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Abstract

Background: Gene expression microarray has been the primary biomarker platform ubiquitously applied in

biomedical research, resulting in enormous data, predictive models, and biomarkers accrued. Recently, RNA-seq has

looked likely to replace microarrays, but there will be a period where both technologies co-exist. This raises two

important questions: Can microarray-based models and biomarkers be directly applied to RNA-seq data? Can future

RNA-seq-based predictive models and biomarkers be applied to microarray data to leverage past investment?

Results: We systematically evaluated the transferability of predictive models and signature genes between

microarray and RNA-seq using two large clinical data sets. The complexity of cross-platform sequence correspondence

was considered in the analysis and examined using three human and two rat data sets, and three levels of mapping

complexity were revealed. Three algorithms representing different modeling complexity were applied to the three

levels of mappings for each of the eight binary endpoints and Cox regression was used to model survival times with

expression data. In total, 240,096 predictive models were examined.

Conclusions: Signature genes of predictive models are reciprocally transferable between microarray and RNA-seq data

for model development, and microarray-based models can accurately predict RNA-seq-profiled samples; while

RNA-seq-based models are less accurate in predicting microarray-profiled samples and are affected both by the

choice of modeling algorithm and the gene mapping complexity. The results suggest continued usefulness of legacy

microarray data and established microarray biomarkers and predictive models in the forthcoming RNA-seq era.

Background
Microarray-based gene expression profiling represents a

mature, high-throughput, transcriptomic analysis approach

that has been extensively applied in biomedical and clinical

research as the major biomarker tool for almost two de-

cades. An important outcome is a number of large-scale

microarray data sets for public reference, for example,

the Connectivity Map (also known as CMAP) database

[1,2], Chemical Effects in Biological Systems (CEBS) [3],

DrugMatrix [4], and the Japanese Toxicogenomics

Database (TG-GATEs) [5]. Meanwhile, a large number

of microarray-based gene signatures and biomarkers

[6-9] and gene expression profile-based predictive models

[10-12] have also been established for human disease sub-

type classification, disease diagnosis and prognosis, and

therapeutic treatment selection.

During more recent years, next-generation sequencing

technologies (NGS) have emerged as a powerful alterna-

tive to microarrays, particularly for whole transcriptome

analysis with RNA-Seq [13-15]. Besides providing accurate

measurement of gene expression levels, RNA-Seq is add-

itionally promising because of its capability to discover

splicing junctions, novel transcripts, alternative splicing

variants, and un-annotated genes. The unprecedented dis-

covery features as well as a sustained cost decrease are
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causing an inevitable transition from microarray to RNA-

Seq for clinical biomarker development. The advent of

evermore economical NGS has led many companies and

institutions that have heavily invested in microarrays to

ask whether they need to repeat their sample profiling

with NGS. Such a costly undertaking could be averted de-

pending on the extent to which predictive models and as-

sociated signature genes developed from microarrays can

be directly transferred to RNA-Seq data. Given the fact

that the cost for RNA-Seq is rapidly decreasing, the same

transferability question could be raised again in the future

on how predictive models and associated signature genes

based on RNA-Seq can be applied back to the legacy

microarray data to leverage the existing data and know-

ledge. Moreover, the analysis of the current Gene Expres-

sion Omnibus (GEO) database revealed several important

observations (Additional file 1: Figure S1). First, by only

examining the number of data added to GEO from both

technologies in 2014, much larger number of array data

(54,206) was deposited compared to RNA-Seq (9,082).

Second, justifying the year as a starting point for which

both array data (2001) and RNA-Seq data (2006) were

? seen? by GEO, the growth rate for RNA-Seq was slower

compared to microarrays in the following 5 to 7 years.

Third, projecting the data growth by fitting the existing

data with the polynomial and power equations for micro-

array and RNA-Seq, respectively, it seems that RNA-Seq

will reach 1 million mark in 2021 (the current number of

arrays in GEO) and surpass microarrays in 2028. The ana-

lysis indicated a long period of co-existence of both tech-

nologies (the transition from microarray to RNA-Seq

could last many years), rendering these aforementioned

questions even more important.

As a part of the FDA-led community wide Sequencing

Quality Control (SEQC) project [16], we broadly assessed

the transferability of predictive models and signature

genes between microarray and RNA-Seq data using two

large clinical data sets: the neuroblastoma (NB) data

(Zhang W, Shi L, Hertwig F, Thierry-Mieg J, Zhang W,

Thierry-Mieg D, Wang J, Furlanello C, Devanarayan V,

Cheng J, Deng Y, Hero B, Hong H, Jia M, Li L, Lin

S, Nikolsky Y, Oberthuer A, Qing T, Su Z, Volland R, Wang

W, Wang M, Yu Y, Ai J, Albanese D, Amur S, Asgharzadeh

S, Avigad S, Bao W, et al. Comparison of RNA-seq and

microarray-based models for clinical endpoint predic-

tion; submitted) having 498 NB samples with six binary

clinical endpoints and four continuous survival times and

the acute myeloid leukemia (AML) data [17] containing

175 AML samples with two binary clinical endpoints and

two continuous survival times (Table 1). ? Signature genes?
of a predictive model are defined as the set of RNA-Seq

genes or microarray probes/probe sets used by the pre-

dictive model. The samples in both clinical data sets

were independently profiled with microarray and Illumina

RNA-Seq technologies. To ensure a rigorous comparison,

we first investigated the cross-platform sequence corres-

pondence between microarray probes/probe sets and

RNA-Seq genes for three human and two rat data sets

having both microarray and RNA-Seq data available for

the same samples. Consequently, microarray probes/probe

sets and RNA-Seq genes were cross mapped and stratified

into four mapping groups A, B, C, and D in accordance

Table 1 Definition of the clinical endpoints for the 498 SEQC NB samples and the 175 AML samples

Endpoint
category

Data
set

Total
samples
(n)

Endpoint Training set Validation set

Samples(n) 1 0 Samples(n) 1 0

Binary (1/0) SEQC NB 498 A_EFS_All (event, yes/no) 249 89 160 249 94 155

B_OS_All (death, yes/no) 249 51 198 249 54 195

C_SEX_All (female/male) 249 103 146 249 108 141

272 D_FAV_All (unfavorable/favorable) 136 45 91 136 46 90

176 E_EFS_HR (event, yes/no) 86 55 31 90 65 25

F_OS_HR (death, yes/no) 86 43 43 90 49 41

AML 175 Sex (female/male) 89 43 46 86 39 47

Cytogenetic risk (poor/good) 89 72 17 86 70 16

Continuous (time) SEQC NB 498 A_EFS_All (event, days) 249 249

B_OS_All (death, days) 249 249

176 E_EFS_HR (event, days) 86 90

F_OS_HR (death, days) 86 90

AML 175 EFS (event, months) 89 86

OS (death, months) 89 86

EFS: Event-free survival; FAV: Unfavorable/Favorable (class label for extreme disease course); HR: High-risk patients; OS: Overall survival.
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with sequence correspondence complexity as defined in

Table 2. Three predictive modeling algorithms repre-

senting different modeling complexity, k-nearest neigh-

bors (k-NN), nearest shrunken centroids (NSC) [18], and

support vector machine (SVM) were applied to each of

the three mapping groups A, B, and C, and for each of the

eight binary clinical endpoints and Cox proportional

hazards survival analysis [19] was applied to the six con-

tinuous endpoints to model survival times with gene ex-

pression data (Table 1). Our analyses indicate that the

signature genes of models between microarray and

RNA-Seq data are reciprocally transferable for model

development, regardless of the degree of clinical end-

point prediction difficulty and the cross-platform gene

mapping complexity. More importantly, the models de-

veloped from microarray data could be directly used to

accurately predict RNA-Seq-profiled samples, as long as

microarray and RNA-Seq data were properly trans-

formed. Conversely, the models derived from RNA-Seq

data could be directly used to predict microarray-profiled

samples, but with more difficulty and lower accuracy.

Results
Examining the reciprocal transferability of predictive

models and signature genes between microarray and

RNA-Seq data requires understanding the sequence cor-

respondence in gene mappings between the two plat-

forms. Consequently, we first performed cross-platform

mappings of microarray probes or probe sets to RNA-

Seq genes and explored the consistency of gene expres-

sion measurements between microarray and RNA-Seq

data using two rat and three human data sets having

both microarray and RNA-Seq data. The two rat data

sets were from the NCTR rat toxicogenomics study

[20,21] and the FDA SEquencing Quality Control (SEQC)

rat toxicogenomics study [22]; and the three human

data sets were from the FDA SEQC main study [16],

MicroArray Quality Control (MAQC) phase I main

study [23], the SEQC neuroblastoma (NB) study, and The

Cancer Genome Atlas (TCGA) acute myeloid leukemia

(AML) study [17]. Subsequently, only the FDA SEQC NB

and TCGA AML data sets were used for a quantitative as-

sessment of the cross-platform transferability conducted

(1) at the signature gene level (Figure 1a) and (2) at the

model level [24] (Figure 1b) for both binary endpoint pre-

diction and Cox survival regression analysis. We first ap-

plied the whole transferability assessment processes to the

FDA SEQC NB data set and then validated the findings

using the TCGA AML data set. Since gene mappings be-

tween microarray and RNA-Seq are not in one-to-one

correspondence, we independently performed the signa-

ture level assessment process (Figure 1a) on the three

groups of gene mappings (A, B, and C in Table 2) for each

of the eight binary predefined clinical endpoints using three

modeling algorithms and for each of the six continuous

survival times using Cox survival analysis. In total, we

carried out 180 signature level assessment processes

(three gene mapping groups by eight endpoints by three

algorithms by two transfer directions for binary end-

point prediction and three gene mappings by six con-

tinuous survival times by two transfer directions for

Cox modeling) and thereby generated 144,072 predict-

ive models (500 trained models plus 500 corresponding

transferred models per process for binary endpoint pre-

diction and two models per process for Cox modeling).

For model level assessment, the process (Figure 1b) was

conducted on both original log2 intensity/counts data

and per sample z-scored data; and group C mappings

were excluded from modeling since their ambiguous map-

ping relationships were not suitable for cross-platform

prediction. Thus, we conducted 216 model level assess-

ment processes (two gene mapping groups by eight end-

points by three algorithms by two transfer directions by

two forms of data for binary endpoint prediction and two

gene mappings by six continuous survival times by two

transfer directions for Cox modeling) and thereby gener-

ated 96,024 predictive models (500 trained models per

process for binary endpoint prediction and one model per

process for Cox modeling). Figure 2a,b, and c show the

summary of the assessment results for each scenario.

Cross-platform gene mapping complexity and consistency

of gene expression measurements between microarray

and RNA-Seq

Gene mapping is an essential step to assess the transfer-

ability of gene expression-based predictive models

Table 2 Gene mapping groups with different sequence correspondence complexity

Group Microarray probes/probe sets RNA-Seq genes Concordance

A Each probe set can be exclusive mapped to one RNA-Seq gene.
It is identical to RNA-Seq A set

Each gene can be exclusively mapped to one array probe
set. It is identical to array A set

High

B Each probe set can be mapped to one RNA-Seq gene, but the
gene can be mapped to multiple array probe sets. It is a subset
RNA-Seq C set

Each gene can be mapped to one array probe set, but
the probe set can mapped to multiple genes. It is a
subset of array C set

Low

C Each probe set can be mapped to multiple RNA-Seq genes Each gene can be mapped to multiple array probe sets Lowest

D Probe sets cannot be mapped (unique probe set) Genes cannot be mapped (unique genes) Unique
features
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between microarray and RNA-Seq. Cross-platform gene

mapping is complicated by disparity between array an-

notations and RNA-Seq gene models. Moreover, given

the complexity of human transcriptomes and the lack of

complete genome functional annotation [25], gene

annotations from different sources may be inconsistent.

Even within a given source, gene annotations undergo

constant change. The inconsistency complicates array

annotation and causes variation in RNA-Seq analysis as

well. We used diverse data sets from microarray and

Figure 1 Flowcharts for evaluating the cross-platform transferability of signature genes and predictive models. Two analysis procedures

were applied to evaluate the transferability of signature genes (a) and predictive models (b). In (a), microarray training data are used to develop

500 trained models through (c) to predict the microarray validation samples. The signature genes of each model are then used with the RNA-Seq

training data to build an untrained RNA-Seq model using through (d) to predict the RNA-Seq validation samples. The performance of microarray

models is finally compared to that of RNA-Seq models. The transferability of signature genes from RNA-Seq back to microarray data can conversely be

calculated. While in (b), both microarray and RNA-Seq data were z-scored prior to model development. Then microarray training data are used to

develop 500 trained models to predict both microarray and RNA-Seq validation samples. The performance of models in predicting microarray data is

compared to that in predicting RNA-Seq data. From RNA-Seq back to microarray is conversely examined. A trained model is developed through (c).

