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ABSTRACT

Recently, a new acoustic model based on deep neural networks
(DNN) has been introduced. While the DNN has generated signifi-
cant improvements over GMM-based systems on several tasks, there
has been no evaluation of the robustness of such systems to environ-
mental distortion. In this paper, we investigate the noise robustness
of DNN-based acoustic models and find that they can match state-
of-the-art performance on the Aurora 4 task without any explicit
noise compensation. This performance can be further improved by
incorporating information about the environment into DNN training
using a new method called noise-aware training. When combined
with the recently proposed dropout training technique, a 7.5% rela-
tive improvement over the previously best published result on this
task is achieved using only a single decoding pass and no additional
decoding complexity compared to a standard DNN.

Index Terms— noise robustness, deep neural network, adaptive
training, Aurora 4

1. INTRODUCTION

Traditional speech recognition systems are derived from a HMM-
based model of the speech production process in which each state is
modeled by a Gaussian mixture model (GMM). These systems are
sensitive to mismatch between the training and testing data, particu-
larly the mismatch introduced by environmental noise. As a result,
much effort has been spent improving the robustness of speech rec-
ognizers to such distortions.

Approaches to noise robustness generally fall into one of two
approaches. Feature enhancement methods attempt to remove the
corrupting noise from the observations prior to recognition. There
are a tremendous number of algorithms that fall into this category,
e.g. [1, 2]. Model adaptation methods leaves the observations un-
changed and instead updates the model parameters of the recognizer
to be more representative of the observed speech, e.g. [3, 4, 5].
Both of these approaches can be further improved by the use of
multi-condition training data and adaptive training techniques. Both
feature-space and model-space noise adaptive training methods have
been proposed [6, 7, 8]. The combination of feature enhancement
or model adaptation with adaptive training currently represents the
state of the art in noise robustness.

Recently, a new form of acoustic model has been introduced
based on deep neural networks (DNN). These acoustic models are
closely related to the original ANN-HMM hybrid architecture [9]
with two key differences. First, the networks are trained to predict
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tied context-dependent acoustic states called senones. Second, these
networks have more layers than the networks trained in the past.
While context-dependent deep neural networks (CD-DNN-HMM)
have generated significant improvements over state of the art GMM-
HMM systems on a variety of tasks [10, 11, 12], there has been no
evaluation of the robustness of such systems to environmental dis-
tortion. Prior work in neural networks for noise robustness has pri-
marily focused on tandem approaches which train neural networks
to generate posterior features, e.g. [13, 14] and feature enhancement
methods that use stereo data to train a network to map from noisy to
clean features, e.g. [15, 16].

In this paper, we investigate the noise robustness performance of
DNN-based acoustic models and propose three methods to improve
accuracy. The first two methods can be considered DNN analogs
to feature-space and model-space noise-adaptive training. These
methods use information about the environmental distortion either
via feature enhancement prior to network training or during network
training itself. The third approach, called dropout training, is a re-
cently proposed strategy for training neural networks on data sets
where over-fitting is a concern [17]. While this method was not de-
signed for noise robustness per se, we demonstrate that it is useful
for noisy speech as it produces a network that is highly robust to
variabilities in the input.

Through a series of experiments on the Aurora 4 task,we show
that the DNN acoustic model has remarkable noise robustness, with
comparable performance to several more complicated methods in
the literature. By using the approaches proposed in this paper, per-
formance is further improved, achieving the best published result on
the Aurora 4 task. Unlike most robustness techniques for GMM-
HMM acoustic models, the proposed methods do not add any de-
coding complexity and only require a single recognition pass.

The remainder of the paper is organized as follows. In Section
2 we review the DNN-HMM acoustic model. We then propose three
strategies to improve noise robustness in Section 3. The performance
of the proposed approaches are evaluated in Section 4 and finally,
some conclusions are drawn in Section 5.

