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Abstract. Numerical simulation of solute transport in heterogeneous porous media is
greatly complicated by the large velocity and concentration gradients induced by spatial
variations in hydraulic conductivity. Eulerian-Lagrangian methods for solving the transport
equation can give accurate solutions to heterogeneous problems if their interpolation
algorithms are properly selected. This paper compares the performance of four Eulerian-
Lagrangian solvers that rely on linear, quadratic, cubic spline, and taut spline
interpolators. In each case a tensor product decomposition is used to reduce the general
n-dimensional interpolation problem to a sequence of n one-dimensional problems.
Comparisons of a set of test problems indicate that the linear and taut spline interpolators
are dispersive while the quadratic and cubic spline interpolators are oscillatory. The cubic
and taut spline interpolators give consistently better accuracy than the more conventional
linear and quadratic alternatives. Simulation experiments in two- and three-dimensional
heterogeneous media indicate that the taut spline interpolator, which is applied here for
the first time to a solute transport problem, is able to yield accurate essentially
nonoscillatory solutions for high grid Peclet numbers. The cubic spline interpolator
requires significantly less computational effort to achieve performance comparable to the
other methods.

1. Introduction

High-resolution numerical simulations are being used with
increasing frequency to investigate the behavior of solutes
moving through heterogeneous porous media. In such media,
small-scale velocity fluctuations contribute to larger-scale dis-
persion and mixing while also inducing small-scale fluctuations
in solute concentration. Aspects of this process are still not
well understood, especially at field sites where geologic vari-
ability cannot be adequately described with simple models.
Numerical simulations that explicitly resolve small-scale veloc-
ity variations can provide useful information about macrodis-
persion mechanisms. In such simulations the Fickian term of
the solute transport equation typically accounts only for pore-
scale dispersion, while the advection term accounts for disper-
sion induced by velocity fluctuations at scales larger than the
pore scale. Advection-dominated transport problems of this
type are quite challenging and may require a different solution
approach than more conventional groundwater transport prob-
lems, which make no attempt to resolve velocity fluctuations at
such small scales [Sudicky, 1989]. Our focus in this paper is on
a particular class of numerical solution techniques that are well
suited for the advection-dominated simulations needed to test
macrodispersion theories.

We start with a brief review of the most widely used options,
which divide naturally into Lagrangian, Eulerian, and hybrid
Eulerian-Lagrangian solution techniques. We then discuss in

more detail some Eulerian-Lagrangian algorithms that are par-
ticularly well suited for investigating macrodispersion in het-
erogeneous porous media. We devote particular attention to
the role of spatial interpolation, which has an important effect
on the accuracy and efficiency of advection-dominated solutions.

The Lagrangian (or particle-tracking) approach for simulat-
ing solute transport represents a solute plume by a finite num-
ber of moving particles. The coordinates of each particle are
described by a multidimensional Lagrangian transport (Lange-
vin) equation [Tompson and Gelhar, 1990; LaBolle et al., 1996].
The average solute concentration in a given control volume is
inferred by counting the number of particles contained within
this volume at any given time. The accuracy of the method
improves as the number of particles within each control vol-
ume increases while its resolution improves as the volume
becomes smaller. The only way to meet these competing de-
mands is to increase the total number of particles. Naturally,
this increases the computational demands of the algorithm
[Yeung and Pope, 1988; Dimou, 1992; Rovelstad, 1991, 1994;
Tompson and Gelhar, 1990; LaBolle et al., 1996].

The Eulerian approach obtains a solution to the transport
problem by integrating the advection-dispersion equation over
a fixed computational grid. This approach can be computation-
ally demanding for advection-dominated problems when strin-
gent stability and accuracy constraints can necessitate the use
of small grid cells and time steps [Ames, 1992; Celia and Gray,
1992]. Nevertheless, the Eulerian approach is widely used,
probably because of the flexibility it offers in handling bound-
ary conditions and source terms.

The Eulerian-Lagrangian approach is a hybrid method that
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shares features with both the Lagrangian and Eulerian ap-
proaches. Most Eulerian-Lagrangian algorithms divide the so-
lution of the transport problem into two steps [Cheng et al.,
1984; Neuman, 1984; Wheeler and Dawson, 1988]. The first step
uses an approach similar to particle tracking to solve the ad-
vective portion of the transport equation. The second step uses
a Eulerian approach to solve the remaining dispersive portion.
The algorithm repeatedly alternates between these two steps to
obtain solute concentrations at discrete grid points and times.
In some cases, hybrid Eulerian-Lagrangian methods can pro-
vide better accuracy and/or resolution than either Lagrangian
or Eulerian solution algorithms of comparable cost.

Eulerian-Lagrangian methods have been widely investigated
in the hydrologic and numerical analysis literature [Holly and
Preissmann, 1977; Holly and Jean-Marc, 1984; Ewing and Rus-
sell, 1981; Neuman, 1981, 1984; Douglas and Russell, 1982;
Glass and Rodi, 1982; Cheng et al., 1984; Baptista, 1987; Chiang
et al., 1989; Ho et al., 1990; Celia and Gray, 1992; Bentley and
Pinder, 1992; Yeh and Chang, 1992; Healy and Russell, 1993,
1998; Oliveira and Baptista, 1994]. Several of these studies
suggest that the accuracy of the spatial interpolation algorithm
used during the advective step of the two-step solution proce-
dure has a significant effect on the accuracy of the Eulerian-
Lagrangian approach [Dawson et al., 1989; Xiang and Zhen,
1992]. This is particularly true for advection-dominated problems.

In this paper we investigate four Eulerian-Lagrangian solu-
tion methods which are based on different spatial interpolation
techniques. These are the (1) linear, (2) quadratic, (3) cubic
spline, and (4) taut spline interpolators. The taut spline inter-
polator is especially convenient for transport problems with
highly variable spatial gradients. We evaluate the performance
of each interpolation alternative with a standard one-
dimensional constant velocity test problem as well as with
more challenging two- and three-dimensional variable velocity
problems. In order to make the spline interpolators feasible for
use in multidimensional problems we introduce a simplified,
but mathematically equivalent, numerical implementation
based on a tensor product decomposition. Our test problems
suggest that spline interpolators can significantly improve so-
lution accuracy by reducing numerical dispersion and spurious
oscillations typically associated with linear and quadratic inter-
polators, respectively. This is particularly true of the taut spline
interpolator, which practically eliminates the numerical oscil-
lations typically associated with higher-order interpolators.

