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AN INVESTIGATION INTO THE USE OF HYPERMUTATION AS AN
ADAPTIVE OPERATOR IN GENETIC ALGORITHMS HAVING CONTINUOUS

TIME-DEPENDENT NONSTATIONARY ENVIRONMENTS

1. Introduction
Many studies demonstrate that a generational Genetic Algorithm (GA) is

good at finding the optimum of a complex multimodal function when the shape of
the search space remains constant while the search progresses. Each population
member of a GA encodes a potential solution, i.e., an estimate of the domain
value, that optimizes the function. The optimization function (typically
transformed by some scaling function) represents an external environment whose
role is to evaluate the performance of each potential solution.

If the environment's evaluation of a potential solution changes with time, we
call the problem optimization in a nonstationary environment or temporal optimi-
zation. So far, only a handful of researchers have reported on the GA optimiza-
tion of functions in nonstationary environments (Pettit, 1983, Goldberg, 1987b).
Their work focuses on problems where the optimum changes in a discontinuous,
fluctuating manner. No published work to date examines temporal optimization
of GAs in continuously changing environments. In this paper, we begin to
explore continuously changing environments where the state of the environment
depends in some way on the stage of the search.

A principal reason for developing learning and adaptation in systems is that
most environments do change with time. Ultimately, learning algorithms should
be judged based on their abilities to perform in nonstationary environments.
Many learning algorithms implicitly operate under the assumption of environ-
mental stationarity. Researchers make this assumption on the basis that if the
algorithm can find an optimum quickly for a slowly changing environment, then
that optimum will perform satisfactorily until the algorithm can find another
optimum. Since the characteristics of environments vary, it is important that we
examine the robustness of each algorithm under differing degrees and kinds of
environmental nonstationarity.

The standard generational GA works under the assumption of environmental
stationarity. Each generation, the algorithm reduces the breadth of the search
space it investigates by reducing variation in its population members. Population
members are in essence the memory of the GA. Assuming no possible change in
the solution, uninteresting inforation is weeded out of the memory until a rela-
tively homogeneous set of potential solutions remain. In a nonstationary environ-
ment, the objective of a learning algorithm is not to find a single optimum for all
time, but rather to select a sequence of values over time that minimize, or maxim-
ize, the time-average of the environmental evaluations. In this sense, the learning
algorithm "tracks" the environmental optimum as it changes with time. In order
to accomplish temporal optimization, we need to modify the standard GA. r

Tracking a varying minimum or maximum is called extremum control. In
many physical systems, the value of a control parameter giving optimal perfor-
mance changes depending on the process parameters. For example, in a combus-
tion engine the air-to-fuel ratio giving the best performance varies depending on n
temperature and fuel quality. In water turbines, the blade angle giving the max-
imum output power varies with the water speed (Astrom, 1989).
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In this paper, we begin to explore the use of mutation as a control parameter
for enhancing optimization in an incrementally changing environment. We
modify the standard GA by adding a mechanism that adaptively modifying levels
of mutation. As a result, the modified GA can dynamically reduce or expand its
region of search. Recent biological studies show that when cells are stressed by
environmental conditions, some of the cells tend to enter a "hypermutable" state,
i.e., a state of increased mutations (Stolzenburg, 1990). In biological systems,
only those mutated cells which survive in the new environment pass on their
traits. In the modified GA, we gauge "environmental stress" through measuring
changes in performance. Better performing members selectively breed to form
the population members of the next generation.

We hypothesize that using an adaptive mutation rate is better than using a
constant mutation rate for the time-averaged best performance of the GA in an
incrementally changing environment. With a constant low mutation rate, there
would be insufficient variation in the population to find each time dependent
optimum. Maintaining a constant high mutation rate would clearly be disruptive
to the overall population performance, especially during periods of environmental
stationarity. By using an adaptive mutation operator, disruptions would be lim-
ited to times when the GA is stressed by environmental changes as sensed by a
decrease in the time-averaged best-of-generation performance. Given an adaptive
mutation operator, we also hypothesize that if we combine periods of stationarity
with nonstationarity, the mutation operator will reflect the degree of stationarity
in the environment: for periods of stationarity, mutation will be low; for periods
of nonstationarity, mutation will increase depending on the amount of change in
the environment.