2. DEEP NEURAL NETWORKS

A deep neural network (DNN) is simply a multi-layer perceptron
(MLP) with many hidden layers between its inputs and outputs. In
this section, we review fundamental ideas of the MLP, discuss the
benefits of pre-training, and show a neural network can be used as
an acoustic model for speech recognition.
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2.1. Multi-Layer Perceptrons

In this work, an MLP is used to classify an acoustic observation x
into one of a set of context-dependent phonetic states s. It is a nonlin-
ear classifier that can be interpreted as a stack of log-linear models.
Each hidden layer models the posterior probabilities of a set of bi-
nary hidden variables h given the input visible variables v, while the
output layer models the class posterior probabilities. Thus, in each
of the hidden layers, the posterior distribution can be expressed as

p(hl|vl) =

Nl∏
j=1

p(hl,j |vl), 0 ≤ l < L (1)

where

p(hl,j |vl) =
1

1 + e(−zl,j(vl))
, zl,j = wT

l,jvl + bl,j (2)

Each observation is propagated forward through the network, start-
ing with the lowest layer (v0 = x) . The output variables of each
layer become the input variables of the next layer, i.e. vl+1 = hl. In
the final layer, the class posterior probabilities are computed using a
soft-max layer, defined as

p(s|x) = p(s|vL) =
e(zL,s(vL))∑
s′ e

(zL,s′ (vL))
(3)

Note that the equality between p(s|vL) and p(s|x) is valid by mak-
ing a mean-field approximation [18].

In this work, networks are trained by maximizing the log pos-
terior probability over the training examples, which is equivalent to
minimizing the cross-entropy.

L =
∑
t

log p(st|xt) (4)

The objective function is maximized using error back propagation
which performs an efficient gradient-based update

(wl,j , bl,j)← (wl,j , bl,j) + η
∂L

∂(wl,j , bl,j)
, ∀ l, j (5)

where η is the learning rate.

2.2. Pre-training DNNs

Performing back propagation training from a randomly initialized
network can result in a poor local optimum, especially as the num-
ber of layers increases. To remedy this, pre-training methods have
been proposed to better initialize the parameters prior to back propa-
gation. The most well-known method of pre-training grows the net-
work layer by layer in an unsupervised manner. This is done by treat-
ing each pair of layers in the network as a restricted Boltzmann ma-
chine (RBM) that can be trained using an objective criterion called
contrastive divergence. Details about the pre-training algorithm can
be found in [19]

2.3. Integrating DNN into the HMM

To perform speech recognition using a DNN, the state emission like-
lihoods generated by the GMMs are replaced with likelihoods gen-
erated by the DNN. These likelihoods are obtained via Bayes rule
using the posterior probabilities computed by the DNN and the class
priors.

p(x|s) ∝ p(s|x)
p(s)

(6)

Here the network is trained to predict context-dependent states, in
the form of tied states or senones.

3. APPROACHES TO NOISE ROBUSTNESS FOR DNNS

In this paper, we explore four approaches to incorporating noise ro-
bustness into the training of DNNs. The first three of these mir-
ror the main approaches used to improve robustness in conventional
GMM-HMM recognizers [6]. These approaches are 1) training with
multi-condition data, 2) using feature enhancement to remove the
distortions in the observations prior to training, and 3) incorporat-
ing a noise model or noise estimate into the network itself. As
we’ll describe, the latter two methods are analogous to feature-space
and model-space noise adaptive training, respectively. In addition to
these approaches, we’ll explore a method of training called dropout
that generates networks that are more robust to unseen variabilities.

In this section, we denote the observed noisy features as y, the
corresponding unknown clean features as x, and the corrupting noise
as n.

3.1. Training with multi-condition speech

Training a DNN on multi-condition data enables the network to learn
higher level features that are more invariant to the effects of noise
with respect to classification accuracy. In this case, we can view the
deep neural network as a combination of nonlinear feature extractor
and nonlinear classifier where the lower layers are implicitly seeking
discriminative features that are invariant across the many acoustic
conditions present in the training data.

Thus in DNN training with multi-condition data, the input vector
vt is simply an extended context window of the noisy observations.

vt = [yt−τ , . . . ,yt−1, yt, yt+1, . . . ,yt+τ ] (7)

While multi-condition training is conceptually the same for
DNNs and GMMs, there is a significant difference between the two.
In the GMM-HMM, the features are directly modeled by a mix-
ture of Gaussians, and thus, because the Gaussians simply model
the observed data, they end up modeling the additional variabil-
ity introduced by the additive noise. This can be mitigated by the
use of discriminative training but only to a degree. In the case of
discriminative training, features corrupted by noise are ignored by
the GMMs whereas the DNN can potentially extract some useful
information from them through the layers of nonlinear processing.