2. The Eulerian-Lagrangian Approach
Consider the following version of the solute transport equa-

tion written in nonconservative form and defined over a spatial
domain V and time interval J 5 (0, T]:

c
t 1 v z ¹c 5 ¹ z ~D¹c! 1 s ~ x , t! [ V 3 J

c~x , 0! 5 c0~x! x [ V (1)

c 5 c# ~x , t! ~ x , t! [ V1 3 J

where t is time, c(x, t) is solute concentration, v(x) is a spa-
tially variable steady state velocity field, s(x, t) is a source-sink
term, and D is a constant dispersion tensor [Peaceman, 1966].
We assume that the dispersion tensor is aligned with a constant
mean velocity v#:

D11 5 v# aL D22 5 D33 5 v# aT Dij 5 0 i Þ j (2)

where aL and aT are the longitudinal and transverse disper-
sivities, respectively.

The boundary of V, V 5 V1 1 V2, is divided into two
parts: (1) an inflow or no flow boundary V1, where v z n # 0
and (2) an outflow boundary V2, where v z n . 0. In both
cases, n is an outward pointing unit normal vector on V. The
locations of these boundaries can be identified prior to solution
of (1) since v(x) is given. Most Eulerian-Lagrangian algorithms
only enforce specified boundary conditions on inflow bound-
aries. As indicated below, this is possible because of the way
the solution procedure is partitioned into advective and dis-
persive steps.

The transport equation of (1) can be written in Lagrangian
form with the same initial and boundary conditions [Cheng et
al., 1984]:

Dc
Dt 5 ¹ z ~D¹c! 1 s (3)

where the material derivative Dc/Dt represents the time rate
of change calculated along a streamline (a particle path line).
This derivative can be approximated by a backward finite dif-
ference evaluated along path lines:

Dci

Dt .
c@x i~tn11! , tn11# 2 c@x i~tn! , tn#

Dt (4)

where xi(tn11) and xi(tn) are the Eulerian coordinates of a
hypothetical particle traveling along path line i , evaluated at
times tn11 and tn, respectively (see Figure 1), and Dt 5
tn11 2 tn is the time interval (assumed to be constant). On any
given time step we call the coordinate xi(tn) the origin (or
foot) of path line i .

The first (advective) step of the Eulerian-Lagrangian proce-
dure derives the concentrations at the origins of the path lines
ending at the nodes of a fixed Eulerian computational grid.
The origin of path line i can be found by backtracking along
the path line from time tn11 to time tn using the following
kinematic equation [Neuman, 1981; Chiang et al., 1989; Wheeler
and Dawson, 1988]:

x i~tn! 5 x i~tn11! 2 E
tn

tn11

v@x i~j!# dj i 5 1, · · · , N (5)

where xi(tn11) is the vector location of node i . This is the
widely used modified method of characteristics (MMOC) ap-
proach. Since (5) is an implicit equation for xi(t) it must
generally be solved numerically. The time interval [tn, tn11]
may be divided into M fractional time steps of length Dt9 5
Dt/M (see Figure 1), and the integral over each fractional time
step may be computed with an appropriate integration algo-
rithm. In our examples we use a fourth-order Runge-Kutta
technique [Press et al., 1986]. The selection of the number of
fractional time steps depends on both Dt and the magnitude of
the local velocity vector. It should be large enough to provide
a few intermediate integration points along the portion of the
path line crossing a single Eulerian grid cell. If this fractional
time step criterion is followed and the velocity field is time-
invariant, the accuracy of the advective step solution does not
depend on Dt .

The discrete numerical algorithm used to integrate (5) re-
quires velocity values at various points along the path line
between xi(tn11) and xi(tn). Since these intermediate points
typically do not coincide with predefined nodal positions the
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required velocities must be interpolated from nearby nodal
values. Accurate velocity interpolation can be difficult in loca-
tions where velocity gradients are high. However, interpolation
need only be done once when the velocity field is time-
invariant (as we assume here). When the origin of path line i
has been found from (5), the concentration c[xi(tn), tn] may
be obtained by interpolating known concentrations at nearby
grid nodes. This concentration is saved for use in the second
step of the Eulerian-Lagrangian procedure.

The second (dispersive) step of the solution procedure de-
rives the unknown nodal concentrations at time tn11 from the
following equation, which is obtained by substituting (4) into (3):

c@x i~tn11! , tn11# 2 Dt@¹ z ~D¹c! 1 s#xi~tn11!, tn11 5 c@x i~tn! , tn#

(6)

where c[xi(tn), tn], the known concentration at the origin of
path line i , is obtained from the first step of the Eulerian-
Lagrangian procedure and the derivatives in the bracketed
term are evaluated at xi(tn11). We solve this spatial differen-
tial equation with an implicit centered-in-space finite differ-
ence procedure that provides values of c[xi(tn11), tn11] at
the N nodes of the computational grid at time tn11. Although
finite element or higher-order finite difference methods could
be used to discretize (6), there is no real need for this in the
advection-dominated problems of interest here since the errors
arising from spatial discretization of this expression are of
secondary importance when compared to the spatial interpo-
lation errors arising in the advective step (see error discussion
below). The solution of the finite difference system can be used
to initialize the next computational step from tn11 to tn12.

Boundary conditions in an Eulerian-Lagrangian solution
procedure are applied in each of the two computational steps.
In the advective step it is sufficient to specify the concentration
on inflow boundaries since outflow boundaries should not be

intersected by path lines derived from a backtracking algo-
rithm. When a path line intersects an inflow boundary during
the backtrack from tn11 to tn, it is convenient to choose xi(tn)
to be the intersection point and to then set c[xi(tn), tn] equal
to c# [xi(tn), tn], the boundary concentration specified on V1.
In such a case, Dt in (6) should be replaced by Dt0 5 tn11 2
t9 , where t9 is the intersection time [Bentley and Pinder, 1992].
In the dispersive step, boundary conditions are required every-
where on V in order to obtain a unique solution to (6). At
inflow boundary nodes the dispersive step concentration is set
equal to c# [xi(tn), tn]. At outflow boundary nodes the most
convenient approach for advection-dominated problems is to
set the dispersive step concentration equal to the concentra-
tion value obtained from the preceding advective step. This
approach allows the outflow boundary to remain “open” while
providing the constraints needed to solve (6). It works well if
the outflow boundaries are placed far enough from pumping
wells and other localized sources and sinks.

There are several possible sources of error in the Eulerian-
Lagrangian solution procedure outlined above. First, there are
errors associated with velocity interpolation and backtracking
during the advective (Lagrangian) step. If the velocity field is
time-invariant, these errors decrease as the spatial grid is re-
fined and the size of the fractional time step used in backtrack-
ing is reduced. Second, there are errors associated with con-
centration interpolation and forward propagation along the
particle path lines. These errors generally decrease as the spa-
tial grid is refined. They have the distinctive feature of accu-
mulating from step to step so their aggregate effect may grow
as the time step is decreased. Velocity interpolation errors can
also accumulate in this way if the velocity field is time-
dependent. Third, there are errors resulting from the splitting
of the advective and dispersive steps over discrete time inter-
vals. These errors generally decrease as the time step is re-

Figure 1. Interpolation in the Eulerian-Lagrangian solution procedure.
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duced since the splitting operation introduces no error in the
limit as the time step goes to zero. Fourth, there are errors due
to the spatial discretization used in the dispersive (Eulerian)
computational step. These errors depend on the spatial discreti-
zation technique and grid resolution used in the dispersive step.

