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Abstract

Background: Single Nucleotide Polymorphisms (SNPs) are widely used molecular markers, and their use has

increased massively since the inception of Next Generation Sequencing (NGS) technologies, which allow detection of

large numbers of SNPs at low cost. However, both NGS data and their analysis are error-prone, which can lead to the

generation of false positive (FP) SNPs. We explored the relationship between FP SNPs and seven factors involved in

mapping-based variant calling— quality of the reference sequence, read length, choice of mapper and variant caller,

mapping stringency and filtering of SNPs by read mapping quality and read depth. This resulted in 576 possible factor

level combinations. We used error- and variant-free simulated reads to ensure that every SNP found was indeed a false

positive.

Results: The variation in the number of FP SNPs generated ranged from 0 to 36,621 for the 120 million base pairs

(Mbp) genome. All of the experimental factors tested had statistically significant effects on the number of FP SNPs

generated and there was a considerable amount of interaction between the different factors. Using a fragmented

reference sequence led to a dramatic increase in the number of FP SNPs generated, as did relaxed read mapping and

a lack of SNP filtering. The choice of reference assembler, mapper and variant caller also significantly affected the

outcome. The effect of read length was more complex and suggests a possible interaction between mapping

specificity and the potential for contributing more false positives as read length increases.

Conclusions: The choice of tools and parameters involved in variant calling can have a dramatic effect on the

number of FP SNPs produced, with particularly poor combinations of software and/or parameter settings yielding

tens of thousands in this experiment. Between-factor interactions make simple recommendations difficult for a SNP

discovery pipeline but the quality of the reference sequence is clearly of paramount importance. Our findings are also

a stark reminder that it can be unwise to use the relaxed mismatch settings provided as defaults by some read

mappers when reads are being mapped to a relatively unfinished reference sequence from e.g. a non-model

organism in its early stages of genomic exploration.
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Background
Single-nucleotide polymorphisms are used as molecular

markers in diverse applications, such as human disease

genetics, plant and animal breeding, population genetics

and forensics [1–3]. The emergence of NGS technologies

has yielded dramatic improvements in costs and through-

put [3, 4]. However, SNP discovery in NGS data can result

in significant numbers of false positives [5, 6]. In addi-

tion to sequencing errors, which vary in pattern and rate

depending on the sequencing platform [7], the short read

lengths that prevail in NGS, together with the repeti-

tious nature of the genomes of many organisms, can lead

to errors in the genome assembly and/or read mapping

stages.

The traditional approach to SNP discovery is based on

mapping reads to a reference sequence, but several new

approaches have been suggested which are mapping-free

(e.g. [8]). Their uptake appears to have been slow, how-

ever, and the majority of projects currently still employ a

mapping-based approach for SNP discovery.

Kumar et al. (2012) have argued that SNP discovery

improves with better quality reference genomes. Misas-

sembly of the reference sequence creates the conditions

required for reads to be mismapped in the first place, as

the origin of a read may not be available in an imperfect

assembly. This is of particular relevance for SNP discov-

ery projects where a well assembled and well curated

reference sequence is not yet available. The reference

sequences of most sequenced organisms are classified as a

“permanent draft” (https://gold.jgi-psf.org/statistics), and

have undergone little or no manual curation following the

primary assembly stage. Typically, the resulting genome

sequences are fragmented and incomplete with substan-

tial numbers of misassemblies. All of these imperfections

may subsequently cause read mismapping, and our study

specifically addresses the issues associated with this.

In the present work, we have investigated the effects of

a number of factors on the generation of false positive

SNPs (loci incorrectly identified as polymorphic) using

the ∼125 Mbp genome of the flowering plant Arabidopsis

thaliana. Simulated NGS read datasets varying in length

from 50 to 1000 base pairs (bp) were used to generate

both new genome assemblies and mappings to test the

effects of NGS read length, different software for genome

assembly, read mapping and SNP calling (including vari-

able parameter settings), as well as SNP filtering, on FP

SNP generation.

Methods

Read datasets preparation

The five chromosome sequences of Arabidopsis thaliana,

available at ftp://ftp.arabidopsis.org/home/tair/Sequences/

whole_chromosomes, served as the template for the gen-

eration of the simulated reads for our study. The SimSeq

read simulator (last update 4.12.2011; https://github.com/

jstjohn/SimSeq) was used to generate haploid, error-

free paired-end and mate-pair reads (the latter created

specifically for the assembly stage) from each of the chro-

mosome sequences (see Additional file 1: Supplementary

data section SD.1). This sampling mode allowed us to

assume that every SNP encountered in the mappings

must be an FP SNP which is due to read mismapping as

there were no other sources of variant alleles. Paired-end

reads were produced with 100-fold coverage depth and

at lengths of 50, 100, 150, 300, 500, and 1000 bp (Fig. 1).

Fragment sizes for these were 90, 180, 270, 540, 900 and

1800 bp respectively. Mate-pair reads were produced

with 50-fold coverage depth at a length of 150 bp, with a

fragment size of 3000 bp. Full details of the fragment sizes

are provided in Additional file 1: Supplementary data

(section SD.1.1, Table S4).

Reference genome assembly

In order to provide the conditions typical of a non-model

organism use case, two reference sequences for the read

mapping were de novo assembled from the 150 bp read

datasets, one using the Velvet assembler version 1.2.10 [9]

and the other using the Allpaths-LG assembler version

r51511 [10, 11].

To keep the design of the experiment simple, we used

only the 150 bp read datasets for assembly. The depth

of coverage for the assemblies was 150x, where 100x

was contributed by the 150 bp paired-end reads dataset,

while 50x was contributed by the mate-pair reads. Each

assembler was run twice, using separately simulated read

datasets. Additional information about the assembly pro-

cess can be found in the Additional file 1: Supplementary

data (section SD.2).