Briefly, training samples are randomly split in a 70/30 ratio. For each split, a series of models are developed using the 70% of training samples to predict

the remaining 30%. The models are developed as follows: (1) all genes are first filtered with t-test P <0.05 and then ranked by fold change (FC); (2) a

sequential forward feature selection by a step of two and parameter selection strategy is then used to build a number of models to predict the

remaining samples. Finally, the signature genes and parameters of the best model are used with all training samples to build a trained model. An

untrained model is built using all training samples from one platform but with the signature genes and parameters of a model trained from the other

platform (d).
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RNA-Seq platforms including Affymetrix rat and human

arrays, Agilent human arrays, and Illumina HiSeq 2000,

HiScanSQ, and GA-II to characterize and categorize the

complexity of cross-platform gene mappings and the

consistency of gene expression measurements.

We first mapped Affymetrix Rat_230_2 arrays to Illu-

mina GA II RNA-Seq using the method depicted in Fig-

ure 3a (see also Methods and Materials). Data were from

an NCTR rat toxicogenomics study [20] in which eight

rat kidney samples were separately profiled with

Rat_230_2 arrays and GA-II RNA-Seq. After mapping

array probe sets to RNA-Seq genes, the 31,099 array

probe sets were split into four groups A, B, C, and D

(defined in Table 2) having 8,350, 7,736, 2,121, and 12,892

probe sets, respectively. Group A contains probe sets that

can be exclusively mapped to one RNA-Seq gene; group B

includes probe sets that can be uniquely mapped to one

RNA-Seq gene, but the RNA-Seq gene can be mapped to

multiple array probe sets; group C consists of probe sets

that can be mapped to multiple RNA-Seq genes; and

group D are microarray unique probe sets that cannot be

mapped to any RNA-Seq genes. The gene expression

levels in groups A, B, and C detected with microarrays

were compared to those detected with RNA-Seq for one

of the eight RNA samples (Figure 3b,c, and d). As can be

seen from the scatter plots, gene expression measure-

ments for genes in group A are much more consistent

than those in groups B and C. The average Spearman ? s
correlation coefficients between microarray and RNA-

Seq measurements for groups A, B, and C are 0.87, 0.60,

and 0.54, respectively. The same trend was observed in

the mapping results from Affymetrix HG-U133_Plus_2

Figure 2 Summary of the transferability of signature genes and predictive models between microarray and RNA-Seq data. The test

results whether the parameters and signature genes of a model developed from one platform (microarray or RNA-Seq) can be used to build a

model using data generated with the other platform (RNA-Seq or microarray) are shown in (a) for the three gene mappings A, B, and C separately;

while the results whether a predictive model developed from one platform can be directly used to accurately predict the samples profiled with

the other platform for gene mappings A and B are summarized for per sample z-scored data and without per sample z-scored data in (b) and

(c), respectively. Green and red arrows indicate the good and bad transferability from one platform to the other, respectively.
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arrays to Illumina HiSeq 2000 (Table 3 and Additional

file 2: Figure S2 and Additional file 3: Figure S3) and

from Agilent human arrays to Illumina HiSeq 2000

(Table 3 and Additional file 4: Figure S4).

We then mapped Affymetrix Rat_230_2 arrays to six

RNA-Seq gene sets generated from the same raw data of

62 rat liver samples using different bioinformatics

pipelines and references, representing a diversity of ap-

proaches popularly used in RNA-Seq data analysis [22].

Array probe sets were mapped to each of the six gene

sets using either the gene ID or genome location mapping

approaches (Table 4). The percentage of array probe sets in

groups A, B, C, and D for the six gene sets varied with the

choice of analysis pipelines and references (Figure 4). A high

percentage of array probe sets (group D) in the range of

32% to 48% could not be mapped to any RNA-Seq genes,

though this group of array probe sets provides additional

information to RNA-Seq analysis. The correlation

pattern exhibited by groups A, B, and C (Table 3 and

Additional file 5: Figure S5) is similar to that observed

from the previous four analyses. The average Spearman? s
correlation coefficients between microarray and RNA-Seq

measurements from the 62 rat liver samples for groups A,

B, and C are 0.88, 0.65, and 0.55, respectively (Table 3).

The results indicate that, although the numbers of genes

in the four groups from the six mapping results are quite

different (in the range of 5,653 to 8,356, 7,543 to 12,228,

91 to 3,189, and 10,029 to 14,799 for groups A, B, C,

and D, respectively), the genes in group A consistently

show the highest cross-platform concordance followed

by groups B and C. The inconsistency and ambiguity

between microarray and RNA-Seq gene models are ap-

parent. In the subsequent analysis, we investigated the

cross-platform transferability of signature genes and

models separately and explored the potential impact of

such gene mapping inconsistency and ambiguity.

Figure 3 The strategy for cross-platform gene mapping and the consistency of cross-platform gene expression measurements. The

microarray probes/probe sets are mapped to RNA-Seq genes in one of two ways: public gene ID mapping or genome location mapping (a). Using

the gene ID mapping approach requires that one of the following public gene IDs be available: gene symbol, RefSeq transcript ID, Ensembl gene ID,

or Entrez gene ID. Using the genome location mapping requires an RNA-Seq gene annotation file in either the Gene Transfer Format (GTF) or the

General Feature Format (GFF). The process produces separate mapping lists for microarrays and RNA-Seq. Each of them consists of A, B, C, and D

groups. Group A for microarrays corresponds to the group A in RNA-Seq. The microarray group B is a subset of RNA-Seq group C, and vice versa. The

D group for microarrays and for RNA-Seq contain genes and probes/probe sets that cannot be mapped between the two platforms. The intensities of

Affymetrix microarray probe sets in mapping groups A, B, and C are separately compared to those of RNA-Seq gene counts in panels (b), (c), and (d) for one of

the eight RNA samples in the NCTR toxicogenomics data set. The microarray data are from Rat_230_2 arrays normalized with the MAS5 algorithm, and the

RNA-Seq reads are from the Illumina GA II platform with the single-end 36 base pairs RNA-Seq protocol and gene counts from the P2 pipeline (Novoalign with

RefSeq rat gene models). The mappings from microarray probe sets to RNA-Seq genes are based on the genome location mapping approach.
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Signature genes of a microarray model can be transferred

to RNA-Seq data for model development

To assess the transferability of signature genes from

microarray to RNA-Seq data, we first applied the signa-

ture level assessment process (Figure 1a, red line) to the

FDA SEQC NB data set. The data set was derived from

the 498 NB samples that were independently profiled

with Agilent microarrays and Illumina HiSeq 2000. Six

binary clinically relevant endpoints of varying degrees

of clinical complexity and prediction difficulty were

included in the SEQC NB study. As shown in Table 1,

A_EFS_All represents event-free or not at a certain time

point, where event means the occurrence of progression,

relapse or death; B_OS_All denotes whether patients died

from disease or not at a specific time point; C_SEX_All is

the patients? sex; D_FAV_All represents event-free without
chemotherapy for at least 1,000 days post diagnosis or

died from disease despite chemotherapy; E_EFS_HR and

F_OS_HR are similar to A_EFS_All and B_OS_All, re-

spectively, but only for the patients with stage four dis-

ease or with MYCN-amplified tumors. For each of the

six binary endpoints, a set of training samples and a set

of validation samples were predefined in the SEQC NB

study.

We first mapped Agilent array probes to RNA-Seq

genes and then sorted them into groups A, B, C, and D

in accordance with gene mapping complexity. As indi-

cated above, the probes in groups A, B, and C exhibited

different degrees of consistency in gene expression mea-

surements between microarray and RNA-Seq (Table 3

Table 3 Spearman ? s correlation coefficients of gene expression levels detected with microarray and RNA-Seq

Data set Microarray RNA-Seq platform
and pipeline

Gene group Probes/probe sets (n) Spearman? s correlation
coefficient

NCTR rat TGx Affymetrix P2 A 8,350 0.87 ? 0.02

Rat_230_2 B 7,736 0.60 ? 0.04

C 2,121 0.54 ? 0.04

SEQC main Affymetrix P2 A 6,355 0.84 ? 0.01

HG_U133_Plus 2 B 27,166 0.53 ? 0.02

C 7,636 0.33 ? 0.02

SEQC NB Agilent P2 A 10,042 0.73 ? 0.03

customized 4 ? 44 k B 13,401 056 ? 0.04

C 2,543 0.49 ? 0.04

SEQC rat TGx Affymetrix P1 A 7,829 0.88 ? 0.01

Rat_230_2 B 8,376 0.63 ? 0.01

C 95 0.64 ? 0.03

P2 A 8,386 0.87 ? 0.01

B 8,035 0.68 ? 0.01

C 3,149 0.58 ? 0.01

P3 A 8,201 0.89 ? 0.01

B 8,142 0.69 ? 0.01

C 702 0.73 ? 0.01

P4 A 8,080 0.88 ? 0.01

B 8,160 0.67 ? 0.01

C 91 0.64 ? 0.04

P5 A 8,197 0.85 ? 0.01

B 7,543 0.66 ? 0.01

C 1,750 0.32 ? 0.01

P6 A 5,663 0.90 ? 0.01

B 12,228 0.59 ? 0.01

C 3,189 0.38 ? 0.02

TCCGA ALM Affymetrix Bwa + In A 7,448 0.82 ? 0.04

HG_U133_Plus 2 House B 31,313 0.66 ? 0.04

Program C 551 0.57 ? 0.04
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and Additional file 4: Figure S4). We thus separately

used the probes in groups A, B, and C as features to de-

velop 500 trained k-nearest neighbors (k-NN) models

using microarray training samples for each individual

binary clinical endpoint to predict the microarray valid-

ation samples. The 500 microarray models were trained

using the stratified random sample splitting approach

(Figure 1c). For each of the 500 models, the parameter

k and signature genes were then used with all RNA-

Seq training data for those genes to build an untrained

RNA-Seq k-NN model (Figure 1d) to predict the RNA-Seq

validation samples. Finally, the prediction performance of the

Table 4 Bioinformatics pipelines and gene models used for RNA-Seq data analysis

Data set Pipeline Aligner Counting and
normalization

Reference genome Gene annotation Mapping
approach

SEQC NB P2 Novo align
v2.08.01

Global scaling to RPM UCSC hg19 Human RefSeq RNA v51 ID mapping

NCTR rat
toxicogenomics [20]

P2 Novo align
v2.08.01

Global scaling to RPM UCSC rn4 Rat RefSeq RNA v52 Location
mapping

SEQC main [16] P2 Novo align
v1.7.01

Global scaling to RPM UCSC hg19 Human RefSeq RNA v51 Location
mapping

SEQC rat
toxicogenomics [22]

P1 Magic Magic index RGSC v3.4 Ace View 2008 gene
models

ID mapping

P2 Novo align
v2.08.01

Global scaling to RPM UCSC rn4 Rat RefSeq RNA v52 ID mapping

P3 Bwa 0.5.9-r16 Samtools 0.1.13 Rat RefSeq RNA v50 ID mapping

P4 To phat HTSeq-count 0.53p3 UCSC rn4 Rat RefSeq RNA v50 ID mapping

P5 Bowtie v0.12.7 RSEM v1.1.18 Ensemble rat genome
66

Ensemble genes build 66 Location
mapping

P6 To phat 2.0 Cufflinks + Cuffdiff UCSC rn4 Cufflinks de novo
assembly

Location
mapping

TCGA AML [17] Bwa 0.5.7 In-house program hg18 + exon junction Ensembl v59 ID mapping

Figure 4 The percentages of probe sets in mapping groups A, B, C, and D. The percentages of Affymetrix probe sets in four mapping

groups A, B, C, and D for the six RNA-Seq gene sets are shown in stacked bar charts. The data set comprises 62 Affymetrix Rat_230_2 arrays and

62 RNA-Seq assays from the same set of 62 rat liver RNA samples. The microarray data were normalized with MAS5, and the same RNA-Seq raw

data were analyzed by six independent data analysis teams with a variety of analysis pipelines, that is, P1 (NCBI Magic), P2 (Novoalign with RefSeq

gene models), P3 (Bwa + RefSeq RNAs), P4 (Tophat + HTSeq with RefSeq gene models), P5 (Bowtie + RSEM with Ensembl gene models), and P6