Section 2 defines what we mean by nonstationarity in the context of this
paper. We then describe mutation as an example of one of two basic strategies an
algorithm can use to accommodate nonstationary environments. In particular, we
focus on the use of mutation in environments where the optimal environmental
state is a function of time. Section 3 briefly reviews prior work on GA optimiza-
tion in nonstationary environments that are characteristically different from the
continuously changing, state-dependent ones being considered in this paper. Sec-
tion 4 presents the simple optimization problem being used in this preliminary
study. Section 5 describes the implementation details and presents results of
several experiments. One of these experiments shows the result of using a simple
adaptive mutation operator. Section 6 presents conclusions based on the results
presented in this paper. Section 7 follows with an outline of some possible future
studies.

2. Definition of a Nonstationary Environment

There may be a finite or an infinite number of environmental states. If the
evaluations of the potential solutions to the function, f (xi), (i = 1,2,...), vary with
time, then the environment is nonstationary. In essence, each new function
ft(xi), (i=1,2,...) at time t corresponds to learning an optimum for a new environ-
mental state.

-2-



An environment may be nonstationary in a strict sense, yet stationary in
some broader statistical sense. Stochastic processes are stationary in a limited
sense depending on what statistics are unaffected by shifts in time. For example,
a stochastic process is wide-sense stationary if its expected value is constant and
its autocorrelation depends only on a time difference and not on any particular
times (Papoulis, 1965).

2.1. Kinds of Nonstationarity
There are several ways to characterize environmental nonstationarity

(Narendra, 1989). The way that the evaluations f (xi) vary over time may differ.
The environment may be stationary in an interval; that is, the evaluations ft(xi)
may be constant over some interval [t, t + t -1] and then switch to another value
at t + ,. Alternatively, the environment may change the evaluations continuously;
that is, the evaluations may vary by a small amount from one time increment to
another.

We can also characterize environmental nonstationarity based on whether a
state's occurrence depends on an underlying steady state probability distribution
or some time-dependent function. Narendra, in his study of learning automata,
investigates two other classes of environmental nonstationarity:

1. Markovian Switching Environment (MSE)
The environments are states of an ergotic Markov chain. In an ergodic

chain, there is a limiting, asymptotic probability distribution associated with
the environmental states, independent of the initial state distribution.
2. State Dependent Nonstationarity Environments (SDNE)

For a state dependent nonstationary environment, the state of the
environment varies either implicitly or explicitly with the stage of the search.
For the standard generational GA, a stage is a generation.

We focus on continuous, and combinations of continuous and discontinuous
SDNEs in this paper.

2.2. Strategies for Accommodating a Nonstationary Environment
To accommodate a nonstationary environment, a learning algorithm can

employ two strategies: (1) the algorithm can expand its memory store to build up
a repertoire of ready responses for different environmental conditions, and (2) the
algorithm can adaptively expand the variation in its set of potential solutions to
counteract any perceived decline in performance.

We hypothesize that these two strategies are characteristically more impor-
tant in different kinds of nonstationary environments. The first strategy is critical
in MSEs. Since the standard GA is highly biased toward recent information, the
population becomes more homogeneous toward the end of a stationary interval.
With an abrupt change in env.ironment and no information about possible states,
the GA would have to rely on mutation to determine what part of the search space
to sample next. With an elaborate memory store, on the other hand, the GA
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would be able to bias its responses based on prior successful experiences. The
second strategy is important for SDNEs. If there are tremendous number of
related, yet distinct, states, increasing the GA's memory to build up a repertoire
of responses may be infeasible. Even if we do expand the GA's memory for
SDNEs, mutation is still necessary to bridge the gap for new environmental situa-
tions. We plan to address this hypothesis in future studies.

