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ABSTRACT 

Studies of primate taxomony and phylogeny often depend on comparisons of limb dimensions, 

yet there is little information on how morphology correlates and contributes to foraging 

strategies and ecology. Callitrichid primates are ideal for comparative studies as they exhibit a 

range of body size, limb proportions and diet. Many callitrichid species exhibit a high degree 

of exudativory and to efficiently exploit these resources they are assumed to have evolved 

morphologies that reflect a level of dependence on these resources. We tested assumptions by 

considering measurements of limb proportion and frictional features of the volar surfaces in 

preserved specimens of 25 species with relation to published life history and ecological data. 

The degree of exudativory and utilization of vertical substrates during foraging were found to 

correlate both with size and with size-corrected foot and hand dimensions. Smaller species, 

which engage in greater degrees of exudativory, had proportionally longer hands and feet and 

more curved claw-like tegulae (nails) on their digits to facilitate climbing on vertical substrates. 

The density of patterned ridges (dermatoglyphs) on the volar surfaces of the hands and feet is 

higher in more exudativorous genera, suggesting a role in climbing on vertical tree trunks 

during foraging.  Dermatoglyph comparisons suggest that ridges on the soles and palms may 

facilitate food procurement by enhancing frictional grip during exudate feeding. Volar pad 

features corroborate taxonomic relationships described from dental morphology. 
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Callitrichidae (Mammalia: Primates) includes over forty diverse species of New World 

Monkey. These may be grouped into ‘marmosets’ (Callibella, Callimico, Callithrix, Cebuella, 

and Mico) or tamarins (Leontopithecus and Saguinus) (Rylands et al., 2012). Prior to the 

reassessment of taxonomic relationships by Rylands et al., (2000) and the subsequent 

recognition of Callibella as a separate species (Van Roosmalen and Van Roosmalen, 2003), 

Callithrix was the most diverse genus, with over twenty species. Since 2003 Callibella, 

Callimico and Cebuella have been considered monotypic and fourteen species have been 

removed from Callithrix to a new genus Mico, thereby making Saguinus the most diverse 

callitrichid genus (Rylands et al., 2012). Recent analysis of phylogenetic relationships in all 

primates (Perelman et al. 2011) further confirms the taxonomy described in Cortés-Ortiz 

(2009): (Saguinus (Leontopithecus (Callimico (Callithrix (Callibella (Cebuella/Mico)))))).  

Although their taxonomy is under seemingly constant review, callitrichids are ideal subjects to 

investigate morphology and allometry trends in relation to ecology because they represent a 

wide range of body sizes and exhibit variability in diet and foraging strategies both between 

and within genera, despite close phylogenetic proximities. 

 

Phylogeny and taxonomy of primates often depend on comparing limb proportions and 

morphology (i.e. Falsetti et al., 1993; Shoshani et al., 1996; Anderson et al., 2000; Schmidt, 

2005, 2008). The relationships between primate locomotor modes (i.e. vertical clinging and 

leaping, quadrupedalism and bipedalism) and post-cranial morphology are well-known (e.g. 

Anenome, 1990; Gebo, 1996; Lemelin and Schmitt, 1998; Garber and Leigh, 2001; Anapol et 

al., 2005; Schmidt, 2005; Wright, 2007; Schmidt, 2008).  

 

While diverse morphologically and ecologically, most callitrichids have a common trait 

of consuming plant exudates, principally gums (see Smith, 2010). Consequently, many species 
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possess unique features that allow them to efficiently utilize this nutrition-poor, difficult to 

access resource including specialist digestive systems in Mico (Callithrix) emiliae (Ferrari and 

Martins, 1992), gouging incisors, and other craniofacial characteristics in Callithrix, Cebuella 

and Mico (Forsythe & Ford, 2011). All callitrichids have elongated, laterally compressed and 

hooked claw-like nails or ‘tegulae’ (Garber, 1980, Thorndike, 1968; Soligo and Müller, 1999). 

Though originally considered a primitive character, it is now assumed that callitrichid tegulae 

are a derived specialization which facilitate the gum-feeding behavior prevalent in the 

marmosets and tamarins (Garber and Sussman, 1984; Sussman and Kinzey, 1984; Hamrick, 

1998; Soligo and Müller, 1999). Garber et al. (1996) identified two major problems with this 

inference: firstly, although the presence of ‘claws’ may be expected to aid vertical clinging, the 

postural behavior most commonly associated with gum-feeding (Garber, 1992, 1993; Jackson, 

2011), the link between gum-feeding and the presence of clawed digits has not been 

demonstrated across species with differing degrees of exudativory; secondly, despite the 

considerable variability in the extent to which callitrichids exploit gums, all possess tegulae. 

Garber et al. (1996) agree with Cartmill (1979) that the presence of tegulae is an adaptation 

which simply allows the family to exploit large-diameter vertical supports. Indeed recent 

studies suggest access to fungi growing on large-diameter substrates is a major consideration 

for some species (Porter and Garber, 2004; Hilário and Ferrari, 2010). 

 

Studies on non-exudativorous climbing animals (e.g. birds (Pike and Maitland, 2004); 

lizards (Zani et al., 2000; Ribas et al., 2004; Tulli et al., 2009); carnivores (Van Valkenburgh, 

1987)) from both arboreal and saxicolous (rocky) habitats, have demonstrated positive 

correlations between climbing and claw curvature. More frequent climbing behavior is 

contingent on a more strongly decurved claw geometry (i.e. Feduccia, 1993). Such findings 

may bolster suggestions that the presence of tegulae in the callitrichids is largely a result of 
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climbing requirements per se rather than specifically to exudativory. This study will consider 

differences in tegulae in relation to the ecology of callitrichids in order to clarify the factors 

underlying the presence of claw-like nails in marmosets and tamarins.  

 

Bicca-Marques (1999) examined hand dimensions in insectivorous callitrichids, and 

concluded that hand shape is driven by foraging technique, such that: generalist opportunists, 

gleaning insects and other food from tree trunks and leaf surfaces, had relatively short hands 

and manipulative foragers searching for insects within crevices had long, slender hands. 