The relative magnitudes of these various error sources de-
pend on many factors in addition to the time step and spatial
grid resolution. These factors include the source size, the de-
gree of heterogeneity in the velocity field, the travel distance,
and the values of the local dispersivities. Our experience indi-
cates that for advection-dominated problems, errors due to
temporal discretization of the splitting operation (type 3) and
errors due to spatial discretization of the dispersive step (type
4) are typically small relative to the other errors mentioned
above (types 1 and 2) provided that the time step and spatial
resolution are sufficiently small. If the time step is made too
large (for example, in an effort to reduce the cumulative effects
of type 2 concentration interpolation errors), type 3 splitting
errors can eventually dominate [Valocchi and Malmstead, 1992].

Our approach in this paper is to use a “moderate” time step
that is large enough to keep computational demands and con-
centration interpolation errors in check but small enough to
make splitting and temporal discretization errors negligible.
This generally optimizes the algorithm’s accuracy. When the
time step is at or near the optimal value, spatial interpolation
is the most important factor governing the accuracy of the
Eulerian-Lagrangian approach, at least for the advection-
dominated problems of interest here. Unfortunately, we have
no general guideline for determining a priori just what this
“optimal” time step should be in any given application. Our
approach has been to identify the optimal time step by carrying
out sensitivity analyses with respect to both time and space
steps. Further details are presented by Ruan [1997].

3. Spatial Interpolation Alternatives
The discussion presented above suggests that if the velocity

field is time-invariant and the time step is of moderate size,
spatial discretization/interpolation is the primary source of er-
ror in advection-dominated Eulerian-Lagrangian solutions.
We shall see in our examples that the errors associated with a
given level of spatial resolution depend significantly on the
method used to interpolate velocity and concentration in the
advective step of the solution procedure. Consequently, it is
useful to consider in more detail how the four spatial interpo-
lation alternatives examined in this paper are actually imple-
mented.

Among these alternatives the linear and quadratic interpo-
lators have been the most widely used in multidimensional
transport applications [Baptista et al., 1984; Cheng et al., 1984;
Chiang et al., 1989; Goode, 1990]. Higher-order interpolators
have generally been regarded as undesirable either because
they are difficult to implement or they require too much com-
putational effort [Lapidus and Pinder, 1982]. In this section we
formulate a simple and efficient approach to multidimensional
polynomial interpolation that relies on a tensor product de-
composition. This decomposition makes cubic spline interpo-
lation an attractive option for solute transport problems.

3.1. Global One-Dimensional Interpolation

It is easiest to introduce the relevant notation if we start with
the one-dimensional case. The interpolators of interest here
approximate a one-dimensional function z( x) (e.g., velocity or

concentration) over the interval [ x1, xL] from a set of discrete
values z1 5 z( x1), z2 5 z( x2), z z z , zL 5 z( xL) defined at
locations x1 , x2 , z z z , xL that are not necessarily equally
spaced. The approximating function ẑ( x) can be constructed
from a specified set of N linearly independent scalar interpo-
lation polynomials (or basis functions) f j( x) as follows:

ẑ~ x! 5 O
j51

N

ajf j~ x! (7)

where the aj are unknown coefficients that depend on the data
z1, z z z , zL. The number of basis functions N depends on L
and the particular interpolation method selected. This global
expression for the general interpolator is convenient for our
analysis of the tensor product decomposition.

The four interpolators considered here differ both in the
form used for the basis functions in (7) and in the region over
which these functions are defined (their support). Each of the
linear and quadratic basis functions is a simple polynomial
defined over the interval [ xl, xl11] between two adjacent data
points (two polynomials per interval for the linear case and
three for the quadratic). Each cubic spline basis function is
constructed from a fourth-order B spline, which is defined over
the interval spanned by five data points. The total number of
basis functions (N) is equal to 2(L 2 1), 3(L 2 1), and L for
the linear, quadratic, and cubic spline, respectively. Detailed
discussions are provided by de Boor [1978, 1992] and Farin [1993].

The unknown basis function coefficients appearing in (7)
may be identified by constraining the approximating function
at each data location to be equal to the corresponding data
value. The number of constraints required at each internal
data location is two, three, and one for the linear, quadratic,
and cubic spline interpolators, respectively. When end effects
are accounted for, the total number of constraints generated in
each case is equal to N , the total number of unknown coeffi-
cients. These constraints can be written in a concise form if we
define an N vector ui containing the locations of all con-
straints. Then the approximating function at each data location
will be equal to the corresponding data value if

ẑ~ul! 5 f i~ul!ai 5 F ila i 5 z~ul! (8)

where F il 5 f i(ul) is an N by N matrix of the basis functions
evaluated at the constraint locations. Indicial notation is used
(i.e., repeated indices are understood to be summed) from now
on whenever the range of summation is apparent from context.
Since the basis functions are linearly independent the set of
coefficients that satisfies (8) is

ai 5 @F21# ilz~ul! (9)

where F21 is the inverse of F. The corresponding global in-
terpolation equation can be obtained by substituting (9) into
(7) and adopting indicial notation:

ẑ~ x! 5 f i~ x!@F21# ilz~ul! (10)

It is apparent from this expression that the linear, quadratic,
and cubic spline interpolators yield approximations to z( x)
that depend linearly on the data in the vector z(ul). In prac-
tice, the procedures used to solve the one-dimensional inter-
polation problem take advantage of the block diagonal (for the
linear and quadratic cases) or banded (for the cubic spline
case) structure of the F matrix.
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3.2. Global Multidimensional Interpolation

The concepts outlined above for one-dimensional interpo-
lation extend naturally to multiple dimensions. For example,
the two-dimensional counterpart to (7) is

ẑ~ x , y! 5 O
i51

Nx O
j51

Ny

aijc ij~ x , y! (11)

where c ij( x , y) is a specified two-dimensional basis function,
aij is the corresponding unknown interpolation coefficient, and
Nx and Ny are the number of coefficients associated with the x
and y directions, respectively. We presume here that the data
z( xi, yj) 5 zij to be interpolated in the two-dimensional
procedure are located on a rectangular grid of points with
coordinates xi, i 5 1, z z z , Lx and yj, j 5 1, z z z , Ly. Al-
though this is a specialized spatial configuration, it is suffi-
ciently general to apply to the finite difference computational
grids used in our transport simulations.