3. Prior GA Research on Nonstationary Environments
Prior work on GAs in nonstationary environments tends to focus on discon-

tinuous MSEs. For example, the early work of Pettit and Swigger (Pettit, 1983)
demonstrates the difficultly of having GAs perform a search in a randomly
fluctuating environment. They report on an experiment where a GA searches for
a target structure that probabilistically changes each generation. Each bit position
is a semirandom binary transmission process having a random variable that takes
on the value 0 or 1. The experiment framed by Pettit and Swigger is especially
difficult for a standard GA, since each generation bit positions change in an
uncorrelated way.

In subsequent studies, Goldberg and Smith (Goldberg, 1987b, Smith, 1988)
examine a nonstationary environment for the 0, 1 blind knapsack problem. They
explore two approaches for achieving environmental nonstationarity. In one ver-
sion of the problem, the sack's upper bound weight constraint shifts back and
forth between two states so that the optimum also shifts. In the second version,
the representation in the domain shifts between two states so that each representa-
tion maps into the optimum at different times. In both versions, a state remains
constant over some interval of time before switching to the other state.

The problem considered by Goldberg and Smith is simpler than the one
explored by Pettit and Swigger since there are only two switching states. By not-
ing the structure of the problem, Goldberg and Smith take advantage of nature's
solution to the problem: genetic diploidy with dominance operators (modelled
most successfully using the Hollstien-Holland's triallelic encoding). Since the
problem is actually stationary in a limited sense, two of the chromosomes (the
homologous ones) potentially match the two possible states.

In general, diploid and polyploid representations, along with their associated
shielding and abeyance dominance schemes, are popular biological mechanisms
that generate diversity in populations and thus protect populations as a whole
from extreme changes in environment. Most cells are diploid in higher plants and
animals; polyploidy (having several homologous chromosomes) occurs in
approximately one third of plant species (Watson, 1987). Goldberg and Smith's
results demonstrate that expanding the genetic store of information in a GA is an
effective strategy for discontinuous MSEs.

4. The Specific Problem
In this preliminary study, we examine the optimization of a simple parabola

having one independent variable in a continuously changing SDNE. The expres-
sion for the parabola is
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fl(xi) = (xi - ht)2,

where h, is the generated target domain value mapping into the optimum at time t,
and xi are the current estimates of this domain value. The evaluation of ft(xi)
represents the environment. By using a parabola, at each generation the environ-
ment essentially returns the squared error of the domain estimate from the true h,.

Given a constant h,, we would use calculus or perhaps a gradient search
technique to find the optimum. The problem becomes more complicated if a
nonstationary environment potentially presents us with a new optimum at each
time step. Since there are several time-related optima, the parabola is multimodal
in time. The standard GA is excellent in performing spatial optimization; how-
ever, to perform temporal optimization, we need to modify the GA. In this study,
we make a simple parameter adjustment on the mutation rate to test the
effectiveness of using mutation as a primitive mechanism for coping with a
SDNE. Other more elaborate possibilities exist for modifying the GA so that it
can perform optimization in SDNEs. In Section 7, we briefly mention a few of
these possibilities.

We achieve environmental nonstationarity by changing the value ht that
maps into a constant optimum. In other words, we translate the function along
the x-axis over time while maintaining the shape of the search space. However,
notice that from the GA's perspective a domain value has a different functional
evaluation depending on the generation of the search. The experiments do not
consider deformations in the shape of the function. To better control the experi-
ment, only the domain values mapping into the minimum change while the
minimum of the parabola remains constant at zero. Notice that it is not sufficient
to simply translate the function along the y-axis over time. In this case, the
domain value mapping into the minimum would remain the same even though the
functional values change over time.

5. Preliminary Experiments

5.1. Generator of Nonstationarity
In these preliminary experiments, we use a sine wave to generate changes in

the environment. In other words, the domain value mapping into the optimum
moves along a sinusoidal path. If we express the search space in more visual
terms as a three dimensional axis, then the abscissa (x-axis) represents the domain
value, the ordinate (y-axis) represents the evaluation function, and the third axis
extending toward us (z-axis) represents time. As the generations pass, the para-
bola remains at a constant level, shifting back and forth in a sinusoidal fashion
along the x-axis as it moves toward us. A few of the experiments combine sta-
tionarity with this kind of nonstationarity.

