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ABSTRACT Financial threats are displaying a trend about the credit risk of commercial banks as the 
incredible improvement in the financial industry has arisen. In this way, one of the biggest threats faces by 
commercial banks is the risk prediction of credit clients. Recent studies mostly focus on enhancing the 
classifier performance for credit card default prediction rather than an interpretable model. In classification 
problems, an imbalanced dataset is also crucial to improve the performance of the model because most of the 
cases lied in one class, and only a few examples are in other categories. Traditional statistical approaches are 
not suitable to deal with imbalanced data. In this study, a model is developed for credit default prediction by 
employing various credit-related datasets. There is often a significant difference between the minimum and 
maximum values in different features, so Min-Max normalization is used to scale the features within one 
range. Data level resampling techniques are employed to overcome the problem of the data imbalance. 
Various undersampling and oversampling methods are used to resolve the issue of class imbalance. Different 
machine learning models are also employed to obtain efficient results. We developed the hypothesis of 
whether developed models using different machine learning techniques are significantly the same or different 
and whether resampling techniques significantly improves the performance of the proposed models. One-
way Analysis of Variance is a hypothesis-testing technique, used to test the significance of the results. The 
split method is utilized to validate the results in which data has split into training and test sets. The results on 
imbalanced datasets show the accuracy of 66.9% on Taiwan clients credit dataset, 70.7% on South German 
clients credit dataset, and  65% on Belgium clients credit dataset. Conversely, the results using our proposed 
methods significantly improve the accuracy of 89% on Taiwan clients credit dataset, 84.6% on South German 
clients credit dataset, and 87.1% on Belgium clients credit dataset. The results show that the performance of 
classifiers is better on the balanced dataset as compared to the imbalanced dataset. It is also observed that the 
performance of data oversampling techniques are better than undersampling techniques. Overall, the Gradient 
Boosted Decision Tree method performs better than other traditional machine learning classifiers. The 
Gradient Boosted Decision Tree method gives the best results while utilizing the K-means SMOTE 
oversampling method. Using one-way ANOVA, the null hypothesis was rejected by a p-value <0.001, hence 
confirming that the proposed model improved performance is statistical significance. The interpretable model 
is also deployed on the web to ease the different stakeholders. This model will help commercial banks, 
financial organizations, loan institutes, and other decision-makers to predict the loan defaulter earlier. 
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I. INTRODUCTION 

According to the Federal Reserve economic data, the default 
rate on credit loans across all commercial banks is at an all-
time high for the past 66 months, and it is likely to continue 
to climb throughout 2020. The delinquency rate indicates the 
percentage of past-due loans within the borrower’s entire 
loan portfolio. The climbing delinquencies will result in a 
significant amount of money lose from the lending 
institutions, such as commercial banks. Therefore, banks 
must have a risk prediction model and be able to classify the 
most relative characteristics that are indicative of people who 
have a higher probability of default on credit. In 2013, 
consumer spending encompassed approximately 69% of 
USA gross domestic product. Of the $3.098 trillion of 
outstanding consumer credit in the United States in the last 
quarter of 2013, they were revolving credit card for over 25% 
of it ($857.6 billion). A small increase in the accuracy of 
identifying high-risk loans could prevent losses of over $8 
billion [1]. Because of the risks inherent in such a large 
portion of the economy, building models for consumer 
spending behaviors to limit risk exposures in this sector is 
becoming more critical. For this to be a viable option, the 
predictions need to be reasonably accurate. 

A robust model is not only a useful tool for the lending 
institutions to decide on credit applications, but it can also 
help the clients to be aware of the behaviors that may damage 
their credit scores [2]. The primary motivation behind risk 
prediction is to utilize financial data, for example, business 
transactional data, exchange records and client transactions, 
and so forth to foresee the client's business performance or 
individual credit card data and to decrease loos and 
vulnerability. Several risk prediction models are based on 
statistical methods, including nearest neighbor, discriminant 
analysis, and logistic regression [3]. With the advancement 
of machine learning and artificial intelligence techniques, 
classification, and regression models were additionally being 
utilized to predict credit risk [4]. Credit risk here means the 
likelihood of a postponement in the reimbursement of the 
credit granted [5]. The goal of credit default prediction is to 
help financial institutions decide whether or not to lend to a 
client. The resulting test is usually a threshold value that 
allows the decision-makers to make the lending decision. 
The standard model depends on the financial ratios, income 
account, and data on the balance sheet [6, 7]. These ratios 
reveal their accessibility and regularization capabilities of 
prediction. Usually, these ratios are utilized to classify the 
credit default client from non-defaulted [8] because these 
parameters may enhance the performance of models.  
Furthermore, the accounting-based models control default 
prediction, but these models utilized limited features [6, 9], 
which leads to model ineffectiveness.   

Traditional credit risk prediction techniques utilized a 
balanced dataset, but it is more typical to handle imbalanced 

datasets. There was less work done by exploring different 
resampling approaches for data imbalance issues for credit 
risk prediction [7]. Considering the Binary classification, 
when number instances are far less than other class, then 
class imbalance issue has arisen. The performance of 
classifiers is compromised when good borrowers and 
defaulters have an imbalanced distribution of classes because 
classifiers focused on the majority class and overlook the 
minority class. Different traditional statistical models, 
including regression, nearest neighbor, and multiple 
discriminant analysis, were not given significant results as 
compared to machine learning models. Different 
classification models based on machine learning have been 
applied for default prediction in previous literature [10]. 
Decision tree-based classification models have been 
extensively used for machine learning tasks because these 
models are easy to understand by humans, and also their 
implementation is straightforward [11]. The indicators or 
features related to predicting the credit default are still 
questionable and also alternatively changed in the past years. 
Hence, the traditional statistical were not able to solve the 
problem, and there is a dire need to build a machine learning 
model to predict the credit default effectively of the client 
[12].  

Various datasets were used in previous studies like 
lending club dataset [13, 14], Chinese P2P lending company 
dataset [15], German credit dataset, Australian credit dataset, 
and Dataset of We.com [16], Chinese consumer finance 
company dataset [17], Six major USA financial institutions 
[2], and Major commercial USA bank dataset [18]. All these 
datasets have few limitations concerning different aspects. 
Few studies utilized a limited number of features [13, 16] and 
also employed a limited amount of data [16] for modeling 
purposes. Various researchers used a large number of 
features [2, 15, 17, 18] and also trained the model with a 
massive amount of data [2, 13, 18]. Furthermore, these 
studies were not given efficient results due to a high 
imbalance of data because they were not balanced the dataset 
[2, 18]. Current credit bureau analytics, such as credit scores, 
are based on slowly varying consumer characteristics. They 
are not adaptable to changes in client’s behaviors and market 
conditions over time. Besides, the behavior of the market has 
not been consistent over the years to the features to predict 
the default are always debatable [19]. Limited work was also 
done to solve the problem of data imbalance by using few 
resampling techniques [20, 21], but results were not efficient. 
To the best of our knowledge, there was no work done on the 
default credit card client’s dataset by employing various 
resampling techniques. Several studies reported that 
effective results were not obtained [11, 22-26]  when 
imbalanced data has utilized. 
Contributions: This research possesses various 
contributions in the domain of credit risk prediction.  
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1. First, multiple latest datasets have been used to build a 

machine learning model for credit risk prediction.  

2. Second, the data imbalance problem has been explored 

by comparing the different resampling techniques and 

evaluate the performance that which the resampling 

technique has given effective results with a machine 

learning classifier.  

3. Limited work was done on resampling techniques for 

data balancing in this domain because only a few 

resampling techniques were employed and also 

obtained less efficient results [2].  

4. Lastly, the interpretable model is also deployed on the 

web to ease the different stakeholders. This model will 

help commercial banks, financial organizations, loan 

institutes, and other decision-makers to predict the 

credit defaulter earlier.  

      The paper has organized as follows. Section 1 covers the 
background theory related to the credit card default 
prediction and resampling techniques. Section 2 includes the 
existing techniques related to the credit card default 
prediction. Section 3 primarily contains the proposed 
solution as well as explained the datasets used in the study. 
Section 4 mainly contains the evaluation metrics used in the 
study.  Section 5 discussed and analyzed the results obtained 
from the implementation stage. In section 6, a framework has 
also been designed for the credit card default prediction. 
Section 7 summarizes the research as a whole, restating the 

problem definition, challenge, and limitation of the study, 
and suggestion for future improvement. 

2. LITERATURE REVIEW 

The previous studies have been incorporated that deal with 
credit card default prediction using imbalanced data. 
Multiple combinations such as ‘machine learning and credit 
card default prediction’ and ‘credit card default prediction 
and imbalanced data’ have been used to retrieve the journal 
papers and conference proceedings. Three databases, namely 
IEEE Xplore, ScienceDirect, and SpringerLink, have 
targeted. In total, 400 articles were retrieved, and 150 
duplicated items were removed. The title and abstract were 
screened to identify potential articles. The full texts of 100 
studies were assessed to find the relevancy with the inclusion 
criteria. The articles that were related to the loan prediction 
through images, corporate default prediction, and credit card 
threats prediction have excluded. In total, 30 studies were 
finally selected for data utilization purposes. Figure 1 shows 
the process of paper selection. The previous review articles 
were also used in addition to these included papers to provide 
a comprehensive performance evaluation. 
Yufei Xia et al. [13] proposed a credit scoring model to 
classify the healthy and loan default customers. They utilized 
the P2P lending dataset to build a model and also 
preprocessed the data due to noisy values.  Advanced 
gradient boosting models and keyword clustering-based 
techniques were employed to test the results. They extracted 

Figure 1. Article Selection Process for related work 

dominant features to enhance the performance of classifiers. 
Their experiments indicated that the gradient boosting based 
Catboost model overtook other traditional models. Jing Zhou 
et al. [15] developed a decision tree-based model for 

customer default prediction in P2P lending. They employed 
different ensemble-based machine learning models for 
modeling purposes. The credit dataset contained 1138 
features and 15000 instances of customers. Data 
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preprocessing techniques were also utilized to deal with 
missing values and high scarcity. They also ranked the 
features, and less associated features were removed. The 
optimization of different Hyper-parameters was also done to 
improve the performance of classifiers. Their experiments 
showed promising results while using high-dimensional data 
to achieve desirable prediction. Leong and Jayabalan [22] 
investigated the different machine learning models to 
classify the default of credit card customers. The dataset used 
in their study was acquired from a bank in Taiwan to examine 
this task. Four machine learning algorithms were utilized in 
which neural networks were given the best results with an 
accuracy of 82%. Te-Wei Li et al. [17] developed the concept 
of transfer learning in which the learning was transferred 
from one dataset to another. The default risk prediction 
model was trained and also compared the results with 
traditional models. Shigeyuki Hamori [11] was done 
extensive work on analyzing payment data of defaulters and 
comparing the accuracy of four predictive machine learning 
methods; random forest, bagging, boosting alongside neural 
networks. The results gained by the boosting algorithm were 
best among the rest of the predictive machine learning 
methods. Yufei Xia et al. [16] developed an ensemble credit 
scoring model by combining the bagging and stacking 
model. Their model is different from traditional ensemble-
based models based on trainable fuser, pool generation, and 
selection of base learners. German credit dataset, Australian 
credit dataset, the dataset of We.com, and Lending club 
dataset were utilized to measure the performance of the 

bstacking model. The performance of the model was 
estimated based on accuracy, the area under the curve 
(AUC), AUC-H measure, and Brier score. The results of 
their models outperformed traditional ensemble-based 
models. Maruf Pasha et al. [25] worked on a customer’s 
default prediction and their predictive accuracy by utilizing 
specific data mining techniques. Six data mining techniques 
were used for modeling. The results described that the neural 
networks were the best method to generate predictions of the 
default credit cardholders. Che-hui Lien and Cheng Yun [26] 
proposed the model for default payments of the customers in 
Taiwan. Different data mining algorithms with the help of 
monetary related features were incorporated. Florentin 
Butaru et al. [2] utilized different machine learning 
techniques to predict the delinquency of credit card 
customers. The data was collected from six commercial 
banks, which contain the economic, credit bureau, and 
customer tradeline features. They observed that it not 
possible to build the generic model for all banks because the 
customer indicators are varied among banks. Their study 
concluded that delinquent accounts in all the banks are 
different so it was suggested that there is a dire need to build 
a generic model.  
Only a few of them have talked about class imbalance but 
not realistically.  

We proposed a machine learning model by analyzing the 
various credit default datasets. Since consumer credit models 
are relatively new in the space of machine learning, an 
overview of related articles is presented in Table 1. 

 
TABLE 1: AN OVERVIEW OF RELATED ARTICLES

Reference Year Dataset Count Machine Learning 
Techniques 

Undersampling 
Techniques 

Oversampling 
Techniques 

Model 
Deployment 

[26] 2009 1     

[18] 2010 1     

[2] 2016 1     

[25] 2017 1     

[16] 2018 4     

[11] 2018 1     

[17] 2018 1      

[24] 2018 1     

[23] 2019 1     

[15] 2019 1     

[22] 2019 1     

[13] 2020 1     

Our study 2020 3     

3. METHODOLOGY 

In this section, we explained the methodology of our study. 
Three imbalanced datasets have been employed to build a 
model for the effective prediction of credit default clients. 
After that, the data has been preprocessed to achieve 
effective results because real-world data leads to noisy 
values. Furthermore, to cater to the data imbalance problem, 
different resampling methods have been utilized to get the 
best results. After preprocessing, a Gradient Boosted 
Decision Tree (GBDT) model, which is an ensemble-based 
learning method, has been used for modeling and also 
compared the results with traditional machine learning 

models. At last, the credit default prediction model has been 
deployed for the end-users to predict the default risk earlier 
effectively. The proposed method is also explained in Figure 
2. The following hypotheses have been developed to validate 
the significance of the proposed method. 
First Null Hypothesis (H0): There is no difference in the 
performance of various machine learning techniques. 
Alternative Hypothesis (H1): The improvement of 
performance by our developed model statistically 
significantly better. 
Second Null Hypothesis (H0): The use of imbalanced 
techniques do not improve the performance of the models. 

https://www.ingentaconnect.com/search?option2=author&value2=Leong,+Ooi+Jien
https://www.ingentaconnect.com/search?option2=author&value2=Jayabalan,+Manoj
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Alternative Hypothesis (H1): The use of imbalanced 
techniques significantly improves the performance of the 
models. 