To assess the degree of difference between the de

novo assembled reference sequence and the A. thaliana

genome sequence (the control for the read mapping), we

analysed each replicate assembly with QUAST [12], using

the A. thaliana genome sequence and the gene models as

the benchmark dataset. The results from this are shown

in the Additional file 1: Supplementary data (section SD.2;

Table S5). Definitions of the metrics employed by QUAST

are available in the online manual for this software

(http://quast.bioinf.spbau.ru/manual.html#sec3.1.1).

Readmapping

Each of the six read datasets (50–1000 bp) was mapped

to the de novo assemblies and the A. thaliana control (see

below) with Bowtie2 version 2.2.1 [13] and BWA-SW ver-

sion 0.7.10-r789 [14], both widely used alignment tools [5]

capable of dealing with the range of read lengths explored

in the study. In order to keep coverage comparable among

all mappings, we used the same mismatch rate across all

read lengths, rather than a fixed number of mismatches.

https://gold.jgi-psf.org/statistics
ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes
ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes
https://github.com/jstjohn/SimSeq
https://github.com/jstjohn/SimSeq
http://quast.bioinf.spbau.ru/manual.html#sec3.1.1
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Fig. 1 Experimental design. a The A. thaliana genome was used to generate simulated reads of different lengths. De novo assemblies were computed

from the 150 bp read datasets using different assemblers. bWith the assemblies as references, separate read mappings were carried out for each of

the different read length datasets and with different combination of factor levels, using the original genome as a control. c SNP detection was

carried out with different variant callers and the results were analysed to detect whether the mismatched reads causing the SNPs were due to

mismapping. SNP annotation was performed to detect enrichment for particular genomic features at SNP positions

To enable any SNPs to be called, at least one mismatch per

read must be allowed. With a minimum read length of 50

bp this equates to a mismatch rate of 1 mismatch in 50 bp,

or 2 %. We aimed to compare strict and relaxed mismatch

stringencies, and thus we chose the default of the latest

BWA algorithm as the relaxed setting. This was calculated

as being equivalent to 14 % mismatches per read. We then

applied both mismatch rates (2 % and 14 %) to each of the

mappers. Additional file 1: Supplementary data section

SD.3 describes how the parameter settings were calculated

for each mapper.

SNP calling

The FreeBayes variant caller (version v0.9.18-3-gb72a21b,

https://github.com/ekg/freebayes, [15]) and the Genome

Analysis Toolkit (GATK, version 3.3-0, https://www.

broadinstitute.org/gatk/, [16, 17]) were run over each of

the mappings separately. Both tools were chosen for SNP

discovery as they are widely used [18] and provide sub-

stantial configurability.

To speed up the SNP calling in FreeBayes, we produced

a Java SE 7/SAMtools 0.1.18 [19] wrapper around it that

splits and parallelises the job across multiple nodes and

processors of a compute cluster. This allowed the jobs to

run in a fraction of the time that would otherwise have

been required. This is achieved by querying the list of con-

tigs, discarding those that have no reads mapped to them,

splitting the remainder into discrete regions that can be

processed independently by FreeBayes, before finally con-

catenating the results back together into a single VCF

(Variant Call Format) file.

For GATK, we designed a pipeline script to perform

duplicate markup with Picard Tools (version 1.119 (http://

broadinstitute.github.io/picard)), and local realignment

around indels and variant calling with GATK. The base

quality recalibration step was left out as we did not have

known variants as part of our study design. To evalu-

ate the effect of the mapping quality, both variant callers

were configured to run with (MAPQ = 20) and with-

out (MAPQ = 0) mapping quality filtering. The detailed

parameters used in FreeBayes and GATK are available in

the Additional file 1: Supplementary data section SD.4.

We also included filtering of SNPs by read depth as

an additional experimental factor (maximum read depth

https://github.com/ekg/freebayes
https://www.broadinstitute.org/gatk/
https://www.broadinstitute.org/gatk/
http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
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150 versus no filtering). Depth filtering can be applied to

remove SNPs located in large accumulations of reads in

regions that e.g. represent collapsed repeats in the refer-

ence sequence and consequently attract large numbers of

reads.

In order to provide more realistic final SNP numbers,

we also removed multiallelic SNPs from all resulting VCF

files, as well as SNPs with SNP quality scores of less than

20.

Control dataset

The five chromosome sequences of A. thaliana (see

section “Read datasets preparation”) were combined to be

used as a control reference sequence for the study. The

read mapping and SNP calling stages were also applied to

this original genome sequence. Using the original refer-

ence should theoretically yield no or at least fewer SNPs

as the additional complication of the de novo assembly

is removed here, and can therefore be used as a control

for the de novo assembled reference sequences. Figure 2

illustrates the concept of the control.

Readmismapping quantification stage

A custom pipeline consisting of our own Java code,

and other resources including the Picard API (http://

sourceforge.net/projects/picard/), SAMtools version 0.1.

18 [19], and BLASTN [20], was used to quantify instances

where mismapped reads caused SNPs, taking advantage

of the read origin information generated by the read

simulator (Additional file 1: Supplementary data section

SD.5; for source code availability see SD.13). For each

SNP, the code quantified the percentage of unique over-

lapping (covering) reads which contained the alternate

allele and originally belonged to a different chromosome

or different region in the same chromosome, indicating

mismapping of reads. To avoid redundancy, only those

SNPs were considered that had not been filtered out by

the depth filter. The Additional file 1: Supplementary

data section SD.6 shows the code workflow in

detail.