(Tophat + cufflinks de novo assembly). The Affymetrix probe sets (31,099 in total) were separately mapped to the six RNA-Seq gene sets. The

mappings to P1, P2, P3, and P4 gene sets are based on the gene ID mapping approach, while mappings to P5 and P6 gene sets are based on

the genome location mapping.
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Table 5 Performance metrics for the assessment of cross-platform transferability of signature genes of k-NN models

based on the SEQC NB data

Direction Endpoint Gene
set

Microarray models Is predict microarray
validation samples

RNA-Seq models predict RNA-Seq validation
samples

T-index

Accuracy AUC Accuracy AUC

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

From microarray
to RNA-Seq

A* A 0.732 0.667-0.775 0.708 0.645-0.758 0.728 0.653-0.771 0.696 0.627-0.746 0.729

B 0.721 0.655-0.759 0.691 0.631-0.733 0.714 0.647-0.759 0.678 0.614-0.726 0.716

C 0.696 0.639-0.735 0.664 0.609-0.704 0.702 0.654-0.747 0.670 0.631-0.713 0.700

B* A 0.780 0.747-0.811 0.667 0.615-0.72 0.787 0.755-0.815 0.648 0.601-0.694 0.786

B 0.777 0.743-0.807 0.643 0.585-0.704 0.794 0.755-0.827 0.659 0.580-0.725 0.791

C 0.789 0.739-0.827 0.678 0.613-0.732 0.788 0.747-0.819 0.660 0.620-0.711 0.788

C* A 0.978 0.971-0.992 0.978 0.971-0.992 0.992 0.992-0.992 0.992 0.992-0.992 0.992

B 0.989 0.983-0.992 0.989 0.984-0.992 0.989 0.983-0.992 0.989 0.984-0.992 0.989

C 0.931 0.900-0.954 0.935 0.905-0.958 0.988 0.975-0.992 0.988 0.976-0.992 0.984

D* A 0.934 0.882-0.971 0.920 0.863-0.962 0.921 0.882-0956 0.895 0.848-0.940 0.921

B 0.947 0.824-0.978 0.938 0.798-0.973 0.933 0.772-0.978 0.915 0.737-0.967 0.934

C 0.915 0.838-0.956 0.911 0.841-0.961 0.921 0.853-0.963 0.914 0.840-0.956 0.920

E* A 0.624 0.533-0.700 0.534 0.463-0.615 0.606 0.522-0.689 0.537 0.460-0.617 0.612

B 0.562 0.478-0.623 0.507 0.417-0.588 0.569 0.500-0.633 0.519 0.443-0.595 0.566

C 0.607 0.511-0.689 0.513 0.437-0.603 0.599 0.511-0.689 0.515 0.438-0.603 0.602

F* A 0.513 0.444-0.589 0.513 0.446-0.585 0.510 0.433-0.589 0.510 0.426-0.589 0.511

B 0.507 0.456-0.567 0.511 0.452-0.572 0.490 0.422-0.556 0.498 0.431-0.562 0.498

C 0.532 0.456-0.611 0.534 0.460-0.609 0.527 0.444-0.611 0.531 0.448-0.611 0.529

From RNA-Seq
to microarray

A* A 0.701 0.614-0.759 0.669 0.590-0.732 0.709 0.643-0.759 0.671 0.603-0.727 0.703

B 0.680 0.584-0.741 0.644 0.543-0.708 0.693 0.604-0.747 0.651 0.568-0.710 0.684

C 0.719 0.647-0.767 0.691 0.618-0.748 0.730 0.648-0.771 0.698 0.621-0.743 0.722

B* A 0.775 0.715-0.819 0.662 0.576-0.737 0.775 0.733-0.811 0.640 0.579-0.696 0.775

B 0.777 0.715-0.819 0.639 0.552-0.713 0.785 0.735-0.825 0.640 0.566-0.718 0.778

C 0.792 0.749-0.823 0.681 0.621-0.757 0.790 0.753-0.819 0.659 0.606-0.728 0.791

C* A 0.971 0.967-0.992 0.972 0.969-0.992 0.984 0.983-0.992 0.985 0.984-0.992 0.971

B 0.939 0.900-0.950 0.943 0.901-0.954 0.990 0.988-0.992 0.990 0.988-0.992 0.939

C 0.987 0.975-0.992 0.987 0.975-0.992 0.987 0.971-0.992 0.987 0.972-0.992 0.987

D* A 0.914 0.809-0.971 0.899 0.792-0.957 0.927 0.868-0.963 0.910 0.841-0.951 0.915

B 0.918 0.838-0.963 0.907 0.825-0.962 0.928 0.860-0.971 0.908 0.836-0.957 0.918

C 0.937 0.875-0.978 0.923 0.853-0.973 0.933 0.882-0.971 0.913 0.882-0.962 0.937

E* A 0.598 0.456-0.689 0.506 0.414-0.606 0.598 0.444-0.700 0.522 0.400-0.630 0.598

B 0612 0.511-0.700 0.513 0.432-0.602 0.588 0.489-0.678 0.510 0.415-0.613 0.603

C 0.582 0.478-0.667 0.512 0.412-0.633 0.596 0.500-0.689 0.522 0.432-0.615 0.587

F* A 0.507 0.433-0.600 0.502 0.421-0.590 0.498 0.400-0.600 0.496 0.406-0.597 0.503

B 0.500 0.411-0.595 0.503 0.414-0.596 0.493 0.400-0.589 0.503 0.411-0.601 0.496

C 0.523 0.456-0.600 0.527 0.452-0.602 0.498 0.405-0.578 0.505 0.411-0.59 0.511

A*: A_EFS_All; B*: B_OS_All; C*: C_SEX_All; D*: D_FAV_All; E*: E_EFS_HR; F*: F_OS_HR; AUC: Area under ROC curve; CI: Confidence interval; 95% CI was calculated

from the bootstrap estimation. The upper-right and lower-left regions are for the untrained models built using cross-platform transferred signature genes, while

the upper-left and lower-right regions are for the models originally trained.
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500 microarray-trained models was compared to that of the

500 corresponding untrained RNA-Seq models to assess

the transferability of signature genes from microarray

to RNA-Seq. The performance of each model in predict-

ing validation samples was assessed with accuracy and the

area under the receiver-operating characteristic curve

(AUC) (Table 5). The average prediction accuracies of the

microarray models for each mapping group and each end-

point were compared to those of the transferred RNA-

Seq models (Figure 5a). All 18 (three mapping groups

by six endpoints) average prediction accuracy pairs

closely locate to the diagonal of the square indicating the

comparable prediction ability of the transferred RNA-Seq

models and the original microarray models (paired t-test P

is 0.718). The comparability is the same in terms of AUC.

Per sample agreement beyond chance between the two

predictions from each pair of microarray and RNA-Seq

models was evaluated with Kappa statistic (Figure 5b). For

the endpoints C_SEX_ALL and D_FAV_All which are sup-

posedly easy to predict, model pairs reached perfect agree-

ment (kappa >0.8); for A_EFS_All and B_OS_All,

moderate (0.4 < kappa <0.6) to substantial agreement (0.6

< kappa <0.8) was achieved; while for the most difficult to

be predicted endpoints E_EFS_HR and F_OS_HR, fair

(0.2 < kappa <0.4) to moderate agreement was reached.

Therefore, per sample agreement is inversely correlated

to the prediction difficulty of the clinical endpoints.

The transferability of signature genes from microarray

to RNA-Seq data was assessed with T-index score [24].

As shown in Table 5, the T-index scores for transferring

Figure 5 A performance comparison of k-nearest neighbors (k-NN) models and their corresponding transferred models. The

comparison is based on the SEQC NB data set. For each of the six binary clinical endpoints and each of the three mapping groups A, B, and C, a

set of 500 k-NN models were developed from microarray training data and used to predict microarray validation samples. The k parameter and

signature genes of each of the 500 microarray models were then used with all RNA-Seq training data for those genes to build an untrained

RNA-Seq model to predict RNA-Seq validation samples. Finally, the average prediction accuracies of the 500 microarray models are plotted against

those of the 500 corresponding RNA-Seq models (a), with the per sample agreement better than chance given by the Kappa statistic as shown

in (b). The transferability of the signature genes from RNA-Seq back to microarray data was conversely calculated. The 500 k-NN models trained from

RNA-Seq data were used to predict RNA-Seq validation samples. Then the k parameter and signature genes of each RNA-Seq model were

used with all microarray training data for those genes to build a microarray model to predict microarray validation samples. The average accuracies of

the 500 RNA-Seq models are compared to those of the 500 corresponding microarray models (c), with the per sample agreement better than chance

given by the Kappa statistic as shown in (d). The six symbols in each panel represent the six binary clinical endpoints with green, blue, and

orange colors denoting mapping groups A, B, and C, respectively. In panels (b) and (d), each symbol denotes the average Kappa statistic for the

500 pairs of k-NNs models; and each error bar shows the 95% confidence interval (CI) for the mean Kappa statistic. Each CI was calculated with

the bootstrap estimation.
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signature genes from microarray to RNA-Seq data mainly

vary according to the clinical endpoints with only modest

variation due to the gene mapping complexity. No signifi-

cant difference was observed among three mapping

groups A, B, and C (one-way ANOVA test P is 0.996; pair-

wise paired t-test P values are 0.271, 0.571, and 0.508 for

A vs. B, A vs. C, and B vs. C, respectively). Thus, the gene

mapping complexity did not affect the transferability of

signature genes from microarray to RNA-Seq data.

To confirm these findings, we also applied nearest

shrunken centroids (NSC) and support vector machine

(SVM) modeling algorithms. Using the same comparison

workflow, the results from NSC and SVM are similar to

those from k-NN (Additional file 6: Figure S6a and S6b,

Additional file 7: Figure S7a and S7b and Additional file 8:

Table S1 and Additional file 9: Table S2). Comparing the

results from different modeling algorithms shows that, for

a specific endpoint, different modeling algorithms might

perform differently and result in different T-index scores.

For instance, the T-index scores of SVM, k-NN, and NSC

models for endpoint ?A_EFS_All? are 0.676, 0.729, and

0.734, respectively; but the performance of the predictive

models developed from microarrays and transferred from

microarrays to RNA-Seq using the same modeling algo-

rithm is consistently comparable.

Signature genes of a RNA-Seq model can be equally

transferred back to microarray data for model

development

To assess the transferability of signature genes of models

developed from RNA-Seq data to microarray data (Figure 1a,

blue line) we again used the FDA SEQC NB data, and

again applied k-NN, NSC, and SVM algorithms. We first

mapped RNA-Seq genes to Agilent array probes and sepa-

rated RNA-Seq genes into A, B, C, and D groups, as pre-

sented in Table 2. For each algorithm and each group of

A, B, and C genes, we used RNA-Seq training samples to

develop 500 trained models through the process shown in

Figure 1c to predict the RNA-Seq validation samples.

Then the parameters and signature genes of each model

were used with all microarray training samples for those

genes to build an untrained microarray model to subse-

quently predict the microarray validation samples. The

prediction performance of the trained RNA-Seq models

was compared to that of the corresponding transferred

microarray models using the same metrics as above

(Table 5, Figure 5c and d, Additional file 6: Figure S6c,

Figure S6d, Additional file 7: Figure S7c, and S7d, and

Additional file 8: Table S1 and Additional file 9: Table S2).

The results show that the performance of transferred un-

trained microarray models is comparable to that of ori-

ginal trained RNA-Seq models. There is no significant

difference between the accuracies of the untrained micro-

array models and the trained RNA-Seq models (paired t-

test P values are 0.356, 0.058, and 0.158 for k-NN, NSC,

and SVM, respectively). Thus, signature genes identified

from RNA-Seq can also be directly transferred back to

microarray data for model development without signifi-

cant loss of predictive accuracy. Again, the cross-platform

gene mapping complexity did not affect the transferability

of RNA-Seq signature genes back to microarray data.

Microarray models can accurately predict samples

profiled with RNA-Seq

To test whether the predictive models trained from micro-

array data can directly predict RNA-Seq-profiled samples,

we conducted the model level evaluation process

(Figure 1b, red line) on gene mappings A and B separately

(the genes in group C were excluded from this analysis

due to the mapping ambiguity). Because microarray log2
intensity data are quite different from RNA-Seq log2
counts, both microarray and RNA-Seq data were z-scored

prior to the modeling process. To prevent information

leakage, z-score transformation was carried out independ-

ently for each sample and within each data set.

We trained 500 k-NN models from z-scored microarray

training data using the approach depicted in Figure 1c and

directly applied the models to predict both microarray

and RNA-Seq validation samples. The performance of the

500 models in predicting microarray samples in terms of

accuracy and AUC was compared to that in predicting

RNA-Seq samples (Figure 6a and Table 6). The average

accuracies of the models in predicting microarray data

are quite close to those in predicting RNA-Seq data

(Figure 6a), indicating that the microarray models can

directly predict RNA-Seq-profiled samples without signifi-

cant loss of prediction performance (paired t-test P is

0.093). The per sample prediction agreement assessed

with the Kappa statistic is inversely correlated to the com-

plexity of the clinical endpoints (Figure 6b). The difference

between T-index scores (Table 6) from gene mappings A

and B is not significant (paired t-test P is 0.106). The re-

sults from NSC algorithm are similar to those from k-NN

(Additional file 10: Figure S8a and S8b and Additional file 11:

Table S3).

When SVM algorithm was applied, the difference be-

tween the model performances in predicting microarray

and RNA-Seq data was quite large (Additional file 12:

Figure S9a and S9b and Additional file 13: Table S4),

particularly for endpoint C_SEX_All and gene mapping

group B (the average accuracy dropped from 0.967 to

0.824). The difference between the average accuracies in

predicting microarray and RNA-Seq data is significant

(paired t-test P is 0.008). Therefore, the transferability of

microarray models to predict RNA-Seq data is dependent

on the choice of modeling algorithms. For algorithms that

are not too sensitive to data values such as k-NN and

NSC, microarray-based models can directly be applied for
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prediction of RNA-Seq-profiled samples; while for data-

value-sensitive algorithms such as SVM, such a direct ap-

plication is challenging.