3.1. DATASETS      

Three datasets related to credit default have been utilized in 
this study. Firstly, The data regarding payment employed by 
[26] in Taiwan have been engaged in this study. This 
payment data is obtained from the UCI machine learning 
repository in the form of a credit card client’s dataset. The 
dataset includes 30000 observations in which 6636 are 

default payment observations, which also indicates an 
imbalance between the two classes. By using the approach of 
[26], default payment was designed as (yes= 1 and no= 0) as 
all the rest of the variables are described as shown in Table 
2. Nevertheless, most of the records of the dataset regarding 
credit card clients are healthy. Secondly, the broadly utilized 
Statlog German credit data published on the UCI repository 
experiences extreme errors in the coding data, and any data 
foundation regarding economic features were not provided. 

 

FIGURE 2. Proposed methodology 

Data also contained an incorrect code table, and various 
features were wrongly represented, which implies that the 
data cannot be utilized for machine learning algorithms. The 
South German Credit data [27] published on the UCI 
repository, which amended the previous dataset and also 
added some background information relevant to features for 
a better understanding of data. The dataset contains 1000 
instances and 21 features that indicated the financial status of 
clients. There are seven quantitative and thirteen categorical 
features. These features are related to financial records 
status, a measure of the advance, bank accounts or securities, 
a business term, Installment rate in the level of extra cash, 
property, age, and the number of existing credits. These data 
also have a target class that contains: Good or Bad. The data 

have a class imbalance problem because only 300 instances 
belong to bad credit clients, and 700 instances belong to good 
clients. The complete information of variables has presented 
in Table 3.  

The credit card fraud dataset [28] was provided by a 
payment service provider in Belgium.  The dataset was 
divided into daily chunks and contained fraudulent e-
commerce transactions. It includes the transactions of credit 
cards of European cardholders in September 2013. The 
dataset contains the transactions in two days where 492 
fraudulent and 284,807 non-fraudulent transactions were 
recorded. The dataset is highly imbalanced; the minority 
class (fraudulent) represent 0.172%. It contains just 
numerical factors that are the result of a PCA transformation. 
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Shockingly, because of confidentiality problems, the original 
features and data information has not provided. There are 28 
features (V1, V2, … V28) in which only two features, Time 
and Amount, have not PCA transformed. The target class 
includes 0 for fraudulent and 1 for non-fraudulent 
transactions.   

3.2. DATA NORMALIZATION 

The major problem in the various datasets is that numerical 
features are all measured in different units. Therefore, data 
normalization is a useful data preparation scheme for tabular 
data, should be considered so that the comparison between 

measurements can be more accessible when building a 
model. Data normalization is a process of re-scaling the 
feature values to make the new inputs follow the standard 
normal distribution. Within the different features, there is 
often a significant difference between the minimum and 
maximum value. The most common normalization method is 
the Min-Max normalization. This technique scaled all the 
numerical values of a numerical feature to a specified range 
and computed through (1). 𝑋𝑛𝑜𝑟𝑚 = 𝑋−𝑋𝑚𝑖𝑛𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛     (1) 

All the features are scaled except categorical features. 

 
TABLE 2: THE DESCRIPTION OF EACH ATTRIBUTE OF THE CREDIT CARD CLIENT’S DATASET

Attribute ID Attribute Name Attribute Description 

X1 Limit_Bal Amount Of Given Credit 

X2 Sex Gender (1 = Male; 2 = Female) 

X3 Education Education (1 = Graduate School; 2 = University; 3 = High School; 4: Others) 

X4 Marriage Marital Status (1 = Married; 2 = Single; 3 = Others). 

X5 Age Age (Year) 

X6-X11 Pay_1 to Pay_6  History of past payment (From April to September 2005): 
X6 = The repayment status in September 2005… 
X11 = The repayment status in April, 2005 History of past payment tracked via past 
monthly payment records (-1 = Payment on time; 1 = Payment delay for one month; 2 = 
Payment delay for two months; . . . ; 8 = Payment delay for eight months; 9 = Payment 
delay for nine months and above). 

X12–X17 Bill_Amt1  to Bill_Amt6 Amount of bill statement (Dollar) 
X12 = amount of bill statement in September 2005… 
X17 = amount of bill statement in April 2005 

X18–X23 Pay_Amt1 to Pay_Amt6 Amount of previous payment (Dollar) 
X18 = Amount paid in September 2005… 
X23 = Amount paid in April 2005 

X24 default payment next month Default= 1 and healthy= 0 

 
TABLE 3: THE DESCRIPTION OF EACH ATTRIBUTE OF THE SOUTH GERMAN CREDIT DATASET

Column Name Variable Name Attribute Description 

Laufkont Status(categorical) The account status of the debtor with a bank. 

Laufzeit Duration(quantitative) The duration of credit in months. 

Moral Credit history(categorical) The contract's history of previous or current credit. 

Verw Purpose(categorical) The reason behind credit. 

hoehe Amount(quantitative) The total amount of credit. 

sparkont Savings(categorical) Total savings of debtor. 

beszeit Employment duration(ordinal) The duration of employment of a debtor with the current organization. 

Rate Installment rate(ordinal) The credit installments of debtor's throwaway income. 

famges Personal status sex(categorical) The information about both sex and marital status. 

buerge Other debtors(categorical) Another debtor for the credit. 

wohnzeit Present residence(ordinal) The duration of living in the present residence. 

Verm Property(ordinal) The ranking of debtor's property in ascending order. 

Alter Age(quantitative) The age of the debtor. 

weitkred Other installment plans(categorical) Any credit/installment burden other than the credit-giving bank. 

wohn housing(categorical) Status of current residence. 

bishkred Number credits(ordinal) The complete history of the credit's taken. 

beruf Job(ordinal) The level of the debtor's job. 

Pers People liable(quantitative) The total number of peers depends on debtor financially. 

Telef Telephone (binary) The status of a registered landline on the debtor's name. 

gastarb Foreign worker(binary) Is the debtor a foreign worker? 

kredit Credit risk(binary) Good or Bad 

3.3. RESAMPLING METHODS 

Any dataset can be considered as imbalanced if the number 
of instances between classes is not equal. Resampling 
methods for imbalanced learning applications typically 
means to add a bias to balance the dataset. Although 
classifiers absolutely can learn from imbalanced datasets, it 

is worthy of balancing the dataset to achieve more robust 
results. All the credit-related datasets employed in this study 
leads to the data imbalance problem. Besides, all of the 
resampling techniques allow resampling until reached the 
desired ratio of balance dataset, allowing us to directly 
compare different resampling methods for a given proportion 
of minority and majority class data points in the final training 
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set. Resampling techniques have been implemented on the 
full datasets. Data level resampling approaches have most 
commonly used to deal with class imbalance, so various 
undersampling and oversampling based approaches have 
been used in this study.  

3.3.1. RANDOM UNDERSAMPLING 

Random undersampling is a simple undersampling based 
approach. Majority class instances in the training set are 
randomly eliminated until the ratio between the minority, 
and the majority class is at the desired level. Theoretically, 
one of the problems with random undersampling is that one 
cannot control what information about the majority class is 
thrown away. In particular, crucial details on the decision 
boundary between the minority and majority class may be 
eliminated. Despite its simplicity, random undersampling 
has empirically been shown to be one of the most effective 
resampling methods. In particular, few of the more 
sophisticated undersampling methods have outperformed 
random undersampling in empirical studies. In random 
undersampling, examples have been randomly removed 
from the majority class to balance the class instances, which 
results in the removal of vital information from the majority 
class. This approach also results in a downsizing of the 
training data considerably. Therefore it is the most naive 
approach in data undersampling.  

3.3.2. NEAR MISS  

Near Miss is an undersampling technique proposed by zhang 
and mani [29] that aims to mitigate the information loss 
during the undersampling of the majority class. Instead of 
resampling the minority class, using a distance, this will 
make the majority class equal to the minority class. Near 
Miss uses average distances between a given point and the 
nearest or farthest points of the opposite class. Near Miss, 
undersampling has three versions, all aimed at creating 
separation between the two class observations. In NearMiss-
1, we need to select the majority class points up to the given 
percentage of the majority class size, which is close to some 
of the minority class points. It means to select major class 
points with the smallest average distance to the three nearest 
points from the minor class. In NearMiss-2, we need to 
choose the majority class points up to the given percentage 
of the majority class size, which is close to all points of the 
minority class. It means to select the majority class points 
with the smallest average distance to the three farthest points 
from the minority class. In NearMiss-3 for each minor class 
point, we need to select a given number of the closest 
majority class points. In this study, the NearMiss-1 method 
has been used in which majority class points are selected 
with the smallest average distance to the three nearest points 
from the minority class. 

3.3.3. CLUSTER CENTROID 

One major problem of using undersampling is that important 
information may be lost from the majority class, which can 
cause overly general rules, which means samples can be 

misclassified after classification. This cannot be afforded to 
develop the credit card default prediction model, especially 
for default samples. Hence, to overcome this problem, the 
Cluster Centroids method has been introduced in [30]. 
Cluster Centroids undersamples the majority class by 
replacing majority samples from clusters with the cluster of 
centroids using the K-means algorithm by considering the 
ratio of majority class samples to minority class samples. 
This technique performs undersampling by generating 
centroids based on k-means clustering methods. The data has 
grouped based on the similarity to preserve information. A 
K-means algorithm is fitted to the data, and the number of 
clusters (k) has been obtained by the level of undersampling. 
Then, the majority of samples from the clusters are entirely 
substituted by the sets of cluster centroids from K-Means. 
Cluster Centroids contain the most representative variations 
of the majority class in which features values would be 
visualized at the center. An attempt was made at remedying 
this issue by both underfitting and overfitting the data as well 
as combining the two. When underfitting was applied to the 
dataset, this was done by only considering the cluster 
centroids similar adapted from [30].  

3.3.4. RANDOM OVERSAMPLING 

Like random undersampling, random oversampling is a 
simple yet effective approach to resampling. Random 
Oversampling is a very naive approach to data oversampling. 
It merely replicates the minority class examples and adds 
them to the training data. By using this technique, new 
examples come from the existing minority class examples in 
the training set that results in the problem of over-fitting.  

Over-fitting is a problem that occurs when all the 
training examples are very similar to each other, and the 
classifier correctly classifies these examples. In such a 
scenario, if a test example is slightly different from the 
training examples, then the classifier is not able to classify it 
correctly and results in poor classification for the new 
examples. In other words, the classifier is trained to classify 
only a very narrow set of examples correctly. The random 
oversampling method operates by replicating the randomly 
selected set of examples from the minority class so that the 
majority class does not have an overbearing presence during 
the training process. Since the resampling process is random, 
it becomes difficult for the decision function to find a clear 
borderline between the two classes. Therefore, although it is 
widely used, Random oversampling might be ineffective at 
improving recognition of the minority class by a large 
margin. Some potential drawbacks of random oversampling 
include an increase in training time for the classifier and 
overfitting on account of duplication of examples of the 
minority class. However, other oversampling methods have 
been built based on this method. 

3.3.5. ADAPTIVE SYNTHETIC  

Adaptive Synthetic (ADAYSN) oversampling technique is 
based on density distribution to generate synthetic data 
samples for each minority class inevitably. This method was 
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proposed by Haibo He et al. [31] for two-class classification 
and describe the following.  

Suppose, the training set is 𝐷𝑡𝑟  concerning 𝑚 samples, 𝐼 
is (1 to m) in which 𝑋𝑖  denotes the instance by considering n-
dimensional space 𝑋. Therefore, 𝑦_𝑖 ∈ 𝑌 = {1, −1}, which 
describes the class label association with 𝑋𝑖. 𝑚0 represents 
the minority data points and m1 denotes the majority data 
points which also implies 𝑚0 ≤ 𝑚1 and 𝑚0 + 𝑚1 = 𝑚. 
First, calculate the rate of imbalance between two classes 
using (2): 𝑑 =  𝑚0 𝑚1                           (2) 

Then compute the synthetic data points that have to need 
to be generated from the minority class. 𝐺 = ( 𝑚1 −  𝑚𝑠) ∗  𝛽   (3) 

In the above Equation (3), 𝛽 specifies the generation of 
synthetic data after the desired balance level. If the value of 
(𝛽 =1), this implies that the dataset is balanced after 
generalization. For individual data point 𝑥𝑖 belong to 
minority class, Euclidean distance has been calculated in n-
dimensional space to determined k-nearest neighbors.   𝑟𝑖 =  i𝐾  , 𝑖 = 1,2,3, … , 𝑚𝑠         (4)  

In which i  denoted the number of instances in the K-
nearest neighbor of 𝑥𝑖 that is associated with the majority 
class. Hence, 𝑟𝑖  ∈ [0,1]. The normalization has been done 
through (5).  �̂� =  𝑟𝑖∑ 𝑟𝑖𝑚𝑠𝑖=1                             (5) 

So, the synthetic data points that are necessary to be 
generated for individual minority data point’s 𝑥𝑖 are 
calculated: 𝑔𝑖 =  �̂� ∗ 𝐺                                            (6) 𝐺 denotes the total number of synthetic data points that 
need to be created for the minority class is determined 
through (3). In the last step, one data point 𝑥𝑧𝑖 from minority 
class chosen randomly from the data 𝑥𝑖. Synthetic data points 
are generated through (7).    𝑆𝑖 =  𝑥𝑖 + (𝑥𝑧𝑖 −  𝑥𝑖) ∗ 𝜆                       (7) 

 In which (𝑥𝑧𝑖 −  𝑥𝑖) represented the n-dimensional 
space for difference vector, and 𝜆 denoted random number: 𝜆 ∈ [0,1]. This improves learning by reducing the bias 
introduced by the class imbalance and moving the 
classification decision boundary towards the samples that are 
more difficult to learn. The quoted mechanism shows that 
ADAYSN pays special attention to data samples that are 
particularly close to the majority of samples.  

