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Abstract—The packaging model of Android apps requires the
entire code necessary for the execution of an app to be shipped
into one single apk file. Thus, an analysis of Android apps often
visits code which is not part of the functionality delivered by
the app. Such code is often contributed by the common libraries
which are used pervasively by all apps. Unfortunately, Android
analyses, e.g., for piggybacking detection and malware detection,
can produce inaccurate results if they do not take into account
the case of library code, which constitute noise in app features.

Despite some efforts on investigating Android libraries, the
momentum of Android research has not yet produced a complete
set of common libraries to further support in-depth analysis of
Android apps. In this paper, we leverage a dataset of about
1.5 million apps from Google Play to harvest potential common
libraries, including advertisement libraries. With several steps
of refinements, we finally collect by far the largest set of 1,113
libraries supporting common functionalities and 240 libraries
for advertisement. We use the dataset to investigates several
aspects of Android libraries, including their popularity and their
proportion in Android app code. Based on these datasets, we have
further performed several empirical investigations to confirm the
motivations behind our work.

I. INTRODUCTION

Rapidly, Android has grown as a popular programming

platform for developers and a worthwhile operating system for

manufacturers. In 2014 alone, over 1 billion of manufactured

devices were equipped with Android, a significant gain from

the 780.8 million shipments in 2013 [4]. These devices, which,

besides smartphones, include a number of household and office

devices such as tablets, personal computers, TV sets, fridges,

washing machines, etc., run a diversity of applications.

Unfortunately, because these apps pervade all human activi-

ties, malicious or malfunctioning apps have become important

threats that can lead to damages ranging from benign (e.g.,

app crashes) to critical (e.g., financial losses with malware

sending premium-rate SMS, reputation issues with private data

leaks, and potentially loss of human lives when apps will

run on Android cars). These threats are further exacerbated

in an ecosystem where thousands of applications written by

hundreds of third-party developers are made readily available

for download by users. Typically, as of July 2015, GooglePlay,

the official market for free and paid Android apps, proposes

over 1.6 million apps in various categories from productivity

and messaging to games and social networking. Antivirus

vendors, which regularly report on the status of malware

spreading, have revealed that Android is now a target of choice

for malicious attacks [1].

The research community has produced a large body of work

for mitigating the emerged threats in the Android ecosystem,

essentially to guard the security and privacy of users. For

scalability and practicability reasons, a substantial number

of the proposed approaches [16], [25], [37] rely on static

analysis to parse the entire code shipped in the app package

to find security problems in code instructions, to extract

features for further processing or simply to compare apps

in large repositories. Unfortunately, because Android develop-

ment paradigm allows to easily include third-party code, in the

form of libraries, a significant portion of an app is eventually

irrelevant to the functionality that it delivers. Common libraries

embedded in app code thus constitute a significant barrier for

the static exploration of applications code. There are indeed

a number of research directions where tasks are hindered by

the presence of common libraries in app code:

Repackaging detection. Techniques for comparing apps to

detect repackaged apps by computing their similarities may

provide inaccurate results when common libraries are perva-

sively used. In a preliminary study, Wang et al. [36] have

found that over 60% of Android apps’ code is contributed

by common libraries. To increase accuracy in detection, most

recent approaches have been considering filtering out such

libraries, using heuristics.

Malware detection. Recently, researchers have been focusing

on machine learning techniques as scalable means to identify

malicious apps in large datasets. To that end, they usually

extract static features from the code. Unfortunately, the pres-

ence of library code may create significant noise making it

hard to discriminate benign features from malware-specific

ones. To account for such noise, some approaches, such as

MUDFLOW [7], assume that advertisement libraries, which

are common libraries, are trustable. Thus, they simply ignore

all results related to ad libraries, so as to focus on the real app

code.

Code analysis. Besides the false positives that may arise

due to over-approximation, static code analysis is also often

challenged by computing power and memory requirements.

In the case of FlowDroid [5], the state-of-the-art static taint

analysis tool for Android apps, it was reported that the analysis

time can be too high [7]. Let us refer back again to Wang

et al.’s findings, where 60% of app’s code are contributed

by common libraries, which would thus indicate that over

half of the CPU and memory consumption is actually wasted

on irrelevant library code, threatening the performance of the
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com.adobe.air

com.adobe.flashplayer

com.adobe.flashruntime

com.android.pushshow
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air.start.game
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(air.starq.game.ZRcards9ers)
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(com.taiweishiye.tom.pkjjtss)
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exclude libraries

(a) False Positive.
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cn.domob.android
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com.v123.db

com.v123.activity

F3B117.apk
(com.v123.activity)

25BC25.apk
(com.v123.activity)

similarity = 47%

com.baidu

net.youmi.android

com.v123.util

com.v123.db

com.v123.activity

similarity = 84%

include libraries

exclude libraries

(b) False Negative.

Fig. 1: Two motivating examples show the importance of excluding common libraries in order to perform precise piggybacked apps detection.
Note that F3B117.apk and 25BC25.apk are actually signed by different certificates although they share a same package name.

analyzer.

The aforementioned cases constitute strong motivations

for automatically identifying once a large set of common

libraries from market-scale apps, which could then be used

by other approaches to immediately take such libraries into

account. A straightforward solution for achieving such a task

is to build a comprehensive whitelist of common libraries.

Wang et al. [36] claim to have collected more than 600

different common libraries to improve their repackaged app

detection process. However, this collection is not available

to the community, and may not be representative in other

datasets. Other approaches [10], [18], [19], [34] build on top

of limited whitelists collected using simplistic heuristics and

containing between only 9 (AdDroid [34]) and 103 (Bootk et

al. [10]) libraries.