SNP annotation

We tested whether the regions containing SNPs were

enriched for a given type of genomic feature, such as

intergenic regions, gene families, pseudogenes, repeats,

transposons, etc. We also compared the proportions of

features observed in the FP SNPs with those for the entire

genome. SNP manifests (SNP site plus approximately 120

bp flanking region either side) were extracted from the de

novo assembly sequence and BLASTed against a database

composed of coding sequences (CDS) and intergenic

regions (ftp://ftp.arabidopsis.org/home/tair/Sequences/

blast_datasets/TAIR10_blastsets/) retrieved from the A.

thaliana annotation. The same procedure was performed

on the control mapping. The steps required to build the

BLAST database are detailed in the Additional file 1:

Supplementary data section SD.7.

Replicate workflow runs

To ensure reproducibility and consistency, the experiment

was carried out in duplicate. For each read length, two

independent, randomly sampled read sets were created,

and a new assembly was made from the 150 bp read

datasets using both Velvet and Allpaths-LG. The mapping

of all read datasets, SNP calling, and the SNP annotation

were performed with both the de novo assemblies and the

whole genome control as reference sequences for each fac-

tor combination. Additional information about the repli-

cate assemblies is also available in the Additional file 1:

Supplementary data (section SD.2; Table S5). Figures 1, 2

and 3 summarise the study’s experimental design and the

application of tools and variables.

Statistical analysis

Analysis of variance (ANOVA) was used to test for sig-

nificant effects of the seven factors and all possible

interactions on the number of false positives detected.

The replicate effect was fitted as a random effect, while

all other effects and interactions were fitted as fixed

effects. The untransformed number of false positives did

not satisfy the usual ANOVA assumptions of normally

Original genome for  

read generation

Assembly

Mapped reads  

Mapping to 

assembly

Mapping to 

genome 

(control)

Original genome

Mapped reads  

Fig. 2 Control conceptualized. The reads indicated by arrows cannot be mapped to their original positions in the de novo reference genome

assembly (Section “Reference genome assembly”), due to gaps or misassembly and reads may therefore map to the wrong location, which

potentially results in FP SNPs. In the control mapping to the complete genome, the same reads can map back correctly to their original positions

http://sourceforge.net/projects/picard/
http://sourceforge.net/projects/picard/
ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR10_blastsets/
ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR10_blastsets/
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Fig. 3 Tools and variables used in the experiment. Paired-end datasets of differing read lengths (50–1,000 bp) were mapped using Bowtie2 and

BWA-SW with either high (2 % mismatches) or low (14 % mismatches) mapping stringency. The de novo assemblies computed with Velvet and

Allpaths-LG were used as references, as well as the original A. thaliana reference sequence (control). All the resulting mappings underwent SNP

calling with the variant callers FreeBayes and GATK, with and without filtering for read mapping quality. The resulting SNPs were filtered by coverage

depth (< 150) and these call sets were compared to their unfiltered counterparts. For the final SNP counts, only biallelic entries with a SNP quality

score greater than 20 were used

distributed residuals with constant variance. The number

of FP SNPs was therefore analysed after a log10(N+1)

transformation, which improved the distribution of the

residuals. A random permutation test with 999 permuta-

tions was also run to obtain a non-parametric estimate of

the significances of each effect, and this gave very similar

probabilities to the usual ANOVA F probabilities. The

analysis was carried out using GenStat 16 for Windows

[21].

Results
Our strategy for exploring the origins of FP SNP gen-

eration is shown in Fig. 1. Sets of simulated reads

of varying sizes were sampled from the A. thaliana

genome sequence. To explore the effect of assembly on

FP SNP generation, two different reference sequences

were generated using the de novo assemblers Velvet and

Allpaths-LG. To simplify the design of the experiment,

we used only the 150 bp read length dataset for assem-

bly. Our choice of this read length was based on two

considerations: a) a large number of ongoing sequenc-

ing projects use Illumina Hiseq reads as their primary

source of sequence and the current maximum read length

for this is 150 bp (http://systems.illumina.com/systems/

hiseq_2500_1500/performance_specifications.ilmn), and

b) even projects involving the assembly of very large, com-

plex genomes such as wheat [22] use reads as short as this

or even shorter (barley [23], norway spruce [24]) as their

primary source of sequence.

To investigate variations in read mapping, the simu-

lated read sets described above were then mapped to

the two de novo genome assemblies, as well as the A.

thaliana reference genome, using two widely used read

mappers, Bowtie2 and BWA. The range of read lengths

chosen covers most of the currently available sequencing

technologies, with the exception of Pacific BioSciences

and Oxford Nanopore ([25], and updates at http://www.

molecularecologist.com/next-gen-fieldguide-2014/). The

latter two technologies produce longer reads but are cur-

rently associated with substantial error rates and their use

in variant calling is still in its early stages. The mappings

generated were then processed with two popular variant

callers, GATK and FreeBayes.

General observations

The range of FP SNP numbers observed in the experiment

varied from 0 to 36,621, depending upon the choice of ref-

erence sequence, tools and parameters. Out of 576 factor

level combinations, 211 contained zero FPs (Additional

file 1: Supplementary file snpNumbersStats.xlsx). These

included sets using the BWA mapper on the “strict” mis-

match setting with the GATK variant caller for all com-

binations of depth filtering/no depth filtering, all three

assembly types, MAPQ settings of 0 or 20, and the full

range of read lengths. Zero FP SNPs were also found

for sets using the BWA mapper on the “strict” mismatch

setting with the FreeBayes variant caller and a MAPQ

setting of 20 for all combinations of depth filtering/no

depth filtering, all three assembly types, and the full range

of read lengths. For the control assembly only, the FP

count remained at zero in the combinations above even

if the “relaxed” mismatch setting was used. The Bowtie2

mapper found zero FPs for the control assembly only

and read lengths of 150 bp or fewer, with all combina-

tions of depth filtering/no depth filtering, variant caller,

stringency and MAPQ settings, as well as on the “strict”

setting with 500 or 1000 bp reads. None of the mappings

against the de novo assemblies achieved a zero FP count

on the relaxed mismatch setting. At the other end of the

spectrum, the largest mean number of FPs encountered

http://systems.illumina.com/systems/hiseq_2500_1500/performance_specifications.ilmn
http://systems.illumina.com/systems/hiseq_2500_1500/performance_specifications.ilmn
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
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was 36,260.5 (300 bp reads, Allpaths assembly, relaxed

Bowtie2 mapping, MAPQ filter 0, FreeBayes, no depth

filtering).