However, because manipulative insect foraging often occurs on large vertical supports such as 

tree trunks (Sussman and Kinzey, 1984; Garber, 1992), it is difficult to dissociate the effects of 

climbing from those of insectivory. Long hands would increase the angle subtended by fingers 

and thumb when climbing on vertical supports to increase the effective grip on large diameter 

supports (Cartmill, 1985). Furthermore, postural behaviors such as vertical clinging and trunk-

to-trunk leaping, are strongly linked with exudativory and typical on these supports (Garber, 

1993; Smith, 1997; Youlatos, 1999a; Garber et al., 2009; Youlatos, 2009). We consider 

whether intergeneric and interspecific differences in hand and foot morphology are influenced 

by diet and positional behavior. 

  

A number of arboreal non-primates have patterned, ridged skin on the ventral surfaces of 

their hands and feet (e.g. tree shrews (Tupaia glis: Lemelin, 2000); common dormice 

(Muscardinus avellanarius: Haffner, 1998); raccoons (Procyon lotor: Munger and Pubols, 

1972); Virginia opossums (Didelphus virginiana: Lemelin, 2000); feathertail gliders 

(Acrobates pygmaeus: Rosenberg and Rose, 1999) and koalas (Phasocolarctos cinereas: 

Henneberg et al., 1997)). Such patterns, referred to as dermatoglyphs, are also found in 

primates and are believed to serve two important functions: first, these patterns enhance the 
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frictional grip in climbing (Cartmill, 1979; Hamrick, 1998; Lemelin and Jungers, 2007); and 

second they enhance tactile sensitivity, particularly when associated with the fingertips 

(Loesch and Martin, 1984; Dominy, 2004). Both functions are not mutually exclusive, indeed 

both are likely to be important to a climbing animal to assess the physical profile of the 

surfaces upon which they are moving to prevent slipping (Hoffman et al., 2004). The volar 

surface dermatoglyphs of callitrichid primates will be examined in consideration of the 

potential frictional role of epidermal patterning on volar surfaces during climbing and foraging.  

 

Although a number of studies allude to relationships between morphology, positional 

behavior and exudate foraging in callitrichids, none have considered quantitative relationships 

with exudativory (Garber and Sussman, 1984; Garber, 1991, 1992, 1993; Bicca-Marques, 1999; 

Lemelin and Jungers, 2007). Nash and Burrows (2010), discussing the high degree of 

variability in exudate consumption by callitrichids, identified as an important gap in the current 

understanding the lack of interspecific morphological comparisons. We analyse data derived 

from published values in multiple field studies of foraging behaviour alongside morphological 

data from museum specimens to address this gap focusing on how hand and foot morphology 

relates to primate diet and food procurement using the Callitrichidae as a model.  
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METHODS 

Skins of 235 adult specimens from 25 species and six extant callitrichid genera (Table 1) were 

photographed (with a Fujifilm Finepix s5700) at the Natural History Museum, London. 

Photographs were taken of full pelts from ventral and dorsal perspectives, of the ventral and 

dorsal aspects of whole hands and feet, and of the tegulae and volar surfaces. To minimise 

parabolic effects, specimens were laid flat and all photographs were taken from directly above 

the specimen, at an angle perpendicular to the surfaces. Images were taken from a range of 

distances (0.2 - 1.5m) with this distance dependent on the level of resolution necessary for the 

area of interest being photographed. Full pelts were photographed from 0.6 – 1.5 m. To allow 

measurements to be made from the resultant images, mm grids printed onto clear acetate were 

placed centrally on the specimen for every individual image taken providing an image-specific 

calibration point for every photograph. No measurements were taken from the margins of the 

images. 

 

Specimens used are recorded in the museum catalogue (Napier, 1976) and were wild-

caught by a variety of natural history collectors from the early 19th to late 20th century. Current 

nomenclature was determined by cross-referencing the museum catalogue (Napier, 1976) with 

more recent systematics (Rylands et al. 2008; Rylands and Mettiermeier 2009). Skins 

identified in the catalogue as juveniles and those with no information about age but which were 

significantly below the normal published size ranges for the species were excluded. Data from 

individual specimens was only included if elements of morphology considered were 

measurable from the skins, as features in some were obscured by methods of skin preparation 

and general wear and tear. Specimens from which hand and foot measurements were made had 

bones still intact within the fingers and toes. This study aimed to extend potential uses of skins, 

which are a widely available museum resource, to allow direct comparisons of multiple 
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morphological measures (including soft-tissue measurements) made from a single specimen. 

Differences between specimens in shrinkage, age and preparation techniques might be 

expected to introduce error, but analysis of a subset of specimens for which collection 

measurements of head-body length (HBL) and hindfoot length were available suggests that 

relative trends in data are unaffected by these. A full list of exact specimens used can be 

provided by the corresponding author on request. 

 

The photographs taken were used to derive measurements for: HBL (distance measured 

from tip of nose to proximal base of the tail: Martin et al. 2001)); foot length (from back edge 

of heel to tip of longest toe: Martin et al. 2001); hand length (from proximal edge of palm to tip 

of longest finger) and of the longest finger (finger 3) and toe (toe 2) from base of digit to tip 

(these digits were selected for analysis due to their potential greater influence on prehensile 

ability, as suggested in Lemelin and Jungers, 2007). All image analyses were carried out using 

the free Java image processing program, ImageJ (Rasband, 2009).  

 

For each individual, average density of dermatoglyphic ridges was determined from 

analysis of between five and eight images of 2 mm x 2 mm sections of ventral surfaces of both 

the hand (palmar) and foot (plantar). Sections were cropped from photographs of palmar and 

plantar surfaces, using the calibration grid to standardize the size of each section. Ridge widths 

were measured using ImageJ and used to calculate average number of ridges per mm of 

hand/foot. Tegula curvature was determined via the method used by Pike and Maitland (2004) 

for quantification of claw ‘hookedness’ in raptorial and scansorial birds, and using the angle 

measuring tool in ImageJ. According to this method, a greater angle corresponds with a more 

‘hooked’ tegula.  
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An extensive literature search was conducted and data collated on several aspects of 

species ecology, including: percentage of time spent foraging on different food types, such as 

fruit, prey, and exudates; percentage of locomotory activity represented by scansorial (vertical 

climbing) activity and by trunk to trunk leaping; and size and orientation of supports utilized 

during foraging (Table 2). Studies were included if data was recorded from wild populations 

and where behaviours were being recorded from single-species troops. Where several studies 

had comparably collected/described data, average values were calculated. Data were collated 

from results in the following studies: Garber, 19801; da Fonseca and Lacher, 19842; Garber and 