In this paper we investigate the use of common libraries in

Android based on a dataset of around 1.5 million apps col-

lected from the official Google Play market. In particular, we

build and maintain a comprehensive whitelist of 1,113 Android

common libraries that we share with the communities. Our

approach identifies common libraries based on the assumption

that they are used by many apps as such, i.e., without developer

modification. We further label those libraries to distinguish

between advertisement libraries (or ad libraries, a specific

type of common libraries) and others, using heuristics defined

from our manual investigations.

Overall, we make the following contributions:

• An approach to automatically harvest common libraries

from market-scale Android apps. In this work, we collect

1,113 common libraries from a dataset of around 1.5

million Android apps.

• A discriminative study of advertisement libraries, for

which 240 common libraries are recognized as ad li-

braries.

• An empirical investigation and evaluation of the use of

common libraries in Android apps. We show that there

are indeed significant differences in the use of common

libraries between benign and malicious apps. Besides, we

also show that our harvested common libraries are indeed

useful for other approaches, e.g., to reduce both false

positive and false negative rates for piggybacked apps

detection.

• Two comprehensive whitelists of Android libraries (one

for common libraries and the other for ad libraries),

that we make available online to the Android research

community at:

https://github.com/serval-snt-uni-lu/CommonLibraries.git.

II. MOTIVATING EXAMPLE

We now motivate our work by discussing the impact of fil-

tering out libraries from apps when performing piggybacking

detection. Piggybacking is an operation that consists in taking

an existing app, unpacking it, then modifying it by adding a

(generally malicious) new payload and re-signing it, before

distributing it as a new app. Like repackaged apps (where

a payload is not necessarily added), piggybacked apps are

now pervasive in the Android ecosystem where they further

constitute an easy way to build and distribute malware [3],

[38], [39]. A typical approach for detecting piggybacked apps

consists in performing pairwise comparisons to identify the

original app that was actually piggybacked. In the process of

computing similarity however, libraries, which may account

for a large portion of apps, can influence towards inaccurate

results. We present two real-world examples of pairs of apps

where the presence of libraries can lead to a mislabelling

of a legitimate app as piggybacked or a failure to flag a

piggybacked app as such.

A. Mislabeling Legitimate apps as Piggybacked

We consider in Fig. 1a the case of two apps

(air.starq.game.ZRcards9ers and com.taiweishiye.tom.pkjjtss)

collected from an Android market. The packages in their

code structure are very similar when considering the common

libraries that they integrate: one app has 86% of its code1

1The percentage is computed based on method level, where more details
will be given in Section III-B.

https://github.com/serval-snt-uni-lu/CommonLibraries.git


that is also contained in the other app. However, considering

the results of a prior investigation of a set of 1,169 known

legitimate/piggybacked app pairs where we found that most

of the similarity degree ranges between 81% and 100%, we

could set a threshold of 80% for identifying piggybacking

cases. This unfortunately would lead to a mislabeling in the

above case. Indeed, a detailed analysis of both apps shows

that they are actually using several common libraries (e.g.,

com.android and com.adobe). Excluding such libraries

from the similarity computation, the similarity degree falls

down to 0%, leaving no room for a false positive prediction.

B. Missing True Piggybacked Apps

We now consider in Fig. 1b two apps which are known

to be a legitimate/piggybacked app pair. These apps share

the main package called com.v123.activity. However, library

cn.domob.android was replaced in the piggybacked app with

library net.youmi.android to redirect the revenues of the legit-

imate app to another developer. Nevertheless, although these

two apps are piggybacked from one to another, their similarity

degree is only at 47%, which would constitute a false negative

in our detection scheme with a threshold at 80%. However,

if the detection system identified first the common libraries

and dismissed them during pairwise comparison, the similarity

degree would reach 84%, leading to a successful prediction.

Overall, the validity of pairwise comparison for piggy-

backing detection could be threatened when substantial parts

of app code are common library code. Thus, to limit both

false positives and false negatives, library filtering is now

more and more considered in state-of-the-art repackaging and

piggybacking detection approaches [12], [21], [36]. However,

the whitelists that they leveraged is built based on manual

investigations or automatically with limited datasets. Further-

more, these whitelists are seldom available to other researchers

in the community.

One objective of our work is to provide to the commu-

nity a comprehensive list of common libraries, which

can be used as a whitelist for supporting static code-

based analyses of Android apps.

III. IDENTIFICATION OF COMMON LIBRARIES

In this section we provide details on the approach that we

have devised to collect common libraries for the study.

Process Overview: Fig. 2 illustrates the general process of

our approach, which is dedicated to harvest common libraries

in Android apps and identifying advertisement libraries among

them.

Step 1
Candidate Libraries 

Extraction

Step 2
Common Libraries 

Confirmation

Large Apps Dataset Common Libraries

Step 3
Ad Libraries 
Confirmation

Ad Libraries

Fig. 2: Approach overview.

First, for our approach to make sense, we need a large and

representative dataset of Android apps. Then, as a first step,

we visit all the apps in the dataset and rank all packages

in terms of the frequency of their appearance in apps. For

the sake of simplicity, we assume that a package with the

same name in several apps is a candidate library. Thus, Step 1

outputs a ranked list of candidate libraries, where the highest

ranked candidate library has the most recurring package name

in the dataset. In the second step we perform a more fine-

grained pairwise comparison of candidate library code within

apps. The objective of Step 2 is to confirm as common library

packages those recurring packages that have the same name

and are very similar in their code. Finally, in Step 3, we

further investigate the harvested libraries to label those that

are advertisement libraries and thus may be treated differently

in some Android analysis approaches.

We now provide details on how each step works in the

following three subsections.

A. Step 1: Candidate Libraries Extraction

We assume that common libraries are such software pack-

ages that are:

• used in a large number of apps – recurring packages have

very high probability of being common libraries.