3.3.6. SYNTHETIC MINORITY OVERSAMPLING 
TECHNIQUE  

Chawla et al. [32] proposed a powerful oversampling 
approach called the Synthetic Minority Oversampling 
Technique (SMOTE) that improves the classification of 
minority classes in imbalanced data. It allows one to 
oversample the minority class and undersample the majority 
class. Unlike previous algorithms that oversample the 
minority class by replication, leading to over-fitting, 

SMOTE creates synthetic minority data. It over-samples the 
minority class by taking k (in our case, k = 5) nearest 
neighbors for a given minority data sample, finding the 
difference between the features of it and a randomly chosen 
neighbors, multiplying this difference by a random number 
between 0 and 1, and adding it to the feature vector. 𝑥𝑛𝑒𝑤 = 𝑥𝑖 + (𝑥𝑖′ − 𝑥𝑖) ∗  𝛼                   (8) 𝑥𝑖′ is one of the K- nearest neighbors of 𝑥𝑖 , and 𝛼 ∈[0,1] is a real random number. SMOTE repeats this sampling 
and perturbation algorithm to create minority data samples 
according to the amount of over-sampling desired. For 
instance, over-sampling by 200% creates two new synthetic 
minority samples by separately perturbing a sample along the 
vectors of two different nearest neighbors. SMOTE also 
allows one to undersample the majority class by removing 
samples until the new majority class is a certain percentage 
of the original minority class’ sample size. Depending upon 
the percentage of over and under-sampling, the resulting 
dataset may have more or fewer samples in the minority class 
than in the original data. With a slight variation, a similar 
technique can be used for categorical variables. In the case 
of mixed categorical and continuous variables, like our 
datasets, SMOTE calculates the nearest neighbors by first 
calculating the median of standard deviations of the 
continuous features in the minority class. If the categorical 
variables differ between the sample and its potential nearest 
neighbors, then the previously calculated median has been 
included in calculating the Euclidean distance between 
samples. After the k nearest neighbors are determined, the 
synthetic categorical features are assigned the majority 
occurring values amongst the nearest neighbors. At the same 
time, the continuous variables are calculated originally. By 
creating synthetic minority classes, SMOTE creates more 
general decision regions than the small, specific regions that 
result from the replication of minority classes. Because a 
factor between 0 and 1 only perturbs samples, this method 
does limit the synthesized data to be no more or less than the 
extreme values of the real data.  

3.3.7. BORDERLINE-SMOTE 

The Borderline-SMOTE algorithm was developed to help 
resolve some of the problems caused by borderline data. Han 
et al. [33] first introduced this algorithm as an extension of 
the SMOTE algorithm that focuses on generating synthetic 
data for minority class instances that are exclusively near the 
borderline. While [33] demonstrate that the borderline 
variant of SMOTE may increase the classification accuracy 
of the minority class, it is not clear how the overall 
performance of the models compare. One, in particular, that 
removes some of the randomnesses of the original SMOTE 
by considering both classes in the neighborhoods is 
Borderline-SMOTE. Equivalent to the innovative algorithm, 
it uses the k -nearest neighbors of a minority class point, but 
now while considering every remaining sample point in the 
training set. It uses this neighborhood to categorize the 
minority class point as follows: 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3033784, IEEE Access

                   Talha et al.,: Preparation of Papers for IEEE Access (June 2020) 

9 
 

a. If all of the k neighbors belong to the majority class, 

it is considered to be noise. 

b. If less than half of its neighbors belong to the 

majority class, it is considered to be safe. 

c. If at least half of its neighbors belong to the majority 

class (but not all of them), the point is labeled as 

danger. 
This means that, by explicitly oversampling those 

points, it should aid the learner in incorrectly retrieving the 
decision bound. Synthetic instances are then created between 
the instance and a random sample of its m nearest neighbors. 
In this way, the border between the classes is strengthened, 
so it should be more comfortable for the classifier to 
recognize the difference between the two classes. 

3.3.8. SMOTETOMEK 

This algorithm is also an extension of the original SMOTE 
that was introduced by Batista et al.[34] to solve the class 
distribution problem more efficiently. The class distribution 
will always be a problem if the majority class invades into 
the minority class, and the same way after oversampling the 
minority class can do the same to the majority class. 
Similarly to the SMOTEENN technique, this technique is 
also a variant of SMOTE that utilizes an additional technique 
for data cleaning, in this case, that technique is Tomek’s 
Link. It is a powerful method to combine SMOTE with 
Tomek’s link removal for the sake of class balancing. 
SMOTE is applied first to the dataset, creating new synthetic 
observations. Subsequently, Tomek’s link undersampling is 
applied to the new dataset (that contains the synthetic 
observations) to remove any pairs of examples that form a 
Tomek’s link.  

Tomek’s link is a link between two data points that are 
defined by a combination of two things: Firstly, they must be 
nearest neighbors; secondly, they must have different class 
labels. Examples that are Tomek’s link are more likely to be 
either noise or points that are close to the optimal decision 

boundary. Consider two examples 𝑥𝑖 and 𝑥𝑗 belong to 

different classes. Let 𝑑(𝑥𝑖 , 𝑥𝑗)be the distance between them. 

Examples (𝑥𝑖 , 𝑥𝑗) form a Tomek link if there is no other 

example 𝑥𝑖(𝑙 ≠ 𝑖 𝑎𝑛𝑑 𝑙 ≠ 𝑗) such that 𝑑(𝑥𝑖 , 𝑥𝑙) <  𝑑(𝑥𝑖 , 𝑥𝑗) 

and 𝑑(𝑥𝑗 , 𝑥𝑖) <  𝑑(𝑥𝑖 , 𝑥𝑗).  If 𝑥𝑖 and 𝑥𝑗 create a Tomek link, 

then either one of them is noise, or both are borderline 
examples. Originally Tomek links are used to find out the 
noise and borderline examples, but this technique is also used 
as an undersampling method for majority class examples. 

 

3.3.9. K-MEANS SMOTE 

Douzas et al. [35] proposed a method that first separately 
partitions the minority and majority classes using the k-
means algorithm, then performs over-sampling with 
duplication on the resulting clusters to re-balance the class 
distribution as well as inflate small clusters to counter the 
within-class imbalance through SMOTE. The specific way 
of over-sampling is as follows: In the majority class, clusters 
except the largest one are over-sampled up to the size of the 
largest cluster, then minority clusters are over-sampled until 

each cluster contains 
𝑀𝑎𝑗−𝑠𝑖𝑧𝑒#min−clusters instances, where maj-size 

is the overall size of the majority class, and #min-clusters is 
the number of minority clusters. The oversampling has done 
through the SMOTE method, as explained in the above 
section. Furthermore, to divide the training set into clusters 
and then perform sampling locally for each cluster. Finally, 
all the clusters are combined to create only one training set 
for training a global classifier.  

Different clusters in a dataset and each cluster seems to 
have distinct characteristics. If a cluster has more majority 
class instances and less minority class instances, it will 
behave more like the majority class. On the other hand, if a 
cluster has more minority class instances and less majority 
class instances, it will behave more like the minority class. 
The distribution of majority and minority classes employing 
different resampling techniques is shown in Table 4.

TABLE 4: CLASS DISTRIBUTION OF VARIOUS DATASET: BEFORE AND AFTER RESAMPLING TECHNIQUES 

Credit Card Client's Dataset 

 Total instances Defaulter clients Healthy clients 

Imbalanced Dataset 30000 6636 23364 

Undersampled Dataset 13272 6636 6636 

Oversampled Dataset 46728 23364 23364 

South German Client’s Credit Dataset  

 Total instances Bad clients Good clients 

Imbalanced Dataset 1000 300 700 

Undersampled Dataset 600 300 300 

Oversampled Dataset 1400 700 700 

Belgium Client’s Credit Dataset 

 Total instances Defaulter clients Healthy clients 

Imbalanced Dataset 285299 492 284807 

Undersampled Dataset 984 492 492 

Oversampled Dataset 569614 284807 284807 

3.4. GRADIENT BOOSTING 

The iterative machine learning method to solve the 
classification problem is known as gradient boosting. This 
technique is based on ensemble learning in which the model 

is trained in such a way that errors of the previous iteration 
are used. Gradient Boosting accounts for misclassified 
samples by fitting a new learner to the ensemble residual that 
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is the difference between the target outputs and the current 
predictions of the ensemble. Gradient Boosting tries to 
maximize the predictive power of the ensemble, i.e., 
minimize the bias. The advantage of using a boosting 
approach is generally high predictive power, but it comes 
with the cost of being slow to train as each new learner is 
trained sequentially. 

Consider the joint probability distribution 𝑃(𝑥, 𝑦) in 
which 𝑥 is the input variable, and 𝑦 is the output variable.       
The purpose is to determine the function 𝐹(𝑥 ) by utilizing 

the training set of 𝑁 observations (𝑥𝑖 ,𝑦𝑖 ) to predict 𝑦 in 

which the values of 𝑥 are already known. When there are a 
finite number of known values 𝑦 or classes, then it is 
described as a classification problem. When loss function 𝐿 
has minimized from the training set, then 𝐹(𝑥) determined. 𝜏(𝐹) = ∑ 𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))                             (9)𝑁

𝑖=1  𝐹 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐹𝜏(𝐹)                                       (10) 
The entire training data has used to calculate 𝜏(𝐹) 

through (9), which states the error furnished by learner 𝐹. 
The purpose is to determine the function 𝐹, which minimizes 
the error or loss through (10). The sum of 𝑀 + 1 base 
learners has constructed to approximate 𝐹𝑚 to 𝐹 through 𝑀 
iterations in gradient boosting. 𝐹𝑚 =  ∑ 𝑓𝑚 𝑀

𝑚=0                                        (11) 

The notion of gradient boosting has started with the 
initial guess 𝐹0 then steepest descent follows iteratively to 
the negative gradient to minimize the error.  𝑔𝑚,𝑖 =  ∇𝐹𝑚−1𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖))            (12) 𝐹𝑚 = 𝐹𝑚−1 − 𝛾𝑚𝑔𝑚                               (13) 𝛾𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾  𝜏(𝐹𝑚−1 − 𝛾𝑔𝑚)          (14) 

The gradient loss of 𝐹𝑚−1 on the training, data has been 
determined by (12). The negative gradient of the next 
classifier 𝐹𝑚 has also been determined by (12). The length 
used to minimize the loss of optimal length 𝑟𝑚 has been 
calculated through (14). The equation (11) given (m>0): 𝑓0 = 𝐹0                                                       (15) 𝑓𝑚 = −𝛾𝑚𝑔𝑚                                                       (16) 

It is not possible to use 𝑔𝑚 directly because it only gives 
values on some points like training data, as shown in (12). It 
is mandatory to generalize the result because the model can 
also be suitable for unseen data, so the function from a 
restricted class for the best approximation has been used. To 
fit the gradient, a base learner ℎ𝑚 has used by utilizing the 

training set (𝑥𝑖 , 𝑔𝑚,𝑖)𝑖=1𝑁  and then updated equations are: 𝑓𝑚 = 𝛾𝑚ℎ𝑚,     𝑚 > 0                             (17) 𝐹𝑚 = 𝐹𝑚−1 − 𝛾𝑚ℎ𝑚                               (18) 𝛾𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 𝜏(𝐹𝑚−1 − 𝛾ℎ𝑚)          (19) 

Algorithm 1 is the gradient boosting algorithm for the 
above equations. The algorithm executes in such a way that 
it finds the local minimum 𝐿 by iteratively increasing the step 
size. The step that reaches this minimum is chosen as the 
solution 𝛾𝑚.   