Sussman, 19843; Yoneda, 19844a, b; Garber, 19885; Ayres and Clutton-Brock, 19926; Egler, 

19927; Ferrari and Strier, 19928; Garber, 19929; Peres, 199210; Rosenberger, 199211; Garber, 

199312; Peres, 199313; Lopes and Ferrari, 199414; Peres, 199415; Garber and Pruetz, 199516; 

Ferrari and Digby, 199617; Dietz et al., 199718; Peres, 199719; Garber, 199820; Hamrick, 199821; 

Youlatos, 1999a22; Araújo et al., 200023; Corrêa et al., 200024; Heymann and Buchanan-Smith, 

200025; Heymann et al., 200026; Martins and Setz, 200027; Oliveira and Ferrari, 200028; Garber 

and Leigh, 200129; Miranda and Faria, 200130; Porter, 200131; Regan et al., 200132; Lehman, 

200433; Porter, 200434; Poveda and Sanchez-Palomino, 200435; Raboy and Dietz, 200436; 

Bicca-Marques, 200537; Garber et al., 200538; Yépez et al., 200539; Cunha et al., 200640; Burity 

et al., 200741a, b; da Silva and Ferrari, 200742; de Castro and Araújo, 200743; Digby et al., 

200744; Garber, 200745; Lapenta and Procópio-de-Oliveira, 200846; Nadjafzadeh and Heymann, 

200847; Porter et al., 200748; Raboy et al., 200849; Garber et al., 200950; Garber and Porter, 

200951; Porter et al., 200952; Rehg, 200953; Veracini, 200954; Youlatos, 200955; Hilário and 

Ferrari, 201056; Porter and Garber, 201057; Smith, 201058. Superscript values indicate sources 

for each of the species as indicated in Table 2.  
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Statistics were performed in SPSS Version 16.0. Morphological data for genera were 

compared either using ANOVA or Kruskal-Wallis tests (following tests for equality of 

variance). Post-hoc comparisons between genera were undertaken using Tukey or Mann-

Whitney U tests. All post-hoc tests reported for differences between genera are significant at 

the p < 0.05 level.  
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RESULTS 

Morphological correlates with body size 

Callitrichids show an approximate two-fold size range between the smallest (Cebuella 

pygmaea) and largest species (Saguinus leucopus) (Table 3). There are significant differences 

in mean HBL between genera (Table 4). Post-hoc Mann-Whitney U tests identified Cebuella 

as significantly smaller than all other genera and that Leontopithecus and Saguinus are 

significantly larger than Callithrix and Mico. This gives three distinct size categories of: 

‘small’ (Cebuella); ‘medium’ (Callithrix and Mico) and ‘large’ (Callimico, Saguinus and 

Leontopithecus).  

 

Proportional hand lengths were similar between differently sized species (Table 3). Rates 

of increase in hand (HBL0.73) and finger length (HBL0.73) between species, although reduced, 

are not significantly different from isometric expectations (Table 5: difference from slope of 1: 

thand = 1.30, 48 d.f., N.S.; tfinger = 1.09, 48 d.f., N.S.). There are significant differences between 

genera in proportional hand length and finger length (Table 4). Post-hoc Tukey and Mann-

Whitney U tests identify that differences in forelimb dimensions result from Leontopithecus 

having significantly longer fingers and hands than Callithrix, Cebuella, Mico and Saguinus.  

 

Hindlimb dimensions show smaller species have proportionally longer feet and toes than 

larger species (Table 3). Foot length and toe length both increase as HBL0.65 between species, 

at a rate significantly less than isometric expectations (Table 5: difference from slope of 1: tfoot 

= 2.48, 46 d.f., p < 0.05; ttoe = 2.44, 46 d.f., p < 0.05). There are significant differences between 

genera (Table 4) in both proportional foot length and proportional toe length. Post-hoc Tukey 

tests identify that these resulted from differences in Saguinus, which had significantly shorter 

feet and toes than Callithrix, Cebuella or Leontopithecus.  
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In 18/25 (72%) species the palmar ridge density was greater than the plantar density (Table 3) 

with this trend being statistically significant for seven species (paired t-tests: C. jacchus, t = -

3.06, 15 d.f., p < 0.05; C. penicillata, t = -3.98, 17 d.f., p = 0.001; M. humeralifer, t = -4.63, 3 

d.f., p < 0.05; S. fuscicollis, t = -6.22, 42 d.f., p < 0.001; S. geoffroyi, t = -3.69, 4 d.f.; S. 

mystax, t = -2.24, 17 d.f.,; S. nigricollis, t = -2.57, 11 d.f., p < 0.05 for all). There was a 

marginally non-significant negative trend between body size (HBL) and palmar ridge density 

across all species though a significant negative correlation with size occurs with plantar ridge 

density (Table 5). At genus-level, palmar ridge densities are significantly greater than plantar 

ridge densities (Figure 1) in both Callithrix (paired t-test: t = 4.12, 36 d.f., p < 0.001) and 

Saguinus (paired t-test: t = -6.00, 119 d.f., p < 0.001).  

 

There are significant differences between genera in both palmar ridge densities and plantar 

ridge densities (Table 4 and Figure 1). Post-hoc Tukey tests identify that Callimico, Saguinus 

and Leontopithecus have significantly lower palmar ridge densities than Callithrix, Cebuella or 

Mico. Callimico and Saguinus have significantly lower plantar ridge densities than Cebuella, 

Callithrix or Mico (Figure 1). There are significant differences in palmar ridge densities within 

Callithrix (ANOVA: F3,33 = 6.20, p < 0.005), with C. aurita and C. flaviceps having 

significantly lower palmar ridge densities than C. jacchus or C. penicillata. There were also 

significant differences in palmar ridge densities for Saguinus species (ANOVA: F11,109 = 3.50, 

p < 0.001), as a result of higher palmar ridge densities in S. bicolor.  

 

There is an inverse relationship between tegula curvature and body size such that smaller 

species have more hooked tegulae (Table 5). Genus-level differences in tegula shape are 

significant (Table 4), though post-hoc tests do not identify the locations of significant 
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differences. Significant differences are noted in tegula curvature between the species within 

Callithrix (ANOVA: F3,25 = 4.96, p < 0.01). Post-hoc testing reveals that C. jacchus have 

significantly more curved tegulae than the less exudativorous C. flaviceps. Differences in 

tegula curvature (ANOVA: F10,72 = 2.27, p < 0.05) were also demonstrated within Saguinus 

resulting from increased tegula curvature in S. leucopus and S. martinsi.  