• used by developers without modifications – their code

must be similar across apps. Hu et al. [22] have found

that over 80% of libraries are indeed used without mod-

ification in their dataset of 100,000 Google Play apps.

Building on those assumptions, and leveraging a large

dataset, we extract all package names from Android apps and

cluster them based on their frequency of occurrence in the

dataset. Theoretically, packages that appear in at least two apps

could be taken as candidate libraries2. To reduce the number of

distinct packages considered as candidate libraries, and which

must be further processed we consider two constraints:

• We only consider the first three segments3 of package

name or the entire name if there are less than 3 segments.

With this constraint we manage to limit the number of

redundant subpackages while still guaranteeing a large

diversity in package names.

• We also exclude packages with names starting with

android.support. Indeed, there are many sub-packages

within this package and they are used pervasively in

Android apps. Furthermore, since these are part of the

Android framework, we do not consider them in our

study.

B. Step 2: Common Libraries Confirmation

Because package naming is done in Java programming

with limited constraints, any two packages may share the

same name while being completely different in terms of code

functionalities. Also, the frequency of a package name may
2Actually this may not be true if the apps are from a same developer.

However, since we are performing experiments on a large set of apps, this
small deviation will not impact our final results.

3In this paper, we use the term segment to describe each domain of different
levels, e.g., for package org.example, we say it contains two segments, which
are org and example.
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Fig. 3: Refinement process for common libraries identification

actually be contributed by piggybacking operations, obfus-

cation activities (e.g., a.a.a or com.a are recurrent in many

obfuscated apps) or simplistic naming (e.g., debug or mobile

package names). Thus, we must refine the list collected in the

previous step with code similarity measurements to find actual

code packages used as common libraries.

Beforehand, given the expensive property of pairwise com-

parison, we use heuristics to exclude from the candidate

libraries outputted by Step 1, those packages which would

be irrelevant. Our refinement process is shown in Fig. 3.

1) At first, we focus on those packages whose names appear

in more than 10 apps to reduce the number of candidate

libraries to the most relevant ones.

2) Then, we remove such packages whose names contain

only one segment. Although such short names are indeed likely

to be redundant in several apps, they are not likely to be

those of packages that will be distributed as common libraries.

Indeed, to prevent package name collisions, one convention in

Java package naming4 recommends organisations/development

teams to use their reversed Internet domain names (e.g.,

com.facebook) to begin their package names, which justifies

our assumption that common libraties, intended for wide

distribution, have package names with several segments.

3) Next, we undertake to exclude packages with obfus-

cated code. However, because there is currently no advanced

approach for checking whether a package is obfuscated or

not, we build on a naive approach based on observations of

several obfuscated apps: every package that contains a single

letter segment (e.g., d of com.idreamsky.d) is considered as

obfuscated.

4) To further reduce the number of candidates, we exclude

such packages that are prefixes of other packages (e.g., we

remove package com.sansec if package com.sansec.AESlib

exists). The idea behind this decision is that on the one hand

long packages would indicate more fine-grained examination

while, on the other hand, short packages would increase the

chance of being duplicated (by accident).

5) Finally in the last step, we perform package similarity

analysis to discriminate common library packages from normal

app code package. Given p, a package name, and A, a set of

apps which include a package named p, our similarity analysis

works in three steps:

• Pairwise combinations of apps. We consider all the pair-

wise combinations of apps with package name p. Recall

that every considered package name p was selected as

candidate because it appears in at least 10 apps. Thus,

for any given p, there are at least
(

10

2

)

= 45 pairs to

compare. Google’s ad package com.google.ads is the one

for which A is the largest (247,394 apps), leading to
4https://newcircle.com/bookshelf/java fundamentals tutorial/packaging

a over 30 billions pairs that require comparisons. For

scalability reasons, we randomly select for each case of a

package name p, 10 pairs of apps, allowing us to assess

whether this package name indeed represents a common

package code across the apps.

• Method Comparisons. Analysis of a pair of apps is

performed by computing the similarity between their

methods. This similarity takes into account not only the

signatures of apps but also their respective contents. Two

methods, from two different apps, with the same signature

are said to be identical only when their contents are the

same. Otherwise, they are simply said to be similar. Such

methods may exist between two packages of the same

library in several cases: a method in one library package

may been modified to insert malicious payload during

piggybacking operations; different obfuscation algorithms

applied on different apps that include the same library

may produce methods with the same signature but dif-

ferent contents. To limit the impact of obfuscation, we

proceed to abstract the contents of methods by comparing

the types of statements (e.g., “invoke”) in the Jimple

code, leaving out all names of variables/fields/methods.

However, since obfuscation is not expected to modify

SDK API methods, we also take into account the names

of such methods. Eventually, the similarity of methods is

computed as a simple text differencing.

• Similarity Analysis.

In the last step, we finally perform pairwise similarity

analysis for packages with the same name p. There are

two thresholds, namely tp and ta, which are involved

in the similarity analysis. First, we consider that two

packages p1 and p2 correspond to the same common

library p if p1 and p2 are identical or are at least similar up

to a threshold tp. Second, because of the known common

phenomenon of repackaging/piggybacking in Android,

which may nullify the package similarity (because they

are probably from the same original app), we must

dismiss cases where a the similarity score of the pair

of apps (app1 and app2) is higher than a threshold ta.

Note that the similarity between apps is computed at

the method level (i.e., what percentage of methods are

identical or similar between the apps?).