For the interpolators considered here the two-dimensional
basis functions may be written as products of the one-
dimensional basis functions defined above, evaluated at x and
y . In this case the two-dimensional interpolation equation has
the following “tensor product” form [de Boor, 1978; Wait and
Mitchell, 1985]:

ẑ~ x , y! 5 O
i51

Nx O
j51

Ny

aijf i~ x!f j~ y! (12)

As in the one-dimensional case, the unknown basis function
coefficients may be identified by constraining the approximat-
ing function at each data location to be equal to the corre-
sponding data value. The numbers of constraints Nx or Ny and
the constraint coordinate vectors uxm or uyn in each direction
are the same as for the comparable one-dimensional interpo-
lators with either Lx or Ly data points.

The multidimensional counterpart to (10) can be expressed
in indicial notation as [Ruan, 1997]

ẑ~ x , y! 5 f i~ x!@Fx
21# imz~uxm, uyn!@F y

21# jnf j~ y! (13)

In practice, this expression can be evaluated by carrying out
two one-dimensional interpolations. To investigate this further,
suppose that we desire an interpolated estimate of z(x, y) at the
point ( x , y). The first one-dimensional problem is to construct
Ly univariate interpolators, each along the x direction, and
then to use each of these interpolators to obtain ẑ values at
( x , y1), ( x , y2), z z z , ( x , yLy

). The second one-dimensional
problem is then to estimate z( x , y) by interpolating along the
y direction the Ly values obtained from the first problem. Ruan
[1997] shows that the estimate ẑ( x , y) obtained from these two
sequential one-dimensional interpolations is identical to the
direct two-dimensional estimate given in (13). The same result
holds if the order of the one-dimensional interpolations is
reversed (i.e., interpolation along y followed by interpolation
along x) [de Boor, 1992; Press et al., 1986]. Finally, the equiv-
alence of the sequential and direct approaches extends to
three-dimensional problems, where three one-dimensional in-
terpolations are required (e.g., first along x , next along y , and
last along z).

3.3. Local Multidimensional Interpolation

We have seen above that the n-dimensional interpolation
problem can be expressed as a sequence of n one-dimensional
problems. This is particularly attractive for cubic spline algo-

rithms since each one-dimensional subproblem can be solved
with a local form of the one-dimensional cubic spline function,
which is easier to use than the global basis function expansion
of (10). The global forms for the one-dimensional interpolators
considered here are computationally demanding and can lead
to poorly conditioned F matrices. The local forms are mathe-
matically equivalent to the global forms but are more efficient
and better conditioned. For this reason we use the global
interpolators above to present and derive the multidimensional
tensor product decomposition but rely on local one-dimen-
sional interpolators with a tensor product decomposition for
actual computations.

The local linear and quadratic interpolators are the well-
known Lagrangian interpolation functions [Press et al., 1986].
The local spline interpolator can be written in terms of the
normalized coordinate a as follows:

ẑ~ x! 5 H azl 1 ~1 2 a! zl11 1 Cz 0l 1 Dz 0l11 x [ ~ xl, xl11#

0 otherwise

(14)

where

a 5
xl11 2 x
xl11 2 xl

C 5
1
6
~ xl11 2 xl!

2~a3 2 a!

D 5
1
6
~ xl11 2 xl!

2@~1 2 a!3 2 ~1 2 a!#

The unknown coefficients z 0l and z 0l11 are the second deriva-
tives of ẑ( x) evaluated at xl and xl11, respectively. They are
determined by requiring the first derivatives of ẑ( x) to be
continuous at each xl for l 5 2, z z z , L 2 1. This constraint
yields a tridiagonal system of L equations in the L unknown
z 0ls for each one-dimensional interpolation subproblem. Con-
sequently, the total number of floating point operations re-
quired to perform a complete multidimensional interpolation
with the local cubic spline formulation is of order L . De Boor
[1992] demonstrates the equivalence of the global and local
versions of the cubic spline interpolator, and Press et al. [1986]
discusses implementation details.

The local version of the cubic spline provides a convenient
way to introduce the taut spline interpolator, which is a variant
of (14). The basic idea is to add tension (or stretch) to the local
cubic polynomial to eliminate inflection points. This typically
reduces spurious oscillations [de Boor, 1978]. The local form of
the taut spline may be written in a form similar to (14):

ẑ~ x!

5 H azl 1 ~1 2 a!zl11 1 C9~C!z0l 1 D9~C!z0l11 x [ ~xl, xl11#

0 otherwise

(15)

where C9(C) and D9(C) are modified spline coefficients de-
fined in the appendix. The definition of the “tautness param-
eter” C for data interval l depends on the existence of an
inflection point in this interval. When such a point exists, the
standard cubic spline polynomial is “stretched” to provide a
more nearly linear interpolation between zl and zl11. This has
the effect of lowering the order of the interpolation polynomial
in regions where concentration gradients are high. Since the
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tautness parameter is computed in every data interval at every
time step the taut spline continually adapts to changing con-
ditions. Furthermore, the one-dimensional taut spline may be
incorporated into a decomposed multidimensional interpola-
tion in the same way as the standard cubic spline function.
Appendix A describes the taut spline algorithm in more detail.
The simplifications introduced by decomposition make the cubic
and taut spline interpolators computationally competitive alter-
natives to more traditional linear and quadratic interpolators.

The various interpolators discussed in this section behave
differently when used in Eulerian-Lagrangian transport solv-
ers. Generally speaking, interpolation accuracy increases as the
order of the interpolator increases. However, care must be
taken in assessing accuracy since some interpolators (e.g., lin-
ear and taut spline) tend to damp or smooth the true solution
while others (e.g., quadratic and cubic spline) tend to intro-
duce spurious oscillations. In order to appreciate better the
strengths and weaknesses of each alternative it is helpful to
consider some examples.

4. Examples
4.1. One-Dimensional Example

In this section we compare the performance of the linear,
quadratic, cubic spline, and cubic taut spline interpolators for
a well-known one-dimensional benchmark problem. This prob-
lem propagates a single sharp concentration front from a con-
tinuous source of concentration c# through a domain of length
L at a constant pore velocity v . The velocity is time-invariant,
and the space and time steps are fixed. The time step is suffi-
ciently small to have a negligible effect on solution accuracy
(the Courant number in our one-dimensional tests is always
,0.5). An exact solution is available in closed form [Ogata, 1961].

It is convenient for sensitivity analysis purposes to relate the
coefficients of the transport equation to a few dimensionless
parameters. In particular, the velocity and dispersion coeffi-
cients for the one-dimensional case can be written

v 5
CrDx

Dt 5
CrLNt

NxT
(16)

D 5
vDx
Pe 5

CrNtL2

PeTNx
2 (17)

where Cr 5 (vDt)/Dx is the Courant number, Pe 5 (vDx)/D
is the grid Peclet number, T is the duration of the simulation,
Nt is the number of equal time steps in [0, T], and Nx is the
number of grid (or data) intervals in [0, L]. For our example
we set L 5 1 and T 5 1 and examine the sensitivity of the
results to Pe , with all other dimensionless inputs held constant,
for two different values of Nx. Since the velocity is constant in
this one-dimensional example, only concentration interpola-
tion error is an issue.