 

Morphological correlates with ecology 

Smaller species exhibit a greater degree of exudativory, scansorial activity and use of vertical 

supports when foraging (Table 5). Species that use vertical supports to a greater extent during 

foraging have proportionally longer feet (Fig. 2A: R = 0.96, y = 10.45x – 1.86, 5 d.f., p < 0.005) 

and more curved tegulae (Fig. 2B: R = 0.82, y = 0.61x – 1.05, 5 d.f., p = 0.05). Species 

utilising more trunk-to-trunk leaping have longer hands (R = 0.92, y = 13.31x – 2.01, 6 d.f., p < 

0.005). More exudativorous species show greater degrees of scansorial activity (R = 0.89, y = 

2.01x – 0.11, 6 d.f., p < 0.01) but there were no demonstrable species-level morphological 

correlates with exudativory. More exudativorous genera have a non-significant tendency 

towards increased palmar ridge densities (Fig 3A: R = 0.75, 5 d.f., N.S.) and a significant 

increase in plantar ridge densities (Fig. 3B: R = 0.83, y = 1.62x + 3.87, 5 d.f., p < 0.05). No 

correlations with palmar or plantar ridge density were found with either frugivory or prey 

capture.  
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DISCUSSION 

Measurements from callitrichids in this study suggest that while relative proportions of 

the hands were conserved with respect to size, in general, all contributory elements of the feet 

were proportionally longer in smaller species. Smaller species of callitrichid exhibited greater 

degrees of exudativory. Consequently, it is to be expected that smaller species will also exhibit 

behaviors linked more frequently with exudativory, such as scansorial locomotion and use of 

vertical substrates. Given the greater reliance on exudativory in small species, an increase in 

relative proportions of the hind feet may confer more support when climbing vertical substrates.  

Norberg’s (1986) evaluation of vertical climbing in the Eurasian tree creeper, Certhia 

familiaris, discusses how lengthening the foot reduces the forces necessary to maintain a grip 

on a vertical trunk. Furthermore, increasing the length of the foot would act to increase the 

effective grip while climbing, even without the additional benefit of ‘claws’ (Cartmill, 1985). 

 

Arboreal primates have unique hand proportions and in particular possess relatively 

elongated fingers with a greater capacity for prehensility (Kirk et al., 2008). This feature of 

primates is usually explained as an adaptation to locomotion on small branches, allowing them 

to create a secure surrounding grip on narrow diameter branches and vines (Lemelin, 1999). As 

the fingers can bear a significant portion of the weight during locomotion, and since stresses on 

a digit are suggested to increase in direct proportion to length, expectations are that with 

increasing size, species should have adaptations for reducing the stress on these digits, such as 

shortening the functional length (Krakauer et al., 2002) or increasing development of broad, 

thickened cushion-like pads (described for arboreal rodents in Haffner, 1998). Lemelin and 

Jungers (2007) study of hand proportions in thirty species of strepsirrhines noted that as body 

size increases, toes and fingers become proportionally shorter. Such trends may mean that the 

ability to fully enclose wider diameter branches in an encircling grip is reduced in larger 
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species, but this might be compensated for by an increased coalescence of volar pads to 

facilitate frictional force, a trend which is also described in strepshirrines (Lemelin and Jungers, 

2007). While callitrichids do not have discrete volar pads, they exhibit a tendency towards 

shorter finger lengths with increasing size (albeit non-significant) though lower palmar ridge 

densities are seen with increasing body size in callitrichids, perhaps counter to expectations 

from comparisons in pad morphology in the strepsirrhines.  

 

However, long, prehensile fingers in primates are also implicated in a greater ability to 

manipulate objects (Lemelin, 1999). Specialist manipulative foragers such as Leontopithecus 

have longer, narrower hands than other callitrichid genera (Bicca-Marques, 1999), linked to 

their strategy of foraging in crevices such as bromeliads and tree holes (Dietz et al., 1997). The 

present study also found that Leontopithecus had significantly longer hands (and fingers) than 

Callithrix, Cebuella, Mico and Saguinus. Saguinus has proportionally shorter hands than other 

genera. This was in concordance with Bicca-Marques (1999) who separates Saguinus into three 

groups according to hand shape: those with long, narrow hands (S. fuscicollis, S. nigricollis, S. 

tripartitus); those with intermediate shaped hands (S. bicolor, S. geoffroyi, S. leucopus, S. 

midas, S. oedipus) and those with short, wide hands (S. labiatus, S. mystax). He suggested that 

long, narrow hands were related to manipulative foraging for insects. The results of the present 

study broadly supported these groupings, manipulatively foraging species S. fuscicollis, S. 

nigricollis and S. tripartitus (Heymann and Buchanan-Smith, 2000), have long hands 

compared with many congeners and consumed greater proportions of animal prey.  

 

Stephenson et al.’s (2010) study of comparative hand morphology noted a diversity of 

claw shapes in galagos, and they suggest that the observed gradient from nail to claw may be 

evidence of an evolutionary response to allow exploitation of large diameter supports for 
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exudativory. However, their study did not present any quantitative analysis of either claw 

curvature or exudativory levels. There is evidence from the present study that exudativory and 

scansorial activity are correlated, and scansorial species which utilize vertical supports to a 

greater degree have more hooked tegulae. Youlatos (1999b) examined the positional behavior 

of six sympatric Ecuadorian primates and also found that small tegulae-bearing callitrichids 

showed the highest proportions of large vertical support use. This was attributed to 

requirements for exudativory but, again, no values are given for the proportion of exudates in 

the different species’ diets, supporting only observations in Garber et al. (1996; 2009) that the 

presence of tegulae in callitrichids is linked to vertical foraging behavior. The advantages of 

claws and claw-like nails in vertical substrate foraging was suggested to be of particular 

importance for smaller-bodied species that regularly utilize vertical, large-diameter surfaces, 

where they facilitate extra grip to compensate for limbs which have too short a reach to allow 

an effective contact angle to be subtended (Soligo and Martin, 2006; Jackson, 2011).  