It is more difficult to use RNA-Seq models to predict

microarray-profiled samples

We next examined the transferability of models developed

from RNA-Seq data back to predict microarray data

(Figure 1b, blue line). A set of 500 k-NN models were

trained from z-scored RNA-Seq training data and used

to predict both RNA-Seq and microarray validation

samples. As shown in Figure 6c and d and Table 6, the

accuracies of the RNA-Seq models developed from map-

ping group B in predicting microarray validation samples

for endpoints A_EFS_All, B_OS_All, C_SEX_All, and

D_FAV_All decreased considerably compared to that in

predicting RNA-Seq-profiled samples; while the models

developed from mapping group A achieved comparable

accuracies in prediction both microarray and RNA-Seq

validation samples. The similar results were observed

with NSC (Additional file 10: Figure S8c and S8d and

Additional file 11: Table S3). Thus, the transferability of

RNA-Seq models back to predict microarray data can be

substantially affected by the lack of cross-platform gene

mapping correspondence.

The performance of the RNA-Seq models dropped

dramatically in predicting microarray-profiled validation

samples when SVM was used, regardless which mapping

group of genes were used to develop RNA-Seq models

(Additional file 12: Figure S9c and S9d and Additional

file 13: Table S4). Clearly, it is more difficult and de-

graded accuracy should be expected when using the

Figure 6 A performance comparison of k-nearest neighbors (k-NN) in predicting microarray and RNA-Seq validation samples. The

comparison is based on the SEQC NB data set. In the comparison, both microarray log2 intensity data and RNA-Seq log2 counts were per sample

z-scored. For each of the six binary clinical endpoints and each of the two mapping groups A and B, a set of 500 k-NN models were developed

from microarray and RNA-Seq training data independently. Each set of k-NN models were then used to predict both microarray and RNA-Seq

validation samples. The average prediction accuracies of the 500 microarray k-NN models in predicting microarray data are plotted against those

in predicting RNA-Seq data (a), with the per sample agreement better than chance evaluated with the Kappa statistic as shown in (b); while the

average accuracies of the 500 RNA-Seq k-NN models in predicting RNA-Seq data are compared to those in predicting microarray data (c), with

the per sample agreement better than chance assessed with the Kappa statistic as shown in (d). The six symbols in each panel represent the six

binary clinical endpoints with green and blue colors denoting mapping groups A and B, respectively. In panels (b) and (d), each symbol denotes

the average Kappa statistic of the 500 pairs of prediction results; and each error bar shows the 95% confidence interval (CI) for the mean Kappa

statistic. Each CI was calculated with the bootstrap estimation.
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SVM algorithm to develop RNA-Seq models to predict

microarray data.

Data transformation is required to use the models

developed from one platform to predict samples profiled

with the other platform

We also evaluated the model level transferability (Figure 1b)

without z-score preprocessing (that is, using log2 intensity

and log2 counts data for microarray and RNA-Seq, respect-

ively). The accuracies of the models in cross-platform pre-

diction dropped dramatically for most endpoints compared

to that in predicting the samples profiled with the same

platform as used for model development (Additional file 14:

Figure S10, Additional file 15: Figure S11, and Additional

file 16: Figure S12). The results suggest that it is essential to

adequately transform both microarray and RNA-Seq data

prior to model development and cross-platform prediction.

The transferability of Cox models from survival analysis

follow the similar patterns as observed from the binary

endpoint prediction analyses

The analyses above only used binary endpoints (A_EFS_All,

B_OS_All, E_EFS_HR, and F_OS_HR) for the prediction

of patient? s survival status. Because survival times were

not considered during modeling process, the analyses may

not be extrapolated to the models in which survival times

were directly modeled. To examine the transferability of

such models and associated signature genes, we applied

Cox proportional hazards survival regression to model

survival times with gene expression data for the SEQC NB

data set and compared the performance of Cox models in

terms of concordance index and P value calculated with

concordance.index and cindex.comp functions from R

package survcomp [26]. The concordance index esti-

mates the probability of concordance between predicted

and observed responses with values of 0.5, 1, and 0 for

Table 6 The performance of k-NN models in predicting microarray and RNA-Seq validation samples based on the SEQC

NB data

Direction End
point

Gene
set

Predicto mg microarray validation data Predicting RNA-Seq validation data T-index

Accuracy AUC Accuracy AUC

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Models developed
from microarray

A* A 0.728 0.659-0.775 0.698 0.633-0.752 0.706 0.606-0.763 0.678 0.596-0.747 0.712

B 0.730 0.655-0.775 0.694 0.619-0.749 0.709 0.640-0.755 0.671 0.610-0.730 0.714

B* A 0.786 0.751-0.815 0.662 0.600-0.719 0.792 0.743-0.831 0.621 0.547-0.738 0.791

B 0.785 0.743-0.821 0.638 0.572-0.708 0.764 0.663-0.815 0.621 0.521-0.737 0.768

C* A 0.988 0.983-0.992 0.988 0.983-0.992 0.990 0.975-0.992 0.990 0.977-0.992 0.990

B 0.982 0.971-0.992 0.983 0.974-0.992 0.984 0.975-0.992 0.985 0.976-0.995 0.984

D* A 0.928 0.860-0.971 0.907 0.831-0.962 0.890 0.790-0.949 0.860 0.728-0.937 0.891

B 0.918 0.816-0.982 0.900 0.781-0.978 0.868 0.746-0.956 0.841 0.736-0.945 0.870

E* A 0.625 0.522-0.711 0.540 0.446-0.637 0.627 0.456-0.733 0.529 0.440-0.636 0.626

B 0.564 0.456-0.661 0.489 0.394-0.573 0.516 0.278-0.711 0.497 0.429-0.575 0.533

F* A 0.516 0.433-0.600 0.515 0.432-0.597 0.532 0.433-0.622 0.521 0.438-0.607 0.525

B 0.493 0.422-0.556 0.497 0.430-0.562 0.512 0.422-0.600 0.495 0.415-0.575 0.503

Models developed
from RNA-Seq

A* A 0.655 0.456-0.759 0.653 0.528-0.752 0.695 0.610-0.747 0.656 0.586-0.714 0.665

B 0.551 0.367-0.719 0.572 0.421-0.705 0.692 0.614-0.747 0.651 0.575-0.710 0.584

B* A 0.778 0.715-0.811 0.571 0.516-0.636 0.776 0.735-0.815 0.641 0.583-0.704 0.777

B 0.740 0.524-0.807 0.643 0.500-0.768 0.775 0.723-0.815 0.629 0.556-0.698 0.746

C* A 0.991 0.979-0.992 0.991 0.981-0.992 0.992 0.992-0.992 0.991 0.992-0.992 0.991

B 0.797 0.797-0.801 0.823 0.822-0.826 0.987 0.979-0.992 0.987 0.981-0.992 0.796

D* A 0.862 0.651-0.956 0.832 0.632-0.945 0.914 0.846-0.956 0.896 0.809-0.946 0.863

B 0.781 0.408-0.941 0.812 0.548-0.937 0.910 0.824-0.956 0.890 0.782-0.946 0.775

E* A 0.538 0.333-0.689 0.546 0.452-0.632 0.606 0.478-0.706 0.526 0.432-0.618 0.560

B 0.607 0.400-0.722 0.502 0.420-0.609 0.593 0.500-0.689 0.511 0.419-0.615 0.603

F* A 0.491 0.411-0.584 0.500 0.421-0.588 0.497 0.405-0.589 0.495 0.401-0.588 0.494

B 0538 0.456-0.600 0.505 0.440-0585 0.492 0.411-0.567 0.502 0.424-0.574 0.516
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random guessing, perfect prediction, and anti-perfect

prediction, respectively [27].

To train a Cox ? s model, the genes in a training set were

first filtered with their median intensities (the median in-

tensity of a gene across the training samples is greater

than the median intensity of all genes across all training

samples) and P values (<0.01) calculated with the function

of concordance.index in R package survcomp [26] and

ranked according to their concordance indices. The signa-

ture genes were then selected by running a leave-one-out

cross-validation process with a one-step forward gene se-

lection approach. The final Cox model was built using all

training samples with the selected signature genes.

To assess gene level transferability, a Cox model was

first trained from a training data set from one platform

through the leave-one-out cross-validation process and

then used to predict the corresponding validation sam-

ples profiled with the same platform. The signature

genes were then used with the training data set from the

other platform to build a Cox model to predict the cor-

responding validation samples. The performance of each

Cox model was assessed with a concordance index with

a P value indicating whether the concordance index is

significantly different from 0.5. The two concordance in-

dices were finally compared with the function of cindex.

comp to test whether the first concordance index is sig-

nificantly greater than the second. As shown in Additional

file 17: Table S5, for the patient cohorts of A_EFS_All and

B_OS_All that are easier to predict, the signature genes of

Cox models can be easily transferred between the two

platforms for Cox model development. But for the high-

risk cohorts (E_EFS_HR and F_OS_HR) that are sup-

posedly more difficult to predict, the transferability is

much lower. The results are consistent with those from

the binary endpoint prediction analyses.

To examine model level transferability, we first did per-

sample z-score transformation for data and then trained a

Cox model using a training set from one platform and

then applied it to separately predict the validation samples

profiled with the two platforms. The performance of the

model in predicting both validation samples was separ-

ately measured with the concordance index and then the

two concordance indices were compared to each other

with cindex.comp. The transferability of Cox models be-

tween microarray and RNA-Seq data sets also shows a

similar pattern to those from the previous binary endpoint

prediction analyses (Additional file 18: Table S6).

Validation of the findings using The Cancer Genome Atlas

(TCGA) acute myeloid leukemia (AML) data

To validate the findings based on the NB data set, we re-

peated the same analysis processes to the TCGA AML

data set which contains 175 Affymetrix HG-U133_plus_2

microarrays and Illumina HiSeq 2000 RNA-Seq assays

from the same set of AML tumor RNA samples (see

Methods and Materials) with two binary (sex and cytogen-

etic risk status) and two continuous (event-free survival

time (EFS) and overall survival time (OS)) endpoints. For

binary endpoint prediction, the three binary modeling al-

gorithms (that is, k-NN, NSC, and SVM) were separately

applied to predict patients? sex and cytogenetic risk status.

While the time to EFS and OS events of patients were

modelled with Cox proportional hazards regression as we

did for the NB data set.

At signature gene level, the untrained RNA-Seq models

built with the signature genes of trained microarray

models show comparable prediction performance ex-

cept for using the mapping group C to predict the sex of

patients (Figure 7a and b and Table 7; Additional file 19:

Figure S13a and S13b; Additional file 20: Figure S14a

and S14b). Using mapping group C, microarray-based

trained models cannot accurately predict the sex end-

point (about 50% accuracy). However, the transferred

RNA-Seq models show much better prediction capabil-

ity (about 73% accuracy). This could be explained by the

more accurate measurements of RNA-Seq. The micro-

array models built with the signature genes of trained

RNA-Seq models consistently show comparable predic-

tion performance compared to that of trained RNA-Seq

models (Figure 7c and d and Table 7, Additional file 19:

Figure S13c and S13d; Additional file 20: Figure S14c

and S14d). For EFS and OS survival time Cox regression

analysis, the original trained models and transferred

models did not show significant difference (Additional

file 21: Table S7, p4 > 0.01) except for using mapping

group C to predict EFS time in which the original trained

microarray models outperformed the transferred RNA-Seq

untrained models (p4 < 0.0018). Therefore, the signature

genes are reciprocally transferable between microarray and

RNA-Seq data.

Using the models developed from one platform to dir-

ectly predict the samples whose expression value obtained

from the other platform, the results were dependent on

several factors, that is, the selection of mapping groups,

the choice of machine learning algorithms, and/or with

or without proper data transformation (Figure 8 and

Table 8, Additional file 22: Figure S15, Additional file 23:

Figure S16, Additional file 24: Figure S17, Additional file 25:

Figure S18, Additional file 26: Figure S19). Specifically, we

found that, using microarray-based models to classify

samples with RNA-Seq based expression data, (1) k-

NN performed well except for mapping group B to

classify patients ? sex (Figure 8a and b), (2) NSC worked

well for both endpoints (sex and cytogenetic risk sta-

tus) and for both mapping groups (A and B) (Additional

file 22: Figure S15a and S15b), however (3) SVM per-

formed well only for cytogenetic risk status prediction
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(Additional file 23: Figure S16a and S16b). Conversely, we

found that more difficult to classify samples with micro-

array data using the models developed with RNA-seq data.

For example, the performance of some models decreased

dramatically (Figure 8c and d and Table 8, Additional

file 22: Figure S15c and S15d, Additional file 23: Figure

S16c and S16d). When using the original expression data

without per sample z-score transformation, the models

developed from one platform cannot accurately predict

the samples with gene expression data obtained from the

other platform (Additional file 24: Figure S17, Additional

file 25: Figure S18 and Additional file 26: Figure S19). The

EFS and OS survival time Cox regression analysis shows

the same trend as from the SEQC NB data (Additional

file 27: Table S8).

In summary, the results from the analysis of the TCGA

AML data are consistent with those from the analysis of

the SEQC NB data.