Figure 2 summarizes the simulation results at time 0.45 for
various grid Peclet numbers. In all cases the number of time
steps Nt is 500. Figures 2a, 2b, and 2c show normalized con-
centration c9 5 c/c# versus dimensionless distance for a fine
grid with Nx 5 550 and Cr 5 0.5, giving a ratio Cr/Nx 5
0.00091. Figures 2d, 2e, and 2f are obtained from a coarser
grid with Nx 5 100, Cr 5 0.091, and the same ratio Cr/Nx 5
0.00091. Note that the dispersion coefficients for the fine and
coarse grids for any given grid Peclet number are different (this
is why the front of the fine-grid analytic solution is slightly
sharper than the coarse-grid front). Generally speaking, nu-

merical transport problems are more difficult to solve when the
Courant and Peclet numbers are high and easier to solve when
these numbers are small. In this example we concentrate on
high grid Peclet number performance since we are especially
interested in problems where advection dominates.

As the grid Peclet number increases (from top to bottom) or
the grid resolution decreases (from left to right) the linear
interpolator solution becomes more damped, and the qua-
dratic interpolator solution becomes more oscillatory. The cu-
bic spline solution displays some parasitic wiggles, and the
cubic taut spline solution exhibits minor numerical dispersion
with the highest Peclet number and coarsest grid (Figure 2f).
However, it is apparent that the two spline interpolators can
achieve more accurate solutions than the linear and quadratic
interpolators, especially on a coarse grid. Such a feature is
important in multidimensional applications where the numer-
ical grid can have millions of nodes.

The cubic and the cubic taut spline interpolators have dif-
ferent error properties as simulation time increases. This is
shown in Figure 3, which provides four snapshots of concen-
tration fronts from a simulation that uses the same parameters
as the one shown in Figure 2f. The degree of oscillation in the
cubic spline solution stays approximately the same, but the
degree of numerical dispersion in the cubic taut spline solution
accumulates over time. Overall, the two spline interpolators
are able to provide reasonably accurate solutions to this one-
dimensional problem for grid Peclet numbers as high as 500.

4.2. Two-Dimensional Example

In this section we consider two-dimensional solute transport
through a synthetically generated heterogeneous steady state
velocity field in a rectangular domain. Such simulations have
been used to investigate large-scale solute dispersion and to
test stochastic macrodispersion theories [see, e.g., Graham and
McLaughlin, 1989]. The time-invariant velocity used in our
example is obtained from the random field generator described
by Ruan and McLaughlin [1998]. This generator relies on ap-
proximate velocity spectral and cross-spectral densities that are
derived from a linearized analysis of the groundwater flow
equation and Darcy’s law [Gelhar, 1993]. The longitudinal and
transverse components of the generated velocity field are spa-
tially cross correlated by virtue of their mutual dependence on
the log hydraulic conductivity. The mean velocity is aligned
with the longitudinal direction, and the log hydraulic conduc-
tivity is assumed to have a Gaussian spectral density. The
velocity field conserves mass and is practically divergence-free
at each grid node.

The velocity and dispersion coefficients for the two-
dimensional case can be related to dimensionless parameters
in the following way:

vx 5 v9xv# 5 v9x
CrLxNt

NxT

v y 5 v9yv# 5 v9y
CrLyNt

NyT
(18)

Dx 5
v# Dx
Pex

5
CrNtLx

2

PexTNx
2

Dy 5
v# Dy
Pey

5
CrNtLxLy

PeyTNxNy

where v9x and v9y are dimensionless random velocities in the
longitudinal x and transverse y directions, v# is the mean ve-
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locity (aligned with the x coordinate), Cr 5 (v# Dt)/Dx is the
Courant number associated with the mean velocity, Pex 5
(v# Dx)/Dx and Pey 5 (v# Dy)/Dy are the longitudinal x and
transverse y grid Peclet numbers, and Nx and Ny are the
numbers of grid (or data) intervals in the x and y directions.
For our nominal simulation we set Lx 5 2, Ly 5 1, Nx 5
120, Ny 5 60, T 5 1, and Nt 5 160. The Courant number
is 0.42, and both grid Peclet numbers are 40 in all two-
dimensional simulations.

The instantaneous source for our two-dimensional example
follows a Gaussian spatial distribution and is applied at time
t 5 0. The source function is centered at location (0.4, 0.5)
and has spatial standard deviations of 0.025 and 0.10 in the
longitudinal and transverse directions, respectively. The di-
mensionless velocities v9x and v9y are characterized by their
mean, which is v# 5 (v# x, v# y) 5 (v# , 0) by construction, the log
hydraulic conductivity variance s f

2 5 1.0, and the dimension-
less log conductivity correlation scale l/L 5 0.067. The sim-
ulation inputs are summarized in Table 1. Without any loss of
generality we adopt constant time and space steps in this ex-
ample.

Figure 4 shows typical streamlines derived from the dimen-
sionless velocity field used for our two-dimensional example.
The colored background indicates the magnitude of the veloc-
ity vector. In our two-dimensional example we again consider
the four interpolators investigated in the one-dimensional
case. The same interpolation method is used for path line
tracking and concentration interpolation. Plate 1 shows con-
centration contours obtained at time 0.75. The linear interpo-
lator solution in Plate 1a is very smooth with a relatively low
peak. The quadratic interpolator solution in Plate 1b exhibits
more variability in regions of high concentration. It also pro-
duces large patches of negative concentrations at the upper
and front portions of the plume. The taut spline (Plate 1c) and
cubic spline (Plate 1d) solutions are as variable as the qua-
dratic solution but are much less prone to give negative con-
centrations.

Our two-dimensional example confirms the qualitative con-
clusions drawn from the one-dimensional example, indicating
that the linear interpolator is dispersive and the quadratic
interpolator is oscillatory. The slightly oscillatory cubic spline
solution produces some negative concentrations in the plume

Figure 2. Comparison of Eulerian-Lagrangian normalized concentration solutions versus normalized dis-
tance for various Peclet numbers. Results in Figures 2a, 2b, and 2c are computed on a fine grid (Nx 5 550),
while results in Figures 2d, 2e, and 2f are computed on a coarse grid (Nx 5 101).
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tails where there are multiple local peaks of low intensity.
Negative concentrations are almost absent in the slightly dis-
persive taut spline solution.

In our one-dimensional example we were able to obtain a
quantitative evaluation of solution accuracy by comparing nu-
merical and analytical solutions. Such comparisons are not
possible in multidimensional heterogeneous velocity problems
where closed form analytical solutions are unavailable. In our
two-dimensional example we must use less direct measures, such
as the convergence and mass balance properties of the solution, to
assess accuracy. These are discussed in the following sections.