Algorithm 1: Gradient boosting algorithm 

1. Initialize the f with the best constant in which, 𝐹 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐹𝜏(𝐹) 

2. For-Do loop (𝑚 = 1 → 𝑀) 

3. Calculate the gradient at the training points: 𝑔𝑚,𝑖 =  ∇𝐹𝑚−1𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖)) 

4. Fit a new base-learner to the target 𝑔𝑚 

5. Find the best gradient step, which is as 

followed: 𝛾𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 𝜏(𝐹𝑚−1 − 𝛾ℎ𝑚) 

       Update the function estimate 

6. 𝐹𝑚 = 𝐹𝑚−1 − 𝛾𝑚ℎ𝑚 

7. 𝑚 ← 𝑚 + 1 

8. Loop end 

9. Return 𝐹𝑀 

3.4.1. GRADIENT BOOSTED DECISION TREE 

Decision trees are intuitive models that resemble real-life 
thinking closely. This makes these kinds of models easy to 
work because it is easy to visualize them and can spot errors 
as well. Randomized decision trees and forests have a rich 
history in machine learning and have seen considerable 
success in various applications. However, they face 
fundamental limitations: given enough data, the number of 
nodes in decision trees will grow exponentially with depth, 
and the exponential growth of trees limits their depth. The 
GBDT model has been used to overcome the above 
problems. The GBDT utilized for decision trees of a fixed 
size as base learners. Friedman et al. [36] proposed a 
modification to gradient boosting, which enhances the 
performance of the base learner. Equation (19) has used to 

improve the optimization of 𝑚𝑡ℎ step size 𝛾𝑚. It has also 
useful to execute the search for each tree to determine the 
optimal descent direction. It can defined as  𝛾𝑚𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖)  + 𝛾 ) 𝑥𝑖∈𝑅𝑘    (20) 

And an updated model becomes 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) − ∑  𝛾𝑚𝑘  .  𝐼(𝑥 ∈ 𝑅𝑘 )𝑘
𝑘=1             (21)  

While a tree is growing, the best local gradient is 
approximated to find the  𝛾𝑚𝑘 through (20). Hence, the 
updated Equation (22) for each node of boosted trees is: 

 𝑚𝑖𝑛 𝛾𝑚𝑘1,𝑚𝑘2 [ ∑ 𝐿((𝑦𝑖 , 𝐹𝑚−1(𝑥 ) +  𝛾𝑚𝑘1) +𝑥𝑖 | 𝑥𝑖𝑝≤𝑠 ∑ 𝐿((𝑦𝑖 , 𝐹𝑚−1(𝑥 ) +  𝛾𝑚𝑘2)𝑥𝑖 | 𝑥𝑖𝑝≤𝑠 ]                          (22)       

3.4.1.1. LOSS FUNCTION  

The conventional way to overcome the problem of loss or 
error function is to set a decision boundary on the real axis 
and assign the class on each side of the boundary. In other 
words, calculate the probabilities for each class. Binomial 
deviance enables to overcome the problem of the loss 
function. The decision boundary of this loss function is set to 
be zero. The probability with the learner output 𝑓 has 
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assigned by decision boundary and also calculated through 
the logistic function:  𝑃(𝑦 = 1|𝑥) = 𝑃(𝑓) = 11+ 𝑒−𝑓(𝑥)                              (23) 𝛻𝑓 𝐿𝐷 = 𝑃(𝑦 = 1|𝑥) − 𝑦 =  11+ 𝑒−𝑓(𝑥) − 𝑦          (24) 𝐿𝐷 =  𝑙𝑜𝑔  (1 +  𝑒𝑓) − 𝑦𝑓                                        (25) 

It is also noticed that binomial deviance also punished 
the correctly classified examples. Binomial deviance reduces 
the misclassification rate because it punishes the 
misclassifications examples more profoundly than the 
corrected ones. Furthermore, the penalty upturns linearly 
with 𝑓, which makes it more robust than other loss functions 
in which penalty rises at a high rate. The above reasons 
justify that binomial deviance is an ideal loss function for 
classification problems than others. This method can also be 
utilized for multi-class classification problems. 

3.4.1.2. FEATURE SELECTION THROUGH GRADIENT 
BOOSTED DECISION TREE MODEL 

It can be fascinating to comprehend where the model 
prediction originates from it. Furthermore, this also implies 
that how the model predicts decisions. In particular, when 
constructing a model with several features, some of them had 
a higher priority than others, while a few features may not be 
associated with predictions. Particular features and their 
various combinations contain different amounts of 
information suitable for class discrimination. Some features 
may be redundant and do not provide any new information 
for classification, or irrelevant, hence offer no relevant 
information at all. The occurrence of these features can 
influence the classifier design negatively and decrease its 
final performance.  
The goal of feature selection is to find a reduced subset of 
the input features in which maximum redundant and 
irrelevant information is eliminated. The problem is how to 
define features that are better to keep or to remove. It is 
difficult to determine the informativeness of features 
correctly because of the limited sample size. Furthermore, 
the information content of features depends on a criterion 
function employed in the final performance evaluation. It is 
complicated to imagine all situations arising in the real-world 
data as there can be quite complex non-linear high-
dimensional statistical dependencies between features [37]. 
It may be beneficial to determine which features clarify the 
dispersion of the data. It is easy to visualize the decision tree 
through a 2-D image to understand the selection of 
significant features. Various researches also extract 
significant features for better performance [38, 39]. 
However, it is more beneficial to calculate the importance of 
each feature to enhance the model’s prediction.  
      The GBDT model that we have used there, i.e. the GBDT 
model automatically selects the significant features during 
the modeling phase that also given effective results [40-42]. 
The following method has utilized to estimate the 
significance of features:  𝐼𝑝2(𝑇) =  ∑ 𝐼𝑘2𝑠𝑝𝑙𝑖𝑡𝑠𝑜𝑛𝑋𝑝       (26) 

It also gives the relative importance in the tree 𝑇 of the 
feature 𝑝, also known as a relative influence. By splitting the 

variable 𝑝 at node 𝑘, 𝐼𝑘2 has obtained. This measure was 
extended later by averaging all the trees, which made the 
boosted model:    𝐼𝑝2 =  1𝑀  ∑ 𝐼𝑝2(𝑇𝑚)𝑀

𝑚=1           (27) 

3.4.1.3. The GRADIENT BOOSTED DECISION TREE 
MODEL AND OVERFITTING 

The model has updated on each iteration of GBDT with the 
base learner to decrease the loss of gradient, which implies 
that with each iteration, the training loss decreased. The 
training error might be small if there are a large number of 
iterations 𝑀. The original GBDT algorithm might overfit 
when data is too much fitted, which leads to an increase in 
the error on the training set. It might be possible to optimize 
the number of iterations to decrease the overfitting risk to 
overcome this problem. A regularization method by 
shrinkage to overcome overfitting has been used in which a 
learning rate parameter 𝑉 has added in Algorithm 2 by 
updating the (18): 𝐹𝑚 = 𝐹𝑚−1 − 𝑉𝛾𝑚ℎ𝑚     , 0 < 𝑉 ≤ 1     (28) 

Equation (28) decreased the values 𝑉 by 0.1, which 
control overfitting, but the training error becomes large if 
more shrinkage is performed.  

  

Algorithm 2: Gradient boosted decision tree algorithm 

1. Initialize the f with the best constant in which, 𝐹 =𝑎𝑟𝑔𝑚𝑖𝑛𝐹𝜏(𝐹) 

2. For-Do loop (𝑚 = 1 → 𝑀) 

3. Choose a suitably sized subsample 𝑋′ from the data 

points arbitrarily 

4. Calculate the negative gradient at the training points:  𝑔𝑚,𝑖 =  −∇𝐹𝑚−1𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖)) 

5. By utilizing 𝑋′ fit the tree ℎ𝑚(𝑥) to the target class 

6. Calculate the best terminal nodes which give 

predictions by using 𝑋′  
    Update the function estimate 

7. 𝐹𝑚 = 𝐹𝑚−1 + ℎ𝑚 

8. 𝑚 ← 𝑚 + 1 

9. Loop end 

10. Return 𝐹𝑀 

4. Evaluation Metrics 

Model evaluation is of paramount importance in any 
predictive modeling task. It becomes even more critical in 
ensemble predictive modeling, where the relative 
performance and diversity of models must be thoroughly 
evaluated. All the evaluation metrics are built on four types 
of classifications: true positives (TP), true negatives (TN), 
false positives (FP), and false negatives (FN).  

4.1 Accuracy 
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Typically, accuracy is used to assess the effectiveness of a 
model with the help of the confusion matrix. The accuracy 
of the model has been computed through (29).  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁   (29) 

4.2 Precision 

Precision compares the number of true positives to the 
number of true positives and the number of false positives. 
That is, of all the instances the classifier said were positive, 
precision measure how many of them were positive. The 
Precision of the model has been computed through (30).   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃                         (30) 

4.3 Recall 

Recall compares the number of true positives to the number 
of true positives and false negatives. The Recall of the model 
has been computed through (31). 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁                                  (31) 

 
 

4.4 F-Measure 

F-Measure combines precision and recall as the harmonic 
mean. The precision and recall trade-off with each other: 
higher precision generally associated with low recall. The 
value of F-Measure has been computed through (32). 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (32) 

4.5 Receiver Operating Characteristic curve 

A receiver operating characteristic (ROC) curve plot is also 
a widely used measure to evaluate the performance of 
classifiers. Specifically, the plot is created by plotting the 
true positive rate (recall) against the false positive rate at 
various threshold levels.  

4.6 Geometric Mean  

The Geometric Mean (G-Mean) is a metric that measures the 
balance between classification performances on both the 
majority and minority classes. This measure is essential in 
the avoidance of overfitting the negative class and 
underfitting the positive class [43]. The G-mean has been 
calculated through (33). 

𝐺 − 𝑀𝑒𝑎𝑛 = √( 𝑇𝑃𝑇𝑃 + 𝐹𝑁) ∗ ( 𝑇𝑁𝑇𝑁 + 𝐹𝑃)        (33) 

Accuracy is a good measure to evaluate the performance of 
the balanced datasets but not on an imbalanced dataset. 
Measuring the performance of a classifier applied to 
imbalanced data using traditional metrics such as accuracy is 
difficult since it does not take into account the lower number 
of instances in the minority class. Previous studies [42, 44] 
also showed that imbalance could exert a significant impact 
on the value and meaning of accuracy and specific other 
well-known performance metrics. Another performance 
evaluation metric, F-Measure also neglects the correct 
classification of negative samples and only reflects the 
importance of retrieval of positive examples. Threshold 
metrics such as Precision and Recall have been used 
frequently for assessing the performance of a classifier in 
such cases. A combination of these measures, such as G-
mean used different combinations of specificity and 
sensitivity of the classifiers to give a better indication of 
performance. Ranking order metrics such as ROC measure 
assess the performance of a classifier overall imbalance 
ratios and hence provide a summary of the entire range. 
Furthermore, several performance measures, i.e., accuracy, 
precision, recall, F-Measure, ROC, and G-Mean, have been 
employed. 

5. RESULTS 

Since we were trying to build a prediction model, there was 
a dire need for a dataset to build the model. There is a need 
for data to test whether our model made correct predictions 
on new data. We split our datasets into training and test data 
with a ratio of 70:30. Various classifiers have been utilized 
to evaluate the performance of imbalanced datasets. The 
performance of the GBDT method is also compared with 
traditional machine learning models in which the GBDT 
method outperformed traditional machine learning models 
on imbalanced datasets. The results are presented in Table 5 
in which the GBDT model has been given the best results 
with the accuracy of 66.9% on Taiwan clients credit dataset, 
70.7% on South German clients credit dataset, and  65% on 
Belgium clients credit dataset. After the GBDT method, 
different traditional models (random forest, bagging, K-
Nearest Neighbor, Logistic Model Tree, Adaboost, and 
Stacking) have also been utilized. These models also showed 
significant results but outperformed by the GBDT model. 

TABLE 5: THE PERFORMANCE OF MACHINE LEARNING TECHNIQUES WITHOUT OUR PROPOSED MODEL 

Dataset Models Accuracy (%) Precision (%) Recall (%) F-Measure (%) ROC G-Mean (%) 

Taiwan clients credit dataset Random Forest 65.5 72.7 60.7 66.2 0.68 66.4 

Bagging 63.6 78.9 55.5 65.2 0.65 66.2 

K-Nearest Neighbor 64.7 74.2 62.0 67.6 0.65 67.8 

Logistic Model Tree 61.1 66.6 60.0 63.1 0.63 63.2 

AdaBoost 63.8 69.2 66.6 67.9 0.64 67.9 

Stacking 46.8 50.0 52.9 51.4 0.50 51.4 

GBDT Model 66.9 67.1 72.4 69.6 0.70 69.7 

South German clients credit 
dataset 

Random Forest 69.3 68.7 70.9 69.8 0.72 69.8 

Bagging 66.1 65.6 67.7 66.6 0.68 66.6 

K-Nearest Neighbor 63.6 64.9 62.9 63.9 0.65 63.9 
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Logistic Model Tree 62.7 63.1 63.1 63.1 0.63 63.1 

AdaBoost 68.8 66.6 73.3 69.8 0.70 69.9 

Stacking 46.2 52.7 50.0 51.3 0.49 51.3 

GBDT Model 70.7 68.5 75.0 71.6 0.73 71.7 

Belgium clients credit dataset Random Forest 63.5 62.5 67.5 64.9 0.65 64.9 

Bagging 61.9 61.2 66.2 63.6 0.63 63.6 

K-Nearest Neighbor 60.9 60.0 67.1 63.3 0.61 63.4 

Logistic Model Tree 60.2 62.9 59.7 61.2 0.61 61.3 

AdaBoost 43.2 49.5 38.4 43.2 0.47 43.6 

Stacking 44.8 50.0 44.4 47.0 0.48 47.1 

GBDT Model 65.0 63.7 66.6 65.1 0.68 65.2 

 

A GBDT has been used with different combinations of 
tuning parameters. These tuning parameters were the 
learning rate and the number of decision trees to be 
constructed. First, Taiwan’s client credit dataset has been 
employed to test the performance of classifiers.  The GBDT 
model applied to random undersampling, Near Miss, and 
Cluster Centroid undersampled datasets. The results are 
presented in Table 6 in which Random undersampling, Near 
Miss, and Cluster Centroid method has given the accuracy of 
70.3%, 82.8%, and 86%, respectively. The Cluster Centroid 
outperformed Near Miss and random undersampling method 
based on the accuracy. After the GBDT method, different 

traditional models (random forest, bagging, K-Nearest 
Neighbor, Logistic Model Tree, Adaboost, and Stacking) 
have also been utilized by utilizing undersampling 
techniques. These models also showed significant results on 
the Cluster Centroid method as compared to Near Miss and 
random undersampling. The performance of the GBDT 
method also compared with traditional machine learning 
models in which the GBDT method outperformed traditional 
machine learning models on undersampled datasets, as 
shown in Table 7. Furthermore, the performance of 
classifiers even better on the Cluster Centroid undersampled 
dataset as compared to the Near Miss and random 
undersampling dataset. 