5.2. Performance Measures
For a generational GA, the nonstationary optimum potentially changes each

generation. Since the strategy of the GA is to find at least one viable member to
complement the current environment, each generation's best performing
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population member provides us with the current estimate of the domain value that
optimizes the function. In our experiments, we use the evaluation of each
generation's best performing member to compute the time-average value of the
GA's performance. We would expect population average results to suffer in
nonstationary environments.

5.3. Implementation
All of our experiments use as a base the C coded GENESIS program written

by Grefenstette (Grefenstette, 1983). For all runs, two-point crossover is per-
formed 60% of the time, and there is no scaling window. The stopping criterion
for each run is the generation count (of 300). We do not consider other stopping
criteria such as convergence. Each population member is stored as a 32-bit Gray
coded value. During evaluation, the evaluation function converts the unsigned
binary representation into a floating point value ranging over the interval [0, 2].

5.4. Examining Combinations of Mutation Rate and Sine Frequency
The mutation rate, 1L, and the frequency of the sine wave, a, are the experi-

mental parameters. We examine the best time-averaged performance for combi-
nations of g and a. Mutation rates are 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,
0.1, and 0.5; sine frequencies are 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1,
0.25, and 0.5. We repeat each run 10 times to obtain average results.

Figures la through ld show some plots of a typical run for a = 0.025. Fig-
ures la and Ic illustrate how well the GA's best-of-generation value tracks the
actual optimum of each generation for mutation rates g. = 0.001 and g = 0.5,
respectively. In Figures lb and Id, we plot the negative log of the time-averaged
best and average performances versus generations so that larger values indicate
better performance. For g = 0.001, the GA successfully tracks the optimum dur-
ing the first 25 generations due to the initial variation in the population. As time
progresses, there is a decrease in variation, and the mutation rate is too low to
compensate for this decrease.

For a comparable problem in a stationary environment, the off-line perfor-
mance of the GA would be on the order of 10-10 to 10-14 upon convergence.
When the GA tracks the moving optimum of a simple parabola, the time-averaged
best performance is at best on the order of 10- 6. The objective of the GA shifts
from trying to find the best solution for all time to one of maintaining a con-
sistently good level of performance over time.

Figure 2 summarizes what happens to the time-average of the best perfor-
mance by generation 300 for different frequencies of the sine wave (o) as the
mutation rate increases.
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MINIMIZATION OF PARABOLA HAVING ONE INDEPENDENT VARIABLE

Plots Using Average of Ten Runs
Population . 200, ! 0.001, a - 0.025

Domain Value Giving Function Minimum - sin(a x Generation) + 1.0

0 50 100 150 200 250 300

2- 2

1.8- -1.8

1.6- -1.6

1.4- 1.4

1.2- -12

Domain Values 1 - - 1

0 .8 -0 .8

0.6- -0.6
0.4 -
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0.2--- 
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0- -0
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Generation

Figure l a. Curves of Actual and Estimated Domain Values Giving Function Minimum Over Time
Smooth Sinusoidal Line: Actual Domain Value; Jagged Line: Best-of-Generation

TIME-AVERAGED PERFORMANCE VERSUS TIME
Population = 200, g = 0.001, a = 0.025
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Figure lb.
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MINIMIZATION OF PARABOLA HAVING ONE INDEPENDENT VARIABLE

Plots Using Average of Ten Runs
Population . 200, R± - 0.5, ax - 0.025

Domain Value Giving Function Minimum . sin(ax x Generation) + 1.0

0 so 100 150 200 250 300

2- -2

1.8 - 1.8

1.6 - 1.6

1.4 - -1.4

Domain Values 1 1

0.8- 0.8

0.6 - -0.6

0.4- -0.4

0 -0

0 so 100 150 200 250 300

Generation

Figure 1c. Curves of Actual and Estimated Domain Values Giving Function Minimum Over Time
The Actual Domain Value and the Best-of -Generation are Indistinguishable