 

Bock & Miller (1959) describe how the curvature of the scansorial claw in woodpeckers 

is key in allowing the tip of the claw to penetrate into the bark of tree trunks. The current study 

found no direct link between the degree of exudativory and tegula curvature between species, 

though as seen in Youlatos (1999b), smaller (and more exudativorous) species did have more 

hooked tegulae. The more exudativorous species of Callithrix exhibit greater tegula curvature, 

trends which are not observed within Saguinus. While Saguinus are opportunist exudativores, 

Calllithrix are specialists with procumbent incisors to gouge and wound the trees to instigate 

exudate production. To do this, Callithrix jacchus anchor themselves using their upper incisors 

and then gouge upwards with their lower jaw, which is capable of producing an upwardly 

directed force equivalent to eight times their own body weight to dig into the tree trunk 

(Vinyard et al. 2009). Having tegulae with a greater curvature might be expected to increase 
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interlocking capability with the rough bark substrate, and further help to anchor the monkeys to 

increase stability on vertical substrates while engaged in gum-feeding. Further, proportionally 

larger feet in the more exudativorous species, combined with better attachment to the substrate 

could provide improved leverage to increase gouging efficiency. 

 

Hamrick (2001) found that the breadths of papillary ridges on the toes of didelphid 

marsupials were wider than on the fingers, i.e. ridge density was greater on the hands. Based 

on the importance of the hands in tactile exploration, he argued that the increased density of 

ridges on the hand serves a primarily sensory purpose via an increased distribution of 

mechanoreceptors. It might be expected, if the key function of ridges on the volar skin is 

sensory, that ridge density will be higher on the hands. In the majority of callitrichid species, 

ridge densities were higher on the hands than on the feet, lending support to the hypothesis that 

dermatoglyphic ridges have a function in improving touch discrimination. Such a role would 

be particularly important to frugivorous primates, that judge fruit ripeness using a combination 

of cues, including palpating fruit with the hand (Dominy, 2004). Hoffman et al.’s (2004) study 

of the fingerprints of nine primate species found a positive correlation between the density of 

sensory cells and frugivory yet the present study found no correlations between frugivory and 

palmar or plantar ridge densities, although the genera with the lowest values for palmar ridge 

density here are chiefly frugivorous, perhaps reducing the argument for a chiefly sensory role. 

 

Most primates have greater hindlimb than forelimb contact time when climbing on 

arboreal supports (Cartmill et al., 2002), so if the purpose of volar skin patterning were to 

increase friction, as suggested by Haffner’s (1998) exploration of the microanatomy of the foot 

pads of arboreal rodents, it might be expected that ridge densities would be greater on plantar 

rather than palmar surfaces. On this evidence, the present study’s results contradict a frictional 

Page 17 of 45

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



role for dermatoglyphic ridges. However, comparative studies of walking biomechanics have 

found that, unlike most primates, C. jacchus exhibits relatively greater forelimb forces and 

contact duration when walking (Young, 2009), galloping (Hanna et al., 2006) and climbing 

(Schmitt, 2003). Cartmill et al. (2002) link longer hindlimb contact to the necessity to maintain 

a firm grasp on thin flexible supports and, as callitrichids utilize forelimb-powered vertical 

climbing on large diameter substrates to a significant extent (Hunt et al., 1996), increased 

frictional contact of the forelimb might be of greater importance. Understanding of the 

potential frictional role of palmar and plantar ridges in vertical climbing would significantly 

benefit from consideration of biomechanics of locomotion in other callitrichids. As other 

vertical climbers, such as the lorises (Loris and Nycticebus), also exhibit atypical impact forces 

(Schmitt and Lemelin, 2004), the study of comparative hand/foot dermatoglyphs in primates 

with typical and atypical gaits and forelimb vs. hindlimb powered climbing would be desirable.  

 

The influence of other locomotor modes on the expression of plantar and palmar 

dermatoglyphs, may be a key consideration. Although callitrichids are often categorized as 

generalist arboreal quadrupeds (Connour et al., 2000) evidence from the literature suggests 

many species utilize leaping locomotion to a significant extent. Observational and 

biomechanical studies find that jumping in Saguinus, Callimico, Callithrix and Cebuella is 

characterized by hindlimb-driven takeoff and forelimb-first landing (Garber, 1991; Garber et 

al., 2009). It is therefore likely that the forelimbs act to absorb the shock of landing impact in 

callitrichids (Garber and Leigh, 2001), and will form the initial frictional contact with a 

substrate to counter slipping. This perhaps provides a further explanation of the increased 

density of dermatoglyphic ridges on the palms of the hands in comparison to the soles of the 

feet and potentially also the proportionally longer hands seen in callitrichids which more 

commonly engage in trunk to trunk leaping in this study. It would be of interest to consider 
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comparative dermatoglyphs in specialist leaping primates such as indrids and lemurs, which 

are well studied in terms of jumping biomechanics (Crompton et al., 1993; Demes et al., 1996, 

2005), and which land hindlimb-first, to see if patterns in volar skin pattern are reversed. 

 

Smith (2010) suggests generic differentiation in terms of dental specializations for 

gouging should predict Cebuella and Callithrix are the most exudativorous, Saguinus, 

Leontopithecus and Callimico the least with Mico intermediate between the two groups. These 

expectations are borne out by trends for generic exudate consumption in this study. As there 

were generic-level correlations between ridge densities on hands and feet and exudativory, 

ridge density values predict exudativory in a similar way to dental specialization. Significant 

differences in palmar and plantar ridge densities result from Callimico, Leontopithecus and 

Saguinus forming a distinct and separate group from Callithrix, Cebuella and Mico.  