To summarize, for similarity analysis, given a pair of apps

(app1, app2), we compute four metrics: identical (i.e., the

number of methods that are exactly the same, both in terms

of signatures and implementation), similar (i.e., the number

of methods having the same signature but with different

contents), deleted (i.e., the number of methods that exist

in app1 but not in app2), and new (i.e., the number of

https://newcircle.com/bookshelf/java_fundamentals_tutorial/packaging


methods existing only in app2). These metrics are indeed good

indicators for comparison and have been leveraged in state-

of-the-art Android similarity tools, such as Androguard [15].

Given these metrics, we can compute the similarity between

the pair (app1, app2) using Formula 1.

similarity = max{
identical

total − new
,

identical

total − deleted
} (1)

where
total = identical + similar + deleted+ new (2)

Note that we use the same formula to perform the similarity
analysis of a given pair of packages (p1, p2), except that the

metrics are computed by counting methods in packages rather

than in apps (e.g. identical is the number of methods that

are exactly the same in p1 and p2, deleted is the number of

methods that exist in p1 but not in p2, etc.)

C. Step 3: Identification of Ad Libraries

A specific example of type of widespread common libraries

in Android is advertisement libraries. Such libraries are indeed

used pervasively as they constitute one of the main ways for

app developers to be rewarded for their development effort.

Ad libraries are also often inserted during piggybacking to

redirect revenues. Their presence in an app also often lead

antivirus products to flag them as adware. Recent approaches

for Android security analysis are now processing ad library

code in a specific way to reduce false positives. For example,

MUDFLOW [7] simply does not report any potential sensitive

data leaks through ad libraries, as they might be legitimate. To

that end, they have leveraged a limited whitelist of 12 libraries.

In this context, we propose to further mine our collected set of

common libraries to identify a large set of ad libraries which

could be leveraged to improve the results of Android analyses.

To that end, we consider a basic method of detection based

on the library name and a more semantic approach based on

the characteristics of ad libraries.

1) Keywords matching: We note that ad library package

names generally contain keywords that include the term “ad”.

Widespread examples of such packages are com.google.ads

and com.adsdk.sdk. Unfortunately, simply matching “ad” in

the package name would lead to substantial portion of false

positives as several library package names have “ad” in their

segments which are common words (e.g., shadow, gadget,

load, adapter, adobe). Thus, to work around this limitation,

we collect all English words containing “ad” from SCOWL5

(accounting for a total of 13,385 words), and dismiss packages

containing such words as potential ad libraries.

2) Ad features investigations: We consider samples from

a list of ad packages summarized by Grace et al. [19] and

manually investigate how ad libraries differentiate from other

common libraries, and infer a set of features whose presence

in a package would justify the tag of ad library.

Internet usage: All investigated libraries unsurpris-

ingly require access to Internet to remotely upload to

a server some viewing statistics and update ad con-

tents. Thus, apps integrating add libraries also require
5Spell Checker Oriented Word Lists: http://wordlist.aspell.net

the android.permission.INTERNET permission. Given

this fact, we can already exclude a number of common

libraries, which appear in apps without Internet access, as

ad libraries. However, given that an app may requests the

INTERNET permission for its own needs, we cannot imme-

diately state that a common library in such an app is an add

library. Instead we must investigate whether the code of such

an app indeed declares uses Internet-related APIs. To that end,

we leveraged the whitelist of such APIs, originally shared

by PSCout [6], to produce candidate ad libraries among the

common libraries.

Components declaration: Our manual investigations have

also revealed that ad libraries often contain components,

mainly Activities, for facilitating users’ ad-related interactions

(e.g., switching to a new full-screen ad page when users click

on an advertisement banner). As a concrete example, MoPub6

is an advertisement library targeting both Android and iOS.

To integrate this library in their apps, developers must declare

four components in their apps’ manifest file. One component in

particular, MraidVideoPlayerActivity is necessary for video ads

to work properly. Thus, when a library package is associated

to a declared component, we flag it as a potential ad library.

Views declaration: In Android, advertisements are gener-

ally set to be visualized, which from in Android programming

imply the use of view gadgets (i.e., classes extended from

android.view.View). Thus, we check whether there are

View-based classes under a common library to flag it as

candidate ad library.

D. Implementation details

We implement our approach through several languages

such as Java and shell/python scripts. In step 1, we leverage

Apktool7 to disassemble Android apps. Given an android app,

we extract the prefixes of paths of smali files (a format used

by Apktool to represent Android apps’ code) to represent its

packages. Then, we cluster all the packages of investigated

apps together and rank them through their repeated times. The

packages whose size are greater than a given threshold are

selected as library candidates.

The code similarity analysis in step 2 and the ad li-

brary conformation in step 3 are implemented in Java. More

specifically, both of them leverage Soot [23] to achieve their

functionality and work in the Jimple code level, where Soot

is a framework for analyzing and transforming Java/Android

apps while Jimple is an intermediate representation of Soot.

The transformation from Android Dalvik bytecode into Jimple

code is powered by Dexpler [8], which currently is available

as a plugin in Soot.

IV. DATASET AND RESULTS

In this section, we first disclose our evaluated data set

in Section IV-A and then we present our overall findings

including both common libraries and also ad libraries in

Section IV-B. Finally, we present further statistics on the

libraries in Section IV-C and Section IV-D.
6https://github.com/mopub/mopub-android-sdk
7https://ibotpeaches.github.io/Apktool/



A. Dataset

Our data set is made up of 1,455,516 (around 1.5 million)

apps that are collected from the official Google market (Google

Play) over several months. This data set has already been

applied for large-scale experiments on Android researches

such as malware detection [2], [3], [24] and piggybacked apps

detection [27]. We have sent all the apps into VirusTotal to

check whether they are malicious or not. Among the 1,455,516

apps, 311,490 (nearly 21%) of them are flagged by at least one

anti-virus product hosted on VirusTotal while 65,079 (nearly

4%) apps are flagged by at least five anti-virus products.