TIME-AVERAGED PERFORMANCE VERSUS TIME
Population -200, 4 0.5, a =0.025

o so 100 ISO 20 s0 300

7 7

Time-Averaged £--

Performance
(-409 10) 3- 3
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Figure Id.
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MINIMIZATION OF PARABOLA HAVING ONE INDEPENDENT VARIABLE
TIME-AVERAGED BEST-OF-GENERATION PERFORMANCE CURVES:

Population - 200
Domain Value Giving Function Minimum - sin (a x Generation) + 1.0

o 0S 1 1.5 2 2.5 3 3.5 4

7 -I 1 I 1 I -

6- 0-0.001 -6

o.0

Time-Averaged 4- . -"

Beat
Perlormance

(Hog) 3- 0.1 -3

0S2- 0.0
0 o.S 1 t.5 2 2.s 3 3.5 4

Mutation Rate
(og,(000.0 x nw))

Figure 2. Lant Generation for Various Frequencies of Environmental Change
Versus Mutation Rate

We make some key observations:

The overall time-average best performance decreases as (X increases.
2. Increasing mutation improves performance for faster changing

environments (a> 0.1). We improve the search in a nonstationary
enironment by increasing population variation through an increase in the
mutation rate.

3. For each a, there is a point at which increasing the mutation rate begins
to degrade the time-average best performance slightly. In Figure 2,
these points are clear for a < 0.1. Overall optimal mutation rates are
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smaller for slower changing environments than for faster changing ones.
For a = 0.001, Umax = 0.01; for a = 0.0025, 0.005, 0.01, Um,, = 0.05,
and for a = 0.025, 0.05, u ma, = 0.1.

Figure 3 shows the time-average of the best performance by generation 300
for De Jong's fl test function (a parabola having 3 independent variables)
(De Jong, 1975). Notice that even when we increase the population size from
200 to 2000, the best-of-generation performance for this harder nonstationary
problem is lower given the same rates of change in the environment. The overall
characteristics of Figure 3 are similar to Figure 2. We hypothesize that in order to
achieve the same level of performance for different optimization problems, the
rate of change that the GA can accommodate in the environment decreases as the
problem becomes more difficult. Determining the rate of environmental change
that the GA can track successfully may provide a measure of the difficulty of the
problem. We plan to examine this hypothesis in future studies.
5.5. The GA Takes Advantage of Spatial Proximity in Tracking

Next, we run an experiment to demonstrate the importance of having time-
dependent optima spatially close to one another. Figure 4 shows the effect of
simply changing domain values each generation by some constant Hamming dis-
tance. Instead of selecting a domain values so that time-dependent zeroes of the
function lie along a sinusoidal path, each generation we choose a new value by
randomly selecting a fixed number of loci to be changed (i.e., bit string positions).
As we might expect, the time-averaged best performance remains relatively flat
for Hamming distances greater than one. Increasing mutation improves the
search.

In contrast, Figure 5 shows the resulting time-averaged performance when ht
changes by a constant amount. The change in performance correlates with the
change in the domain values. Performance is especially poor for low mutation
rates and large ht.

5.6. Using a Simple Adaptive Mutation Operator
As we can see from Figure 5, an extremely high mutation of 0.5 ensures

steady performance regardless of the change in ht. We therefore use a simple
control strategy: if the time-average performance worsens, set g. = 0.5; otherwise,
set the mutation rate to the base-line of g = 0.001. We repeat the experiment
summarized in section 5.4, except that we use this control strategy instead of exa-
mining different constant levels of mutation. Spec.ifically, we examine the time-
average performance of a parabola having one independent variable for different
a using a changing mutation rate. Figure 6a shows the dynamic best-of-
generation and average performances for ac = 0.025. Figure 6b shows the
corresponding change in the mutation rate for an average of ten runs.