The majority of factor level combinations in the con-

trol group (139 out of 192) contained no FP SNPs at

all, and most of the remainder had less than 1000 FP

SNPs (Additional file 1: Supplementary file snpNum-

bersStats.xlsx). There was, however, a large amount of

variability within the control group, and some call sets

contained very large numbers of FP SNPs. The worst per-

forming combination in the control group comprised 300

bp reads mapped with Bowtie2 using relaxed mapping,

variant-called with FreeBayes, using no depth filter and a

MAPQ filter of 0, and yielded an average of 20,471.5 FP

SNPs. The equivalent combination of tools using the strict

mapping setting resulted in an average of only 17.0 FPs,

a reduction of 3 orders of magnitude. This is a powerful

illustration of the drastic effect of mapping stringency on

FP SNP discovery.

Main effects and interactions among experimental factors

All factors, apart from experimental replicate, had highly

significant main effects on FP SNP number in the

multifactorial ANOVA (Table 1 and Additional file 1:

Supplementary file ANOVA_FullResults.xlsx). However,

there was a large number of highly significant higher-

order interaction terms in the ANOVA results, and these

indicatedmany complex interactions between experimen-

tal factors. The results presented here should be viewed

in the context of these interactions, as global means hide

much of the complexity of our findings. Figures 4 and 5

show trellis plots for the two major higher-order inter-

actions that summarise most of the variability attributed

to interaction terms. The equivalent numerical values are

shown in Tables 2 and 3. The residual term due to differ-

ences among the replicates accounted for less than 0.03 %

of the total variation.

Assembly

The reference sequence used had the most pronounced

effect on the rate of FP SNPs, accounting for 43.9 % of the

total variation in the data (Table 1), with a highly signifi-

cant main effect. There were significant interactions with

all six of the other factors. Mappings against the original

A. thaliana genome (Control) yielded comparatively few

FP SNPs in most cases (Figs. 4 and 5), while mappings

against our own de novo assemblies generally produced FP

SNP numbers orders of magnitude greater, with the Velvet

reference sequence outperforming the Allpaths sequence

slightly in most cases.

Stringency

Mapping stringency accounted for 10.8 % of the total vari-

ation in the data, making it the second most important

factor in the experiment (Table 1). The main effect in

the ANOVA was statistically highly significant, with the

global means suggesting a reduction of approximately one

order of magnitude in FP numbers for the “strict” setting

(log10-transformed means: relaxed 2.64; strict 1.50). This

effect was observable in the majority of interactions anal-

ysed here (Tables 2, 4, 5, and Figs. 4 and 5). The reduction

in FP numbers from applying the strict mismatch setting

was greatest for the combination of BWA and the two

poorer reference sequences, and for the combination of

Bowtie2 and the Control reference sequence with read

lengths of 300–1000 bp.

Mapping tools

This was the thirdmost important factor in FP SNP gener-

ation, in terms of the contribution to the overall variation

in the data, contributing 7.7 % of the total (Table 1).

On average, BWA produced fewer FPs than Bowtie2

(log10 transformed means: 1.59 vs 2.55 respectively) but

deviations from this pattern occurred depending on the

read length, MAPQ, mapping stringency and reference

Table 1 Main effects from the factorial Analysis of Variance (ANOVA). For the full list of all possible interaction terms please see the

Additional file 1: Supplementary file ANOVA_FullResults.xlsx (the residual term here is from the full ANOVA)

Source of variation d.f. s.s. m.s. v.r. F prob. perm prob. Percentage SS

Replicate stratum 1 0.01693 0.01693 8.82

Replicate.*Units* stratum

Length 5 40.79358 8.15872 4247.34 0.000 0.001 1.18

Assembly 2 1516.31545 758.15772 394688.33 0.000 0.001 43.90

Mapper 1 265.90685 265.90685 138428.09 0.000 0.001 7.70

Stringency 1 371.94519 371.94519 193630.46 0.000 0.001 10.77

MAPQ 1 55.69223 55.69223 28992.74 0.000 0.001 1.61

Variant caller 1 73.45412 73.45412 38239.38 0.000 0.001 2.13

Depth filter 1 5.92562 5.92562 3084.81 0.000 0.001 0.17

Residual 575 1.10452 0.00192
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Fig. 4 5-way interaction between assembly, mapper, read length, MAPQ, andmapping stringency. Trellis plots for the first major higher-order interaction

that summarise most of the variability attributed to interaction terms

sequence (Tables 2 and 4; Figs. 4 and 5). Most of these

occurred in the relaxed mappings with MAPQ_0 filter-

ing. For the short read mappings (50–150 bp) against the

Control reference with MAPQ_20 filtering, both mappers

performed equally well. However, even on the most con-

servative settings (strict mapping, MAPQ_20) and with

the best reference sequence (Control), Bowtie2 performed

poorly on the 300 bp reads, whereas on the longer reads

(500/1000 bp) its performance matched that of BWA

(Table 2).