B. Overall Results

TABLE I: Summary of our investigation results.

Type Number

#. of packages (total) 7,710,505
#. of packages (distinct) 676,674
#. of packages (Nshared apps > 10) 19,725

#. of packages (one segment) 613
#. of packages (obfuscated) 1,461
#. of packages (prefix of others) 919

Size of final set of candidate common libraries 16,732

Table I illustrates the overall results of our investigation

on a data set of around 1.5 million apps. In total, we collect

676,674 distinct package names, where we filter out 656,949

package names that are used by at most 10 apps, leading

to a set of 19,715 package names. We further dismiss 2,993

from consideration thanks to our library refinement process.

Those 2,993 package names are composed of 613 one segment

packages, 1,461 obfuscated packages and 919 packages that

are prefix of other packages. Finally, we perform pairwise

similarity analysis for 16,732 packages. For each package, we

randomly select 10 pairs of apps to do the comparison. As

long as there are positive results, we consider it as a common

library, and verse visa.

TABLE II: Results of common libraries with different thresholds: tp
for package-level and ta for app-level. Common libraries are select
if and only if their package-level similarities are bigger than tp while
their app-level similarities are smaller than ta.

tp\ta 0.1 0.2 0.3 0.4

0.9 1,113 2,148 3,173 4,072
0.8 1,363 2,564 3,715 4,685
0.7 1,573 2,898 4,117 5,144
0.6 1,735 3,179 4,452 5,509

1) Results of Common Libraries: Our common libraries se-

lection is actually depending on the two thresholds introduced

in Section III: ta for app-level similarity and tp for package-

level similarity. The precision of our results is positively

correlated to tp while negatively correlated to ta. Indeed, the

bigger tp is, the higher the probability that a given candidate

library is an actual common library, giving the assumption that

libraries are not modified when they are used among apps. On

the other hand, the smaller ta is, the lower the probability that

the compared two apps are repackaged/piggybacked from one

to another. Recall that if two apps are repackaged/piggybacked

from one to another, the similarity of packages would become

meaningless, as in this case, most packages would be the same,

without being necessarily common libraries.

Table II illustrates the results of common libraries with

different thresholds. The final number of common libraries

range from 1,113 to 5,509. To better refer to our results in the

remainder of the paper, we name CLp,a the set of Common

Libraries that are selected with the thresholds tp and ta. For

example, CL9,1 stands for the precise set of 1,113 common

libraries we harvest with tp = 0.9 and ta = 0.1, while

CL6,4 stands for the more “loose” set of common libraries,

which although is the biggest set, contains potential more false

positives (less precise than CL9,1).

TABLE III: Results of ad libraries.

Description #. of Libraries

Ad-related keyword matching 275
Ad characteristic-based investigating 822
Merge (conservative ad libraries) 1050

Manual confirmation (keyword matching) 222
Manual confirmation (characteristic investigating) 137
Merge (precise ad libraries) 240

2) Results of Ad Libraries: We then distill ad libraries from

the previously harvested common libraries. We start from the

CL6,4 library set and performs two types of refinement: 1)

ad-related keywords matching and 2) ad characteristic-based

investigation. The refinement results are presented in Table III.

Ad-related keywords matching. By following the process

described in Section III-C, we were able to automatically

harvest 275 ad libraries.

Ad characteristic-based investigating. We have observed

three characteristics that ad libraries may have in Section III-C.

Fig. 4 shows the results of our investigation. Among the 5,509

libraries in CL6,4, 1,248 of them request the INTERNET

permission, 1,560 have declared View gadgets and 1,388

have declared components. The intersection results are also

illustrated in Fig. 4. In this work, we take the intersection of

all the three characteristics as potential ad libraries, leading to

a set of 822 ad libraries.

In the next step, we merge the aforementioned two ad

libraries sets, leading to a sef of 1,050 ad libraries. In the

remainder of the paper, we name this set AD1050.

Comp-declaration
1,388

VIew-declaration
1,560

INTERNET-permission
1,248

1,202

888 936

822

Fig. 4: Investigation results of different characteristics for ad libraries.

Manual confirmation. As far as we know, AD1050 is cur-

rently the largest set of ad libraries existing in the community.

However, because we start from CL6,4, mainly to start with



the biggest set (minimizing the miss of libraries), AD1050 may

contain false positives. To this end, we perform a fast but

aggressive manual refinement, where only clear ad libraries8

are taken into account. As a result, 240 libraries are confirmed

as ad libraries9, hereinafter we refer to this set as AD240. This

240 ad libraries are highly precise. We argue that a highly

precise ad library set is important, which plays as a basement

that makes it possible for other approaches to also yield precise

results.

C. Popularity of common libraries

Fig. 5 lists the top 20 common libraries and indicates, for

each, the number of apps in which they are used. The top

used library is com.google.ads, which is used by 247,394 apps

(nearly 17%) of our data set. Moreover, the results suggest that

developers often use libraries which are proposed by popular

(well-known) companies such as Google or Facebook.

twitter4j.util

twitter4j.api

twitter4j.conf

com.flurry.android

org.apache.cordova

com.facebook.internal

com.facebook.model

com.facebook.widget

com.google.gson

org.apache.http

com.actionbarsherlock.view

com.actionbarsherlock.app

com.actionbarsherlock.widget

org.apache.commons

com.actionbarsherlock.internal

com.android.vending

com.google.analytics

com.facebook.android

com.google.android

com.google.ads

31537

31589

31711

38051

41077

45552

45569

46208

50194

51870

52556

52972

52980

53415

53529

57369

73087

81266

222221

247394

Fig. 5: Popularity of the top 20 common libraries in our investigation,
and the number of apps in which they are used.

The most used common library in Android apps is

com.google.ads, an adverstisement library included in

nearly 17% of apps.