When comparing Figures la and 6a, notice that the peaks in the performance
correspond to the points where the sine curve reaches its maximum and minimum
(at 2 and 0, respectively). The neighborhood surrounding these points
corresponds to times when the rate of change in the environment is slower. The
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MINIMIZATION OF DE JONG'S FUNCTION F1
TIME-AVERAGED BEST-OF-GENERATION PERFORMANCE CURVES:

Population . 2000
Domain Value Giving Function Minimum - sin (a x Generation) + 1.0

0 0.s 1.5 2 25 3 &5 4

3- 1 1 1 1 3

Time-Averaged
Best

Perfomance
(-lo0,0)

0 0.5 1 1.5 2 3.5 3 3.54

Mutation Rate
(log1*(IO.OOO x mu))

Figure 3. Last Generation for Various Frequencies of Environmental Change
Versus Mutation Rate



TIME-AVERAGED PERFORMANCE GIVEN CHANGE IN HAMMING DISTANCE
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Figure 4. Last Generation for % ..jus Mutation Rates, g
versus Hamming Distance Change in Environment
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Figure 5. Last Generation for Various Mutation Rates
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DYNAMIC PERFORMANCE USING AN ADAPTIVE MUTATION RATE

0 50 100 I50 200 250 300

10 - I I0
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Performance S(-log base 10)
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Figure 6a. Adaptive Mutation Rate:
If Time-Averaged Best Performance Improves, pi = 0.001, otherwise, p. 0.5

CHANGE IN MUTATION OVER TIME FOR a = 0.025
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Figure 6b. Using the Same Adaptive Mutation as in Figure 6a
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shape of the best-of-generation and average curves axe similar. Also, notice in
Figure 6b that the average mutation rate of the runs is lower at these points. High
mutation rates correspond to times where the rate of change in the environment is
greatest.

Figure 7 summarizes the time-average best performance for all a tested
using the adaptive mutation scheme. For a 0.1 the time-average best perfor-
mance either improves or remains level. For a = 0.25 and a = 0.5 the time-
average best performance degrades quickly at first, and then it degrades slowly.
In environments of rapid change, any return to a base-line of pt = 0.001 degrades
the performance: the change is so rapid that the GA requires a constant high
mutation rate.

By comparing Figure lb with the a = 0.025 dotted line in Figure 7, it is
clear that the adaptive mutation control strategy produces a better time-averaged
best-of-generation performance than maintaining a low mutation rate.
5.7. Combination Stationary and Nonstationary SDNEs

Finally, we explore how the adaptive mutation scheme works when the
environment periodically remains stationary at its current value of h,; that is, we

TIME-AVERAGED BEST-OF-GENERATION PERFORMANCE CURVES
FOR VARIOUS FREQUENCIES IN CHANGING THE OPTIMUM

USING AN ADAPTIVE MUTATION OPERATOR

0 so 100 15O 200 250 300
7 - I I 1 1 7

6~ - 0.001

Time-Averaged 4 - a -o -- 4
Best

Performance
(-log base 10) 3- 0_ -3

2- -2

1 -1

0- 0S I I I -o
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Figure 7. Using an Adaptive Mutation Rate:
If the time-averaged performance worsens, g = 0.5; otherwise, g = 0.001
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examine a combination stationary and nonstationary SDNE maintaining con-
tinuity. Figure 8a depicts an environment where ht remains constant from genera-
tion 75 to 125; ht again remains constant from generation 225 to 300. Figure 8b
shows the resulting best-of-generation performance; Figure 8c shows the
corresponding mutation rates. Notice that whenever the environment becomes
stationary, the best-of-generation performance dramatically improves, and the
mutation rate consistently remains 0.001.

Figure 9a depicts a combined stationary and nonstationary SDNE having
discontinuities. Notice that when the discontinuities at generations 75, 125 and
225 occur, there is a drop in the best-of-generation performance; however, the GA
quickly recovers. Also notice that at generations 125 and 225 there is a
correspondingly high spike in the mutation rate.

Figures 8 and 9 demonstrate that the GA rapidly begins to converge to a glo-
bal optimum whenever the environment remains stationary, regardless of preced-
ing or following nonstationarity periods. During periods of nonstationarity, the
performance fluctuates depending on the rate of change in the environment.

