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Abstract
The structural features and thermal conductivity of silicon nanoparticles of
diameter 2–12 nm are studied in a series of molecular dynamics simulations
based on the Stilling–Weber (SW) potential model. The results show that the
cohesive energy of the particles increases monotonically with an increasing
particle size and is independent of the temperature. It is found that particles
with a diameter of 2 nm have a heavily reconstructed geometry which
generates lattice imperfections. The thermal conductivity of the nanoscale
silicon particles increases linearly with their diameter and is two orders of
magnitude lower than that of bulk silicon. The low thermal conductivity of
the smallest nanoparticles is thought to be the result of particle boundary and
lattice imperfections produced during fabrication, which reduce the phonon
mean free path (MFP). Finally, it is found that the influence of the
temperature on the thermal conductivity decreases significantly as the
temperature increases. Again, this is thought to be the result of a reduced
phonon MFP at elevated temperatures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

As the physical dimensions of a system become comparable
to or smaller than the characteristic scale of the physical
phenomenon of interest, excellent properties commonly arise.
For example, the quantum phenomena in zero-dimensional
(0D) structures such as nanoparticles are more significant than
those in the bulk system. Nanoparticles have many exciting
potential applications, including in nanoscale electronic
devices such as semiconductor quantum dots (QDs) [1, 2].
These nanoparticles represent a new class of material which

4 Author to whom any correspondence should be addressed.

shows fingerprints of the properties observed in atomic or
molecular physics on the one hand and elements of condensed
matter physics on the other. Furthermore, nanoparticles
contain a large percentage of surface atoms, which render
them ideal for a variety of novel electronic and optoelectronic
applications [3, 4]. Bond contractions caused by the low
coordination of these surface atoms have been observed on
the extended surfaces of many systems [5]. These bond
contractions are ‘tunable’ through the particle size, because
small particles behave as matter under high pressure and
enable the formation of new structures [6]. Therefore,
the physical and chemical properties of nanoparticles have
attracted considerable attention in recent years.
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Table 1. Parameters used in Stillinger–Weber (SW) potential.

ε (eV) A B σ (Å) p q a (Å) λ γ

2.168 26 7.049 556 277 0.602 224 5584 2.0951 4 0 1.80 21.0 1.20

Regarding the mechanical properties of nanoparticles,
hardness values of up to 50 GPa have been measured for
silicon nanospheres, which is fully four times greater than
the value of 12 GPa for bulk silicon [7]. Meanwhile, it
has been reported that mechanically milled iron powders
with small volumes have a hardness of 8.4 GPa [8]. A
richness of mechanical phenomena has been observed in
small-scale systems, including very high internal stresses,
which offer considerable potential for the design of super-hard
materials. Furthermore, solid particles have been dispersed
in traditional heat transfer fluids to enhance their effective
thermal conductivity [9, 10]. When crystalline solids are
confined to the nanometre scale, their thermal conductivity
can be significantly reduced by boundary scattering effects,
changes in the phonon dispersion relation, and quantization
of the phonon transport. It has been reported that the
thermal conductivity of these crystalline solids may be reduced
by two orders of magnitude compared to that of the bulk
crystal material. The low thermal conductivity property of
nanoparticles renders them ideal candidates for the design of
new thermal resistant materials.

To further the development of future nanoparticle
applications, it is necessary that the structural features and
thermal conductivity properties of nanoparticles of different
sizes be well understood. However, it is difficult to explore
the size-dependent nature of the nanoparticle properties
using direct experimental approaches. Fortunately, molecular
dynamics (MD) simulations can provide detailed insights into
the physics of these particles when seeking to clarify the
dependence of their thermodynamic behaviour on their size.
This simulation method describes the atomic motions of the
constituent particles of a material based on the assumption
that the laws of classic mechanics still apply on the atomic
scale [11]. The benefits of the MD approach become
increasingly apparent as the characteristic size of the system
decreases. MD simulations have been employed successfully
to study the properties of silicon nanoparticles [12]. The
results showed that the interior atoms of 480-atom clusters
exhibited bulk-like characteristics over a wide temperatures
range (600 < T < 2000). Additionally, the average surface
energy of the cluster was found to be dependent on the cluster
size. However, previous studies generally considered silicon
particles with at most several thousands atoms or less [12–14].
A review of the literature suggests that few attempts have been
made to investigate the properties of larger particles typical of
those used in nanoscale-size devices.