 

According to dental adaptations for gouging, Callithrix may be further split into three 

groups (re Natori and Shigehara, 1992): (a) C. jacchus and C. penicillata; (b) C. kuhli and C. 

geoffroyi; C. aurita and (c) C. flaviceps, in order of decreasing exudativory (Smith, 2010). Our 

results for palmar ridge densities largely support these groupings of C. jacchus and C. 

penicillata with similar values to one another for palmar ridge density, as do C. aurita and C. 

flaviceps. Furthermore, C. aurita and C. flaviceps both have significantly lower palmar ridge 

densities than either C. jacchus or C. penicillata. As discussed earlier, tegula curvature is 

higher in more exudativorous species within this genus, suggesting that ridge density probably 

has a greater role in gripping, driven by exudate feeding requirements, than in sensory 

assessment of fruit ripeness. This demonstrates the need for careful consideration of the 

various facets of a species’ ecology which may influence morphology.  
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Callimico, although genetically closer to Callithrix, Cebuella and Mico than to Saguinus 

and Leontopithecus (Pastorini et al., 1998; Chaves et al., 1999) would not be recognized as 

such based on dental morphology alone. Callimico have not only retained the third molar, a 

dental feature typically absent from all other callitrichids (Cortés-Ortiz, 2009), but also do not 

exhibit the specialist incisors typical of the ‘gouging’ marmosets (see Hill, 1959; Forsythe and 

Ford, 2011) with which they are a close sister group. The relative morphology of volar surfaces 

in Callimico were similarly problematic and confirmed the difficult-to-resolve position of this 

genus within the Callitrichidae, ridge densities on both hands and feet suggested they were 

significantly different from both the marmosets and the tamarins.  

 

To conclude, results suggest that the potential role of volar skin morphology and tegula 

curvature in the facilitation of exudativory bears further investigation. This is particularly 

desirable as differences in both reflect trends in dental morphology with relation to levels of 

exudativory, perhaps via similar evolutionary pressures related to food procurement and food 

handling. Furthermore, trends in hand and foot dermatoglyph density appeared to group 

species according to current taxonomy, aligning Saguinus with Leontopithecus and Mico with 

Callithrix and Cebuella corroborating the very early tenet of Biegert (1963) who considered 

the relationship of Callimico within the Callitrichidae, argued that combinations of ‘cheridial’ 

characters,  (features of the hands/feet), including ‘claw’ presence and extent of frictional volar 

skin were better taxonomic indicators than dental morphology. Although, it would be difficult 

to argue based on our findings, that cheridial characters are stronger indicators than dental 

morphology, the undoubted importance of the role of hand and foot morphology in facilitating 

food procurement in the callitrichids certainly indicates this warrants further consideration, 

particularly with respect to differences in reliance on exudativory between species. 
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TABLES 

 

Table 1: Museum specimens examined (species and numbers) and species abbreviations 

used in text and in figures.  

Table 2: Values (average (s.e.) n) calculated from literature for percentage of diet 

represented by different nutritional sources, locomotor modes (% locomotion observations), 

and support use (% foraging observations) in 20 species of callitrichid.  

Table 3: Head-body lengths, palmar and plantar ridge densities, tegula curvatures and 

hand and feet measurements relative to head-body length made from museum specimens of 25 

species of callitrichid.  

Table 4: Summary data for morphological parameters at genus level. Statistics for 

comparison between genera using ANOVA (unless otherwise indicated: * = Kruskal-Wallis). 

Table 5: Species-level correlation statistics between HBL, body dimensions and various 

aspects of ecology in callitrichids (*log-log relationships; **arcsin-transformed data) 
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FIGURE LEGENDS 

 

Figure 1: Boxplots of palmar and plantar ridge density in six genera of callitrichid: the 

marmosets (Mico, Callithrix, Cebuella), Callimico and tamarins (Leontopithecus and 

Saguinus). Statistics in text. 

Figure 2: Relationships between vertical support foraging and (A) proportional foot 

length and (B) tegula curvature. Statistics in text. Genera symbols � Callimico  Callithrix � 

Cebuella � Leontopithecus � Mico � Saguinus. Species abbreviations as in Table 1. 

Figure 3: Genus-level relationships between exudate consumption and (A) palmar ridge 

density and (B) plantar ridge density. Statistics in text. Genera symbols as Figure 2, species 

abbreviations as in Table 1. 
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 1

 Table 1: Museum specimens examined (species and numbers) and species 

abbreviations used in text and in figures.  

 

 

Common name Scientific name Authority Abbreviation n 

Goeldii’s monkey Callimico goeldii Thomas, 1901 Cmg 5 

Buffy-tufted marmoset Callithrix aurita Geoffroy, 1812 Cau 1 

Buffy-headed marmoset Callithrix flaviceps Thomas, 1903 Cfl 3 

Common marmoset Callithrix jacchus Linnaeus, 1758 Cja 17 

Black-tufted marmoset Callithrix penicillata Geoffroy, 1812 Cpe 23 

Pygmy marmoset Cebuella pygmaea Spix, 1823 Ceb 11 

Golden-headed lion tamarin Leontopithecus chrysomelas Kuhl, 1812 Lcr 1 

Golden lion tamarin Leontopithecus rosalia Linnaeus, 1766 Lro 6 

Silvery marmoset Mico argentata Linnaeus, 1766 Mar 3 

Gold-and-white marmoset Mico chrysoleucus Wagner, 1842 Mcr 2 

Black-and-white tassel-ear marmoset Mico humeralifer Geoffroy, 1812 Mhu 4 

Golden-white bare-ear marmoset Mico leucippe Thomas, 1922 Mle 1 

Black-tailed marmoset Mico melanurus Geoffroy, 1812 Mme 6 

Pied tamarin Saguinus bicolor Spix, 1823 Sbi 2 

Saddleback tamarin Saguinus fuscicollis Spix, 1823 Sfu 59 

Geoffroy’s tamarin Saguinus geoffroyi Pucheran, 1845 Sge 4 

Red-bellied tamarin Saguinus labiatus Geoffroy, 1812 Sla 11 

White-footed tamarin Saguinus leucopus Günther, 1877 Sle 2 

Martin’s tamarin Saguinus martinsi Thomas, 1912 Sma 1 

Golden-handed tamarin Saguinus midas Linnaeus, 1758 Smi 24 

Moustached tamarin Saguinus mystax Spix, 1803 Smy 20 

Black-handed tamarin Saguinus niger Geoffroy, 1803 Snr 11 

Black-mantled tamarin Saguinus nigricollis Spix, 1823 Sns 13 

Cottontop tamarin Saguinus oedipus Linnaeus, 1758 Soe 3 
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 1

Table 2: Values (average (s.e.) n) calculated from literature for percentage of diet represented by different nutritional sources, locomotory 

modes (% locomotion observations), and support use (% foraging observations) in 20 species of callitrichid.  