3.2. DNN training with enhanced features

One obvious way to reduce the variability in the features caused by
environmental distortion is to attempt to remove it from the obser-
vations. Thus, the simplest way to reduce the effect of noise on the
DNN is to simply process the data using a feature enhancement algo-
rithm prior to training the network. By processing both the training
and testing data with the same algorithm, any consistent errors or
artifacts introduced by the enhancement can be learned by classi-
fier. In the context of GMM-HMMs, this approach is referred to as
feature-space noise adaptive training [20, 6] and this approach can
be directly applied to DNN acoustic model. In contrast to (7), the
input vector to the DNN is now formed from the enhanced features
as

vt = [x̂t−τ , . . . , x̂t−1, x̂t, x̂t+1, . . . , x̂t+τ ] (8)

In this work, we use an feature enhancement algorithm based
on the Cepstral-domain Minimum Mean Squared Error (C-MMSE)
criterion [2]. This enhancement algorithm is based on the classic
Log-MMSE noise suppression algorithm proposed by Ephraim and
Malah [21]. The C-MMSE algorithm has been shown to consistently
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improve speech recognition performance of GMM-HMM recogniz-
ers in noisy conditions without causing degradations in high SNR
conditions.

3.3. DNN noise-aware training

The other main approach to noise robustness for GMM-HMMs is
model adaptation. In methods such as Vector Taylor Series (VTS)
adaptation [22], an estimated noise model is used to adapt the Gaus-
sian parameters of the recognizer based on a physical model that
defines how noise corrupts clean speech. The relationship between
the x, y, and n in the log spectral domain is typically approximated
as

y = x+ log(1 + exp(n− x)) (9)

One of the biggest challenges of noise robustness for speech
recognition is dealing with the fact that the relationship in (9) is non-
linear. However, because the DNN is composed of multiple layers
of nonlinear processing, the network has the capacity to learn this
relationship directly from data. To enable this, we augment each ob-
servation input to the network with a estimate of the noise present in
the signal. Because this is done in both training and decoding, this
is analogous to noise adaptive training without an explicit mismatch
function. Instead, the DNN is being given additional cues in order to
automatically learn the relationship between noisy speech and noise
in a way that is beneficial to predict senone posterior probabilities.
Because the DNN is being informed about the noise, but not explic-
itly adapted, we adopt slightly different terminology and refer to this
method as noise-aware training.

In this case the network’s input vector is similar to (7) with a
noise estimate appended.

vt = [yt−τ , . . . ,yt−1, yt, yt+1, . . . ,yt+τ , n̂t] (10)

In this work, we assume the noise is stationary and use a noise
estimate that is fixed over the utterance, i.e. n̂t = µn.

3.4. DNN dropout training

One of the biggest problems in training DNNs is overfitting. This
typically happens when a large DNN is trained using a relatively
small training set. A training method called ”dropout” has been re-
cently proposed to alleviate this problem [17]. The basic idea of
dropout is to randomly omit a certain percentage (e.g., α) of the
neurons in each hidden layer during each presentation of the sam-
ples during training. In other words, each random combination of
the (1- α) remaining hidden neurons needs to perform well even
in the absence of the omitted neurons. This requires each neuron
to depend less on other neurons. Since each higher-layer neuron
gets input from a random collection of the lower-layer neurons, it
receives noisier excitations. In this sense, dropout can be considered
a technique that adds random noise to the training data. Dropout
essentially reduces the capacity of the DNN and thus can improve
the generalization of the resulting model. Note that when a hidden
neuron is dropped out, its activation is set to 0 and so no error signal
will pass through it. This means that other than the random dropout
operation, no other changes to the training algorithm are needed to
implement this feature.

At the test time, however, instead of using a random combina-
tion of the neurons at each hidden layer, we use the average of all
the possible combinations. This can be easily accomplished by dis-
counting all the weights involved in dropout training by (1- α) and
use the resulted model as a normal DNN. Thus, dropout can also be

interpreted as an efficient way of performing model averaging (sim-
ilar to bagging) in the DNN framework.

Dropout was succesfully applied to TIMIT phoneme recognition
in [17]. However, it has not yet been evaluated for word recognition,
and in particular for word recognition in difficult environments.