TABLE 6: THE PERFORMANCE OF GBDT MODEL USING UNDERSAMPLING TECHNIQUES ON TAIWAN CLIENTS CREDIT DATASET 

Undersampling 
Methods 

Learning 
Rate 

Number of 
decision trees 

Accuracy (%) Precision (%) Recall (%) F-Measure (%) ROC G-Mean (%) 

Random 

Undersampling 

0.1 50 70.3 67.6 75.9 71.5 0.77 71.6 

0.1 100 70.1 67.6 74.9 71.1 0.77 71.2 

0.1 150 69.6 67.5 73.2 70.3 0.77 70.3 

0.1 200 69.2 67.3 72.1 69.6 0.78 69.7 

0.2 200 68.7 67.4 69.9 68.6 0.78 68.6 

Near Miss  0.1 50 82.5 79.3 86.9 82.9 0.87 83.0 

0.1 100 82.7 79.8 86.7 83.1 0.87 83.2 

0.1 150 82.7 80.1 86.2 83.0 0.88 83.1 

0.1 200 82.7 80.4 85.6 82.9 0.88 83.0 

0.2 200 82.8  80.5 87.0 83.3 0.88 83.7 

Cluster Centroids 

 

0.1 50 84.6 84.0 84.6 84.3 0.91 84.3 

0.1 100 85.2 84.5 85.5 85.0 0.91 85.0 

0.1 150 85.8 85.0 86.3 85.6 0.91 85.6 

0.1 200 86.0 85.3 86.3 85.8 0.92 85.8 

0.2 200 86.0 84.8 87.2 86.0 0.92 86.0 

 
TABLE 7: THE PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS USING UNDERSAMPLING TECHNIQUES ON TAIWAN 

CLIENTS CREDIT DATASET 

Undersampling 
Methods 

Performance 
Measures 

Random 
Forest 

Bagging K-Nearest 
Neighbor 

Logistic Model 
Tree 

AdaBoost Stacking GBDT 
Model 

Random 

Undersampling 

Accuracy (%) 70.0 69.1 69.3 69.3 69.6 49.8 70.3 
Precision (%) 70.2 69.3 69.7 69.7 71.3 51.2 67.6 

Recall (%) 69.8 69.1 69.4 69.4 69.6 49.7 75.9 

F-Measure (%) 70.0 69.1 69.2 69.2 69.0 50.1 71.5 

ROC 0.76 0.75 0.61 0.75 0.75 0.50 0.77 

G-Mean (%) 70.0 69.2 69.5 69.5 70.4 50.4 71.6 

Near Miss Accuracy (%) 81.7 80.8 70.2 80.3 74.1 49.7 82.8 
Precision (%) 80.3 81.1 70.5 80.1 75.3 50.1 80.5 

Recall (%) 81.8 80.9 70.3 80.4 74.1 49.7 87.0 

F-Measure (%) 81.7 80.9 70.2 80.3 73.7 48.7 83.3 

ROC 0.87 0.87 0.70 0.85 0.77 0.50 0.88 

G-Mean (%) 81.0 81.0 70.4 80.2 74.7 49.9 83.7 

Cluster Centroid Accuracy (%) 82.4 81.5 63.1 78.6 73.0 49.7 86.0 
Precision (%) 82.5 81.6 63.2 78.7 73.0 52.1 84.8 

Recall (%) 82.5 81.6 63.2 78.7 73.0 49.7 87.2 

F-Measure (%) 82.5 81.6 63.2 78.7 73.0 48.1 86.0 

ROC 0.89 0.88 0.63 0.84 0.79 0.50 0.92 
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G-Mean (%) 82.5 81.6 63.2 78.7 73.0 50.9 86.0 

Secondly, Oversampling techniques (Random 
oversampling, ADASYN, SMOTE, Borderline-SMOTE, 
SMOTETomek, and K-means SMOTE) have also been 
utilized to enhance the performance of the classifier. The 
GBDT model is applied to oversampled datasets. The results 
are presented in Table 8, in which the K-means SMOTE 
method is given the best accuracy of 88.7%. The K-means 
SMOTE oversampling technique given better results than all 
other oversampling techniques based on accuracy. After the 
GBDT method, different traditional models (random forest, 
bagging, K-Nearest Neighbor, Logistic Model Tree, 

Adaboost, and Stacking) have also been used by utilizing 
oversampling techniques. These models also have shown 
effective results on the SMOTE based oversampling 
methods as compared to others. The performance of the 
GBDT method is also compared with traditional machine 
learning models in which the GBDT model outperformed 
traditional machine learning models on oversampled 
datasets, as shown in Table 9. Furthermore, the performance 
of classifiers also better on the SMOTE-based oversampled 
datasets as compared to ADASYN and random oversampled 
datasets.

 
TABLE 8: THE PERFORMANCE OF GBDT MODEL USING OVERSAMPLING TECHNIQUES ON TAIWAN CLIENTS CREDIT DATASET 

Oversampling 
Methods 

Learning 
Rate 

Number of 
decision trees 

Accuracy (%) Precision (%) Recall (%) F-Measure (%) ROC G-Mean (%) 

Random 

Oversampling 

0.1 50 73.1 70.2 79.5 74.6 0.81 74.7 

0.1 100 74.4 72.0 79.1 75.4 0.81 75.5 

0.1 150 76.0 73.9 79.6 76.6 0.83 76.7 

0.1 200 76.9 75.2 79.8 77.4 0.85 77.5 

0.2 200 80.4 79.9 80.7 80.3 0.87 80.3 

ADAYSN 

 

0.1 50 82.6 80.2 87.1 83.6 0.89 83.6 

0.1 100 85.6 82.9 90.0 86.3 0.92 86.4 

0.1 150 86.2 83.7 90.3 86.9 0.92 86.9 

0.1 200 86.8 84.3 90.9 87.5 0.92 87.5 

0.2 200 86.9 85.1 89.9 87.4 0.92 87.5 

SMOTE 

 

0.1 50 83.6 81.0 87.5 84.1 0.90 84.2 

0.1 100 86.4 83.6 90.2 86.8 0.90 86.8 

0.1 150 87.3 84.6 90.8 87.6 0.91 87.6 

0.1 200 87.5 85.0 90.8 87.8 0.92 87.9 

0.2 200 87.6 85.7 89.9 87.8 0.93 87.8 

Borderline-SMOTE 0.1 50 81.0 79.0 82.7 81.1 0.90 80.8 

0.1 100 82.2 80.8 84.0 82.4 0.91 82.4 

0.1 150 86.0 84.2 88.2 86.1 0.92 86.2 

0.1 200 87.0 85.1 89.4 87.2 0.93 87.2 

0.2 200 87.3 85.4 89.6 87.6 0.93 87.5 

SMOTETomek 

 
0.1 50 83.8 81.5 87.5 84.4 0.91 84.4 

0.1 100 86.4 84.0 88.0 86.9 0.91 86.0 

0.1 150 87.0 84.7 89.5 87.5 0.92 87.1 

0.1 200 87.1 85.0 90.0 87.9 0.93 87.5 

0.2 200 87.4 85.3 90.2 87.9 0.93 87.7 

K-means SMOTE 0.1 50 87.0 85.1 89.4 87.2 0.91 87.2 

0.1 100 88.1 85.7 91.2 88.4 0.92 88.4 

0.1 150 87.3 84.6 90.8 87.6 0.92 87.6 

0.1 200 88.6 85.9 92.2 88.9 0.92 89.0 

0.2 200 88.7 85.9 92.2 89.0 0.94 89.0 

TABLE 9: THE PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS USING OVERSAMPLING TECHNIQUES ON TAIWAN 
CLIENTS CREDIT DATASET 

Oversampling 
Methods 

Performance 
Measures 

Random 
Forest 

Bagging K-Nearest 
Neighbor 

Logistic Model 
Tree 

AdaBoost Stacking GBDT 
Model 

Random 

Oversampling 

Accuracy (%) 84.9 84.1 83.1 80.1 69.3 49.6 80.4 

Precision (%) 85.1 85.1 84.1 81.1 71.0 53.1 79.9 

Recall (%) 84.9 84.1 83.1 80.1 69.3 49.6 80.7 

F-Measure (%) 84.9 84.1 83.1 80.1 68.6 52.2 80.3 

ROC 0.85 0.84 0.83 0.82 0.75 0.50 0.87 

G-Mean (%) 85.0 84.6 83.6 80.6 70.1 51.3 80.3 

ADAYSN Accuracy (%) 85.7 81.5 81.5 77.1 67.6 50.8 86.9 

Precision (%) 85.8 81.6 82.4 77.2 69.0 52.9 85.1 

Recall (%) 85.8 81.6 81.5 77.1 67.6 51.0 89.9 

F-Measure (%) 85.8 81.6 81.5 77.1 66.8 51.2 87.4 

ROC 0.86 0.82 0.84 0.80 0.72 0.50 0.92 

G-Mean (%) 85.8 81.6 81.9 77.1 68.3 51.9 87.5 

SMOTE Accuracy (%) 85.9 82.4 82.1 78.9 69.3 49.6 87.6 

Precision (%) 85.8 82.5 82.9 78.9 71.5 52.4 85.7 
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Recall (%) 85.7 82.4 82.1 78.9 69.4 49.6 89.9 

F-Measure (%) 85.7 82.4 82.1 78.9 68.5 49.6 87.8 

ROC 0.87 0.83 0.83 0.81 0.76 0.50 0.93 

G-Mean (%) 85.7 82.4 82.5 78.9 70.4 51.0 87.8 

Borderline-SMOTE Accuracy (%) 86.2 82.5 82.5 78.5 66.6 49.6 87.3 

Precision (%) 86.3 82.5 83.4 78.7 67.1 51.3 85.4 

Recall (%) 86.3 82.5 82.5 78.6 66.6 49.6 89.6 

F-Measure (%) 86.2 82.5 82.4 78.5 66.3 50.2 87.6 
ROC 0.88 0.86 0.85 0.82 0.71 0.50 0.93 

G-Mean (%) 86.3 82.5 82.9 78.6 66.8 50.4 87.5 

SMOTETomek Accuracy (%) 86.5 82.8 84.4 79.5 70.8 49.9 87.4 

Precision (%) 86.6 83.0 85.1 79.1 71.9 53.6 85.3 

Recall (%) 86.6 82.9 84.4 79.6 70.9 49.9 90.2 

F-Measure (%) 86.6 82.8 84.4 79.8 70.5 51.2 87.9 
ROC 0.89 0.87 0.96 0.84 0.77 0.50 0.93 

G-Mean (%) 86.6 82.9 84.7 79.3 71.4 51.7 87.7 

K-means SMOTE Accuracy (%) 88.2 87.8 83.6 87.9 86.5 49.6 88.7 

Precision (%) 88.5 88.1 83.7 88.1 86.7 50.8 85.9 

Recall (%) 88.3 87.9 83.6 87.9 86.5 49.6 92.2 

F-Measure (%) 88.2 87.9 83.6 87.9 86.5 49.6 89.0 
ROC  0.91 0.89 0.87 0.89 0.91 0.50 0.94 

G-Mean (%) 88.4 88.0 83.6 88.0 86.6 50.2 89.0 

 

After Taiwan's client’s credit dataset, the South German 
client's credit dataset has been employed to test the 
performance of classifiers.  The GBDT model applied to 
random undersampling, Near Miss, and Cluster Centroid 
undersampled datasets. The results are presented in Table 10 
in which Random undersampling, Near Miss, and Cluster 
Centroid method has given the accuracy of 76.7, 74.4, and 
73.3%, respectively. The Random undersampling technique 
outperformed the Near Miss and cluster centroids method 
based on accuracy. After the GBDT method, different 
traditional models (random forest, bagging, K-Nearest 
Neighbor, Logistic Model Tree, Adaboost, and Stacking) 
have also been utilized by utilizing undersampling 

techniques. These models also showed effective results on 
the Random undersampling method as compared to Near 
Miss and cluster centroids method. The performance of the 
GBDT method also compared with traditional machine 
learning models in which the GBDT method outperformed 
traditional machine learning models on undersampled 
datasets, as shown in Table 11. It has also been observed that 
the random forest outperformed the GBDT model while 
using the cluster centroids method. Furthermore, the 
performance of classifiers even better on the Random 
undersampled dataset as compared to the Near Miss and 
cluster centroids dataset. 