 

Species Percentage of diet represented by: % vertical 

support use 

(foraging) 

Percentage locomotion: References  

Fruit Animal Exudates Scansorial Leaping 

Cmg 33 (4.1) 8 24 (5.9) 8 7 (2.0) 8 42 (7.5) 2 15 (0.6) 3 55 (-) 1 6, 11, 19, 29, 31, 34, 38, 48, 52, 53, 56 

Cau 23 (7.0) 4 29 (4.1) 4 42 (7.4) 6 - - - 9,11, 24, 41b, 49, 27, 52, 58 

Cfl 5 (2.4) 5 20 (2.0) 6 65 (10.3) 7 - - - 8, 11, 17, 24, 49, 52, 56 

Cja 24 (2.4) 6 18 (2.6) 7 55 (3.0) 9 - - - 9, 11, 17, 21, 23, 40, 43, 44, 49, 50, 52, 56 

Cpe - 29 (-) 1 57 (13.5) 3 - - - 2, 11, 30 

Ceb - 22 (11.0) 2 69 (2.1) 2 60 (37) 2 36 (6.3) 3 37 (-) 1 6, 8, 9, 11, 13, 22, 55, 38, 39, 44 ,45, 50, 52 

Lcr 82 (-) 1 14 (-) 1 7 (-) 1 - - - 8, 9, 11, 41a 

Lro 77 (7.7) 3 15 (0.4) 4 1 (0.6) 4 - - - 8, 9, 56, 11, 18, 21, 36, 44, 46 

Mar 36 (-) 1 5 (-) 1 59 (-) 1 - - - 6, 24, 54 

Mhu - - 27 (-) 1 - - - 6, 9, 52 

Sbi 39 (-) 1 59 (-) 1 1 (-) 1 - - - 7 

Sfu 59 (5.6) 10 23 (6.4) 10 14 (2.4) 10 33 (-) 1 16 (1.4) 3 32 (8.8) 2 4b, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 25, 26, 29, 31, 34, 37, 38, 44, 47, 53, 57 

Sge 44 (6.2) 3 31 (8.9) 3 20 (5.2) 3 13 (-) 1 - 4 (-) 1 1, 9, 11, 38, 57 

Sla 68 (8.1) 4 11 (-) 2 11 (2.0) 3 19 (-) 1 6 (0.5) 2 8 (0.2) 2 4a, 8, 11, 25, 29, 53, 31, 32, 34, 37, 38, 52 

Sle 83 (-) 1 12 (-) 1 0 (-) 1 - - - 35 

Smi 56 (8.5) 2 31 (-) 1 5 (-) 1 - - - 6, 9, 32, 33, 45 

Smy 54 (5.6) 8 33 (7.2) 9 8 (2.5) 9 13 (4.2) 4 3 (0.4) 2 10 (0.9) 2 5, 8, 9, 10, 11, 12, 13, 15, 16, 20, 25, 26, 37, 38, 44, 47, 52, 57, 58 

Snr 84 (6.9) 3 7 (1.5) 3 13 (10.4) 2 - - - 11, 28, 42, 57 

Soe 38 (-) 1 39 (-) 1 14 (-) 1 - 17 (-) 1 - 3, 9, 21, 52 

Str 40 (21.5) 2 48 (26.5) 2 12 (-) 1 - 16 (-) 1 18 (-) 1 38, 45, 57 
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Table 3: Head-body lengths, palmar and plantar ridge densities, tegula curvatures and hand and feet measurements relative to head-body 

length made from museum specimens of 25 species of callitrichid.  

 

 

Species HBL (mm) 

Palmar ridge 

density 

(ridges/mm) 

Plantar ridge 

density 

(ridges/mm) 

Tegula 

curvature (º) 

Lengths as proportion of HBL 

Hand Finger Foot Toe 

Cmg 247 (20) 5 4.0 (0.16) 5 3.7 (0.20) 5 138 (6.9) 4 0.19 (0.014) 5 0.063 (0.005) 5 0.22 (0.014) 5 0.069 (0.004) 5 

Cau 278 (-) 1 3.9 (-) 1 4.7 (-) 1 103 (-) 1 0.14 (-) 1 0.056 (-) 1 0.21 (-) 1 0.068 (-) 1 

Cfl 270 (20) 2 4.1 (0.70) 2 4.3 (0.60) 2 116 (3.9) 2 0.16 (0.007) 3 0.056 (0.004) 3 0.23 (0.013) 3 0.070 (0.002) 3 

Cja 226 (5) 16 5.3 (0.13) 16 4.8 (0.14) 16 139 (3.8) 11 0.16 (0.004) 17 0.059 (0.002) 17 0.22 (0.006) 17 0.070 (0.003) 17 

Cpe 220 (3) 18 5.3 (0.09) 18 4.8 (0.09) 18 135 (2.7) 15 0.16 (0.005) 23 0.060 (0.002) 23 0.22 (0.005) 23 0.070 (0.002) 23 

Ceb 143 (4) 11 5.2 (0.14) 11 5.0 (0.17) 11 144 (3.8) 5 0.18 (0.007) 11 0.072 (0.003) 11 0.23 (0.008) 11 0.077 (0.004) 11 

Lcr 239 (-) 1 4.3 (-) 1 5.1 (-) 1 145 (-) 1 0.29 (-) 1 0.098 (-) 1 0.26 (-) 1 0.082 (-) 1 

Lro 278 (11) 6 4.5 (0.15) 6 4.2 (0.12) 6 - 0.20 (0.013) 6 0.071 (0.003) 6 0.23 (0.013) 6 0.075 (0.006) 6 

Mar 216 (15) 3 5.1 (0.65) 3 5.1 (0.17) 3 133 (3.0) 2 0.17 (0.012) 3 0.056 (0.004) 3 0.22 (0.015) 3 0.073 (0.007) 3 

Mcr 193 (15) 2 4.8 (0.35) 2 5.2 (0.10) 2 137 (-) 1 0.21 (0.025) 2 0.076 (0.007) 2 0.28 (0.067) 2 0.079 (0.017) 2 

Mhu 247 (9) 4 5.2 (0.19) 4 4.7 (0.11) 4 145 (4.0) 3 0.16 (0.004) 4 0.051 (0.001) 4 0.21 (0.015) 4 0.067 (0.004) 4 