4.2.1. Sensitivity to grid resolution. A numerical algo-
rithm for solving the solute transport equation should converge
to a stable result (ideally the unknown exact solution) as its
time step and spatial grid are refined. We can say that conver-
gence is achieved when a further increase in spatial and tem-
poral resolution does not make a significant difference in the
solution, as measured by an appropriate norm. Here we mea-
sure convergence relative to a “reference” cubic spline solution
obtained with a refined node spacing equal to 0.2Dx in both
directions, where Dx is the nominal (coarsest) x direction spac-
ing given in Table 1. The time step for the reference solution
is 0.00625, corresponding to a Courant number of 2.1.

We compare the reference solution to a set of solutions
computed on grids coarser than the reference grid, with node
spacings of decreasing size defined by

Dxi 5 DxS 1 2
i
8D i 5 0, · · · , 6 (19)

where the index i refers to a particular grid. The spatially
discretized random velocity for the reference simulation is
generated on the coarsest (Dx) grid and then interpolated
onto each of the six finer grids with a third-order spline. Our
simulation results are relatively insensitive to discretization of

the velocity field since even the coarsest-grid spacing is less
than one third of the continuous velocity correlation scale.
Consequently, all grids see essentially the same velocity field.
Their solutions differ primarily because of differences in errors
introduced during the advective step of the Eulerian-
Lagrangian procedure.

For each spatial resolution considered (i 5 0, z z z , 6) we
project the reference simulation velocity and concentration
fields onto grid i . We then evaluate the root-mean-square
difference between the reference solution and grid i solutions
as follows:

Table 1. Input Parameters for the Nominal Two-
Dimensional Simulation

Parameters Values

Log k variance s f
2 1.0

Porosity r 0.3
Mean hydraulic gradient uJ u 0.002
Domain length Lx 5 2L 2
Domain width Ly 5 L 1
Grid size Nx 3 Ny 121 3 61
Normalized grid spacing Dx/L 5 Dy/L 0.0167
Total simulation time T 1
Total time steps Nt 160
Normalized hydraulic conductivity geometric mean

KgT/L
168

Normalized log hydraulic condition correlation length
l/L

0.067

Grid Peclet number Pex 5 Pey 40
Longitudinal Courant number Cr 0.42
Normalized standard deviation of initial source

sx/L 3 sy/L
0.025 3 0.10

Normalized initial source location (x0/L, y0/L) (0.4, 0.5)

Figure 3. Comparison of cubic and taut spline solutions at various times, where Pe 5 500.
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JGi 5
1

NiMi~t! F O
k51

Ni

@c*i~ xk, t! 2 ĉ i~ xk, t!#2G 1/ 2

i 5 0, · · · , 6

(20)
where c*i is the reference concentration solution projected
onto grid i , ĉ i is the concentration solution computed on grid
i , Mi(t) is the computed solute mass for grid i , and Ni is the

total number of nodal points at resolution i . If the time step is
sufficiently small, as it is in the examples considered here, the
spatial resolution of the computational grid is the primary
factor affecting the value of the convergence norm. Note that
the Courant number decreases as the node spacing increases
since the time step and mean velocity remain constant.

Figure 5 plots the log of JGi versus the log of Dxi at time t 5
1.0. As expected, the error measure decreases toward zero as

Figure 4. Random velocity field used in the transport simulations. The axis units refer to node numbers. The
color scale indicates the magnitude of local two-dimensional velocity. Note that the mean velocity gradient in
the x direction induces anisotropy in the velocity field.

Plate 1. Simulated two-dimensional plumes in a spatially variable velocity field. Axis units refer to node
numbers.
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Dxi decreases, indicating convergence to the fine-grid refer-
ence solution. The magnitude of the error measure and the
rate of convergence of this measure differ significantly for the
four interpolators, with the cubic and taut spline giving con-
sistently better results at all resolutions studied. The least
squares lines fit to the error norm curves give rough estimates
for the order of accuracy of each method (linear 5 0.92, qua-
dratic 5 1.91, taut spline 5 2.1, and cubic spline 5 2.85). These
convergence slopes correspond well to the interpolator order,
with the exception of the taut spline, which converges at nearly
the same rate as the quadratic. However, it should be noted
that the magnitude of the taut spline error measure is signifi-
cantly smaller than the magnitude of the quadratic error mea-
sure at all resolutions. In any case it is apparent that conver-
gence errors decrease more rapidly for the higher-order
interpolators as compared to the more frequently used linear
interpolator. The obvious question is whether or not this per-

formance improvement is obtained at the expense of increased
computation.

Table 2 compares the computational times the four interpo-
lators require to achieve approximately the same degree of
convergence (i.e., approximately the same value of JGi). Com-
putation times are tabulated for low, medium, and high values
of JGi. These times apply for a Digital Equipment Corporation
(DEC) Alpha workstation with a CPU speed of 333 Mhz and
a core memory of 128 Mb. Note that the range of grid sizes
considered did not produce all possible outcomes (e.g., even
the finest grid was still too coarse to yield medium or low JGi

values with the linear interpolator). However, the results are
sufficient to demonstrate that the cubic spline is much more
efficient than the other techniques. In particular, the cubic
spline is able to achieve convergence performance comparable
to the other alternatives with a much coarser grid. The effi-
ciency of the spline interpolator is a direct result of the tensor

Figure 5. The log10 of the mean square convergence norm ( JGi) plotted versus the log10 of the x dimen-
sionless grid node spacing Dxi/L .

Table 2. Comparison of Computational Times

Log10 JG

Method

Linear Quadratic Cubic Spline Taut Spline

High JG (22.42 6 0.02)
CPU time, s 121.33 50.36 70.66
Grid 481 3 241 241 3 121 138 3 69

Medium JG (22.65 6 0.05)
CPU time, s 95.57 10.40 98.94
Grid 321 3 161 138 3 69 161 3 81

Low JG (23.15 6 0.01)
CPU time, s 242.7 32.99
Grid 481 3 241 193 3 97
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product decomposition, which makes it possible to divide the
multidimensional interpolation problem into a sequence of
simple one-dimensional problems that can each be solved with
a local interpolation algorithm. The linear interpolator is the
least attractive alternative since it requires both a finer grid and
more computation time to achieve the same degree of conver-
gence as the quadratic and taut spline interpolators.

It should be noted that JGi is an aggregate measure of
algorithm performance and cannot be expected to adequately
capture all factors that may be of interest in evaluating a
particular interpolation method. For example, although Table
2 would suggest that the taut spline is not superior to the
quadratic interpolator in terms of JGi, it is much less oscilla-
tory and may therefore be preferred in certain applications
(e.g., where it is important to avoid solutions with negative
concentrations). A decision to adopt any particular interpola-
tor should consider a number of different performance criteria
relevant to the problem of interest.