Discussion
As a part of SEQC project, we used two large clinical

data sets to comprehensively investigate the transferability

of predictive models and associated signature genes de-

rived from microarrays to RNA-Seq data, and reciprocally

Figure 7 A performance comparison of k-nearest neighbors (k-NN) models and their corresponding transferred models based on the

TCGA AML data. For each of the two binary clinical endpoints and each of the three mapping groups A, B, and C, a set of 500 k-NN models

were developed from microarray training data and used to predict microarray validation samples. The signature genes of each of the 500

microarray models were then used with all RNA-Seq training data for those genes to build an untrained RNA-Seq model to predict RNA-Seq

validation samples. Finally, the average prediction accuracies of the 500 microarray models are plotted against those of the 500 corresponding

RNA-Seq models (a), with the per sample agreement better than chance evaluated with the Kappa statistic as shown in (b). The transferability of

the signature genes from RNA-Seq back to microarray data was conversely calculated. The 500 k-NN models trained from RNA-Seq data were

used to predict RNA-Seq validation samples. Then the signature genes of each RNA-Seq model were used with all microarray training data for

those genes to build an untrained k-NN model to predict microarray validation samples. The average accuracies of the 500 RNA-Seq models were

then compared to those of the 500 corresponding microarray models (c), with the per sample agreement better than chance assessed with the

Kappa statistic as shown in (d). The two symbols in each panel represent the two binary clinical endpoints with green, blue, and orange colors

denoting mapping groups A, B, and C, respectively. In panels (b) and (d), each symbol denotes the average Kappa statistic of the 500 pairs of model

predictions; and each error bar shows the 95% confidence interval (CI) for the mean Kappa statistic. Each CI was calculated with the bootstrap estimation.

No significant difference is observed between trained microarrays models and transferred RNA-Seq models (paired t-test P is 0.366) and between the

trained RNA-Seq models and the transferred microarray models (paired t-test P is 0.269).
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Table 7 Performance metrics for the assessment of cross-platform transferability of signature genes of predictive

models based on the TCGA AML data

Algorithm Direction Endpoint Gene
set

Microarray model RNA-Seqmodel T-index

Accuracy AUC Accuracy AUC

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

k-NN Forward Sex A 0.988 0.988-0.988 0.987 0.987-0.987 0.988 0.988-0.988 0.987 0.987-0.987 0.988

B 0.980 0.953-0.988 0.980 0.955-0.987 0.986 0.977-0.988 0.985 0.977-0.987 0.986

C 0.496 0.419-0.57 0.496 0.413-0.579 0.734 0.419-0.988 0.733 0.418-0.987 0.647

Cyto Risk A 0.945 0.907-0.988 0.895 0.805-0.993 0.947 0.872-0.988 0.905 0.794-0.993 0.947

B 0.939 0.872-0.977 0.904 0.745-0.986 0.942 0.884-0.977 0.925 0.825-0.986 0.942

C 0.919 0.848-0.965 0.884 0.767-0.964 0.907 0.872-0.953 0.854 0.776-0.948 0.908

Reverse Sex A 0.988 0.988-0.988 0.987 0.987-0.987 0.988 0.988-0.988 0.987 0.987-0.987 0.988

B 0.508 0.419-0.599 0.501 0.41-0.591 0.506 0.407-0.593 0.508 0.409-0.593 0.507

C 0.977 0.977-0.977 0.977 0.977-0.977 0.988 0.988-0.988 0.987 0.987-0.987 0.977

Cyto Risk A 0.937 0.837-0.988 0.886 0.724-0.993 0.951 0.843-0.988 0.924 0.815-0.993 0.938

B 0.856 0.744-0.919 0.758 0.59-0.888 0.848 0.767-0.907 0.748 0.589-0.893 0.855

C 0.930 0.86-0.965 0.887 0.767-0.979 0.943 0.86-0.988 0.920 0.746-0.993 0.930

NSC Forward Sex A 0.988 0.988-0.988 0.987 0.987-0.987 0.988 0.988-0.988 0.987 0.987-0.987 0.988

B 0.983 0.977-0.988 0.982 0.977-0.987 0.988 0.988-0.988 0.987 0.987-0.987 0.988

C 0.471 0.419-0.547 0.454 0.398-0.531 0.725 0.488-0.988 0.701 0.46-0.987 0.619

Cyto Risk A 0.937 0.907-0.953 0.857 0.75-0.907 0.951 0.919-0.977 0.904 0.836-0.979 0.950

B 0.892 0.837-0.93 0.860 0.707-0.933 0.891 0.872-0.907 0.873 0.801-0.919 0.891

C 0.889 0.849-0.907 0.812 0.666-0.871 0.876 0.86-0.919 0.775 0.625-0.829 0.877

Reverse Sex A 0.988 0.988-0.988 0.987 0.987-0.987 0.988 0.988-0.988 0.987 0.987-0.987 0.988

B 0.526 0.453-0.547 0.487 0.439-0.52 0.504 0.436-0.547 0.481 0.426-0.52 0.515

C 0.988 0.988-0.988 0.987 0.987-0.987 0.988 0.988-0.988 0.987 0.987-0.987 0.988

Cyto Risk A 0.926 0.872-0.977 0.828 0.656-0.986 0.929 0.907-0.977 0.913 0.846-0.986 0.927

B 0.854 0.814-0.895 0.609 0.5-0.743 0.820 0.814-0.837 0.521 0.5-0.562 0.849

C 0.907 0.884-0.925 0.907 0.863-0.954 0.886 0.872-0.942 0.852 0.794-0.964 0.905

SVM Forward Sex A 0.980 0.965-0.988 0.980 0.966-0.987 0.988 0.988-0.988 0.987 0.987-0.987 0.988

B 0.981 0.942-0.988 0.981 0.945-0.987 0.984 0.977-0.988 0.983 0.974-0.987 0.984

C 0.516 0.43-0.593 0.515 0.429-0.599 0.753 0.43-0.988 0.752 0.426-0.987 0.671

Cyto Risk A 0.939 0.895-0.988 0.879 0.774-0.993 0.957 0.895-0.988 0.919 0.774-0.993 0.956

B 0.963 0.919-0.988 0.941 0.829-0.993 0.961 0.93-0.988 0.947 0.868-0.993 0.961

C 0.919 0.884-0.953 0.901 0.832-0.964 0.920 0.86-0.965 0.888 0.736-0.979 0.920

Reverse Sex A 0.981 0.965-0.988 0.980 0.964-0.987 0.988 0.988-0.988 0.987 0.987-0.987 0.981

B 0.493 0.407-0.593 0.489 0.404-0.592 0.497 0.407-0.593 0.497 0.409-0.588 0.495

C 0.982 0.977-0.988 0.982 0.977-0.987 0.988 0.977-0.988 0.987 0.974-0.987 0.983

Cyto Risk A 0.932 0.872-0.977 0.871 0.739-0.962 0.965 0.919-0.988 0.955 0.812-0.993 0.932

B 0.845 0.756-0.919 0.778 0.608-0.895 0.869 0.779-0.942 0.787 0.583-0.925 0.847

C 0.944 0.872-0.977 0.901 0.729-962 0.964 0.907-0.988 0.944 0.846-0.993 0.944

AUC: Area under ROC curve; CI: Confidence interval; 95% CI was calculated from the bootstrap estimation.

A*: A_EFS_All; B*: B_OS_All; C*: C_SEX_All; D*: D_FAV_All; E*: E_EFS_HR; F*: F_OS_HR; AUC: Area under ROC curve; CI: Confidence interval; 95% CI was calculated

from the bootstrap estimation. The upper-right and lower-left regions are for the cross-platform prediction of the models (the training and validation samples

were profiled with different platforms), while the upper-left and lower-right regions are for the intra-platform prediction of the models (both training and validation

samples were profiled with the same platform).
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from RNA-Seq back to microarray data. The study design

is comprehensive. First, since the nature of an endpoint is

the most significant factor to determine the robustness of

a predictive model [28], our study contains eight binary

endpoints and six continuous survival times with varying

degrees of difficulty for prediction (Table 1). Second, we

observed large variation derived from array annotations

and RNA-Seq gene models when mapping genes between

microarray and RNA-Seq (Figures 3b,c,d, and 4). There-

fore, the cross-platform gene mapping complexity was

taken into consideration in the analysis. Third, realizing

the choice of modeling algorithms could affect observa-

tions; three representative classification algorithms

from simple to complicated were selected according to

their mathematical complexity. Last and most import-

antly, the investigation was conducted at both signature

gene (Figure 1a) and model levels (Figure 1b) and the

conclusions were drawn from the prediction of external

validation data sets. With this design, several important

observations were made (Figure 2a,b and c).

We observed that signature genes derived from one

platform can be directly used to build predictive models

using data generated from the other platform. We also

demonstrated that microarray-base predictive models

can directly predict RNA-Seq-profiled samples, but the

reverse process yielded less accuracy. Apparently, the ef-

fect of the cross-platform gene mapping complexity was

minimal to the transferability of signature genes between

the two platforms, but did show influence to a certain

degree at the model level. This could result from the

model ? recalibration ? step (Figure 1d) at signature level

transfer. The ? recalibration? might take care of the cross-

Figure 8 A performance comparison of k-nearest neighbors (k-NN) models in predicting microarray and RNA-Seq validation data based

on the TCGA AML data. In the comparison, both microarray log2 intensity and RNA-Seq log2 count were per sample z-scored. For each of the

two binary clinical endpoints and each of the two mapping groups A and B, a set of 500 k-NN models were developed from microarray and

RNA-Seq training data independently. Each set of k-NN models were then used to predict both microarray and RNA-Seq validation samples. The

average prediction accuracies of the 500 microarray-based models in prediction microarray data were plotted against those in predicting RNA-Seq

data (a), with per sample agreement better than chance assessed with the Kappa statistic as shown in (b); while the average accuracies of the 500

RNA-Seq-based models in predicting RNA-Seq data were compared to those in predicting microarray data (c), with per sample agreement

better than chance evaluated with the Kappa statistic as shown in (d). The two symbols in each panel represent the two binary clinical endpoints with

green and blue colors denoting mapping groups A and B, respectively. In panels (b) and (d), each symbol denotes the average Kappa statistic of 500

pairs of prediction results; and each error bar shows the 95% confidence interval (CI) for the mean Kappa statistic. Each CI was calculated with the

bootstrap estimation.
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platform discordance at absolute gene expression meas-

urement. In addition, neither k-NN nor NSC models

developed from microarray data were detrimentally af-

fected by the cross-platform gene mapping ambiguity in

predicting RNA-Seq-profiled samples. However, both k-

NN and NSC models developed from RNA-Seq data using

mapping group B were unfavorably affected by the cross-

platform gene mapping ambiguity.

The choice of modeling algorithms was also found to

affect the goodness of model level transferability. Be-

cause the SVM algorithm is much more sensitive than

k-NN and NSC to data values, SVM models developed

from one platform in predicting samples profiled with

the other platform suffered large degradation of accuracy

compared to those in predicting samples profiled with

the same platform. Relatively, the models developed using

k-NN and NSC algorithms were much more robust than

SVM.

Because of the systematic differences between micro-

array and RNA-Seq gene expression measurements,

proper data transformation is essential to develop a pre-

dictive model for the cross-platform prediction. Our ana-

lysis demonstrated that per sample z-score transformation

is such an adequate approach, and furthermore has no

leakage of information from validation samples to training

process.

Microarray annotations are subject to constant updating

with changes from RefSeq, GenBank, and Ensembl data-

bases. RNA-Seq gene models also vary with improving

knowledge about the genome and functional elements

[29]. Such changes increase the complexity of cross-

platform gene mappings. Previous studies suggest that the

changes of array annotations can induce variability in

comparisons of different microarray technologies [23,30].