Variant caller

The effect of the variant calling software, again, was statis-

tically highly significant but had interdependencies with

other factors. Global means suggested that GATK pro-

duced fewer FPs than FreeBayes but this only held true

for the MAPQ_0 call sets. When a MAPQ filter of 20 was

applied the GATK FP rates in most cases were either equal

to or slightly higher than those obtained with FreeBayes

(Tables 3 and 6).

MAPQ based filtering of SNPs

Read mapping quality based filtering of SNPs (0 versus 20)

also had a significant main effect, and while the global

means suggested that MAPQ filtering of SNPs reduces

FP numbers (log10 means: MAPQ_0 = 2.29; MAPQ_20 =

1.85), this did not apply universally. When filter-

ing for MAPQ_20, FP numbers were reduced for

the FreeBayes call sets but not for GATK call sets

(Table 6).

Read length

FP SNP numbers did not strictly decrease as a function of

read length (Figs. 4 and 5). This contradicts the assump-

tion that longer reads lead to fewer FP SNPs due to higher

mapping accuracy. Instead, FP SNP numbers in most call

sets were either flat when plotted against read length, or

showed an asymptotic increase with read length. Only the

BWA/MAPQ_0 call sets in the Control group showed a

decline of FP numbers with read length, with a minimum

at 500 bp and a slight increase at 1000 bp. In the Control
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Fig. 5 5-way interaction between assembly, mapper, variant caller, MAPQ, and read length. Trellis plots for the second major higher-order interaction

that summarise most of the variability attributed to interaction terms

group only, the Bowtie2 mappings had a sharp peak in FP

numbers for read length 300 bp, with the 500 bp and 1000

bp FP numbers still higher than those for the shorter reads

(50–150 bp), all of which had zero FPs regardless of any

other factors.

Depth filter

Filtering SNPs for read depth greater than 150x coverage

resulted in lower FP numbers, and the main effect for this

was statistically highly significant (Table 1). The magni-

tude of this effect depended on the quality of the reference

though, as shown in Table 7. The effect of applying depth

filtering was strong for the two de novo assemblies but rel-

atively small for the Control mappings against the intact

A. thaliana genome.

Readmismapping statistics, SNP annotation and genomic

distribution of FP SNP sites

The proportion of mismapped reads among reads with

alternate alleles at SNP locations was approximately 89 %

when averaged across all mappings containing FP SNPs

(Additional file 1: Supplementary data section SD.10).

Regions associated with FP SNPs were significantly

enriched for transposable element sequences (approxi-

mately 30 %) (Fig. 6; Additional file 1: Supplementary data

section SD.11), compared to approximately 6 % in the

whole genome annotation.

The distributions of the FP SNPs on the five A. thaliana

chromosomes are shown in Fig. 7. The great majority

of FP SNPs are found in the central (pericentromeric)

regions of chromosomes. The pericentromeric regions

contain high concentrations of repetitive transposable ele-

ments [26], suggesting that FP SNP generation is predom-

inantly associated with the inability of genome assemblers

and read mappers to cope with highly repetitious genome

sequences.

Discussion

Role of the reference sequence

One of the main factors we aimed to explore here was

the role of the reference sequence in FP SNP gener-

ation and how reference sequence quality affects read
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Table 2 First major higher-order interaction. Log10-transformed means for the 5-way interaction between assembly, mapper, read

length, MAPQ, and mapping stringency

Length 50 100 150 300 500 1000

Assembly Mapper Stringency MAPQ

Allpaths Bowtie2 Relaxed 0 3.743 3.736 3.807 4.084 3.863 3.975

Allpaths BWA Relaxed 0 3.692 3.752 3.823 3.906 3.922 3.947

Allpaths Bowtie2 Strict 0 3.349 3.445 3.480 3.529 3.571 3.621

Allpaths BWA Strict 0 1.729 1.755 1.760 1.759 1.758 1.739

Control Bowtie2 Relaxed 0 0.000 0.000 0.000 3.856 0.920 0.226

Control BWA Relaxed 0 1.547 1.112 0.736 0.254 0.000 0.369

Control Bowtie2 Strict 0 0.000 0.000 0.000 0.953 0.000 0.000

Control BWA Strict 0 1.248 0.866 0.595 0.270 0.075 0.075

Velvet Bowtie2 Relaxed 0 2.960 3.399 3.572 4.084 3.691 3.838

Velvet BWA Relaxed 0 2.972 3.313 3.491 3.628 3.720 3.799

Velvet Bowtie2 Strict 0 3.091 3.504 3.582 3.618 3.638 3.658

Velvet BWA Strict 0 1.779 1.806 1.834 1.834 1.825 1.798

Allpaths Bowtie2 Relaxed 20 3.615 3.589 3.668 3.917 3.716 3.857

Allpaths BWA Relaxed 20 3.594 3.695 3.775 3.880 3.882 3.914

Allpaths Bowtie2 Strict 20 3.143 3.306 3.366 3.448 3.507 3.562

Allpaths BWA Strict 20 0.000 0.000 0.000 0.000 0.000 0.000

Control Bowtie2 Relaxed 20 0.000 0.000 0.000 3.451 2.497 2.246

Control BWA Relaxed 20 0.000 0.000 0.000 0.000 0.000 0.000

Control Bowtie2 Strict 20 0.000 0.000 0.000 0.648 0.000 0.000

Control BWA Strict 20 0.000 0.000 0.000 0.000 0.000 0.000

Velvet Bowtie2 Relaxed 20 2.322 3.002 3.281 3.842 3.519 3.733

Velvet BWA Relaxed 20 2.438 3.018 3.300 3.492 3.637 3.748

Velvet Bowtie2 Strict 20 2.682 3.292 3.429 3.486 3.536 3.590

Velvet BWA Strict 20 0.000 0.000 0.000 0.000 0.000 0.000

Sed = 0.02191

Sed standard error of the difference

mismapping and consequent FP SNP accumulation. We

therefore mapped reads against the published genome of

A. thaliana, as well as de novo assemblies of our sim-

ulated NGS reads. The publicly available genome of A.