TABLE 10: THE PERFORMANCE OF THE GBDT MODEL USING UNDERSAMPLING TECHNIQUES ON SOUTH GERMAN CLIENTS CREDIT 
DATASET 

Undersampling 
Methods 

Learning 
Rate 

Number of 
decision trees 

Accuracy (%) Precision (%) Recall (%) F-Measure (%) ROC G-Mean (%) 

Random 

Undersampling 

0.1 50 73.9 73.3 74.2 73.7 0.83 73.7 

0.1 100 73.9 73.3 74.2 73.7 0.83 73.7 

0.1 150 74.4 74.2 74.2 74.2 0.82 74.2 

0.1 200 73.3 73.0 73.0 73.0 0.82 73.0 

0.2 200 76.7 76.4 76.4 76.4 0.82 76.4 

Near Miss 0.1 50 72.8 73.3 70.8 72.0 0.82 72.0 

0.1 100 74.4 73.6 75.3 74.4 0.83 74.4 

0.1 150 74.4 73.1 76.4 74.7 0.83 74.7 

0.1 200 73.9 72.8 75.3 74.0 0.83 74.0 

0.2 200 73.9 74.4 71.9 73.1 0.82 73.1 

Cluster Centroids 
 

0.1 50 72.8 72.2 73.0 72.6 0.83 72.6 

0.1 100 72.8 73.3 70.8 72.0 0.83 72.0 

0.1 150 72.8 73.3 70.8 72.0 0.83 72.0 

0.1 200 72.8 73.8 69.7 71.7 0.83 71.7 

0.2 200 73.3 74.1 70.8 72.4 0.82 72.4 

 
TABLE 11: THE PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS USING UNDERSAMPLING TECHNIQUES ON SOUTH 

GERMAN CLIENTS CREDIT DATASET 

Undersampling 
Methods 

Performance 
Measures 

Random 
Forest 

Bagging K-Nearest 
Neighbor 

Logistic Model 
Tree 

AdaBoost Stacking GBDT Model 

Random 

Undersampling 

Accuracy (%) 75.5 73.3 73.3 72.7 71.6 48.3 76.7 

Precision (%) 75.8 73.7 73.5 73.1 71.7 48.9 76.4 

Recall (%) 75.6 73.3 73.3 72.8 71.7 48.3 76.4 

F-Measure (%) 75.5 73.3 73.3 72.8 71.6 48.4 76.4 

ROC 0.83 0.79 0.73 0.79 0.76 0.50 0.82 
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G-Mean (%) 75.7 73.5 73.4 72.9 71.7 48.6 76.4 

Near Miss Accuracy (%) 73.8 72.2 58.3 75.0 68.3 48.3 74.4 

Precision (%) 74.0 73.3 58.4 75.1 69.3 49.2 73.6 

Recall (%) 73.9 72.2 58.3 75.0 68.3 48.3 75.3 

F-Measure (%) 73.9 72.0 58.3 75.0 67.7 49.1 74.4 

ROC 0.82 0.76 0.58 0.79 0.75 0.50 0.83 

G-Mean (%) 73.9 72.7 58.3 75.0 68.8 48.7 74.4 

Cluster 

Centroid 
Accuracy (%) 75.3 73.8 67.7 70.5 68.3 48.3 73.3 

Precision (%) 75.3 73.9 68.0 71.3 68.4 50.5 74.1 

Recall (%) 75.3 73.9 67.8 70.6 68.3 48.3 70.8 

F-Measure (%) 75.3 73.9 67.8 70.4 68.3 49.6 72.4 

ROC 0.79 0.79 0.67 0.78 0.77 0.50 0.82 

G-Mean (%) 75.3 73.9 67.9 70.9 68.3 49.4 72.4 

 
Oversampling techniques (Random oversampling, 

ADASYN, SMOTE, Borderline-SMOTE, SMOTETomek, 
and K-means SMOTE) have also been utilized to enhance 
the performance of the classifiers on South German clients 
credit dataset. The GBDT model is applied to oversampled 
datasets. The results are presented in Table 12, in which the 
SMOTETomek method is given the best accuracy of 83.5%. 
The SMOTETomek oversampling technique given better 
results than all other oversampling techniques based on 
accuracy. After the GBDT method, different traditional 
models (random forest, bagging, K-Nearest Neighbor, 

Logistic Model Tree, Adaboost, and Stacking) have also 
been used by utilizing oversampling techniques. These 
models also have shown effective results on the SMOTE 
based oversampling methods as compared to others. The 
performance of the GBDT method is also compared with 
traditional machine learning models in which the GBDT 
model outperformed traditional machine learning models on 
oversampled datasets, as shown in Table 13. Furthermore, 
the performance of classifiers even better on the SMOTE-
based oversampled datasets as compared to ADASYN and 
random oversampled datasets.

TABLE 12: THE PERFORMANCE OF THE GBDT MODEL USING OVERSAMPLING TECHNIQUES ON SOUTH GERMAN CLIENTS CREDIT 
DATASET 

Oversampling Methods Learning 
Rate 

Number of 
decision trees 

Accuracy (%) Precision (%) Recall (%) F-Measure (%) ROC G-Mean (%) 

Random 

Oversampling 

0.1 50 73.9 73.3 74.2 73.7 0.83 73.7 

0.1 100 73.9 73.3 74.2 73.7 0.83 73.7 

0.1 150 74.4 74.2 74.2 74.2 0.82 74.2 

0.1 200 73.3 73.0 73.0 73.0 0.82 73.0 

0.2 200 76.7 76.4 76.4 76.4 0.82 76.4 

ADAYSN 

 

0.1 50 77.1 79.0 76.9 77.9 0.86 77.9 

0.1 100 77.8 78.0 80.6 79.3 0.87 79.3 

0.1 150 78.3 77.7 82.4 80.0 0.87 80.0 

0.1 200 80.0 79.6 83.3 81.4 0.87 81.4 

0.2 200 79.8 79.0 83.8 81.3 0.87 81.4 

SMOTE 

 

0.1 50 82.1 83.6 82.4 83.0 0.89 83.0 

0.1 100 82.4 83.0 83.8 83.4 0.90 83.4 

0.1 150 80.7 81.3 82.4 81.9 0.90 81.8 

0.1 200 80.0 81.1 82.9 82.0 0.89 82.0 

0.2 200 81.0 82.0 82.0 82.0 0.90 82.0 

Borderline-SMOTE 0.1 50 81.2 82.1 82.4 82.2 0.89 82.2 

0.1 100 80.7 82.2 81.1 81.6 0.89 81.6 

0.1 150 79.3 80.5 80.2 80.4 0.89 80.3 

0.1 200 80.2 80.9 82.0 81.4 0.89 81.4 

0.2 200 82.9 82.1 86.5 84.2 0.90 84.3 

SMOTETomek 

 
0.1 50 82.8 82.8 84.0 83.4 0.90 83.4 

0.1 100 82.3 82.0 84.0 83.0 0.91 83.0 

0.1 150 82.8 82.2 84.9 83.5 0.91 83.5 

0.1 200 83.3 82.6 85.4 84.0 0.91 84.0 

0.2 200 83.5 82.1 86.8 84.4 0.91 84.4 

K-means SMOTE 0.1 50 81.7 83.1 82.0 82.5 0.89 82.5 

0.1 100 82.6 82.8 84.7 83.7 0.89 83.7 

0.1 150 83.1 83.0 85.6 84.3 0.89 84.3 

0.1 200 83.1 82.7 86.0 84.3 0.90 84.3 

0.2 200 83.3 82.8 86.5 84.6 0.90 84.6 

 
TABLE 13: THE PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS USING OVERSAMPLING TECHNIQUES ON SOUTH 

GERMAN CLIENTS CREDIT DATASET 

Oversampling 
Methods 

Performance 
Measures 

Random 
Forest 

Bagging K-Nearest 
Neighbor 

Logistic 
Model Tree 

AdaBoost Stacking GBDT Model 

Accuracy (%) 73.8 76.0 78.3 78.9 71.1 48.5 76.7 
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Random 

Oversampling 

Precision (%) 73.9 76.0 78.3 78.1 71.2 50.1 76.4 

Recall (%) 73.9 75.9 78.3 78.0 71.2 48.6 76.4 

F-Measure (%) 73.9 75.9 78.3 78.9 71.2 49.1 76.4 

ROC 0.79 0.80 0.81 0.81 0.77 0.50 0.82 

G-Mean (%) 73.9 75.9 78.3 78.0 71.2 49.3 76.4 

ADAYSN Accuracy (%) 81.6 76.0 82.3 71.8 73.5 50.8 80.0 

Precision (%) 81.7 76.1 84.3 71.9 73.8 49.9 79.6 

Recall (%) 81.7 76.0 82.4 71.9 73.6 49.9 83.3 

F-Measure (%) 81.7 76.0 82.1 71.9 73.5 49.9 81.4 

ROC 0.90 0.83 0.82 0.79 0.80 0.50 0.87 

G-Mean (%) 81.7 76.0 83.3 71.9 73.7 50.4 81.4 

SMOTE Accuracy (%) 82.3 80.2 82.1 77.3 74.0 48.5 82.4 

Precision (%) 82.6 80.2 82.2 77.4 74.3 49.2 83.0 

Recall (%) 82.3 80.2 82.1 77.4 74.0 48.6 83.8 
F-Measure (%) 82.3 80.2 82.1 77.3 74.0 48.7 83.4 

ROC 0.90 0.87 0.82 0.83 0.82 0.50 0.90 

G-Mean (%) 82.4 80.2 82.1 77.4 74.1 48.9 83.4 

Borderline-

SMOTE 

Accuracy (%) 82.0 78.5 81.2 79.2 71.9 48.5 82.9 

Precision (%) 81.0 78.7 81.0 79.3 72.2 49.2 82.1 

Recall (%) 81.5 78.6 80.2 79.3 71.9 48.6 86.5 
F-Measure (%) 81.9 78.5 80.1 79.3 71.7 48.8 84.2 

ROC 0.88 0.86 0.85 0.82 0.79 0.50 0.90 

G-Mean (%) 81.2 78.6 80.6 79.3 72.0 48.9 84.3 

SMOTETomek Accuracy (%) 83.0 77.9 82.1 82.8 71.4 47.6 83.5 

Precision (%) 82.6 78.0 82.4 82.0 71.7 47.9 82.1 
Recall (%) 82.0 78.0 80.7 82.2 71.4 47.7 86.8 

F-Measure (%) 82.4 78.0 80.0 82.6 71.2 47.7 84.4 

ROC 0.88 0.85 81.0 0.82 0.79 0.50 0.91 

G-Mean (%) 82.3 78.0 81.5 82.1 71.5 47.8 84.4 

K-means SMOTE Accuracy (%) 82.4 81.9 80.7 82.6 80.0 48.5 83.3 

Precision (%) 82.8 81.4 80.8 82.7 80.4 48.7 82.8 
Recall (%) 82.1 81.2 80.7 82.6 80.0 48.6 86.5 

F-Measure (%) 81.1 81.2 80.7 82.6 80.0 48.6 84.6 

ROC 0.90 0.88 0.80 0.89 0.86 0.50 0.90 

G-Mean (%) 82.4 81.3 80.7 82.6 80.2 48.6 84.6 

 
After the South German client’s credit dataset, the 

Belgium client's credit dataset has been employed to test the 
performance of classifiers. The GBDT model applied to 
random undersampling, Near Miss, and Cluster Centroid 
undersampled datasets. The results are presented in Table 14 
in which Random undersampling, Near Miss, and Cluster 
Centroid method has given the accuracy of 72.9, 73.9, and 
76.0%, respectively. The cluster centroids technique 
outperformed Random undersampling and Near Miss 
methods based on accuracy. After the GBDT method, 
different traditional models (random forest, bagging, K-
Nearest Neighbor, Logistic Model Tree, Adaboost, and 
Stacking) have also been utilized by utilizing undersampling 

techniques. These models also showed effective results on 
the cluster centroids method as compared to Random 
undersampling and Near Miss methods. The performance of 
the GBDT method also compared with traditional machine 
learning models in which the GBDT method outperformed 
traditional machine learning models on undersampled 
datasets, as shown in Table 15. It has also been observed that 
the random forest outperformed the GBDT model while 
using the cluster centroids method. Furthermore, the 
performance of classifiers even better on the Cluster 
Centroid dataset as compared to the Random undersampled 
and Near Miss dataset. 