Consequently, this study conducts classical MD simula-
tions to determine the structural features and thermal conduc-
tivities of silicon nanoparticles with diameters ranging from
2 to 12 nm (corresponding to particle sizes of 191–45 214
atoms). A particular focus is placed on the size-dependent
characteristics of the particles’ structural features and thermal
conductivities under temperatures ranging from 25 to 500 K.

Table 2. Simulation cases for silicon nanoparticles in this study.

Cutoff diameter Particle size
Case (nm) (N)

1 2.0 191
2 3.0 705
3 4.0 1 707
4 5.0 3 265
5 6.0 5 707
6 7.0 9 041
7 8.0 13 407
8 9.0 19 129
9 10.0 26 167

10 11.0 34 937
11 12.0 45 215

2. Methodology

The current MD simulations were conducted using the silicon
potential model proposed by Stillinger and Weber (SW) [15].
This empirical potential function contains two- and three-
body interactions which take into consideration the directional
characteristics of the covalent bonding. The SW empirical
interatomic potential function has the form:

V =
∑

i, j

V2(ri , r j ) +
∑

i, j,k

V3(ri , r j , rk). (1)

The two-body term, V2(ri , r j ), is given by:

V2(ri , r j) =
{

A(Br−p − r−q) exp[(r − a)−1], r < a

0, r � a
(2)

and the three-body term, V3(ri , r j , rk), is expressed as:

V3(ri , r j , rk) = h(ri j , rik, θ j ik) + h(r ji , r jk, θi jk)

+ h(rki , rk j , θik j ) (3)

where:

h(ri j , rik, θ j ik) = λ exp[γ (ri j − a)−1 + γ (rik − a)−1]
× cos

(
θ j ik + 1

3

)
(4)

in which �ri j is the vector pointing from atom i to atom
j , with ri j = | �ri j |, and θi jk is the angle between vectors
�ri j and �rik . The constants A, B, p, q, a, λ and γ are all

positive and correspond to the case of the most stable diamond
structure. However, the melting point, cohesive energy and
lattice parameter inferred for the tentative interaction by MD
simulation must be in reasonable accord with the experimental
values. The Stillinger–Weber potential parameters adopted in
the present study are presented in table 1 [15].

The initial geometries of the nanoparticles considered in
this study were constructed from a large block of silicon with a
diamond structure by using various spherical cutoff diameters
ranging from 2 to 12 nm centred at a tetrahedral interstitial
site. The particle parameters used in the current simulations
are presented in table 2.
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The MD simulations were performed under conditions
of a constant temperature (T ), a constant shape (h), and
a constant particle number (ThN). Since the phonon mean
free path (MFP) in crystalline solids is much longer than
that in amorphous solids, it is particularly challenging to
calculate the thermal conductivity of solid-phase crystalline
systems. Therefore, to simulate the total phonon transport
properties of the crystalline particles, all of the particles were
initially relaxed at a high temperature (T = 600 K) for
5 × 105 time steps (where one time step dt = 0.5 fs).
This precaution was taken to remove any angular momentum
and unrealistic, artificial surface effects from the system in
the equilibrium state. The particles were then annealed
to the desired target temperature over 5 × 105 time steps.
Simulation runs to obtain the nanoparticle properties were
performed at a fixed temperature, and the total angular
momentum of the particle motion was reset to zero after each
time step by transforming the velocities in order to evaluate
the transport properties. To obtain reliable results for the
particle characteristics, the simulations were performed for
1 × 106 time steps (500 ps) to ensure a reasonable statistical
averaging result after the equilibrium process. For comparison
purposes, the bulk system, modelled with 2744 atoms in the
cube, was also simulated and the cohesive energy and bulk
thermal conductivity computed under constant temperature and
constant volume (NVT) conditions with periodic boundary
conditions.