4.2.2. Mass balance. It is well known that the Eulerian-
Lagrangian transport solvers considered above do not gener-
ally conserve mass [Baptista et al., 1984]. We can evaluate the
mass balance performance of our Eulerian-Lagrangian inter-
polators by comparing the total simulated solute mass at var-
ious times to the total solute mass injected at the source at the
initial time. The total simulated mass at any given time is
obtained by numerically integrating the simulated solute con-
centration over the entire computational grid. The result of the
mass balance comparison for our two-dimensional example is
shown in Table 3, which expresses mass balance error as a
percentage of initial injected mass. For consistency the mass
balance results for all four interpolation alternatives are com-
puted with the nominal 121 by 61 grids specified in Table 1.
Table 3 indicates that the mass balance errors for all interpo-
lators are a few percent or less. This is acceptable for most
applications, especially when considered together with the
other measures evaluated in this paper.

4.3. Three-Dimensional Example

In our final example we consider solute transport in a three-
dimensional heterogeneous two-scale isotropic time-invariant
velocity field. This two-scale field is obtained by superimposing
two statistically independent random replicates that have iso-
tropic Gaussian spectral densities with the same mean and
variance but different correlation scales. The large-scale veloc-
ity replicate, which describes the effect of regional variations in
hydraulic conductivity, has a dimensionless correlation scale of
0.20 in each direction. The small-scale velocity replicate, which
describes the effect of local fluctuations about the regional
trend, has a dimensionless correlation scale of 0.04 in each
direction. The mean velocity is aligned with the x axis, the
domain dimensions are Lx 5 Ly 5 Lz 5 1, and the simula-
tion time is T 5 1. Both the large- and small-scale velocity
replicates are obtained from the spectrally based random field
generator previously used in our two-dimensional example

[Ruan and McLaughlin, 1998]. Table 4 summarizes the various
dimensionless inputs for this example, including the log hy-
draulic conductivity statistics used in the random field gener-
ator. Without any loss of generality we use constant space and
time steps.

Figure 6 shows simulated two-scale plumes originating at a
continuous source located at dimensionless coordinates (0.15,
0.5, 0.5) near the right end of the simulation domain. All
plumes are plotted at dimensionless time t 5 1.0. Figures 6a,
6b, and 6c display the 0.05 concentration isosurface and se-
lected concentration contours for the linear interpolator solu-
tion. Figures 6d, 6e, and 6f show the corresponding plots for
the taut spline interpolator. A comparison of these solutions
clearly shows the dispersive nature of the linear interpolator.
The taut spline solution captures more details than the linear
interpolator while almost entirely avoiding oscillations and
negative concentrations. These 132,651 node transport simu-
lations can be performed in a few hours on a 333 Mhz, 128 Mb
DEC Alpha workstation.

5. Conclusions
This paper examines a particular class of numerical solution

techniques that is well-suited for the advection-dominated sol-
ute transport simulations needed to test macrodispersion the-
ories. These Eulerian-Lagrangian methods are able to deal
with the steep gradients and complex plume geometries asso-
ciated with highly variable (e.g., random) multidimensional
velocity fields. Our numerical experiments indicate that the
accuracy of a particular Eulerian-Lagrangian solver is highly
dependent on the method used to interpolate velocity and
concentration values at the nodes of the spatial computational
grid. These experiments consider classical linear and quadratic
interpolators as well as new cubic spline and taut spline inter-
polators, which are applied here for the first time to multidi-
mensional variable velocity problems.

Our investigation confirms the common observation that the
linear Eulerian-Lagrangian interpolator yields dispersive solu-
tions while the quadratic interpolator yields oscillatory solu-

Table 3. Comparison of Mass Balance Errors

Method Time 5 0.67 Time 5 1.00

Linear 1.22% 1.87%
Quadratic 0.57% 0.87%
Cubic spline 0.61% 0.96%
Taut spline 1.07% 2.10%

Table 4. Input Parameters for the Three-Dimensional
Simulation

Parameters Values

Log k variance s f
2 1.0

Porosity r 0.3
Mean hydraulic gradient uJ u 0.02
Domain length Lx 5 L 1
Domain width Ly 5 L 1
Domain height Lz 5 L 1
Grid size Nx 3 Ny 3 Nz 51 3 51 3 51
Normalized grid spacing Dx/L 5 Dy/L 5 Dz/L 0.02
Total simulation time T 1
Total time steps Nt 40
Normalized log K geometric mean KgT/L 5.00
Normalized (small) log K correlation length

lSmall/L
0.04

Normalized (large) log K correlation length
lLarge/L

0.20

Grid Peclet number Pex 5 Pey 5 Pez 100
Longitudinal Courant number Cr 0.42
Normalized initial source dimension sx/L 3

sy/L 3 sz/L
0.08 3 0.08 3 0.08

Normalized initial source location (x0/L, y0/L,
z0/L)

(0.15, 0.5, 0.5)
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tions. The cubic spline interpolator is slightly oscillatory but
much less so than the quadratic interpolator. The limited os-
cillations produced by the cubic spline interpolator appear to
be restricted to areas with steep concentration gradients (pri-
marily in the tail of the solute plume). The taut spline inter-
polator (a variant on the cubic spline) is slightly dispersive but
much less so than the linear interpolator. The taut spline adap-
tively stretches the cubic spline approximating function to
make it more nearly linear in the vicinity of sharp gradients.
This essentially eliminates spurious oscillations while maintain-
ing accurate solutions even when Peclet numbers are quite
high.

The cubic and taut spline interpolators are superior to the
linear and quadratic alternatives in several respects. First, vi-
sual inspection of simulated two-dimensional solute contour
plots (Plate 1) indicates that the two spline interpolators are
better able to capture sharp fronts and irregularities than the
linear and quadratic interpolators. Second, the two spline in-
terpolator computational times are comparable to or better
than the linear and quadratic interpolators for a given level of
convergence (as measured by the value convergence norm JG).
The cubic spline is especially efficient, with computation times
approximately an order of magnitude less than those achieved
by any of the other alternatives. These advantages are achieved

Figure 6. Concentration contours obtained with (a), (b), and (c) the linear interpolator and (d), (e), and (f)
the taut spline interpolator in a three-dimensional random velocity field. Axis units refer to node numbers.
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without any significant sacrifice in mass balance error, which is
a few percent or less for all four interpolators.

It should be noted that an alternative Eulerian-Lagrangian
approach, the Eulerian-Lagrangian local adjoint method, has
the advantage of conserving mass perfectly while providing a
mathematically consistent implementation of boundary condi-
tions [Celia et al., 1990; Ewing et al., 1994; Healy and Russell,
1998]. Since there has not yet been a direct comparison of the
accuracy or computational performance of the cubic spline and
local adjoint Eulerian-Lagrangian methods for a multidimen-
sional variable velocity problem, it is not possible to say which
approach is better for a given application. However, it is im-
portant to remember that solution accuracy, mass conserva-
tion, and computational efficiency are all important aspects of
algorithm performance that need to be considered in any com-
parison.