The current study found that array annotations and RNA-

Seq gene models can cause variation too when comparing

Table 8 The performance of models developed from one-platform in predicting microarray and RNA-Seq validation

samples based on the TCGA AML data

Algorithm Direction End
point

Gene
set

Microarray data RNA-Seq data T-index

Accuracy AUC Accuracy AUC

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

k-NN Forward Sex A 0.988 0.988-0.988 0.987 0.987-0.987 0.977 0.977-0.977 0.977 0.977-0.977 0.977

B 0.978 0.942-0.988 0.978 0.945-0.987 0.869 0.523-0.988 0.857 0.481-0.987 0.851

Cyto Risk A 0.939 0.895-0.988 0.884 0.805-0.993 0.916 0.837-0.977 0.825 0.68-0.979 0.917

B 0.931 0.837-0.977 0.890 0.69-0.986 0.914 0.837-0.965 0.903 0.736-0.979 0.914

Reverse Sex A 0.895 0.895-0.895 0.885 0.885-0.885 0.988 0.988-0.988 0.987 0.987-0.987 0.896

B 0.512 0.419-0.593 0.503 0.426-0.58 0.508 0.407-0.593 0.509 0.409-0.6 0.510

Cyto Risk A 0.920 0.866-0.988 0.864 0.736-0.993 0.949 0.837-0.988 0.916 0.822-0.993 0.921

B 0.447 0.186-0.849 0.609 0.5-0.802 0.850 0.767-0.919 0.747 0.587-0.896 0.425

NSC Forward Sex A 0.988 0.988-0.988 0.987 0.987-0.987 0.978 0.977-0.988 0.978 0.977-0.987 0.978

B 0.982 0.977-0.988 0.981 0.977-0.987 0.988 0.988-0.988 0.987 0.987-0.987 0.988

Cyto Risk A 0.931 0.872-0.953 0.840 0.656-0.899 0.927 0.86-0.977 0.828 0.649-0.962 0.927

B 0.884 0.826-0.919 0.843 0.676-0.923 0.888 0.872-0.892 0.885 0.815-0.912 0.888

Reverse

Sex A 0.977 0.977-0.977 0.974 0.974-0.974 0.988 0.988-0.988 0.987 0.987-0.987 0.977

B 0.523 0.442-0.558 0.502 0.472-0.553 0.508 0.442-0.558 0.486 0.438-0.539 0.516

Cyto Risk A 0.906 0.837-0.965 0.788 0.635-0.947 0.924 0.895-0.953 0.893 0.839-0.968 0.907

B 0.663 0.198-0.919 0.704 0.5-0.854 0.819 0.814-0.837 0.520 0.5-0.579 0.653

SVM Forward Sex A 0.984 0.977-0.988 0.983 0.977-0.987 0.713 0.453-0.988 0.737 0.5-0.987 0.641

B 0.981 0.93-0.988 0.981 0.934-0.987 0.817 0.488-0.988 0.799 0.45-0.987 0.782

Cyto Risk A 0.925 0.86-0.965 0.849 0.736-0.93 0.909 0.837-0.988 0.787 0.611-0.993 0.910

B 0.950 0.831-0.977 0.916 0.66-0.986 0.935 0.849-0.977 0.924 0.704-0.986 0.935

Reverse Sex A 0.603 0.547-0.698 0.563 0.5-0.667 0.986 0.977-0.988 0.985 0.974-0.987 0.587

B 0.510 0.453-0.547 0.500 0.458-0.549 0.500 0.407-0.599 0.499 0.401-0.6 0.505

Cyto Risk A 0.897 0.826-0.977 0.777 0.562-0.979 0.961 0.924-0.988 0.945 0.837-0.993 0.896

B 0.789 0.535-0.814 0.487 0.339-0.5 0.874 0.767-0942 0.798 0.61-0.94 0.793

AUC: Area under ROC curve; CI: Confidence interval; 95% CI was calculated from the bootstrap estimation.
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gene expression levels from microarrays and RNA-Seq.

The finding might provide a partial explanation as to why

the overlap of differentially expressed genes from microar-

rays and RNA-Seq is quite low [20].

We learned from the FDA-led second phase of Micro-

Array Quality Control (MAQC-II) study that the prediction

performance of microarray gene expression profile-based

models is mainly dependent on endpoints [28]. The

results of this study indicate that the transferability of

predictive models and associated signature genes be-

tween microarray and RNA-Seq data also depend on the

complexity of clinical endpoints. For example, endpoints

C_SEX_All (sex of patients) and D_FAV_All (unfavor-

able and favorable patients for extreme disease course)

of the SEQC NB data set and SEX and Cyto genetic risk

of the TCGA AML Data set were the easiest to predict

and showed the highest transferability; while E_EFS_HR

(event-free survival for high-risk patients) and F_OS_HR

(overall survival for high-risk patients) of the SEQC NB

data set and EFS and OS of the TCGA AML data set were

the most difficult to predict and exhibited the lowest

transferability. Even though the complexity of cross-

platform gene mappings can cause large variation in ab-

solute gene-expression values between microarrays and

RNA-Seq, it had minimal effect on the observed trans-

ferability of signature genes. In addition, the prediction

performance of models developed using three distinct

gene mappings was very similar to each other, indicating

that there was a lot of redundant information in both

microarray and RNA-Seq data and that only a fraction

of all the available data is necessary to derive models

with good cross-platform predictions.

Conclusions
The analyses demonstrated that microarray models can

directly predict RNA-Seq-profiled samples if the gene-

expression data were z-score preprocessed before model-

ing and prediction and that the signature genes of a model

developed from one platform can be directly transferred

to the other platform for model development. However, it

is difficult to directly use the models developed from

RNA-Seq data to predict microarray-profiled samples.

Our study offers a viable option for the proper use of leg-

acy microarray data, microarray-based predictive models

and biomarkers in the RNA-Seq era and demonstrated a

means to utilize RNA-Seq-based signature genes in micro-

array data analysis.

Methods and materials
Neuroblastoma (NB) data set from the FDA SEquencing

Quality Control (SEQC) project

The FDA SEQC NB data set contains 498 NB samples

that were independently profiled with Agilent customized

4 ? 44 K oligonucleotide microarrays and Illumina HiSeq

2000 RNA-Seq. In the FDA SEQC NB study, six binary

clinically relevant endpoints and four continuous survival

times were defined among the 498 NB samples (Table 1).

For each clinical endpoint, samples were assigned to either

a training set or a validation set, with varying numbers of

positive and negative samples in each set (Table 1). De-

tailed information on the NB samples, clinical parameters,

microarrays and RNA-Seq assays were described else-

where. The data set can be obtained from GEO database

with series accession numbers GSE49710 and GSE62564

for microarray and RNA-Seq data, respectively.

Acute myeloid leukemia (AML) data from The Cancer

Genome Atlas (TCGA)

The TCGA AML [17] data set includes 175 paired Affy-

metrix HG-U133_plus_2 microarrays and Illumina RNA-

Seq assays after cleaning up the cytogenetic risk endpoint.

The microarray and RNA-Seq data were generated from

the same set of AML tumor RNA samples. The micro-

array MAS5 normalized data and RNA-Seq RPKM data

were downloaded from [31,32], respectively. The clinical

information of patients was downloaded from [31].

We used patients ? sex and cytogenetic risk as two bin-

ary endpoints for binary endpoint prediction analysis

and used event-free survival (EFS) and overall survival

(OS) times as two continuous responses with Cox pro-

portional hazards regression to predict patients ? poten-
tial survival risk based on gene expression data. The

training and validation sets were constructed as follow:

(1) since the original cytogenetic risk includes good,

intermediate, and poor three levels, we combined the

intermediate and poor levels together to form a new

? poor ? level and used with the original good level for bin-

ary endpoint prediction analysis; (2) Then randomly split

the patients in the two cytogenetic risk groups into a

training set (17 good +51 intermediate +21 poor) and a

validation set (16 good +50 intermediate +20 poor). The

same splitting was also used for the endpoint sex. The

training set includes 43 female and 46 male patients,

while the validation set contains 39 female and 47 male

patients.

NCTR rat toxicogenomics data set

The NCTR rat toxicogenomics data set includes eight

microarray and eight RNA-Seq assays. The microarray

and RNA-Seq data were generated from exactly the

same set of RNA samples isolated from the kidneys of

four aristolochic acid-treated and four control rats [20].

The microarray assays were done in the MicroArray

Quality Control phase I (MAQC-I) validation study [21]

with Affymetrix Rat_230_2 arrays and the RNA-Seq data

were generated in another study [20] with the Illumina

GA II platform and single-end 36 base pairs length

protocol. The microarray data were previously processed
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using MAS5 [21]. The RNA-Seq reads were aligned

against UCSC Rat genome rn4 [33] using Novoalign

v2.08.1 [34] and gene counts were quantified and nor-

malized with the P2 pipeline [22]. The microarray and

RNA-Seq data can be downloaded from GEO database

with series accession numbers GSE5350 and GSE21210,

respectively.

FDA SEquencing Quality Control (SEQC) main study data

and MicroArray Quality Control phase I (MAQC-I) main

study data

Microarray data came from the FDA MAQC main study

[23] and consisted of data from Affymetrix HG-

U133_Plus_2 microarrays. The RNA-Seq data were

from the FDA SEQC main study [16] using the Illumina

HiSeq 2000 platform. The microarray data were generated

by Affymetrix site 1 in the MAQC study, while the RNA-

Seq data were generated by site BGI in the SEQC study.

Both sets of data were generated from the same set of four

human RNA samples, that is, Universal Human Reference

RNA (UHRR, Agilent), Human Brain Reference RNA

(HBRR, Life Technologies), and mixtures C and D of

UHRR and HBRR samples in a ratio of 3:1 and 1:3, re-

spectively. The HG-U133_Plus_2 arrays were normalized

with MAS5 algorithm. The RNA-Seq data were generated

with Illumina HiSeq 2000 using the paired-end 100 bp

TruSeq v3 RNA-Seq protocol and were analyzed with the

P2 pipeline [22] using UCSC human genome hg19 as ref-

erence. Gene counts were normalized into reads per mil-

lion (RPM) with a global scaling approach [35]. The

microarray and RNA-Seq data can be obtained from GEO

database with series accession numbers GSE5350 and

GSE47774, respectively.

FDA SEQC rat toxicogenomics data

The SEQC rat toxicogenomics data contains 62 rat liver

RNA samples. Each individual RNA sample was separ-

ately assayed with Affymetrix Rat_230_2 arrays and Illu-

mina HiScanSQ/HiSeq 2000 RNA-Seq. The microarray

data were generated and normalized in the National

Toxicology Program DrugMatrix Database. Details about

the data generation and normalization can be found

elsewhere [22]. Here, we directly downloaded MAS5

normalized data from the DrugMatrix ftp site [36]. For

RNA-Seq analysis, the paired-end 100 base pair Illumina

TruSeq RNA-Seq protocol was used. The RNA-Seq reads

were analyzed with six different bioinformatics pipelines

with different references used by six independent data

analysis teams (Table 4), that is, P1 (NCBI magic), P2

(Novoalign with RefSeq gene models), P3 (Bwa + RefSeq

RNAs), P4 (Tophat + HTSeq with RefSeq gene models),

P5 (Bowtie + RSEM with Ensembl gene models), and

P6 (Tophat + cufflinks de novo assembly). Details

about RNA-Seq reads generation, alignment, and gene

counting can be found elsewhere [22]. The microarray

and RNA-Seq data can be downloaded from GEO

database with series accession number GSE47875 and

GSE55347, respectively.

Cross-platform gene mapping between microarray and

RNA-Seq

The method used for cross-platform gene mapping be-

tween microarray probes/probe sets and RNA-Seq genes

is depicted in Figure 3a. The workflow was implemented

in a software tool that can be obtained upon request. Two

mapping methods, public gene ID mapping and genome

location mapping, were implemented in the software tool.

To use both approaches, the array probes/probe sets

annotation information for individual microarray is re-

quired. For Affymetrix arrays, annotation files, usually

in CSV format, are available at the Affymetrix web site

[37]. Information for RNA-Seq genes can be in one of two

formats: (1) a gene ID list file containing one of the fol-

lowing public gene IDs: RefSeq transcript ID, gene symbol,

Ensembl gene ID, or Entrez gene ID; or (2) a GTF/GFF file

generated by RNA-Seq pipelines during de novo assembly

or used by RNA-Seq pipelines for quantification of gene

expression.

To map by one of the four types of public gene IDs,

each array probe/probe set was examined by comparing

the gene ID or ID list in the corresponding array type

annotation file to all RNA-Seq genes. In order to map

with a genome location mapping approach, the coordi-

nates in the ?Alignments? column of array type annotation

files were used to calculate the overlap between each

microarray probe set and all exons of each RNA-Seq gene.

A microarray probe set was considered to be mapped to a

RNA-Seq gene if the length of the overlap between the co-

ordinates specified in the annotation file and an exon of

an RNA-Seq gene was greater than 40 base pairs, or if it

overlapped with at least two exons of the RNA-Seq gene.

After mapping, both microarray probes/probe sets and

RNA-Seq genes were separately classified into four differ-

ent groups: A, B, C, and D (Table 2).

Microarray gene annotation files

The Agilent customized 4 ? 44 K oligonucleotide micro-

array annotation file was obtained from the GEO database

with series accession number GSE49710.

The microarray probe set annotation files for Rat230_2

and HG-U133_Plus_2 were downloaded from the Affymetrix

web site [37]. Both files were created on 9 June 2011 by using

the Netaffx? Annotation software. The HG-U133_Plus_2

and Rat230_2 array types were annotated with human

genome UCSC version hg19 (or NCBI GRCh37) and rat

genome UCSC version rn4, respectively. Other refer-

ence databases used for both array types for annotation
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included Ensembl version 60, GenBank version 180, and

RefSeq release 41.

T-index for assessing model transferability

We used the T-index [24] score to measure the transferabil-

ity of predictive models and signature genes. The T-index

score has a value between 0 and 1. A larger T-index score

means better transferability across platforms and a T-index

score less than 0.5 indicates that the transferability is due

to chance. The T-index sxcore was calculated according to

formula (1):
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A ?

1

N

X

N

k ? 1

P
A

k
1−

1
N

X

N

k ? 1

P
A

k
−P

B

k

� �

e−s:d:

2

6

6

6

6

4

3

7

7

7

7

5

? 1?

where T
A is a metric for estimating the transferability

of the models developed from platform A to the models

for platform B. N is the total number of models (500 in

this study). P
A

k
and P

B

k
are prediction accuracies of the

models developed from platform A and B, respectively.

s.d. is the standard deviation of (PA

k
−P

B

k
).