TABLE 14: THE PERFORMANCE OF THE GBDT MODEL USING UNDERSAMPLING TECHNIQUES ON BELGIUM CLIENTS CREDIT 
DATASET 

Undersampling 
Methods 

Learning 
Rate 

Number of 
decision trees 

Accuracy (%) Precision (%) Recall (%) F-Measure (%) ROC G-Mean (%) 

Random 

Undersampling 

0.1 50 69.2 66.5 74.8 70.4 0.76 70.5 

0.1 100 72.9 68.7 75.9 72.1 0.77 72.2 

0.1 150 68.5 66.4 72.1 69.1 0.76 69.2 

0.1 200 69.8 67.5 72.4 69.9 0.77 69.9 

0.2 200 69.7 68.5 68.2 68.3 0.77 68.3 

Near Miss 0.1 50 72.5 69.3 69.2 69.2 0.78 69.2 

0.1 100 70.5 70.5 75.5 72.9 0.78 73.0 

0.1 150 73.9 70.1 76.1 73.0 0.79 73.0 

0.1 200 71.2 70.5 71.5 71.0 0.79 71.0 

0.2 200 72.6 70.0 74.5 72.2 0.79 72.2 

Cluster Centroids 

 

0.1 50 74.6 74.0 74.6 74.3 0.81 74.3 

0.1 100 75.2 74.5 75.5 75.0 0.81 75.0 
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0.1 150 75.8 75.0 76.3 75.6 0.81 75.6 

0.1 200 76.0 75.3 76.3 75.8 0.82 75.8 

0.2 200 76.0 74.8 77.2 76.0 0.82 76.0 

 
TABLE 15: THE PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS USING UNDERSAMPLING TECHNIQUES ON BELGIUM 

CLIENTS CREDIT DATASET 

Methods Performance 
Measures 

Random 
Forest 

Bagging K-Nearest 
Neighbor 

Logistic Model 
Tree 

Adaboost Stacking GBDT 
Model 

Random 

Undersampling 

Accuracy (%) 72.6 72.3 70.3 72.5 48.3 46.5 72.9 

Precision (%) 73.7 72.7 70.5 73.0 49.2 47.6 68.7 

Recall (%) 73.5 72.3 71.3 72.6 48.3 46.6 75.9 
F-Measure (%) 73.6 72.5 70.9 72.8 48.7 47.1 72.1 

ROC 0.78 0.77 0.77 0.78 0.49 0.50 0.77 

G-Mean (%) 73.6 72.5 70.9 72.8 48.7 47.1 72.2 

Near Miss Accuracy (%) 73.8 72.2 58.3 75.0 48.3 46.6 73.9 

Precision (%) 74.0 73.3 58.4 75.1 49.2 47.3 70.1 

Recall (%) 73.9 72.2 58.3 75.0 48.3 46.6 76.1 
F-Measure (%) 73.9 72.7 58.3 75.0 48.7 46.9 73.0 

ROC 0.82 0.76 0.58 0.79 0.49 0.50 0.79 

G-Mean (%) 73.9 72.7 58.3 75.0 48.7 46.9 73.0 

Cluster Centroid Accuracy (%) 77.3 71.9 70.5 76.6 53.5 46.6 76.0 

Precision (%) 77.5 71.8 70.4 76.4 54.5 47.4 74.8 

Recall (%) 79.5 71.8 70.9 77.2 53.4 46.6 77.2 

F-Measure (%) 78.5 71.8 70.6 76.8 53.9 47.0 76.0 

ROC 0.83 0.78 0.76 0.81 0.54 0.50 0.82 

G-Mean (%) 78.5 71.8 70.6 76.8 53.9 47.0 76.0 

Oversampling techniques (Random oversampling, 
ADASYN, SMOTE, Borderline-SMOTE, SMOTETomek, 
and K-means SMOTE) have also been utilized to enhance 
the performance of the classifiers on Belgium clients credit 
dataset. The GBDT model is applied to oversampled 
datasets. The results are presented in Table 16, in which the 
K-Means SMOTE method is given the best accuracy of 
86.3%. The K-Means SMOTE oversampling technique 
given better results than all other oversampling techniques 
based on accuracy. After the GBDT method, different 
traditional models (random forest, bagging, K-Nearest 
Neighbor, Logistic Model Tree, Adaboost, and Stacking) 

have also been used by utilizing oversampling techniques. 
These models also have shown effective results on the 
SMOTE based oversampling methods as compared to others. 
The performance of the GBDT method is also compared with 
traditional machine learning models in which the GBDT 
model outperformed traditional machine learning models on 
oversampled datasets, as shown in Table 17. It has also been 
observed that the random forest outperformed the GBDT 
model while using the ADAYSN oversampling method. 
Furthermore, the performance of classifiers even better on 
the SMOTE-based oversampled datasets as compared to 
ADASYN and random oversampled datasets. 

TABLE 16: THE PERFORMANCE OF THE GBDT MODEL USING OVERSAMPLING TECHNIQUES ON BELGIUM CLIENTS CREDIT DATASET 

Oversampling 
Methods 

Learning 
Rate 

Number of 
decision trees 

Accuracy (%) Precision (%) Recall (%) F-Measure (%) ROC G-Mean (%) 

Random 

Oversampling 

0.1 50 78.9 78.3 78.4 78.3 0.83 78.3 

0.1 100 78.9 78.3 78.1 78.2 0.83 78.2 

0.1 150 79.4 79.2 74.2 76.6 0.83 76.7 

0.1 200 79.9 79.0 79.0 79.0 0.84 79.0 

0.2 200 78.3 78.4 78.4 78.4 0.84 78.4 

ADAYSN 

 

0.1 50 79.9 79.0 79.9 79.4 0.84 79.4 

0.1 100 79.8 79.0 83.8 81.3 0.84 81.4 

0.1 150 78.3 77.7 82.4 80.0 0.85 80.0 

0.1 200 79.3 80.5 80.2 80.3 0.85 80.3 

0.2 200 81.8 81.0 83.8 82.4 0.85 82.4 

SMOTE 

 

0.1 50 79.2 82.6 81.6 82.1 0.89 82.1 

0.1 100 82.5 82.0 81.8 81.9 0.89 81.9 

0.1 150 79.6 80.5 81.6 81.0 0.88 81.0 

0.1 200 79.5 80.3 81.6 80.9 0.88 80.9 

0.2 200 80.2 82.0 83.6 82.8 0.88 82.8 

Borderline-SMOTE 0.1 50 83.3 84.5 84.0 84.2 0.90 84.2 

0.1 100 82.6 84.6 83.6 84.1 0.90 84.1 

0.1 150 81.4 82.6 82.5 82.5 0.90 82.5 

0.1 200 82.1 82.6 84.3 83.4 0.91 83.4 

0.2 200 82.9 82.1 88.6 85.2 0.91 85.3 

SMOTETomek 

 

0.1 50 82.8 82.8 84.0 83.4 0.91 83.4 

0.1 100 83.0 83.0 84.5 83.7 0.91 83.7 

0.1 150 83.1 83.2 85.9 84.5 0.91 84.5 
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0.1 200 83.5 83.6 86.4 85.0 0.92 85.0 

0.2 200 83.3 83.1 86.0 84.5 0.92 84.5 

K-means SMOTE 0.1 50 85.7 86.1 87.0 86.5 0.92 86.5 

0.1 100 85.6 86.8 87.7 87.2 0.92 87.2 

0.1 150 86.1 86.1 87.6 86.8 0.93 86.8 

0.1 200 86.1 86.7 87.0 86.8 0.93 86.8 

0.2 200 86.3 86.8 87.5 87.1 0.93 87.1 

 
 
 
 
 

TABLE 17: THE PERFORMANCE COMPARISON OF TRADITIONAL MACHINE LEARNING MODELS USING OVERSAMPLING TECHNIQUES 
ON BELGIUM CLIENTS CREDIT DATASET 

Oversampling 
Methods 

Performance 
Measures 

Random 
Forest 

Bagging K-Nearest 
Neighbor 

Logistic Model 
Tree 

Adaboost Stacking GBDT 
Model 

Random 

Oversampling 

Accuracy (%) 78.0 77.6 77.5 76.9 58.4 49.6 79.9 

Precision (%) 78.5 77.9 77.5 76.1 58.4 50.1 79.0 

Recall (%) 78.5 77.5 77.5 76.0 58.4 49.6 79.0 
F-Measure (%) 78.5 77.7 77.5 76.0 58.4 49.8 79.4 

ROC 0.82 0.81 0.81 0.81 0.58 0.50 0.84 

G-Mean (%) 78.5 77.7 77.5 76.0 58.4 49.8 79.0 

ADAYSN Accuracy (%) 82.1 77.3 71.8 80.2 58.4 49.6 81.8 

Precision (%) 82.2 77.4 71.9 80.2 58.4 50.5 81.0 

Recall (%) 82.1 77.4 71.9 80.2 58.4 49.6 83.8 
F-Measure (%) 82.1 77.4 71.9 80.2 58.4 50.0 82.4 

ROC 0.82 0.83 0.79 0.87 0.58 0.50 0.85 

G-Mean (%) 82.1 77.4 71.9 80.2 58.4 50.0 82.4 

SMOTE Accuracy (%) 78.5 80.2 82.0 82.3 60.6 49.6 82.5 

Precision (%) 78.7 80.2 81.0 82.6 60.7 50.3 82.0 
Recall (%) 78.6 80.2 81.5 82.3 60.6 49.6 81.8 

F-Measure (%) 78.6 80.2 81.2 82.4 60.6 49.9 81.9 

ROC 0.85 0.88 0.88 0.88 0.60 0.50 0.89 

G-Mean (%) 78.6 80.2 81.2 82.4 60.6 49.9 81.9 

Borderline-

SMOTE 

Accuracy (%) 81.2 82.6 82.4 79.2 58.4 49.6 82.9 

Precision (%) 81.0 82.7 82.8 79.3 58.4 50.2 82.1 
Recall (%) 80.2 82.6 82.1 79.3 58.4 49.6 88.6 

F-Measure (%) 80.6 82.6 82.4 79.3 58.4 49.9 85.2 

ROC 0.89 0.89 0.90 0.89 0.58 0.50 0.91 

G-Mean (%) 80.6 82.6 82.4 79.3 58.4 49.9 85.3 

SMOTETomek Accuracy (%) 82.0 79.9 84.1 84.8 54.8 49.6 83.5 

Precision (%) 84.6 80.0 84.4 84.0 58.8 50.5 83.6 
Recall (%) 84.0 80.0 82.7 84.2 54.8 49.6 86.4 

F-Measure (%) 84.3 80.0 83.5 84.1 56.7 50.0 85.0 

ROC 0.91 0.90 0.91 0.90 0.58 0.50 0.92 

G-Mean (%) 84.3 80.0 83.5 84.1 56.8 50.0 85.0 

K-means SMOTE Accuracy (%) 85.0 85.9 85.7 85.5 54.8 49.6 86.3 

Precision (%) 85.0 85.4 86.8 85.9 58.8 50.2 86.8 
Recall (%) 85.9 85.2 86.7 86.0 54.8 49.6 87.5 

F-Measure (%) 85.4 85.3 86.7 85.9 56.7 49.9 87.1 

ROC 0.93 0.92 0.92 0.92 0.58 0.50 0.93 

G-Mean (%) 85.4 85.3 86.7 85.9 56.8 49.9 87.1 

The results obtained through various imbalanced datasets 
showed that the GBDT model outperformed the traditional 
machine learning models based on undersampling and 
oversampling techniques. While tuning the GBDT model, 
the learning rate and the number of constructed trees was 
tuned randomly. The best results have been obtained when 
the learning rate was set to 0.2, and the number of 
constructed trees was 200. The results of undersampling and 
oversampling techniques have also been compared while 
trained with a GBDT model. Results showed that SMOTE 
based oversampling methods outperformed other 
oversampling technique as well as undersampling techniques 

which are used in this experiment. The performance of the 
GBDT model on various datasets is shown in Figure 3. 
Various imbalanced datasets like lending club dataset [13, 
14], Chinese P2P lending company dataset [15], German 
credit dataset, Australian credit dataset, and Dataset of 
We.com [16], Chinese consumer finance company dataset 
[17] were used in the past. Previous studies [2, 11, 13, 15-18, 
22-26] were not deployed in the models for end-users.  

Furthermore, these studies were not given efficient results 
due to a high imbalance of data because these studies were 
not balanced the dataset. But, in this study, we used various 
resampling techniques to cater to the class imbalance 
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problem. Results from Figure 3 reveals that the critical 
behavior of the evaluated resampling techniques. After 
analyzing the results, the GBDT model produces better 
results compared to other classifiers. A deeper analysis 
shows that the GBDT model gives fair results on all 
balancing techniques, but other techniques give a lower 
performance. The results also show that the GBDT model 
outperformed other models on various datasets, i.e., Taiwan 

client’s credit dataset, South German client’s credit dataset, 
and Belgium client’s credit dataset. The most effective 
results have been obtained on the Taiwan client’s credit 
dataset. The performance of the proposed model has been 
significantly better than previous studies, as shown in Table 
18. 

  

 
FIGURE 3. The performance comparison of the GBDT model with the combination of resampling techniques for each dataset

5.1 Statistical Analysis 

We further performed hypothesis testing by calculating the 
p-value. Null hypothesis statistical testing (NHST) is 
beneficial to interpret results and ensures the claim of 
improved performance is backed up by statistical analysis. A 
p-value that is smaller than the significance level (often 0.05) 
is considered statistically significant. In this study, we used 
the Analysis of Variance (ANOVA) test. When the p-value 
is lower than the significance level, we reject the null 
hypothesis and conclude that the data support the alternative 
hypothesis. A one way ANOVA design has been used to 
detect differences in results based on accuracy, precision, 
recall, f-measure, ROC, and G-mean. The p-value of 0.05 
(level of significance) has been used for each statistical 
analysis.  
We addressed the issues, whether developed models using 
different machine learning techniques are significantly the 

same or different, and whether resampling techniques 
significantly improve the performance of the models. Figure  
 
4 plots the 6 performance metric (accuracy, precision, recall, 
F-Measure, ROC, G-Mean) of base-line machine learning 
methods versus our proposed models with the use of the 
imbalance techniques for the three datasets including 
Taiwan, South German, and Belgium. As we can see in 
Figure 4 that the six performance evaluation metric are 
higher for our proposed models using over-sampling 
techniques for the three data dataset. P-value was calculated 
using the One-Way ANOVA test which turned out to be 
<0.002 for the Taiwan client credit dataset and <0.001 for  
South German, and Belgium client credit datasets.  
Therefore our statistical testing rejected the Null hypothesis 
on three credit datasets, i.e., Taiwan, South German, and 
Belgium. All the results show that the proposed method 
using imbalanced techniques has significantly improved the 
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performance from the baseline method as p-values in all 
cases were our statistical threshold of 0.05.  