thaliana has been sequenced with Sanger technology [26]

and has undergone many years of labour-intensive man-

ual curation. This is in stark contrast to the reference

sequences for many non-model organisms which may

be the product of relatively limited sequencing, mini-

mal assembly effort and little subsequent quality control

or validation. In this scenario, significant swathes of the

genomemay be misassembled or not assembled at all, and

consequently read mismapping may occur on a large scale

because the true targets for reads are not available inmany

cases. This can lead to mismatches with the reference

sequence which produce FP SNPs that look inconspicuous

in every respect and are therefore difficult to remove by

filtering.

The difference in FP SNP numbers brought on by pro-

viding our own de novo assembled reference amounted

to several thousands as a result of misassembly or non-

assembly alone. The genome used here is small (approx.

125 Mbp) and contains relatively few repeats [26].

The effects observed here (and consequently false pos-

itive numbers) are likely to be much more pronounced

with larger, more complex genomes where misassem-

bly is much more prevalent. Large, complex genomes

of this kind are common in plants [27] and other

organisms.

We also observed significant numbers of FP SNPs in

some of the control call sets based on mapping against

theA. thaliana sequence. This was surprising, but seemed

to be mostly due to certain unfavourable combinations of

tools and parameters. The majority of call sets in the con-

trols (282 out of 384) contained no FP SNPs at all, and

most of the remainder had less than 1000 FP SNPs. All of
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Table 3 Second major higher-order interaction. Log10-transformed means for the 5-way interaction between assembly, mapper,

variant caller, MAPQ and read length

Length 50 100 150 300 500 1000

Assembly Mapper Variant caller MAPQ

Allpaths Bowtie2 FreeBayes 0 3.75 3.81 3.84 4.00 3.90 3.95

Allpaths BWA FreeBayes 0 3.68 3.72 3.75 3.77 3.77 3.73

Allpaths Bowtie2 GATK 0 3.34 3.37 3.45 3.61 3.53 3.65

Allpaths BWA GATK 0 1.74 1.78 1.84 1.90 1.91 1.96

Control Bowtie2 FreeBayes 0 0.00 0.00 0.00 2.76 0.63 0.08

Control BWA FreeBayes 0 2.80 1.98 1.33 0.52 0.08 0.44

Control Bowtie2 GATK 0 0.00 0.00 0.00 2.05 0.29 0.15

Control BWA GATK 0 0.00 0.00 0.00 0.00 0.00 0.00

Velvet Bowtie2 FreeBayes 0 3.65 3.82 3.88 4.10 3.92 3.92

Velvet BWA FreeBayes 0 3.61 3.64 3.71 3.76 3.76 3.75

Velvet Bowtie2 GATK 0 2.40 3.08 3.27 3.60 3.41 3.57

Velvet BWA GATK 0 1.14 1.48 1.62 1.70 1.78 1.85

Allpaths Bowtie2 FreeBayes 20 3.26 3.34 3.42 3.61 3.57 3.68

Allpaths BWA FreeBayes 20 1.72 1.77 1.81 1.87 1.89 1.90

Allpaths Bowtie2 GATK 20 3.50 3.56 3.62 3.76 3.65 3.74

Allpaths BWA GATK 20 1.87 1.92 1.96 2.01 2.00 2.02

Control Bowtie2 FreeBayes 20 0.00 0.00 0.00 1.95 1.34 1.23

Control BWA FreeBayes 20 0.00 0.00 0.00 0.00 0.00 0.00

Control Bowtie2 GATK 20 0.00 0.00 0.00 2.15 1.16 1.02

Control BWA GATK 20 0.00 0.00 0.00 0.00 0.00 0.00

Velvet Bowtie2 FreeBayes 20 2.48 3.12 3.34 3.64 3.54 3.66

Velvet BWA FreeBayes 20 1.20 1.50 1.64 1.74 1.80 1.85

Velvet Bowtie2 GATK 20 2.52 3.17 3.37 3.69 3.52 3.67

Velvet BWA GATK 20 1.24 1.52 1.66 1.75 1.84 1.90

Sed = 0.02191

the control call sets withmore than 1000 FP SNPs (n= 20)

were done on the relaxed mapping settings which brings

home the importance of conservative mapping even when

the reference sequence is well assembled.

Choice of tools for assembly, mapping and variant calling

This study did not aim to compare the performance of

specific tools involved in variant calling, but rather to pro-

vide proof of principle that false discovery rates in SNP

calling can be significantly affected by the quality of refer-

ence sequence, tool choice and tool parameters. Equally,

the current study did not aim to explore whether longer

reads, or indeed longer read fragments, provide better

de novo assemblies, as this has been covered elsewhere

[28, 29].

The assembly tools used for producing our de novo

reference sequences from the simulated reads com-

prised Velvet and Allpaths-LG. Velvet is one of the

first generation of short read assemblers but has had

continuous improvements and updates over many years

[9, 30]. Allpaths-LG is a relatively recent tool and devel-

opers have taken a new approach by requiring input of at

least two different fragment size libraries to ensure a high

quality assembly. Allpaths consistently performed well in

both of the Assemblathon competitions [31, 32], so we

were surprised that the reference sequence produced by

this tool was inferior to that produced by Velvet for most

of the major metrics in the QUAST analysis (N50, assem-

bly length, # misassemblies, genome fraction, # genes,

largest contig), and it consistently yielded greater numbers

of FP SNPs than the corresponding Velvet assemblies.