RNA-Seq pipelines and gene models

Table 4 lists the RNA-Seq pipelines and gene models

used for each RNA-Seq data set used in the study.

Data availability

The SEQC NB microarray gene expression data and

RNA-Seq log2RPM used in this study can be downloaded

from the GEO database with series accession number

GSE49710 and GSE62564, respectively. The TCGA AML

clinical information, microarray and RNA-Seq data can be

separately downloaded using links https://tcga-data.nci.

nih.gov/docs/publications/laml_2012/clinical_patient_laml.tsv,

https://tcga-data.nci.nih.gov/docs/publications/laml_2012/

HG-U133_Plus_2.Level_2.tgz and https://tcga-data.nci.

nih.gov/docs/publications/laml_2012/laml.rnaseq.179_v1.0_

gaf2.0_rpkm_matrix.txt.tcgaID.txt.gz. The NCTR rat toxi-

cogenomics microarray and RNA-Seq data can be ob-

tained with GEO series accession numbers GSE5350 and

GSE21210, respectively. The MAQC-I main study and the

SEQC main study data can be downloaded from GEO

database with series accession numbers GSE5350 and

GSE47774, respectively. The SEQC rat toxicogenomics

microarray and RNA-Seq data have been deposited in

GEO database under series accession numbers GSE47875

and GSE55347, respectively.

Additional files

Additional file 1: Figure S1. Comparison of the number of samples

profiled by expression microarray and RNA-Seq in the Gene Expression

Omnibus (GEO) database. The numbers of samples for expression profiling

by microarray or by high throughput sequencing (RNA-Seq) were collected

from the GEO database on 28 April 2014. In the GEO database, the start

dates for expression microarray and RNA-Seq data accumulation are 2001

and 2006, respectively. Each bar (blue or red) represents the number of

samples for expression profiling cumulated in the GEO database since the

start date (2001 and 2006 for microarray and RNA-Seq, respectively). The

dashed blue and red lines are the trend lines fitted with the ?Polynomial? and
?Power? options, respectively, in Excel. The bars after 2013 are the projections

of the trend lines fitted with current the GEO data.

Additional file 2: Figure S2. The consistency of Affymetrix microarray

and RNA-Seq gene expression levels for MAQC reference RNA samples.

The intensities of Affymetrix microarray probe sets in three mapping

groups A, B, and C are separately compared to the corresponding RNA-Seq

gene counts in panels (a), (b), and (c) for one of the four MicroArray Quality

Control (MAQC) human RNA samples. The mappings from microarray probe

sets to RNA-Seq genes are based on the genome location mapping approach.

The microarray data are from MAQC-I Affymetrix HG-U133_Plus_2 arrays with

MAS5-normalized probe set intensities, and the RNA-Seq reads are from the

FDA SEquencing Quality Control (SEQC) Illumina HiSeq 2000 with gene counts

from the P2 pipeline (Novoalign with RefSeq human gene models).

Additional file 3: Figure S3. The consistency of Affymetrix HG-

U133_Plus_2 microarray and RNA-Seq gene expression levels for the acute

myeloid leukemia (AML) RNA samples. The intensities of Affymetrix array probe

sets in three mapping groups A, B, and C are separately compared to the

corresponding RNA-Seq gene counts in panels (a), (b), and (c) for one of the

175 acute myeloid leukemia (AML) RNA samples from The Cancer Genome

Atlas (TCGA) acute myeloid leukemia study. The microarray data are MAS5

normalized and the RNA-Seq data are scaled as RPKM. The mappings from array

probe sets to RNA-Seq genes are based on the gene ID mapping approach.

Additional file 4: Figure S4. The consistency of Agilent microarray and

RNA-Seq gene expression levels for human RNA samples. The intensities

of Agilent array probes in three mapping groups A, B, and C are separately

compared to the corresponding RNA-Seq gene counts in panels (a), (b),

and (c) for one of the 498 neuroblastoma RNA samples from the FDA

SEquencing Quality Control (SEQC) project. The mappings from Agilent

probes to RNA-Seq genes are based on the gene ID mapping approach.

The microarray data are from Agilent customized 4 ? 44 K oligonucleotide

arrays, and RNA-Seq reads are from Illumina HiSeq 2000 with gene counts

from the P2 pipeline (Novoalign with RefSeq human gene models).

Additional file 5: Figure S5. The consistency of microarray gene

expression levels and six sets of RNA-Seq gene counts derived from the

same set of RNA-Seq raw data but using a diversity of RNA-Seq data

analysis approaches. The MAS5 normalized microarray gene expression

levels of mapping groups A, B, and C are plotted against the corresponding

RNA-Seq measurements generated by six independent data analysis

teams with a variety of bioinformatics pipelines and references, that

is, (a) P1 (NCBI Magic), (b) P2 (Novoalign with RefSeq rat gene models),

(c) P3 (BWA+RefSeq Rat RNAs), (d) P4 (Tophat +HTSeq with RefSeq rat gene

models), (e) P5 (Bowtie + RSEM with Ensembl rat gene models), and (f) P6

(Tophat + Cufflinks de novo assembly). The mappings from microarrays to P1, P2,

P3, and P4 gene sets are based on the gene ID mapping approach, while to P5

and P6 gene sets on the genome location mapping. The data set containing 62

rat liver RNAs is from sample profiling in the FDA SEquencing Quality Control

toxicogenomics study with separate assays for each individual RNA sample

from Affymetrix Rat_230_2 arrays and Illumina HiScanSQ/HiSeq 2000

RNA-Seq. In each of the six subpanels, gene expression measurements

for mapping groups A, B, and C from microarrays are plotted against

those from RNA-Seq in scatter plots (1), (2), and (3), respectively.

Additional file 6: Figure S6. A performance comparison of nearest

shrunken centroids (NSC) models and their corresponding transferred

models based on the SEQC NB data. For each of the six binary clinical

endpoints and each of the three mapping groups A, B, and C, a set of

500 NSC models were developed from microarray training data and used

to predict microarray validation samples. The signature genes of each of
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the 500 microarray models were then used with all RNA-Seq training data

for those genes to build an untrained RNA-Seq model to predict RNA-Seq

validation samples. Finally, the average prediction accuracies of the 500

microarray models are plotted against those of the 500 corresponding

RNA-Seq models (a), with the per sample agreement better than chance

evaluated with the Kappa statistic as shown in (b). The transferability of

the signature genes from RNA-Seq back to microarray data was conversely

calculated. The 500 NSC models trained from RNA-Seq data were used

to predict RNA-Seq validation samples. Then the signature genes of

each RNA-Seq model were used with all microarray training data for

those genes to build an untrained NSC model to predict microarray

validation samples. The average accuracies of the 500 RNA-Seq models

were then compared to those of the 500 corresponding microarray

models (c), with the per sample agreement better than chance assessed

with the Kappa statistic as shown in (d). The six symbols in each

panel represent the six binary clinical endpoints with green, blue,

and orange colors denoting mapping groups A, B, and C, respectively.

In panels (b) and (d), each symbol denotes the average Kappa statistic

of the 500 pairs of model predictions; and each error bar shows the

95% confidence interval (CI) for the mean Kappa statistic. Each CI

was calculated with the bootstrap estimation. No significant difference

is observed between trained microarrays models and transferred

RNA-Seq models (paired t-test P is 0.841) and between the trained

RNA-Seq models and the transferred microarray models (paired t-test

P is 0.058).

Additional file 7: Figure S7. A performance comparison of support

vector machine (SVM) models and their corresponding transferred

models based on the SEQC NB data. For each of the six binary clinical

endpoints and each of the three mapping groups A, B, and C, a set of

500 SVM models were developed from microarray training data and used

to predict microarray validation samples. The signature genes of each of

the 500 models were then used with all RNA-Seq training data for those

genes to build a RNA-Seq model to predict RNA-Seq validation samples.

Finally, the average prediction accuracies of the 500 microarray models

are plotted against those of the 500 corresponding RNA-Seq models (a),

with the per sample agreement better than chance evaluated with the

Kappa statistic as shown in (b). The transferability of the signature genes

from RNA-Seq back to microarray data was conversely computed. The

500 SVM models trained from RNA-Seq data were used to predict

RNA-Seq validation samples. Then the signature genes of each RNA-Seq

model were used with all microarray training data for those genes to

build a microarray model to predict microarray validation samples. The

average accuracies of the 500 RNA-Seq models were then compared to

those of the 500 corresponding microarray models (c), with the per

sample agreement better than chance assessed with the Kappa statistic

as shown in (d). The six symbols in each panel represent the six binary

clinical endpoints with green, blue, and orange colors denoting mapping

groups A, B, and C, respectively. In panels (b) and (d), each symbol

denotes the average Kappa statistic of the 500 pairs of models; and each

error bar shows the 95% confidence interval (CI) for the mean Kappa statistic.

Each CI was calculated with the bootstrap estimation. No significant

difference is observed between trained microarray models and transferred

untrained RNA-Seq models (paired t-test P is 0.557) and between

trained RNA-Seq models and transferred untrained microarray models

(paired t-test P is 0.158).

Additional file 8: Table S1. Performance metrics for the assessment of

cross-platform transferability of signature genes of NSC models based on

the SEQC NB data.

Additional file 9: Table S2. Performance metrics for the assessment of

cross-platform transferability of signature genes of SVM models based on

the SEQC NB data.

Additional file 10: Figure S8. A performance comparison of nearest

shrunken centroids (NSC) models in predicting microarray and RNA-Seq

validation data based on the SEQC NB data. In the comparison, both

microarray log2 intensity and RNA-Seq log2 count were per sample

z-scored. For each of the six binary clinical endpoints and each of the

two mapping groups A and B, a set of 500 NSC models were developed

from microarray and RNA-Seq training data independently. Each set of NCS

models were then used to predict both microarray and RNA-Seq validation

samples. The average prediction accuracies of the 500 microarray-based

models in prediction microarray data were plotted against those in predicting

RNA-Seq data (a), with per sample agreement better than chance assessed

with the Kappa statistic as shown in (b); while the average accuracies of the

500 RNA-Seq-based models in predicting RNA-Seq data were compared to

those in predicting microarray data (c), with per sample agreement better

than chance evaluated with the Kappa statistic as shown in (d). The six symbols

in each panel represent the six binary clinical endpoints with green and blue

colors denoting mapping groups A and B, respectively. In panels (b) and (d),

each symbol denotes the average Kappa statistic of 500 pairs of prediction

results; and each error bar shows the 95% confidence interval (CI) for the mean

Kappa statistic. Each CI was calculated with the bootstrap estimation.

Additional file 11: Table S3. The performance of NSC models in

predicting microarray and RNA-Seq validation samples based on the

SEQC NB data.

Additional file 12: Figure S9. A performance comparison of support

vector machine (SVM) models in predicting microarray and RNA-Seq validation

data based on the SEQC NB data. In the comparison, both microarray log2

intensity and RNA-Seq log2 count were per sample z-score transformed. For

each of the six binary clinical endpoints and each of the two mapping groups

A and B, a set of 500 SVM models were developed from microarray and RNA-

Seq training data independently. Each set of models were then used to

predict both microarray and RNA-Seq validation samples. The average

prediction accuracies of the 500 microarray-based models in prediction

microarray data were plotted against those in predicting RNA-Seq data

(a), with per sample agreement better than chance assessed with the

Kappa statistic as shown in (b); while the average accuracies of the 500

RNA-Seq-based models in predicting RNA-Seq data were compared to

those in predicting microarray data (c), with per sample agreement

evaluated with the Kappa statistic as shown in (d). The six symbols in

each panel represent the six binary clinical endpoints with green and

blue colors denoting mapping groups A and B, respectively. In panels

(b) and (d), each symbol denotes the average Kappa statistic of 500

pairs of prediction results; and each error bar shows the 95% confidence

interval (CI) for the mean Kappa statistic. Each CI was calculated with

the bootstrap estimation.

Additional file 13: Table S4. The performance of SVM models in

predicting microarray and RNA-Seq validation samples based on the

SEQC NB data.

Additional file 14: Figure S10. A performance comparison of k-nearest

neighbors (k-NN) models in predicting microarray and RNA-Seq validation

samples, based on the SEQC NB Data without per sample z-score

transformation. In the comparison, microarray and RNA-Seq data were

log2 intensity data and log2 counts, respectively. For each of the six

binary clinical endpoints and each of the two mapping groups A and

B, a set of 500 k-NN models were developed from microarray and

RNA-Seq training data independently. Each set of k-NNs models were

then used to predict both microarray and RNA-Seq validation samples.

The average prediction accuracies of the 500 microarray-based models

in prediction microarray data were plotted against those in predicting

RNA-Seq data (a), with per sample agreement better than chance

assessed with the Kappa statistic as shown in (b); while the average

accuracies of the 500 RNA-Seq-based models in predicting RNA-Seq

data were compared to those in predicting microarray data (c), with

per sample agreement better than chance evaluated with the Kappa

statistic as shown in (d). The six symbols in each panel represent the

six binary clinical endpoints with green and blue colors denoting

mapping groups A and B, respectively. In panels (b) and (d), each symbol

denotes the average Kappa statistic of 500 pairs of prediction results; and

each error bar shows the 95% confidence interval (CI) for the mean Kappa

statistic. Each CI was calculated with the bootstrap estimation.