  

                     (A) Taiwan's client credit dataset           (B) South German client credit dataset                  (C) Belgium client credit dataset            

Figure 4: Hypothesis testing using One-way ANOVA test 

5. DISCUSSION 

For each classifier, we first described the general trends in 
our results and then analyzed these general trends. The 
clients we are trying to classify our account holders, so we 
have enough information about them. Without knowing 
anything about the client's spending patterns, it is hard to 
separate clients that have no intention of paying their debt 
from the clients that are merely taking advantage of the credit 
and will pay back later. Since we are making predictions 
based on salary statements of the previous quarter, bill 
payments of the previous quarter, and repayment status of the 
last quarter to predict delinquency in the next quarter, it is 
reassuring to see that credit amount, marital status, and 
education level are also significant features for our prediction 
problem. These features were generated by aggregating the 
data in the statements dataset. 
     Furthermore, socio-economic indicators, history of past 
payments, amount of bill statements, and amount of previous 
payments were features related to the loan itself, so it is 
reasonable that they are included to build a model. Finally, 
age and gender were also included as well: studies have 
shown that age is also correlated to income, and scoring is 
based on the creditworthiness of the client. It is also observed 
that the accuracy of the classifier is also associated with class 
balance; in each dataset, the accuracy improves where the 
number of minority samples increased. It also implies that as 
the number of instances increased then, the classifier has 
more chances to learn the patterns to separate the binary 
classes. For our results, this can suggest that the models 
recognize more generalized patterns of clients that are likely 
to default, and not necessarily patterns of clients that are soon 
going to default.  

Generally, the performance of different classifiers is 
high on imbalanced datasets because of the 
overrepresentation of the majority class and under-
representation of the minority class. This also implies the 

weakness of classifying minority class to calculate the 
accuracy of the model. Loyola-González et al. [45] pointed 
out that the accuracy of the model biased towards the 
majority class and minority class anticipated less to 
determine the accuracy even if the accuracy of the model is 
higher. A balanced dataset has been utilized to eliminate the 
biases of the majority class to overcome this problem. The 
GBDT model has the highest accuracy with the K-means 
SMOTE method (88.7%), followed by RF (88.2% with 
SMOTE). The best result has been obtained on Taiwan's 
client credit dataset. The results of our study outperformed 
other studies, as shown in Table 18. In credit assessment 
applications, a little enhancement in performance can prompt 
critical future investment funds and huge monetary effects. 
Therefore, improving the accuracy of resampling techniques 
can be significant for banks and financial institutions. The 
different classification techniques with nine datasets 
(Random Undersampling, Near Miss, Cluster Centroid, 
Random Oversampling, ADASYN, SMOTE, Borderline-
SMOTE, SMOTETomek, K-means SMOTE) showed 
different performances to identify healthy and defaulter 
clients.  

It has also been observed that in previous studies 
machine learning models, i.e., random forest [11], stacking 
[16], the GBDT model [22], logistic model tree [23], bagging 
[24], and k-nearest neighbor [26] were not given efficient 
results on imbalanced data on credit card default prediction 
data, as shown in Figure 5. In previous research, Random 
forest [11] was given the accuracy of 58.8%, but while 
combining the random forest with K-means SMOTE 
oversampling technique, the result has been significantly 
improved with the accuracy of 88.2%. On the contrary, 
stacking [16] was given accuracy of 78.8%, but while 
combining the stacking with SMOTETomek oversampling 
technique, the result has not been significantly improved. 
The GBDT model [22] was given accuracy of 82%, but while 
combining the GBDT model with K-means SMOTE 
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oversampling technique, the results have been improved with 
the accuracy of 88.7%. The logistic model tree [23] was 
given the accuracy of 69% but while combining the logistic 
model tree with K-means SMOTE oversampling technique, 
the results have been significantly improved with the 
accuracy of 87.9%. The bagging model [24] and k-nearest 
neighbor was given the accuracy of 69 and 82%, but while 
combining the logistic model tree and k-nearest neighbor 
with K-means SMOTE oversampling technique, the results 
have been significantly improved with the accuracy of 87.9 
and 83.1% respectively. The execution of oversampling 
methods could assist budgetary institutions with reducing the 
expense of misclassification contrasted with the original 
dataset. 

Our model would have an extraordinary down to earth 
sway on banks and can ensure an upper hand over different 
banks that do not actualize this technique. These outcomes 
indicated that the resampling methodologies could more 
readily distinguish sound more significant part borrowers 
and wiped out minority borrowers than those in the original 
dataset. By creating similar instances to the existing minority 
instances, SMOTE based methods generate higher and less 
precise decision boundaries that enhance the generalization 
competences of the classifiers, therefore increasing their 
performance. However, SMOTE based methods have some 
associated issues, such as the problem of over-generalization 
(the new synthetic examples may be generated in 
overlapping areas) and also the possibility of augmenting 
noisy regions (since no distinction between different types of 
minority examples is performed). Despite this, it seems that 
its ability to generate more significant decision boundaries is 
still a considerable strength, even with its susceptibilities. 
Due to ADASYN adaptability nature that allows creating 
more data in neighborhoods with high amounts of majority 
class examples, the synthetic data generated might be very 
similar to the majority class data, potentially making many 
false positives. The other SMOTE variants and ADASYN 
differ from each other by selecting the samples 𝑥𝑖 ahead of 

generating the new samples. For minority examples that are 
sparsely distributed, each neighborhood may only contain 
one minority example. 
       Credit institutions and consumer finance companies 
decide the issuance of the loan based on credit card records. 
However, it can be difficult for some borrowers to determine 
lending criteria and assess the trustworthiness of credit card 
sources over the Internet. A few borrowers may not give 
enough proof to reinforce their certainty. For instance, a few 
people did not have enough property, and most developing 
countries have constrained banking records of their clients. 
Subsequently, the proposed model can anticipate the default 
prediction of credit cards based on their previous data. The 
conveyed and progressively reliable credit card information 
is utilized to make the model increasingly all-inclusive, 
which can guarantee the performance of the proposed model. 
Consumer finance companies may settle on choices about 
various credits from the collection of applications. In any 
case, conventional financial organizations anticipate a credit 
choice through a manual audit, which leads to a high cost and 
also labor. This low-productivity, significant expense 
conjectures cannot meet consumer finance enterprise's credit 
choice requirements. Because of the abundance of money 
related and non-budgetary indicators, Decision-makers face 
the issue of choosing pertinent data. This model will help 
them to make the decision based on the history of credit card 
effectively. It also gives the results very fast, which will also 
save time as well as the cost of labor. Financial institutions 
may acquire additional information from the Internet to 
improve the performance of the model to increase the 
reliability of the model as well as decrease the risk of 
management capabilities. To validate the performance of our 
proposed technique, we have verified on three credit-related 
datasets of different countries (Taiwan, South German, and 
Belgium). The prototype has also developed, and it can be 
applied to any real-time dataset. 

TABLE 18: COMPARISON OF PREVIOUS STUDIES FOR CREDIT CARD DEFAULT PREDICTION

Reference Year Dataset Features Count Total Instances Method Results 

[26] 2009 Default credit card client’s dataset 24 30000 K-nearest neighbor Accuracy=82.0% 

[18] 2010 Major commercial USA bank 138 2.2 million Linear regression Accuracy=85.0% 

[2] 2016 Six major USA financial institutions 186 500 million Random forest Accuracy=39 to 82% 

[25] 2017 Default credit card client’s dataset 24 30000 Decision Tree Accuracy=80.3% 

[16] 2018 German Credit Dataset 24 1000 Ensemble fusion 
techniques based on 
bstacking method 

Accuracy=78.8% 

Australian credit dataset 14 600 Accuracy=84.6% 

Dataset of We.com 17 1421 Accuracy=84.0% 

Lending Club dataset 11 2642 Accuracy=66.7% 

[11] 2018 Default credit card client’s dataset 24 30000 Random forest Accuracy=58.83% 

[17] 2018 Chinese consumer finance company 490 44000 XGBoost AUC=0.71 

[24] 2018 Default credit card client’s dataset 24 30000 Bagging Accuracy=73.4% 

[23] 2019 Default credit card client’s dataset 24 30000 Logistic model tree Accuracy =69.0% 

[15] 2019 Chinese P2P lending company 
dataset 

1138 15000 XGBoost AUC=0.71 

[22] 2019 Default credit card client’s dataset 24 30000 Gradient boosting tree Accuracy=82.0% 

[13] 2020 Lending Club dataset 15 64139 Logistic regression Accuracy=79.2% 

Our 

Method 

2020 Taiwan credit client’s dataset 24 30000 Gradient Boosted 

Decision Tree Model 

Accuracy=88.7% 

South German credit client’s 
dataset 

21 1000 Accuracy=83.5% 

Belgium credit client’s dataset 28 285299 Accuracy=86.3% 
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FIGURE 5. The comparison of previous studies with the proposed model

6. DEPLOYMENT 

The experimental results review the effect of various degrees 
of the credit-related imbalanced datasets for training on 
credit card default prediction model. Various machine 
learning models were also deployed in the domain of cyber 
security [46, 47], healthcare [48, 49], education [50, 51] The 
most efficient results have been obtained through Taiwan's 
client credit dataset. So the learned weights of that dataset 
have been employed for the deployment of the model One of 
the principal objectives in building a model that precisely 
predicts results and is robust to changes in future 
information. Deployment is the phase of the proposed 
method that guarantees that the data mining process is 
repeatable for all organizations. The valuable information 
extracted from the data must be sorted out and introduced 
with the goal that any stakeholder can utilize it. Since the 
GBDT method is given the most effective result using K- 
Means SMOTE, so it has been employed for the deployment 
for training purposes. 

Furthermore, we discovered that deployment choices 
could positively affect the acceptance of a data mining 
solution. Our method of implementation enabled the end-

users that are not data miners to engage in scenario 
simulation activities of the complex system. In the past, the 
deployment was done manually by using traditional 
methods. It is also difficult to deploy the model using R or 
python because without using API, implementation is very 
tough. The businesses may be stuck with old models if the 
deployment is robust or expensive. Microsoft Azure 
Machine Learning Studio was utilized to actualize the model 
for credit card default prediction. This can not only deploy 
the model but also automatically sets up the model to work 
with Azure’s load-balancing technology. Deployment is also 
a challenging task when data is multi-dimensional. The 
model has also been published to the Microsoft Azure 
Marketplace, and the URL of our model is [52]. A similar 
deployment was also done for corporate bankruptcy 
prediction with the help of Microsoft Azure Machine 
Learning Studio [53]. The model is visible to all, which is the 
smartest way to target the stakeholders. It is mandatory to 
provide all inputs in the right direction to get effective 
results. Just signing up for Microsoft Azure Machine 
Learning Studio, any stakeholder can use the model to check 
the status of clients, as shown in Figure 7. The complete 
workflow of deployment is shown in Figure 6.    

 

FIGURE 6. The complete workflow of the deployment phase
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FIGURE 7. Deployment module which predicted defaulter and healthy clients

7. CONCLUSION 

Machine learning methods, in conjunction with the use of 

imbalanced methods, have been utilized in various domains 

[54-55]. The objective of this paper is to train various 

supervised learning algorithms to predict the client’s behavior 
in paying off the credit card balance. In classification 

problems, an imbalanced dataset is also crucial to enhance the 

performance of the model, so different resampling techniques 

were also used to balance the dataset. We first investigated the 

datasets by using exploratory data analysis techniques, 

including data normalization. We started with the GBDT 

model, then compared the results with traditional machine 

learning-based models. The prediction accuracy rate of the 

GBDT model is higher than the traditional machine learning-

based models. The GBDT method given the best accuracy of 

88.7% while utilizing the K-means SMOTE resampling 

method on Taiwan client's credit dataset. The results obtained 

through Taiwan client's credit dataset have significantly better 

than other datasets employed in this study.  

In the end, the proposed method has also been deployed 

on the web to assist the different stakeholders. Therefore, 

when the financial institution considers issuing the client a 

credit card, the institution needs to check the payment history 

of that person because the decision on whether pay on duly or 

owe the bill on a specific month usually relates to the previous 

payment history. For instance, if a person owes numerous bills 

already, he or she is likely to delay the payment of the current 

month unless this person gets a windfall so that the total arrears 

can be paid off. Besides the payment history, it is also 

imperative to look at the applicants' credit limit of their current 

credit cards. This is a result of a virtuous circle: people who 

pay on duly tend to have better credit scores, so the banks 

prefer to increase these people's credit lines by taking less risk. 

As a result, if a potential client already has a credit card with a 

high credit limit line, this person is improbable to fail to pay 

the full amount owed in the future. Although the financial 

institution often collects clients' personal information such as 

age, educational level, and marital status when people apply 

for credit cards, this information also affects the default 

behavior. In other words, the financial institution should 

equally consider their potential clients who are men or women, 

obtain bachelor degrees or master degrees, single or married 

when decide whether approve their credit card/loan 

applications. We tried our best to make a thorough analysis, 

and there are still a few possible improvements that may 

require longer-term action. For the boosting models, only the 

GBDT method was trained, but various variants of boosting 

techniques may also be utilized in the future. The financial 

market changes rapidly every day, and people's economic 

status and performance are affected by the market all the time. 

So, if more economic indicators will be added to the dataset, 

this will leads to a more generic model. 
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