Due to their large surface-to-volume ratio, the properties
of nanoparticles are different from those of the bulk system.
The approach of the particle properties to the bulk properties
as the particle size is increased is generally specific to the
properties of interest. Previous studies of the properties
of nanoparticles have suggested that the particle properties
depend on the particle’s cohesive energy and surface energy.
The relative contributions of these two energies can be
expressed as:

Ep = Eb + Es (5)

where Ep, Eb and Es represent the particle cohesive energy,
the bulk binding energy and the particle surface energy,
respectively.

In this study, the structural characterization of the particles
was performed by calculating their radial distribution function
(RDF). The RDF, g(r), is a fundamental parameter used
to describe the structural characterization of amorphous and
crystalline states and has the form:

g(r) = V

N

〈∑Ni
i=1 ni(r)

4πr 2�r

〉
(6)

where g(r) is the probability of finding an atom within a
distance ranging from r to r +�r , where �r is the spatial step
of the calculation, V is the simulated volume of the particle, N
is the number of atoms in the particle, and ni is the average
number of atoms around the i th atom in the spherical shell
extending from r to r + �r .

In general, two methods are commonly employed
when using simulation approaches to determine the thermal
conductivity of the system of interest. The first method
is to subject the simulated system to an explicit external
perturbation (e.g. a temperature gradient) and to calculate

the steady-state response. Alternatively, the Green–Kubo
(GK) relation can be applied, i.e. the relation between the
thermal conductivity and correlation functions involving fluxes
of conserved quantities [16]. The present study adopts the
latter approach to calculate the thermal conductivities of the
current silicon nanoparticles.

The thermal conductivity coefficient provides an indica-
tion of the heat transport in a system. The correlation function
is obtained from the heat current and is a collective property of
the particle. The GK formula is given by:

λ = 1

V kBT 2
0

∫ ∞

0
〈J (t)J (0)〉 dt (7)

where:

J (t) =
N∑

i=1

N∑

j=1, j �=i

[
1
2ri j · (Fi j · vi ) + 1

6

N∑

k=1,k �=i, j

(ri j + r jk)

× (Fi jk · vi )

]
(8)

where J (t) denotes the heat flux vector. In equations (7)
and (8), V is the volume of the particle, T0 is the equilibrium
temperature, kB is the Boltzmann constant, ri j is given by
ri j = |ri − r j |, and Fi j and Fi jk are the two- and three-
body forces, respectively. In the present study, the statistical
precision of the thermal conductivity computation is improved
by averaging over all three components (λx , λy, λz).

In the simulations, the particle radius is given by:

RC = Rg

√
5/3 + RSi (9)

where Rg is the radius of gyration and is determined from:

R2
g =

(
1

N

) ∑

i

(Ri − Rcm)2 (10)

where the atom radius, RSi, is one quarter of the interatomic
distance in the bulk system, i.e. RSi = 1.3575 Å.

3. Results and discussion

Previous studies of the size-dependent nature of nanoparticle
properties have generally expressed the particle’s size in terms
of the number of atoms it contains. However, this measure
is very difficult to evaluate experimentally. Conversely, the
particle diameter can be measured relatively easily, and is
therefore used as the particle size indicator in the present
study. Figure 1 shows the variation in the cohesive energy
with the particle size at temperatures of 100, 300 and 500 K,
respectively. It can be seen that the cohesive energy increases
monotonically with increasing particle size. This result is
in agreement with experimental observations of small silicon
particles [11, 17]. The three solid lines indicate the best fit
of the simulation results to a linear function of 1/d, where
d is the particle diameter. In practice, 1/d is equivalent
to the surface-to-volume ratio. Hence, figure 1 shows that
the cohesive energy of the nanoparticles scales linearly with
the surface-to-volume ratio. Furthermore, it can be inferred
that the approach of the particles’ cohesive energy to a bulk
behaviour is independent of the temperature.
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Figure 1. Dependence of cohesive energy per atom on particle size
(d denotes particle diameter) at temperatures of 100, 300 and 500 K.
Solid lines indicate the best fit of data to a linear function of 1/d .