4. EXPERIMENTS

To evaluate the speech recognition performance of the DNN-HMM,
we performed a series of experiments on Aurora 4 [23]. Aurora
4 is a medium vocabulary task based on the Wall Street Journal
(WSJ0) corpus.The experiments were performed with the 16 kHz
multi-condition training set consisting of 7137 utterances from 83
speakers. One half of the utterances were recorded by the primary
Sennheiser microphone and the other half were recorded using one
of a number of different secondary microphones. Both halves in-
clude a combination of clean speech and speech corrupted by one of
six different noises (street traffic, train station, car, babble, restau-
rant, airport) at 10-20 dB SNR.

The evaluation set is derived from WSJ0 5K-word closed-
vocabulary test set which consists of 330 utterances from 8 speak-
ers. This test set was recorded by the primary microphone and a
secondary microphone. These two sets are then each corrupted by
the same six noises used in the training set at 5-15 dB SNR, creating
a total of 14 test sets. Notice that the types of noise are common
across training and test sets but the SNRs of the data are not. These
14 test sets can then be grouped into 4 subsets: clean, noisy, clean
with channel distortion, noisy with channel distortion, which will be
referred to as A, B, C, and D, respectively.

The baseline GMM-HMM system consisted of context-dependent
HMMs with 1206 senones and 16 Gaussians per state trained us-
ing maximum likelihood estimation. The input features were 39-
dimensional MFCC features (static plus first and second order delta
features) and cepstral mean normalization was performed. These
models were also used to align the training data to create senone la-
bels for training the DNN-HMM system. Decoding was performed
with the task-standard WSJ0 bigram language model.

Two DNNs were trained using different input features: the same
MFCC features used in the GMM-based system and the correspond-
ing 24-dimensional log mel filterbank (FBANK) features. In both
cases, utterance-level mean normalization was performed and first-
and second-order derivative features were used. The input layer
was formed from a context window of 11 frames creating an in-
put layer of 429 visible units for the MFCC network and 792 vis-
ible units for the FBANK network. Both DNNs had 5 hidden layers
with 2048 hidden units in each layer and the final soft-max output
layer had 1206 units, corresponding to the senones of the HMM sys-
tem. The networks were initialized using layer-by-layer generative
pre-training and then discriminatively trained using twenty-five iter-
ations of back propagation. A learning rate of 0.16 was used for the
first 15 epochs and 0.004 for the remaining 10 epochs, with a mo-
mentum of 0.9. Back propagation was done using stochastic gradient
descent in minibatches of 512 training examples.

The performance of these systems is shown in Table 1. As the
results in the table indicate, the DNN produces substantial improve-
ments in all test conditions compared to the baseline GMM-HMM
system. In addition, further gains are achieved by using log mel fil-
terbank features instead of cepstra. This is similar to the findings in
[10].

Next, we examined the performance as a function of the num-
ber of senones and the number of hidden layers. The GMM-HMM
system was retrained with a different state-tying threshold, resulting

7400



System/ A B C D AVGFeatures
GMM-HMM 12.5 18.3 20.5 31.9 23.0(MFCC)
DNN-HMM 5.7 10.4 10.9 22.6 15.3(MFCC)
DNN-HMM 5.0 9.2 9.0 20.6 13.8(FBANK-24)

Table 1. Comparison of WER (%) for GMM and DNN acoustic
models on Aurora 4 using 1206 senones

in a system with 3202 senones. With this system, the WER of the
GMM-HMM system decreased slightly from 23.0% to 22.5%. The
performance of the DNN-HMM is shown in Table 2. Increasing the
hidden layers resulted in reductions in WER until 9 hidden layers
were used. At this point, a degradation in performance is observed
as the network overfits to the training data. Similar to the GMM-
HMM system, modest improvements are obtained by increasing the
number of senones.

# of Senones # of Hidden Layers
3 5 7 9

1206 14.2 13.8 13.7 13.9
3202 – 13.6 13.4 –

Table 2. WER (%) as a function of the number of senones and hid-
den layers

To evaluate the proposed techniques designed to increase the
noise robustness of these systems, a series of experiments were per-
formed using the 7-layer DNN with 3202 senones and FBANK fea-
tures. We first evaluated the results of training and testing the DNN
using features that have been preprocessed using the C-MMSE fea-
ture enhancement algorithm modified to operate in the log mel filter-
bank domain. In a second experiment, we evaluated the performance
of proposed noise-aware training. The context window of features
input to the DNN was augmented with an estimate of the noise. This
noise estimate for each utterance was computed simply by averaging
the first and last ten frames and fixed for the entire utterance. Finally,
we evaluated the impact of dropout training on the performance of
noise robustness. In this experiment, a dropout percentage of 20%
was used and the original unprocessed multi-condition features were
used as the input.

