
the k-fold cross-validation approach. The scale parameter can also be ignored in
future work as the data was pre-normalised but was included for completeness.
Finally, the number of base kernels should be expanded to add to the diversity
of MKL kernels along with a weighting approach that can consider multiple
additions of a specific kernel type rather than MKL kernel composed of just one
instance of a particular base kernel.
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