The two mapping tools used here, Bowtie2 and BWA,

are arguably among the most commonly used tools

for short read mapping. Both provide a good trade-off

between accuracy and performance [33, 34] and have

stood the test of time probably for this reason. On average,

BWA performed better in this study, but when mapping

short (50–150 bp) reads against the good quality Control



Ribeiro et al. BMC Bioinformatics  (2015) 16:382 Page 11 of 16

Table 4 Mapper and mapping stringency interaction.

Log10-transformed means for the interaction between mapper

and mapping stringency

Stringency Relaxed Strict

Mapper

Bowtie2 2.7780 2.3343

BWA-SW 2.5099 0.6807

Sed = 0.00365

reference sequence with MAPQ_20 filtering, both tools

performed equally well, giving zero false positives.

SNP filtering

Filtering by MAPQ and maximum read depth both cut

FP SNP numbers significantly. Their contribution to the

overall variation in the data was relatively small but it

is very clear from the data that these filters should be

applied wherever it is appropriate. A notable exception

for this is data where large differences in read coverage

are expected, for example RNAseq — here, a depth filter

would be counterproductive. The effect of MAPQ filter-

ing was less clear-cut — applying the MAPQ_20 filter to

the GATK callsets actually increased FP numbers slightly

in this experiment. This is counterintuitive and requires

further investigation. For the FreeBayes call sets, FP num-

bers did drop when the MAPQ_20 filter was applied, and

it is clear from these results that this should be applied as

a matter of routine when using this variant caller.

Read length

The numbers of FP SNPs observed as a function of read

length ran counter to our prior expectation that longer

reads should result in fewer FP SNPs due to greater map-

ping specificity and therefore reduced mismapping rates.

We only observed this for the two MAPQ_0 BWA map-

pings against the Control reference sequence. For most

of the other call sets, FP SNP numbers increased with

read length. In the Bowtie2 mappings against the Con-

trol reference sequence, the pattern observed had a sharp

Table 5 Assembly type, mapper, and mapping stringency

interaction. Log10-transformed means for the interaction

between assembly type, mapper and mapping stringency

Mapper Bowtie2 BWA-SW

Stringency Relaxed Strict Relaxed Strict

Assembly

Allpaths-LG 3.7976 3.4439 3.8151 0.8750

Control 1.0996 0.1334 0.3349 0.2608

Velvet 3.4369 3.4256 3.3796 0.9063

Sed = 0.00633

Table 6 MAPQ and variant caller interaction. Log10-transformed

means for the interaction between MAPQ filter level and variant

caller

Variant caller FreeBayes GATK

MAPQ

0 2.8277 1.7635

20 1.8287 1.8830

Sed = 0.00365

peak for the 300 bp read mappings. The potential to

cause FP SNPs seems to be related to the length of the

read, providing that reads are mapped with the same mis-

match rate as length increases, as was the case in our

experiment. Every mismatch with the reference has the

potential to become a FP SNP if suitable numbers of

reads are mismapped together, and both longer reads and

greater mismatch rates exacerbate this problem in theory

(Fig. 8).

This is also illustrated by the example shown in Fig. 9.

Here, Tablet [35, 36] screenshots are shown of the same

region in mappings of different read lengths (only 50,

300 and 1000 bp shown for brevity) for what is other-

wise the same factor level combination (Allpaths reference

sequence, relaxed Bowtie2 mapping). This is a region that

is clearly prone to read mismapping and it would appear

from inspection of the 50 and 300 bp mappings alone that

the longer the reads, the more FP SNPs are generated.

However, the 1000 bp read mapping shows no signs of

SNPs, and it appears as though the 1000 bp reads from the

region that contributes the crossmapped reads in the 50

and 300 bp mappings simply have too many mismatches

to be mapped here. This suggests that greater mapping

specificity does play a role in this example, and for this

particular region the use of longer reads has prevented

mismapping and the ensuing FP SNPs. Visual inspection

of our data has produced many other examples where

the 1000 bp mapping instead contained even larger num-

bers of FP SNPs than any of the comparable shorter

read mappings, but also cases where the 50 bp mapping

was the only one containing any FP SNPs at all. Taken

together, this is indicative of local variation in the poten-

tial for longer reads having greater mapping specificity

Table 7 Assembly and depth filter interaction. Log10-transformed

means for the interaction between assembly and depth filter

Depth filter No Yes

Assembly

Allpaths 3.1273 2.8385

Control 0.4634 0.4509

Velvet 2.8516 2.7226

Sed = 0.00447
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a b

c d

Fig. 6 SNP annotation. a General composition of the Arabidopsis thaliana annotation compared with the BLAST-based annotation results for the

SNP manifests from the first run replicates of (b) Allpaths-LG, (c) Velvet, and (d) the control runs (compiled)

— whether or not read length makes a difference clearly

depends on the underlying sequence context, and this

will have contributed a significant amount of noise to

our data which is obvious from both the plots and the

data analysis.