D. Proportion of Library code in App code

We then look into the percentage of Android apps code

which come from libraries. To this end, we consider the

libraries present in CL9,1 and a set of 10,000 apps randomly

selected from our initial set of apps. For each app, we compute

the size of the CL9,1 libraries (sizelib, in bytes) presented in

the app and the size of the whole app (sizeapp). We finally

compute the portion p of the use of common libraries through

p = sizelib/sizeapp. The experimental results vary from 0 to

0.99, giving a median value 0.41. Among the 10,000 apps,

4,293 (42.9%) of them have used more code in libraries than

in their real logic (p >= 0.5). This results show that Android

apps are indeed using common libraries pervasively.
8Their corresponding web pages have explicitly claimed that they function

advertisements.
9This does not mean the remaining 810 libraries are not ad libraries.
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Fig. 6: Library usage between benign and antivirus-flagged apps

42% of our sampled app packages contain more com-

mon library code than specific app code. On average,

41% of an Android app code is contributed by common

libraries.

V. EMPIRICAL INVESTIGATIONS

Beyond the initial goal to provide a comprehensive and pub-

licly accessible whitelist of Android libraries, we investigate

some potential benefits of having such a list. In particular,

based on the collected dataset of libraries we study the

following research questions:

• Are libraries used similarly by benign and malicious

apps? Can they be used as naive features for learning

anti-virus predictions?

• What improvements to Android analysis can be brought

with an access to our harvested libraries? In particular

what is the impact of taking into account our set of

libraries on the performance of piggybacking detection

and machine learning-based malware detection?

• To what extent is the set of collected ad libraries exhaus-

tive compared to baseline from VirusTotal?

A. RQ1: Benign vs. Antivirus-flagged Apps

With this research question, we are interested in investi-

gating the differences in library usage between benign and

antivirus-flagged apps. To this end, we randomly select 20,000

apps, 10,000 benign and 10,000 flagged by at least one anti-

virus product hosted by VirusTotal10.

Among the 20,000 apps, 5,424 benign ones and 8,580

flagged ones use at least one common library. In total, 892 out

of the 1,113 CL91 common libraries are used. Figure 6a shows

the boxplot with the number of common libraries used by each

app in both categories. The median value for benign apps is

1 whereas the median value is 3 for antivirus-flagged apps.

We confirm that this difference is significant by performing a

Mann-Whitney-Wilcoxon (MWW) test. Benign apps thus use

less libraries than anti-virus flagged ones.

We further study whether this is related to advertisement

libraries. Among the 240 libraries in AD240, 98 of them are

used by 1,332 benign apps and 3,209 antivirus-flagged apps.

Figure 6b shows the boxplot which suggests that antivirus-

flagged apps contain significantly more ad libraries than be-

nign apps.
10https://www.virustotal.com



In addition to the quantitative comparison, we investigate

whether the appearance of the collected common libraries can

be used to discriminate antivirus-flagged apps11 from benign

apps through machine learning-based malware classification.

To this end, we leverage RandomForest algorithm [11] to

perform 10-fold cross-validation on the 20,000 apps con-

sidered above. Each app is represented by a feature vector

where the package name of each common library is taken

as a feature. Recall that we have collected 892 libraries

from those 20,000 apps. Therefore, our machine learning-

based experiments contain 892 features. Table IV illustrates

the results of our machine-learning-based malware detection

through 4 different settings, which are

• E1: Machine-learning experiments using the entire set

of 20,000 apps.

• E2: Some apps do not contain any of our harvested

libraries, leading to empty feature vector which can lead

to mis-classifications. Thus, we conduct an experiment

taking into account only apps which include at least one

of our collected common libraries.

• E3: We replay the experiment E2 where we ensure that

there is no class imbalance: we randomly select 5,424

apps from the 8,580 antivirus-flagged apps.

• E4: Similarly to experiment E3, we repeat E2 with

a balanced dataset by oversampling the Benign set,

using the Synthetic Minority Oversampling TEchnique

(SMOTE) [17].

The results of all experiments, showed in Table IV, indicate

good discriminative power of library features for machine-

learning based detection of AV-flagged apps.

TABLE IV: Results of our machine-learning-based detection of AV-
flagged apps.

Exp. Benign set AV-flagged set Precision Recall F-Measure

E1 10,000 10,000 0.841 0.835 0.835
E2 5,424 8,580 0.861 0.861 0.861
E3 5,424 5,424 0.862 0.860 0.860
E4 8,580 8,580 0.875 0.873 0.873

Benign apps use significantly less common libraries

than AV-flagged apps. The combinations of libraries

in apps can be discriminated between benign and AV-

flagged apps.

B. RQ2: Improvements to Analysis Approaches

In this section, we discuss two cases where our harvested

common libraries show significant improvements to the per-

formance of Android analysis approaches.

1) Piggybacking detection: Recall that in Section II, we

have shown that piggybacking detection approaches are likely

to yield false positives and false negatives if code contributed

by common libraries are not taken into account. We provide

more empirical evidence of such threats.

For our experiments we rely on a set of pairs of apps

that we have collected and regrouped into two categories: the
11In this work, we consider those antivirus-flagged apps as potentially

malicious.

first category, FNData, contains 761 pairs of apps where the

smilarity score for each pair is below 50% while the second

category, FPData, includes 1,100 pairs of apps where the

similarity score of each pair of apps is over 80%. Given

the previously justified threshold of 80% for deciding on

piggybacking (cf. Section II), we assume that all pairs in

FPData are piggybacked pairs while those in FNData are not.

We now explore again the similarity scores of the pairs when

excluding from each app the common libraries (in CL91) they

may include.