The results of these three experiments are shown in Table 3.
The baseline performance for the 3202-senone DNN is shown for
comparison. As the table indicates, feature enhancement improves
performance on the clean speech test sets (A,C) but degrades per-
formance on the noisy test sets (B,D). We conjecture that enhanc-
ing the features causes the network to be less robust to mismatched
conditions, e.g. SNR or channel variations, because it sees fewer
variations in the data during training. Incorporating the noise es-
timate into the network via noise-aware training reduces the WER
from 13.4% to 13.1%. The use of dropout training provides a larger
gain, dropping the WER to 12.9%. Finally, the best performance is
obtained from the combination of noise-aware training and dropout.
This results in an error rate of 12.4%, a 7.5% relative improvement.

Finally, in Table 4, the results obtained using the DNN-HMM
are compared with several other systems in the literature. These sys-
tems are representative of the state of the art in acoustic modeling
and adaptation for noise robustness and to the authors’ knowledge,

System A B C D AVG
DNN Baseline 5.6 8.8 8.9 20.0 13.4
DNN + FE 4.8 9.1 8.6 20.8 13.8
DNN + NAT 5.4 8.8 7.8 19.6 13.1
DNN + Dropout 5.1 8.4 8.6 19.3 12.9
DNN + NAT + Dropout 5.4 8.3 7.6 18.5 12.4

Table 3. A comparison of the WER (%) of DNN-HMM systems
trained with feature enhancement (FE), noise-aware training (NAT),
and dropout on Aurora 4. All networks have 7x2048 hidden layers
and use 3202 senones.

are the best published results on Aurora 4. The first system com-
bines MPE discriminative training and noise adaptive training using
VTS to compensate for noise and channel mismatch [24]. The sec-
ond system uses hybrid generative/discriminative classifier [25]. An
adaptively trained HMM with VTS adaptation is used to generate
features based on state likelihoods and their derivatives. These fea-
tures are then used in a discriminative log-linear model to obtain
the final hypothesis. Finally, the VAT-Joint system is an adaptively
trained HMM system and combines VTS adaptation for environment
compensation and MLLR for speaker adaptation [26]. The last two
rows of the table show the performance of the two DNN-HMM sys-
tems. The first system has no explicit noise compensation algorithm
and is simply a direct application of the DNN-HMM. Nevertheless, it
outperforms all but the VAT-Joint system. Finally, the DNN-HMM
system with noise-aware training and dropout has the best perfor-
mance. In addition, all the DNN-HMM results were obtained in the
first pass, while the other three systems required two or more recog-
nition passes for noise, channel, or speaker adaptation. These results
clearly demonstrate the inherent robustness of the DNN to unwanted
variability from noise and channel mismatch.

Systems A B C D Avg.
MPE-VAT [24] 7.2 12.8 11.5 19.7 15.3
VAT+ deriv kernels [25] 7.4 12.6 10.7 19.0 14.8
VAT-Joint [26] 5.6 11.0 8.8 17.8 13.4
DNN (FBANK, 7x2048) 5.6 8.8 8.9 20.0 13.4
DNN + NAT + dropout 5.4 8.3 7.6 18.5 12.4

Table 4. WER (%) of several systems in the literature to the pro-
posed DNN systems on Aurora 4.

5. CONCLUSION

In this paper, we have evaluated the performance of a DNN-based
acoustic model for noise robust speech recognition. A DNN trained
on multi-condition acoustic data without any explicit noise compen-
sation achieves a level of performance equivalent to or better than
the best published results on the Aurora 4 task. This is especially
remarkable given that the DNN uses simple spectral-domain fea-
tures and a simple frame-level objective function and only requires
a single decoding pass. In contrast, the GMM-HMM state-of-the-
art algorithms are far more complex, requiring multiple recognition
passes and in some cases, multiple classifiers. We also introduced
two methods, noise-aware training and dropout training, that further
improved the performance of the DNN-HMM. Combining these two
methods resulted in an improvement of 7.5% over the previously
best published result without introducing any additional complexity
compared to standard DNN decoding.
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