The computational demands of traditional higher-order in-
terpolators have tended to discourage their use in practical
multidimensional applications. The cubic and taut spline inter-
polators described here rely on a tensor product decomposi-
tion of the n-dimensional spatial interpolation problem into a
sequence of n one-dimensional problems. Each one-dimen-
sional problem may be cast in a local (rather than a global)
form, which yields a simple set of tridiagonal equations for the
unknown interpolation coefficients. This enables the cubic and
taut spline interpolators to achieve acceptable accuracy with a
much coarser grid and smaller computation time than the
linear and quadratic interpolators.

Several investigators have suggested that it is possible to
improve the accuracy of linear Eulerian-Lagrangian solvers by
adaptively refining the computational grid near steep concen-
tration gradients [Neuman, 1981, 1984; Yeh and Chang, 1992].
Such adaptive schemes are attractive in concept but difficult to
implement in practice, especially for multidimensional prob-
lems. The locations of steep concentration fronts change over
time and are difficult to predict when the velocity field is
heterogeneous [Yeh and Chang, 1992]. The cubic and taut
spline interpolators, especially the latter, provide relatively
simple alternatives to adaptive grid refinement. The spline
consistently provides accurate approximations to sharp fronts
by using higher-order interpolation and by requiring derivative
continuity. The adaptive adjustments offered by the taut spline
interpolator make it possible to achieve this accuracy without
oscillations. Unlike Hermite polynomial interpolators, the cu-
bic and taut spline interpolators do not require explicit input of
concentration derivatives [Holly and Preissmann, 1977; Glass
and Rodi, 1982]. This has the advantage of simplifying the
solution algorithm while reducing computation time.

The tradeoff between oscillation and numerical dispersion is
explicitly addressed in a number of contemporary transport
solution methods, including Petrov-Galerkin methods with up-
stream weighting [Dick, 1983] and the total variance diminish-
ing method [Cox and Nishikawa, 1991]. The total variance
diminishing method is of particular relevance to the present
discussion since, like the taut spline, it adjusts its local spatial
approximation in response to local gradients. The upstream-
weighted Petrov-Galerkin, total variance diminishing, and taut
spline methods all provide some flexibility in trading off dis-
persion and oscillation. However, it is possible that the aggre-
gate solution error, including the effects of both spurious os-
cillation and dispersion as measured by an appropriate error
norm, is consistently lower for some methods than others [Gre-
sho and Lee, 1979]. If so, the methods with lower aggregate

error may be preferred, regardless of the position adopted
regarding the relative merits of dispersion versus oscillation.

There is a need for a careful comparison of the various
candidate methods for solving heterogeneous advection-
dominated transport problems. Such a comparison should in-
clude the methods discussed in this paper, the total variance
diminishing method, the Eulerian-Lagrangian local adjoint
method, Petrov-Galerkin methods, and other higher-order im-
plicit Eulerian methods, perhaps with multigrid capabilities.
This comparison should include multidimensional advection-
dominated test problems with heterogeneous velocity fields. It
should also consider the effect of time step as well as space step
on convergence.

Multidimensional solute transport problems are consider-
ably more difficult when the velocity field is heterogeneous and
advection dominates local dispersion. This is precisely the case
encountered in theoretical and practical investigations of ma-
crodispersion and small-scale concentration variability [Tomp-
son and Gelhar, 1990]. Eulerian-Lagrangian methods are well
suited for solutions of advection-dominated transport prob-
lems, provided that the required spatial interpolators are cho-
sen carefully. Our study indicates that accurate and computa-
tionally efficient results can be obtained with the cubic spline
and taut spline interpolators. This conclusion is confirmed by
Ruan [1997], who uses the cubic spline method to generate an
extensive set of high-resolution heterogeneous transport sim-
ulations. Both studies demonstrate that spline-based Eulerian-
Lagrangian solvers are able to track sharp fronts and capture
detailed spatial structure without introducing excessive numer-
ical dispersion or spurious oscillation. For this reason we be-
lieve that the Eulerian-Lagrangian approach is an attractive
option for numerical investigations of solute transport in het-
erogeneous media.

Appendix: The One-Dimensional Taut
Spline Interpolator

The taut spline interpolator is a variant on the one-
dimensional local cubic spline interpolator given in (15) [de
Boor, 1978]. The taut spline approximation of z( x) takes three
forms, depending on the magnitude of a parameter h that
measures the change in the first derivative ẑ( x):

ẑ~ x!

5 5
azl 1 ~1 2 a! zl11 1 C9~C! z 0l 1 Dz 0l11 h # 1/3

azl 1 ~1 2 a! zl11 1 Cz 0l 1 Dz 0l11 1/3 , h , 2/3

azl 1 ~1 2 a! zl11 1 Cz 0l 1 D9~C! z 0l11 h $ 2/3

(A1)

where a , C , and D are defined as in (15) and the remaining
quantities are defined as follows:

h 5
uz9lu

uz9lu 1 uz9l11u

C9~C l! 5 FC l~a; 1 2 h! 2 a

C 0l~1; 1 2 h! G D2xl

D9~C l! 5 FC l~1 2 a; h! 2 a 1 1
C 0l~1; h! G D2xl

The discrete first derivatives z9l and z9l11 used to derive h are
finite difference approximations computed from the data val-
ues zl and zl11.
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The function C l(a , h) determines the tautness of the ap-
proximating cubic polynomial. It is defined as follows:

C l~a; h! 5 b l~h; g!a3 1 @1 2 b l~h; g!# F a 2 j l~h; g!

1 2 j l~h; g!G
1

3

(A2)

where

b l~h , g! 5
1 2 g/3

h
(A3)

j l~h , g! 5 1 2 g min H 1 2 h ,
1
3J

and the operator [ ]1 is nonzero only when its argument is
greater than zero. The parameter 0 # g # 3 is a smoothness or
tension parameter that controls the magnitude of the tautness
adjustment. The second spatial derivatives of C l appearing in
the definition of C9(C l) and D9(C l) are taken with respect to
the unnormalized spatial coordinate x .

When a computed h falls within the range (1/3, 2/3] in data
interval l , the product z 0lz 0l11 is less than or equal to 0, and
there is no inflection point in the approximating cubic polyno-
mial. In this case it is unlikely that the interpolated approxi-
mation will be oscillatory, and the local taut spline approxima-
tion is simply a cubic spline polynomial. When h falls outside
this range, an inflection point exists, and the interpolating
cubic spline polynomial is stretched (in effect, the order of the
approximation is reduced) to help prevent oscillations. The
unknown second derivative coefficients z 0l and z 0l11 used to
construct the taut spline approximation are derived from a
tridiagonal system of equations similar to those obtained for
the classical cubic spline interpolator.
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