False positives elimination. Among the 1,100 pairs of apps

in FPData, 1,029 (93.5%) remained similar above the 80%

threshold. 71 (6.5%) pairs of apps now have similarity scores

below 80%, and can no longer be supposed to be piggybacked

pairs. We manually verified 10 of pairs and found that they

are indeed not piggybacked.

False negatives re-classification. Among the 761 pairs of

apps in FNData, 110 (14%) have higher similarity scores,

among which 2 pairs are now beyond the threshold of 80%

which would allows to re-classify them as piggybacked pairs.

We have manually verified and confirmed that these two pairs

of apps are piggybacked pairs: one pair was previously used

in our motivating example section (Fig. 1b).

2) Machine learning for Malware detection: We in-

vestigate the case of machine-learning based approaches for

Android, and study the impact of ignoring or taking into

account common libraries on the accuracy of prediction. We

consider a case study based on MUDFLOW [7] and its dataset.

This dataset contains sensitive data leaks information for

15,096 malicious apps and 2,800 benign apps. MUDFLOW

is a relevant example as the authors have originally foreseen

the problem with libraries and thus attempted to exclude

a small set of ad libraries in their experiments. With our

large harvested dataset of common libraries, we investigate

the performance gap that can be achieved by excluding more

known libraries.

MUDFLOW performs machine learning to mine apps that

use sensitive data abnormally. More specifically, MUDFLOW

takes each distinct type of sensitive data leak (from pre-defined

source to sink) and performs an one-class classification to

detect abnormal apps. One-class classification is realistic in

their experimental settings with their imbalanced data set (they

have much more malicious apps than benign apps).

Since our goal is not to replicate MUDFLOW (along with its

sophisticated library-unrelated parameters), but to evaluate the

impact of excluding common libraries for machine learning,

we propose to implement a slightly simplified approach for our

experiments. Unlike MUDFLOW, which constructs a training

set based on benign apps and then applies it to predict

unknown apps, we simply perform 10-fold cross validation

in our evaluation. As we are working on the same imbalanced

data, we also choose one-class classification.

We have performed four types of experiments, which are

detailed below:

• E5: We evaluate on all the 15,096 malicious apps. The

feature set is made up of distinct sensitive data leaks.



Instead of taking into account source and sink methods,

each data leak is represented through the source and

sink categories (e.g., methods like Log.i(), Log.e() are

represented as category LOG).

• E6: This experiment has similar settings as in E5, except

that such sensitive data leaks that are contributed by the

12 ad libraries considered by MUDFLOW are excluded.

• E7: This experiment has similar settings as in E6. In this

case however, the excluded set of libraries is the most

constrained set of 1,113 libraries harvested in our work.

• E8: This experiment has similar settings as in E7. In this

case however, the excluded set of libraries is constituted

by libraries selected based on a more loose definition

of libraries. The excluding set contains 5,509 libraries,

which may include a number of false positives.

The results of these four experiments are shown in Table V.

Comparing E7 to E5, the accuracy is indeed increased, which

suggests that the presence of common libraries code could con-

fuse machine learning-based classifier. However, the accuracy

remained the same between E6 and E5, suggesting that the

MUDFLOW whitelist, which contains 12 libraries, is too small

to impact the final results. Interestingly, with our largest set

of libraries, the accuracy of E8 decreases slightly comparing

to that of E7. This suggests that the precision in common

library identification is important: excluding non-library code

will eventually decrease the overall performance for machine

learning.

TABLE V: Results of our machine learning based experiments
performed on the data set provided by MUDFLOW [7].

Seq. #. of Features Excluding Libs Accuracy

1 109 0 81.85%
2 109 12 (MUDFLOW [7]) 81.85%
3 109 1,113 (tp = 0.9,ta = 0.1) 83.10%
4 108 5,509 (tp = 0.6,ta = 0.4) 83.01%

It is possible to reduce false positive and false negative

rates for piggybacking detections and malware predic-

tion by excluding libraries based on a comprehensive

whitelist. These case studies suggest that library code

can mislead Android analysis, and our harvested set of

common libraries can indeed be used to improve state-

of-the-art approaches’ performance.

C. RQ3: Completeness of our harvested ad libraries

VirusTotal is a free service that hosts about 40 antivirus

products for analyzing suspicious files, including Android

apps. Along with entirely malicious apps, VirusTotal is also

able to identify adware and provide information in the labels.

However, AV labels are not homogeneous, and there is no

standard for naming malware and adware. After manually

inspecting several results of VirusTotal, we have observed

seven keywords (cf. Table VI) that are commonly leveraged

by VirusTotal AV to tag adware.

In this study, we first select a set of apps that are flagged

by VirusTotal as adware, and then we inspect whether those

apps could have been tagged as adware based simply on

TABLE VI: The seven keywords (without case-insensitive matching)
that we manually observed for inferring adware from the results of
VirusTotal.

adware adsware addisplay adswo adwo adrads “multi ads”

adware adwo adsware addisplay multi ads adswo adrads

Baseline

AD−1050

AD−240

0
2
0
0
0

4
0
0
0

6
0
0
0

Fig. 7: Investigation results of comparing our ad libraries to the
adware results of VirusTotal.

package matching with our harvested libraries. In this study,

we consider 10,000 randomly sampled apps which are flagged

by at least one antivirus product of VirusTotal (the flagged

labels are not necessarily for adware). Among the 10,000 apps,

8,120 (81.2%) of them are flagged as adware following the

keywords described above. Based on the two ad sets that we

have harvested before, we are able to flag 5,045 of them for

AD240 and 6,916 of them for AD1050 as adware, giving a

completeness of 62% and 82%, respectively.