Table 3 shows the variation in the properties of the silicon
nanoparticles at a constant temperature of 300 K as a function
of the particle size. It is observed that the cohesive energy
becomes increasingly negative as the particle size increases,
implying that larger particles have a greater stability. Because
the small silicon particle revealed more suspension bond and
a high activation energy, the atoms on the particle’s surface
reconstructed to a more stable structure. This result can
be explained by the reduced surface-to-volume ratio and the
surface reconstruction behaviour as the particle size increases.
The cohesive energy of bulk silicon at 300 K is also reported in
table 3. The calculated value of −4.30 eV/atom is consistent
with the experimentally obtained value of −4.63 eV/atom
(0 K) [18]. The surface energy is one of the most important
properties in understanding the optical and chemical properties
of nanostructured materials. Table 3 summarizes the surface
energy of the current particles at 300 K, as calculated from
equation (5). It can be seen that the surface energy increases
as the particle size decreases. This result can be attributed
to the more incomplete bond structure of the smaller particles
compared with that of their larger counterparts. In other words,
a higher chemical activity exists in the smaller particles.

Figure 2 presents the RDF results for nanoparticles with
diameters of 2, 6 and 12 nm, respectively, at a temperature
of 300 K. The RDF curves all exhibit a crystalline peak
characteristic, which suggests that the particles have a crystal-
like structure. It is seen that the first and second main peaks
are located at 2.35 and 3.86 Å, respectively. This result is
consistent with the findings of a previous simulation study for
bulk silicon [19]. Significantly, a small peak is observed at
3.49 Å between the first and the second peaks of the RDF for
the particle with a diameter of 2 nm. This peak is not the
characteristic neighbour peak observed in crystalline silicon.
More likely, the presence of this peak suggests that the small
particle has a heavily reconstructed geometry, which generates
lattice imperfections.

Figure 2. Radial distribution function, g(r), for particles of diameter
2, 6 and 12 nm, respectively, at 300 K.

Table 3. Properties of silicon nanoparticles at 300 K as a function of
particle diameter.

Cutoff Particle Surface Cohesive
diameter diameter energy energy
(nm) (nm) (kJ mol−1) (eV/atom)

2.0 2.19 57.97 −3.69
3.0 3.26 37.10 −3.91
4.0 4.27 28.42 −4.00
5.0 5.26 22.74 −4.06
6.0 6.27 18.57 −4.10
7.0 7.28 16.30 −4.13
8.0 8.26 14.12 −4.15
9.0 9.27 12.71 −4.16

10.0 10.27 11.41 −4.18
11.0 11.28 10.35 −4.19
12.0 12.27 9.56 −4.20
Bulk (simulation) −4.30
Bulk (experiment)a −4.63

a Reference [18] (for the cohesive energy at 0 K).

Figures 3(a) and (b) show the heat current correlation
functions at 300 K for bulk crystal silicon and the silicon
particle with a diameter of 6 nm, respectively. The insets reveal
that both heat current correlation functions decay rapidly in the
initial period of 0.2 ps. This effect is related to the presence
of high-frequency optical modes, which contribute little to
the thermal conductivity, as argued in a previous simulation
study [20]. However, over a longer time period, the heat current
correlation function for the bulk crystal silicon decays more
slowly than that of the nanoparticle. This slow decay behaviour
can be attributed to low-frequency acoustic modes. Conversely,
the heat current correlation function for the particle with a
diameter of 6 nm decays to zero within 0.6 ps, indicating
that very few low-frequency acoustic modes exist in silicon
nanoparticles.

Based on the macroscopic law of relaxation and Onsager’s
postulate for microscopic thermal fluctuation, the heat
correlation function can be expressed in the form of a double
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(a)

(b)

Figure 3. Heat current correlation functions for: (a) bulk system, and
(b) a particle with diameter of 6 nm at 300 K. Insets show the same
data in the short-time region.

exponential function, i.e.