Mle 213 (-) 1 4.9 (-) 1 5.5 (-) 1 137 (-) 1 0.16 (-) 1 0.062 (-) 1   

Mme 247 (10) 8 5.3 (0.41) 4 4.8 (0.26) 4 147 (9.5) 3 0.16 (0.004) 6 0.059 (0.003) 6 0.21 (0.006) 6 0.062 (0.004) 5 

Sbi 240 (34) 2 6.3 (0.85) 2 4.9 (0.25) 2 118 (1.1) 2 0.16 (0.004) 2 0.063 (0.007) 2 0.21 (0.038) 2 0.069 (0.011) 2 

Sfu 243 (3) 43 4.7 (0.07) 43 4.2 (0.06) 14 134 (2.2) 36 0.17 (0.003) 59 0.060 (0.001) 63 0.21 (0.003) 59 0.065 (0.001) 59 

Sge 262 (10) 5 5.1 (0.19) 5 4.3 (0.23) 15 129 (9.3) 2 0.16 (0.012) 4 0.056 (0.005) 5 0.21 (0.018) 4 0.064 (0.007) 5 

Sla  256 (8) 9 4.7 (0.19) 9 4.9 (0.20) 16 133 (5.3) 7 0.16 (0.007) 11 0.059 (0.004) 11 0.19 (0.011) 11 0.057 (0.004) 11 

Sle 298 (17) 2 4.2 (0.35) 2 3.7 (0.10) 17 147 (7.5) 2 0.16 (0.004) 2 0.054 (0.005) 2 0.19 (0.017) 2 0.066 (0.001) 2 

Sma 226 (-) 1 4.6 (-) 1 4.1 (-) 18 146 (-) 1 0.23 (-) 1 0.081 (-) 1 0.21 (-) 1 0.068 (-) 1 

Smi 283 (6) 15 4.9 (0.13) 15 4.7 (0.15) 19 120 (4.8) 13 0.17 (0.009) 24 0.057 (0.003) 25 0.19 (0.004) 24 0.061 (0.001) 25 

Smy 270 (6) 18 4.8 (0.10) 18 4.5 (0.14) 20 110 (12.5) 2 0.15 (0.005) 20 0.055 (0.002) 24 0.20 (0.005) 20 0.053 (0.003) 20 

Snr 278 (6) 10 4.9 (0.14) 10 4.5 (0.17) 21 123 (4.9) 10 0.16 (0.006) 11 0.059 (0.004) 11 0.20 (0.007) 11 0.063 (0.003) 11 

Sns 265 (8) 12 4.7 (0.12) 12 4.2 (0.16) 22 135 (4.0) 7 0.16 (0.006) 13 0.059 (0.002) 13 0.18 (0.009) 13 0.054 (0.004) 13 

Soe 255 (15) 2 3.8 (0.10) 2 4.4 (0.45) 23 - 0.16 (0.004) 3 0.062 (0.005) 3 0.26 (0.025) 3 0.069 (0.006) 3 

Str 239 (28) 2 4.6 (0.25) 2 4.4 (0.15) 24 123 (7.2) 2 0.17 (0.013) 2 0.077 (0.008) 2 0.22 (0.008) 2 0.071 (0.009) 2 

Page 40 of 45

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 1

 

 

Table 4: Summary data for morphological parameters at genus level. Statistics for comparison between genera using ANOVA (unless 

otherwise indicated: * = Kruskal–Wallis). 

 

 

 

 

 Genus Comparison 

 Callimico Callithrix Cebuella Leontopithecus Mico Saguinus Statistic p <  

Size class Large Medium Small  Large Medium Large   

Head-body length (mm) 246 (20) 5 227 (4) 37 142 (4) 11 272 (10) 7 231 (7) 15 260 (2) 120 76.93* 0.001 

Palmar ridge density (no/mm) 4.00 (0.16) 5 5.19 (0.10) 37 5.23 (0.14) 11 4.44 (0.13) 7 5.26 (0.21) 15 4.74 (0.04) 120 9.88 0.001 

Plantar  ridge density (no/mm) 3.66 (0.20) 5 4.81 (0.08) 37 5.03 (0.17) 11 4.29 (0.17) 7 4.93 (0.10) 15 4.39 (0.05) 120 9.68 0.001 

Tegula curvature (º) 138.1 (6.88) 4 134.0 (2.50) 29 144.5 (3.76) 5 145.4 (-) 1 139.6 (3.61) 11 129.7 (1.66) 83 2.78 0.05 

Hand length/HBL 0.18 (0.014) 5 0.16 (0.003) 37 0.18 (0.006) 11 0.21 (0.02) 7 0.17 (0.005) 16 0.16 (0.002) 152 6.57 0.001 

Foot length/HBL 0.22 (0.014) 5 0.22 (0.004) 44 0.23 (0.008) 11 0.23 (0.01) 7 0.22 (0.01) 15 0.20 (0.002) 152 6.89 0.001 

Finger length/HBL 0.063 (0.005) 5 0.059 (0.001) 44 0.072 (0.003) 11 0.075 (0.005) 7 0.059 (0.002) 16 0.058 (0.001) 164 22.70* 0.001 

Toe length/HBL 0.069 (0.004) 5 0.070 (0.002) 44 0.077 (0.004) 11 0.076 (0.005) 7 0.068 (0.003) 15 0.061 (0.001) 154 8.38 0.001 
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Table 5: Species-level correlation statistics between HBL, body dimensions and various aspects 

of ecology in callitrichids (*log-log relationships; **arcsin-transformed data)  

HBL vs.   

 
R df p<  Equation 

Hand length* 0.56 24 0.01 y = 0.68x - 0.007 

Finger length* 0.50 24 0.01 y = 0.72x - 0.496 

Foot length*  0.73 24 0.001 y = 0.65x + 0.164 

Toe length*   0.41 24 0.05 y = 0.62x - 0.301  

Palmar ridge density 0.38 24 0.06 NS 

Plantar ridge density  0.56 24 0.01 y = -0.008x + 6.49  

Tegulae (radians)  0.51 22 0.05 y = -0.003x + 3.08  

     

Exudativory** 0.46 19 0.01 y = -0.005x + 1.42  

Scansorial activity**  0.91 7 0.01 y = -0.003x + 0.76  

Vertical supports** 0.84 5 0.05 y = -0.003x + 1.01 
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Fig. 1  
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Fig. 2  
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Fig. 3  
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