6. Summary
It is clear from the experiments that the standard GA performs better in sta-

tionary environments than in nonstationary ones. Given, however, that the objec-
tive of the GA in a nonstationary environment is to maintain a consistently good
performance, mutation is a simple mechanism that adds diversity to the GA's
population and thus permits the GA to cope with a changing environment. When
we consider the GA's best-of-generation performance, it is apparent that the GA
is capable of tracking a time-varying optimum without expanding the standard
GA's memory, providing the GA significantly increases its mutation rate, i.e.,
enters hypermutation, and the time optima are spatially close to one another. In
other words, hypermutation permits a GA to track an optimum in a continuous
SDNE. However, high mutation rates are obviously very disruptive, impairing a
GA's overall generational performance. We demonstrate an adaptive mutation
operator that gives good best-of-generation performance for both stationary and
nonstationary environments, provided the rate of change in the nonstationary
environments is not too extreme (cc < 0.1). When there is a decrease in the time-
averaged best-of-generation performance, the GA enters hypermutation to main-
tain the best-of-generation performance at a steady level; when there is an
increase or no change in the time-averaged best-of-generation performance, the
GA uses a low mutation rate. As a result, the application of the mutation operator
reflects the degree of stationarity in the environment: for periods of stationarity,
mutation is low so that the GA is able to find a time-invariant (spatial) optimum;
for periods of nonstationarity, mutation increases to permit the GA to track tem-
poral optima.

7. Future Studies
As a direct extension of this work, we plan to perform a sensitivity analysis

of the current results. In particular, we plan to examine: (1) the use of a non-zero
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MINIMIZATION OF PARABOLA HAVING ONE INDEPENDENT VARIABLE
Using an Adaptive Mutation Rate and a

Combination Stationary and Nonstationary SDNE Maintaining Continuity, with a =0.05
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MINIMIZATION OF PARABOLA HAVING ONE INDEPENDENT VARIABLE
Using an Adaptive Mutation Rate and a

Combination Stationary and Nonstationary SDNE Having Discontinuities, with ax 0.05
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scaling window in the selection procedure, (2) functions that are both spatially
and temporally multimodal, (3) other kinds of combination stationary and nonsta-
tionary SDNEs, (4) modifications of the existing adaptive mutation operator and
other new control strategies.

This study demonstrates the useful role of mutation as a simple mechanism
for coping with continuous SDNEs. However, to improve the overall perfor-
mance of the GA, we also need to investigate ways of expanding the memory of
the GA. One technique for expanding the memory of a GA not yet explored in
the context of a nonstationary environment, either MSE or SDNE, is to create
population niches through speciation. We know that this technique successfully
finds the several near-optimal peaks of multimodal functions (Deb, 1989). For
spatial optimization, the final population distribution reflects the peaks (or val-
leys) of the multimodal function. Similar population members form population
niches. The relative sizes of the population niches indicate the relative heights of
the objective function's peaks. In future studies, we plan to explore the applica-
tion of this technique to temporal optimization. By using a generational selection
policy of replacing members with similar ones having better performance, the
population retains enough diversity to accommodate a variety of environmental
conditions. The objective function represents an environmental resource con-
straint: population members specialize to function well in particular environmen-
tal niches. In general, the number of individuals in each species should be pro-
portional to the combination of the quantity of each resource offered by the
environment (a spatial optimum) and the frequency of a particular environmental
situation (a temporal optimum).

In future studies we also plan to examine the use of diploidy in continuous
SDNEs. In addition, we may directly extend the work of Goldberg and Smith.
Their GA performs optimization in discontinuous MSEs by increasing the infor-
mation capacity of each population structure. The optimization information
occurring at a prior time is retained in the population structures. If we wish to
directly extend their approach to an environment having a large number of Mar-
kovian switching states, or a large number of states in a SDNE, we would (1) use
population structures having more than one level of recessive information
depending on some estimate of the number of possible optima, and/or (2) use
more complicated dominance operators, such as partial dominance and codomi-
nance operators, to transform a population structure into a form that can be
evaluated by the environment.
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