〈J (t)J (0)〉 = Ao exp(−t/τo) + Aa exp(−t/τa) (11)

where subscripts o and a denote fast optical modes and slow
acoustic modes, respectively. The thermal conductivity is then
given by:

λ = 1

kBT 2V
(Aoτo + Aaτa) (12)

where the parameters Ao, τo, Aa and τa are derived from
the first 3 ps using the Mazquazlt–Levenberg nonlinear
least-squares method. A non-exponential decay of the
correlation function is quite common in most physical
processes. Therefore, to ensure a meaningful result, the
present computations used an averaging process to obtain the
thermal conductivity results. Figures 3(a) and (b) show that
the heat current correlation function decays to approximately
zero within 130 ps in the bulk crystal silicon and within the
nanoparticle. Hence, the thermal conductivity of the current
particles was obtained by applying the direct integration
method out to a time of 200 ps.

Figure 4 illustrates the dependence of the thermal
conductivity on the particle size. It is observed that the
calculated thermal conductivities of the particles are lower than
that of the bulk by approximately two orders of magnitude.

Figure 4. Dependence of thermal conductivity on particle size at
300 K. The simulated thermal conductivity of the bulk (λMDBulk)
and the experimental thermal conductivity of the bulk
(λexperimentBulk) are shown for reference [22].

Furthermore, the thermal conductivity of the smallest particle
is lower by one order of magnitude than that of the largest
particle. To obtain a better understanding of the heat
conduction mechanism in the nanoparticles, the lattice thermal
conductivity can be determined from the kinetic theory of
gases, i.e.

λ = 1
3 CvL (13)

where C is the heat capacity per volume, v is the phonon
velocity and L is the phonon mean free path (MFP). In brief,
substituting d for L in equation (13) yields the proportional
relationship λ ∝ d, which is consistent with the simulation
results. The phonon MFP in small particles may be reduced
by phonon–phonon scattering, scattering at the boundaries
and lattice imperfections arising from the particle fabrication
process [21]. However, the relationship between the particle
size and its thermal conductivity is linearly dependent for the
particle size which is over 2 nm, as shown in figure 4. It can be
seen that lattice imperfections in smaller nanoparticles cannot
remarkably influence the thermal conductivity. This indicates
that the phonon–phonon scattering at the boundary can be
more remarkable than that at the lattice imperfections. Though
lattice imperfections are readily formed in small particles, as
shown in figure 2, the thermal conductivity of nanoparticles is
mainly subject to its size. Therefore, the results suggest that the
thermal conductivity of nanoscale silicon particles is subject to
a size-dependent effect.

Finally, figure 5 presents the variation in the thermal
conductivity of the particle with a diameter of 6 nm as a
function of temperature over the range 25–500 K. It can be seen
that the thermal conductivity remains approximately constant
between 100 and 500 K. This indicates that the phonon MFP is
significantly reduced at higher temperatures in particles with a
diameter of the order of several nanometres.
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Figure 5. Variation of thermal conductivity of a particle with a
diameter of 6 nm with temperature.

4. Conclusion

This study has employed MD simulations based on the
Stilling–Weber (SW) potential model to investigate the
effect of temperature on the structural features and thermal
conductivity of silicon nanoparticles with diameters of 2–
12 nm. The results have shown that the particle cohesive
energy can be fitted to a linear function of 1/d, where d is
the particle diameter, and is independent of the temperature.
Additionally, the RDF results have indicated that lattice
imperfections are generated in small particles (e.g. 2 nm
diameter). The thermal conductivity of silicon particles
increases linearly with an increasing particle diameter, but is
constrained in smaller particles by lattice imperfections, which
cause a reduction in the phonon MFP. Finally, it has been
shown that the thermal conductivity decreases rapidly as the
temperature increases from 25 to 100 K, but then remains
stable as the temperature is increased further. Again, this is

thought to be the result of a reduced phonon MFP at higher
temperatures.
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