Additional file 15: Figure S11. A performance comparison of nearest

shrunken centroids (NSC) models in predicting microarray and RNA-Seq

validation samples, based on the SEQC NB Data without per sample

z-score transformation. In the comparison, microarray and RNA-Seq data

were log2 intensity data and log2 counts, respectively. For each of the six

binary clinical endpoints and each of the two mapping groups A and B,

a set of 500 NSC models were developed from microarray and RNA-Seq

training data independently. Each set of NCS models were then used to
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predict both microarray and RNA-Seq validation samples. The average

prediction accuracies of the 500 microarray-based models in prediction

microarray data were plotted against those in predicting RNA-Seq data

(a), with per sample agreement better than chance assessed with the

Kappa statistic as shown in (b); while the average accuracies of the 500 RNA-

Seq-based models in predicting RNA-Seq data were compared to those in

predicting microarray data (c), with per sample agreement better than

chance evaluated with the Kappa statistic as shown in (d). The six symbols in

each panel represent the six binary clinical endpoints with green and blue

colors denoting mapping groups A and B, respectively. In panels (b) and (d),

each symbol denotes the average Kappa statistic of 500 pairs of prediction

results; and each error bar shows the 95% confidence interval (CI) for the

mean Kappa statistic. Each CI was calculated with the bootstrap estimation.

Additional file 16: Figure S12. A performance comparison of support

vector machine (SVM) models in predicting microarray and RNA-Seq

validation samples, based on the SEQC NB Data without per sample

z-score transformation. In the comparison, microarray and RNA-Seq data

were log2 intensity data and log2 counts, respectively. For each of the six

binary clinical endpoints and each of the two mapping groups A and B,

a set of 500 SVM models were developed from microarray and RNA-Seq

training data independently. Each set of models were then used to predict

both microarray and RNA-Seq validation samples. The average prediction

accuracies of the 500 microarray-based models in prediction microarray data

were plotted against those in predicting RNA-Seq data (a), with per sample

agreement better than chance assessed with the Kappa statistic as shown

in (b); while the average accuracies of the 500 RNA-Seq-based models in

predicting RNA-Seq data were compared to those in predicting microarray

data (c), with per sample agreement better than chance evaluated with the

Kappa statistic as shown in (d). The six symbols in each panel represent the

six binary clinical endpoints with green and blue colors denoting mapping

groups A and B, respectively. In panels (b) and (d), each symbol denotes the

average Kappa statistic of 500 pairs of prediction results; and each error bar

shows the 95% confidence interval (CI) for the mean Kappa statistic. Each CI

was calculated with the bootstrap estimation.

Additional file 17: Table S5. Concordance indices and P values for the

assessment of cross-platform transferability of signature genes of Cox

models based on the SEQC NB data.

Additional file 18: Table S6. The performance of Cox proportional

hazards models developed from one-platform in predicting microarray

and RNA-Seq validation samples based on the SEQC NB data.

Additional file 19: Figure S13. A performance comparison of nearest

shrunken centroids (NSC) models and their corresponding transferred

models based on the TCGA AML data. For each of the two binary clinical

endpoints and each of the three mapping groups A, B, and C, a set of

500 NSC models were developed from microarray training data and used

to predict microarray validation samples. The signature genes of each of

the 500 microarray models were then used with all RNA-Seq training data

for those genes to build an untrained RNA-Seq model to predict

RNA-Seq validation samples. Finally, the average prediction accuracies of the

500 microarray models are plotted against those of the 500 corresponding

RNA-Seq models (a), with the per sample agreement better than chance

evaluated with the Kappa statistic as shown in (b). The transferability of the

signature genes from RNA-Seq back to microarray data was conversely

calculated. The 500 NSC models trained from RNA-Seq data were used to

predict RNA-Seq validation samples. Then the signature genes of each

RNA-Seq model were used with all microarray training data for those genes

to build an untrained NSC model to predict microarray validation samples.

The average accuracies of the 500 RNA-Seq models were then compared to

those of the 500 corresponding microarray models (c), with the per sample

agreement better than chance assessed with the Kappa statistic as shown

in (d). The two symbols in each panel represent the two binary clinical

endpoints with green, blue, and orange colors denoting mapping groups A,

B, and C, respectively. In panels (b) and (d), each symbol denotes the average

Kappa statistic of the 500 pairs of model predictions; and each error bar

shows the 95% confidence interval (CI) for the mean Kappa statistic. Each CI

was calculated with the bootstrap estimation. No significant difference is

observed between trained microarrays models and transferred RNA-Seq

models (paired t-test P is 0.354) and between the trained RNA-Seq models

and the transferred microarray models (paired t-test P is 0.106).

Additional file 20: Figure S14. A performance comparison of support

vector machine (SVM) models and their corresponding transferred

models based on the TCGA AML data. For each of the two binary clinical

endpoints and each of the three mapping groups A, B, and C, a set of

500 SVM models were developed from microarray training data and used

to predict microarray validation samples. The signature genes of each of

the 500 models were then used with all RNA-Seq training data for those

genes to build a RNA-Seq model to predict RNA-Seq validation samples.

Finally, the average prediction accuracies of the 500 microarray models

are plotted against those of the 500 corresponding RNA-Seq models (a),

with the per sample agreement better than chance evaluated with the

Kappa statistic as shown in (b). The transferability of the signature genes

from RNA-Seq back to microarray data was conversely computed. The

500 SVM models trained from RNA-Seq data were used to predict

RNA-Seq validation samples. Then the signature genes of each RNA-Seq

model were used with all microarray training data for those genes to

build a microarray model to predict microarray validation samples. The

average accuracies of the 500 RNA-Seq models were then compared to

those of the 500 corresponding microarray models (c), with the per

sample agreement better than chance assessed with the Kappa statistic

as shown in (d). The two symbols in each panel represent the two binary

clinical endpoints with green, blue, and orange colors denoting mapping

groups A, B, and C, respectively. In panels (b) and (d), each symbol

denotes the average Kappa statistic of the 500 pairs of models; and each

error bar shows the 95% confidence interval (CI) for the mean Kappa statistic.

Each CI was calculated with the bootstrap estimation. No significant difference

is observed between trained microarray models and transferred untrained

RNA-Seq models (paired t-test P is 0.305) and between trained RNA-Seq

models and transferred untrained microarray models (paired t-test

P is 0.022).

Additional file 21: Table S7. Concordance indices and p values for the

assessment of cross-platform transferability of signature genes of Cox

models based on the TCGA AML data.

Additional file 22: Figure S15. A performance comparison of nearest

shrunken centroids (NSC) models in predicting microarray and RNA-Seq

validation data based on the TCGA AML data. In the comparison, both

microarray log2 intensity and RNA-Seq log2 count were per sample

z-scored. For each of the two clinical binary endpoints and each of the

two mapping groups A and B, a set of 500 NSC models were developed

from microarray and RNA-Seq training data independently. Each set of

NCS models were then used to predict both microarray and RNA-Seq

validation samples. The average prediction accuracies of the 500

microarray-based models in prediction microarray data were plotted

against those in predicting RNA-Seq data (a), with per sample agreement

better than chance assessed with the Kappa statistic as shown in (b); while

the average accuracies of the 500 RNA-Seq-based models in predicting

RNA-Seq data were compared to those in predicting microarray data

(c), with per sample agreement better than chance evaluated with the

Kappa statistic as shown in (d). The two symbols in each panel represent the

two binary clinical endpoints with green and blue colors denoting mapping

groups A and B, respectively. In panels (b) and (d), each symbol denotes the

average Kappa statistic of 500 pairs of prediction results; and each error bar

shows the 95% confidence interval (CI) for the mean Kappa statistic. Each CI

was calculated with the bootstrap estimation.

Additional file 23: Figure S16. A performance comparison of support

vector machine (SVM) models in predicting microarray and RNA-Seq

validation data based on the TCGA AML data. In the comparison, both

microarray log2 intensity and RNA-Seq log2 count were per sample

z-score transformed. For each of the two binary clinical endpoints and

each of the two mapping groups A and B, a set of 500 SVM models were

developed from microarray and RNA-Seq training data independently.

Each set of models were then used to predict both microarray and

RNA-Seq validation samples. The average prediction accuracies of the 500

microarray-based models in prediction microarray data were plotted

against those in predicting RNA-Seq data (a), with per sample agreement

better than chance assessed with the Kappa statistic as shown in (b);

while the average accuracies of the 500 RNA-Seq-based models in predicting

RNA-Seq data were compared to those in predicting microarray data (c),

with per sample agreement evaluated with the Kappa statistic as shown in
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(d). The two symbols in each panel represent the two binary clinical

endpoints with green and blue colors denoting mapping groups A and B,

respectively. In panels (b) and (d), each symbol denotes the average Kappa

statistic of 500 pairs of prediction results; and each error bar shows the 95%

confidence interval (CI) for the mean Kappa statistic. Each CI was calculated

with the bootstrap estimation.

Additional file 24: Figure S17. A performance comparison of k-nearest

neighbors (k-NN) models in predicting microarray and RNA-Seq validation

samples, based on the TCGA AML data without per sample z-score

transformation. In the comparison, microarray and RNA-Seq data were

log2 intensity data and log2 counts, respectively. For each of the two

binary clinical endpoints and each of the two mapping groups A and

B, a set of 500 k-NN models were developed from microarray and

RNA-Seq training data independently. Each set of k-NNs models were

then used to predict both microarray and RNA-Seq validation samples.

The average prediction accuracies of the 500 microarray-based models

in prediction microarray data were plotted against those in predicting

RNA-Seq data (a), with per sample agreement better than chance

assessed with the Kappa statistic as shown in (b); while the average

accuracies of the 500 RNA-Seq-based models in predicting RNA-Seq

data were compared to those in predicting microarray data (c), with per

sample agreement better than chance evaluated with the Kappa statistic

as shown in (d). The two symbols in each panel represent the two

binary clinical endpoints with green and blue colors denoting mapping

groups A and B, respectively. In panels (b) and (d), each symbol denotes

the average Kappa statistic of 500 pairs of prediction results; and each

error bar shows the 95% confidence interval (CI) for the mean Kappa

statistic. Each CI was calculated with the bootstrap estimation.

Additional file 25: Figure S18. A performance comparison of nearest

shrunken centroids (NSC) models in predicting microarray and RNA-Seq

validation samples, based on the TCGA AML data without per sample

z-score transformation. In the comparison, microarray and RNA-Seq data

were log2 intensity data and log2 counts, respectively. For each of the

two binary clinical endpoints and each of the two mapping groups A

and B, a set of 500 NSC models were developed from microarray and

RNA-Seq training data independently. Each set of NCS models were then

used to predict both microarray and RNA-Seq validation samples. The

average prediction accuracies of the 500 microarray-based models in

prediction microarray data were plotted against those in predicting

RNA-Seq data (a), with per sample agreement better than chance assessed

with the Kappa statistic as shown in (b); while the average accuracies of the

500 RNA-Seq-based models in predicting RNA-Seq data were compared to

those in predicting microarray data (c), with per sample agreement better

than chance evaluated with the Kappa statistic as shown in (d). The two

symbols in each panel represent the two binary clinical endpoints with

green and blue colors denoting mapping groups A and B, respectively. In

panels (b) and (d), each symbol denotes the average Kappa statistic of 500

pairs of prediction results; and each error bar shows the 95% confidence

interval (CI) for the mean Kappa statistic. Each CI was calculated with the

bootstrap estimation.

Additional file 26: Figure S19. A performance comparison of support

vector machine (SVM) models in predicting microarray and RNA-Seq

validation samples, based on the TCGA AML data without per sample

z-score transformation. In the comparison, microarray and RNA-Seq data

were log2 intensity data and log2 counts, respectively. For each of the

two binary clinical endpoints and each of the two mapping groups A

and B, a set of 500 SVM models were developed from microarray and

RNA-Seq training data independently. Each set of models were then used

to predict both microarray and RNA-Seq validation samples. The average

prediction accuracies of the 500 microarray-based models in prediction

microarray data were plotted against those in predicting RNA-Seq data

(a), with per sample agreement better than chance assessed with the

Kappa statistic as shown in (b); while the average accuracies of the 500

RNA-Seq-based models in predicting RNA-Seq data were compared to

those in predicting microarray data (c), with per sample agreement better

than chance evaluated with the Kappa statistic as shown in (d). The two

symbols in each panel represent the two binary clinical endpoints with

green and blue colors denoting mapping groups A and B, respectively. In

panels (b) and (d), each symbol denotes the average Kappa statistic of

500 pairs of prediction results; and each error bar shows the 95% confidence

interval (CI) for the mean Kappa statistic. Each CI was calculated with the

bootstrap estimation.

Additional file 27: Table S8. The performance of Cox proportional

hazards models developed from one-platform in predicting microarray

and RNA-Seq validation samples based on the TCGA AML data.
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