Fig. 7 SNP locations. Plot of SNP locations by chromosome from the

first Velvet assembly replicate (see Additional file 1: Supplementary

data section SD.12 for data from other runs). SNP events on the y axis

are ordered by their position on the chromosome

The potential of the longer reads to cause greater dam-

age seems to be mitigated at least to some extent by

their greater mapping specificity — the rate of increase

of FP SNP numbers with read length in this experiment

(Figs. 4 and 5) was not as pronounced as could be expected

Fig. 8Mismatches versus read length. Numbers of theoretically possible

mismatches per read as a function of read length and mismatch

settings
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Fig. 9 Tablet screenshots of read mismapping and ensuing FP SNPs. All screenshots show the same region on chromosome 1, which has been

mapped with reads from the correct region on chromosome 1, but also reads from chromosome 2. FP SNPs are visible as vertical, red dotted lines. In

this example, the 50 bp reads (top) introduce a small number of FP SNPs, the 300 bp (middle) reads introduce a substantially larger number, but in

the mapping of the 1,000 bp reads (bottom) there are no FP SNPs, presumably indicating that the 1,000 bp reads from the contaminating region on

chromosome 2 contain too many mismatches to be mapped here

from what is theoretically possible (Fig. 8). Our origi-

nal assumption was that longer reads map more specif-

ically, thereby reducing the potential for mismapping.

The expectation would then be that longer reads have

lower rates of mismapping than shorter reads. Informa-

tion about mismapping is readily available for this dataset

due to our use of simulated reads which retain informa-

tion about their origin in the read name. We analysed the

rates of mismapping (i.e. the percentage of reads at SNP

locations that contained the alternate allele and originated

from a different chromosome or a different region on the

same chromosome) for each call set and plotted these as a

function of both read length and assembly (Fig. 10).

Interestingly, the relationship between read length and

rates of mismapping appeared to depend on the refer-

ence sequence used. For the Allpaths-assembled reference

and the controls, rates of mismapping appeared to decline

with increasing read length (Fig. 10). For the Velvet-

assembled reference sequences, this trend appeared to be

reversed, and we currently have no explanation for this

phenomenon.

The picture emerging from this is that there are proba-

bly two opposing forces involved here. On the one hand,

there is the potential for longer reads to cause greater

number of FP SNPs by introducing greater numbers of

mismatches. On the other hand, we may have greater

mapping specificity in longer reads, which means fewer

reads get mismapped as read length increases, with an

accompanying decrease in the likelihood of SNPs being

called due to low alternate allele numbers. Within the cur-

rent experiment, we did not simulate reads of the kind of

lengths that are now being generated by e.g. the Pacific

Biosciences and Oxford Nanopore technologies, and it

would be highly interesting to explore in future exper-

iments whether mapping reads of several kilobases in

length genuinely improves mismapping.

Genomic patterns of FP SNP locations

Regions containing FP SNPs were strongly enriched for

transposable elements, reflecting the concentration of

repeat elements in these regions and a large proportion

of FP SNPs were located in the pericentromeric regions
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Fig. 10 Percentages of mismapped reads as a function of read length and type of reference assembly. Mismapped reads were defined as reads at SNP

locations that contained the alternate allele and originated from a different chromosome or a different region on the same chromosome. Boxplots

show means (thick black horizontal bar), 25th and 75th centiles (ends of rectangles), 10th and 90th centiles (whiskers) plus individual outliers (circles)

of the chromosomes, where such repetitive sequences are

prevalent [26]. We conclude that misassembly or non-

assembly of repeats or members of gene families in de

novo genome assembly was the prime cause of FP SNPs in

our study.

Conclusions
Our experiment has highlighted and ranked multiple fac-

tors that have significant effects on the generation of FP

SNPs during variant calling. First and foremost, the qual-

ity of the reference sequence is of paramount importance.

Fragmentation, misassembly and non-assembly of regions

within the reference sequence lead to read mapping tar-

gets being effectively unavailable, and the correspond-

ing reads mapping to incorrect locations, leading to FP

SNP accumulation. The second major determinant of FP

SNP numbers in our experiment is the stringency of the

readmapping, with relaxedmappings generally producing

larger numbers of FP SNPs than strict mappings. How-

ever, these differences were found to be large only for the

combination of Bowtie2, longer reads (300, 500, 1000 bp)

and high quality reference sequence, and BWA with the

poor quality reference sequences. This is an important

finding, as both the mappers used here are supplied

with relatively relaxed mismatch settings as defaults. We

strongly discourage users from running read mappers on

relaxed mismatch setting defaults to maximise the num-

bers of reads mapped. However, there is a caveat in that

very strict mappings may lead to false negative SNPs, and

more work is required to formulate an optimal approach

to determining a mismatch rate that minimises both false

positive and false negative SNPs.

The choice of mapper and variant caller also have sig-

nificant effects upon FP SNP discovery, as does the use of

MAPQ and depth filters for SNPs.

Read length was seen to play a comparatively minor

role in FP SNP generation, with a complex relationship

emerging between read length and FP SNP number. We

conclude that the potential for greater mapping speci-

ficity in longer reads is at least partially offset by the

increased numbers of mismatches they can contribute,

which potentially translates into greater numbers of FP

SNPs. Overall, we recommend that a good quality refer-

ence sequence is extremely important for mapping-based

variant calling, along with stringent mappings and appro-

priate filtering of SNPs by at least MAPQ and coverage

depth.

The above result highlights the importance of inter-

actions among the factors in a SNP discovery pipeline.

It is not sufficient just to specify individual parameter

values in isolation, as these can be advantageous or dis-

advantageous depending upon the choice of the other

factors.

Additional file

Additional file 1: Supplementary materials. This supplementary pack

file is comprised of the following ones: ANOVA_FullResults.xlsx – comprises

the multifactorial ANOVA results; avgPctOfMismapping.xlsx – details the

average percentages of reads containing the alternate allele and across the

mappings; readMappingStats.xlsx – brings the alignment rates of reads, in

the mappings, retrieved with the SAMtools flagstat command;

snpNumbersStats.xlsx – details the SNP numbers computed in the

experiment; SupplementalData.pdf – contains all the additional

information and files mentioned in the manuscript. (ZIP 1362 kb)

http://dx.doi.org/10.1186/s12859-015-0801-z
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