Fig. 7 presents the fine-grained results, categorized through

different ad-keywords. Our harvested ad libraries perform

almost perfectly for five keywords out of the total seven

keywords. However, the performance on “adware” and “addis-

play” keywords are less stable, indicating that our harvested

ad libraries are still missing some less widespread libraries.

Although our harvested ad libraries are currently the

largest publicly accessible set, it is not yet complete

enough to cover all ad packages. Nevertheless, we

believe that our harvested libraries still constitute a

significant set for other to boost analysis.

VI. THREATS TO VALIDITY AND DISCUSSION

Because there is no convention for specifying that a code

package represents a library, identifying Android common

libraries is challenging. We were able to perform our study by

mining about 1,5 million apps collected over several months.

Our study however presents a few threats to validity:

Currently, our approach is not fully aware of obfuscation,

which may lead to incomplete results. However, our findings

are based on a large datasets of apps to reduce the influence

of obfuscated apps. Besides, our findings could be leveraged

in settings where for example ad-libraries are represented by



features which are resilient to obfuscation (e.g., called SDK

API methods). In future work, we plan to conduct experiments

for validating this possibility.

In this work, we do not take into account the different ver-

sions of libraries. Thus, the validity of our similarity analysis

could be threatened, as the similarity of two versions of a

library could vary significantly. However, as our experiments

are done on a large scale of apps, this threaten is somewhat

mitigated by the variety and the scale of our dataset.

Our investigation into libraries have also revealed interesting

findings on the use of libraries:

• well-used libraries, such as unit3d, are often used as the

compromising point for malicious apps.

• Malware writers often name their malicious compo-

nents after famous and pervasively used libraries from

reputed firms: e.g., the DroidKungFu malware fam-

ily spreads malicious payload within a package called

com.google.update. Our similarity analysis allowed to

detect such fraud by further investigating outliers.

VII. RELATED WORK

At first, we discuss a batch of works that investigate the

issues related to libraries. Then, we show that even if libraries

are not harmful by themselves, they threaten the validity of

other approaches. Finally, we summarize the works that are

dedicated to the identification of Android libraries.

Problems of Libraries. As reported by Hu et al. [22],

Android libraries are currently suffering three threats: 1)

the library modification threat, where normal libraries can

be modified to be malicious. Our previous work has also

confirmed this findings [27]. 2) the masquerading threat,

e.g., a well-known malware family called DroidKungFu uses

names such as com.google.update to pretend the services are

provided by Google [40]. 3) the aggressive library threat,

where some legitimate libraries have aggressive behaviors such

as collecting users’ email address.

Other works [10], [25], [26] done by us and by others, have

also shown that some libraries frequently and aggressively

collect (leak) users’ private information. For instance, the

most common leaked information is the device id, which is

used by ad libraries to uniquely identify a user. This findings

are in line with the investigation of Stevens et al. [35], in

which the authors show that, through libraries, users can be

tracked by a network sniffer across ad providers and by an

ad provider across apps. Besides, they also argue that ad

libraries usually require permissions beyond their real needs

and some bad programmed libraries use Android’s Javascript

extension mechanism insecurely. AdRisk [19] focuses on

detecting privacy and security risks posed by ad libraries. Most

notably, it shows that some libraries even execute untrusted

code from internet sources. Moreover, those untrusted code

are fetched through an unsafe mechanism, which by itself has

caused serious security risks.

Gui et al. [20] have shown that free ad libraries actually

come with hidden cost for developers such as the rating of

apps. As reported by Mojica et al. [32], ad libraries are indeed

impacting the ratings of Android apps.

Although our work in this paper is not dedicated to identify

problems of libraries, our findings, the list of common (ad)

libraries, can definitely benefit other approaches (e.g., API

studies [9], [28]–[30]) by giving them a good starting point

for thorough analysis.

Research Works threatened by Libraries. Researchers

have noticed Android libraries will definitely influence the

results of app clone detection [12]–[14], [31], [36], most of

them use a list of libraries as a whitelist. Detecting and filtering

third-party libraries for clone detection is important, as the

results may be doomed if the studied apps are dominated

by common libraries. Chen et al. [12] leverage a whitelist

containing 73 libraries in their approach, which is far away

from being a complete whitelist of existing libraries, as

shown in [36], over 600 distinct libraries have been identified.

However, this list is not publicly available. Besides, comparing

to our findings in this paper, this list is also considerably

incomplete.

Not only for clone detection, but also for machine learning-

based malware detection, the results are threatened by common

libraries. MUDFLOW [7], as an example, uses a list of 12

well-known ad libraries as a whitelist, to exclude such features

that fill in them. A later work done by Li et al. [24] also

leverage that list in their machine learning-based malware

detection.

Our work, in this paper, provides a comprehensive list of

common libraries, that can be leveraged by other approaches

and thus to significantly refine their results.

Identification of Libraries. Wang et al. [36] uses an

automated clustering technique to detect common libraries,

in which they have found over 600 distinct libraries. Our

approach is in line with their assumptions on common li-

braries, however, we come with a different approach and

we also discriminate ad libraries from common libraries, for

which they have not. Another approach called AdDetect [33],

identifies Android ad libraries through their semantics (e.g.,

the usage of Android components, or specific APIs) and

then performs a ML-based classification to detect ad libraries.

However, this approach does not report any findings that can

benefit the Android research community.

VIII. CONCLUSION

We have presented our process for collecting a set of 1,113

common libraries and 240 ad libraries from a dataset of about

1.5 million Android apps. To the best of our knowledge, these

two sets are the largest ones that are publicly accessible in the

community of Android research.

We empirically illustrate how these two library sets can be

used as whitelists by Android analysis approaches to improve

their performances. More specifically, we have shown that

two approaches, namely piggybacking detection and machine

learning-based malware detection, can indeed benefit from our

harvested libraries.
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