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1 Introduction
Fractional di�erential equations appear naturally in a number of �elds such as physics, geophysics, polymer
rheology, regular variation in thermodynamics, biophysics, blood �ow phenomena, aerodynamics, electro-
dynamics of complex medium, viscoelasticity, Bode’s analysis of feedback ampli�ers, capacitor theory, elec-
trical circuits, electron-analytical chemistry, biology, control theory, �tting of experimental data, nonlinear
oscillation of earthquake, the �uid-dynamic tra�cmodel, etc. Formore details and applications, we refer the
reader to the books [1–6] and references [7–14].

Fractional di�erential equations also serve as an excellent tool for the description of hereditary properties
of various materials and processes [15, 16]. The presence of memory term in such models not only takes into
account the history of the process involvedbut also carries its impact to present and future development of the
process. Fractional di�erential equations are also regarded as an alternative model to nonlinear di�erential
equations [17]. In consequence, the subject of fractional di�erential equations is gaining much importance
and attention.

The Bagley-Torvik equation is a prototype fractional di�erential equation which was proposed by Bagley
and Torvik as an application of fractional calculus to the theory of viscoelasticity [18–20]. The governing
equation is given by the fractional di�erential equation(

MD2 + 2S√µρ D3/2 + K
)
x(t) = f (t), 0 < t ≤ 1, (1.1)

subject to initial conditions

x(0) = x0, x′(0) = x′0, (1.2)
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where x(t) represents the displacement of the plate of mass M and surface area S. Furthermore, µ and ρ are
the viscosity and density, respectively, of the �uid in which the plate is immersed, and K is the sti�ness of the
spring to which the plate is attached. Finally, f (x) represents the loading force.

In the current paper we investigate the existence and uniqueness as well as approximations of the
solutions for the Bagley-Torvik equation admitting only the existence of a lower (coupled lower and upper)
solution. Our governing equation is a generalization of (1.1) to an arbitrary α with 1 < α < 2 in the fractional
derivative term. In fact, we consider the following initial value equation(

D2 + ADα + B
)
x(t) = f (t), 0 < t ≤ 1, 1 < α < 2, (1.3)

subject to initial conditions

x(0) = a, x′(0) = b, (1.4)

where Dα is the Caputo fractional derivative of order α, f : [0, 1] → R is a given function and a, b, A and B
are real numbers.

For various applications in engineering and applied sciences �elds, the Bagley-Torvik equation is ex-
tensively studied in literature both from numerical and theoretical point of view [3, 21–30]. Several nu-
merical methods have been proposed for approximate solutions of this type equations, such as successive
approximationmethod [3, Section 8.3], Adamspredictor and correctormethod [21], Taylor collocationmethod
[22], hybridizable discontinuous Galerkin method [23], Discrete spline method [24] and others [25–28]. Also,
Svatoslav Staněk [29] investigate the existence and uniqueness of solutions for generalized Bagley-Torvik
fractional di�erential equation subject to the boundary conditions. In [30], the authors investigate the general
solution of the Bagley-Torvik equation with 1/2-order derivative or 3/2-order derivative. Furthermore, they
show that the general solution of the Bagley- Torvik equation involves actually two free constants only, and
it can be determined fully by the initial displacement and initial velocity.

Our main aim is to prove the existence and uniqueness as well as construct an approximate solution for
(1.3)-(1.4). This is done in Section 3. Our main tools are some applicable partially �xed point theorems which
are applied in the suitable partially ordered sets as well as iterativemethods, whose description can be found
in [31–35]. The advantage and importance of this method arises from the fact that it is a constructive method
that yields sequences that converge to the unique solution of (1.3)-(1.4) admitting only the existence of a lower
(coupled lower and upper) solution.

2 Auxiliary facts and results
Here, we recall several known de�nitions and properties from fractional calculus theory. For details, see [1–
3, 36]. Throughout the paper ACn[0, 1], n ∈ N, denotes the set of functions having absolutely continuous
n-th derivative on [0, 1], and AC[0, 1] is the set of absolutely continuous functions on [0, 1]. It is known that
x ∈ AC[0, 1] if and only if there exists a function φ ∈ L1[0, 1] such that x(t) = c +

∫ t
0 φ(τ) dτ.

De�nition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function x : [0, 1]→ R is de�ned
as

Iαx(t) = 1
Γ(α)

t∫
0

(t − τ)α−1x(τ)dτ, 0 ≤ t ≤ 1.

provided that the integral exists. For α = 0, we set Iα := I, the identity operator.

De�nition 2.2. The Caputo fractional derivative of order α > 0 of a function x : [0, 1]→ R is de�ned as

Dαx(t) = 1
Γ(n − α)

dn
dtn

t∫
0

(t − τ)n−α−1
(
x(τ) −

n−1∑
k=0

x(k)(0)
k! τk

)
dτ
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= Dn In−α
(
x(t) −

n−1∑
k=0

x(k)(0)
k! tk

)
,

where n − 1 < α < n and n ∈ N, provided the right side is pointwise de�ned on [0, 1]. We notice that the Caputo
derivative of a constant is zero. Note that if n − 1 < α < n and x ∈ ACn−1[0, 1], then

Dαx(t) = 1
Γ(n − α)

t∫
0

(t − τ)n−α−1x(n)(τ)dτ = In−αx(n)(t).

Lemma 2.1. Let α, β ≥ 0. If x ∈ L1[0, 1], then Iα Iβx = Iα+βx.

Lemma 2.2. For 0 < α < 1, Iα is linear and continuous from L1[0, 1] to Lp[0, 1] where 1 ≤ p < 1
1−α .

Lemma 2.3. For α > 0, Iα is linear and continuous from AC[0, 1] to AC[0, 1].

Lemma 2.4. Let α ≥ 1. If x ∈ L1[0, 1], then Iαx ∈ AC[0, 1].

Proof. This is an immediate consequence of Lemma 2.1 and Lemma 2.2, because Iαx = IbαcIα−bαcx where
bαc = max{n ∈ N, n ≤ α}.

Lemma 2.5. Let α > 0, a ∈ R and x ∈ L1[0, 1]. If there exists f ∈ AC[0, 1] such that x(t) − aIαx(t) = f (t) on
[0, 1], then x ∈ AC[0, 1].

Proof. If a = 0we are done, and so we henceforth assume a = ̸ 0. Given α > 0, choose n0 ∈ N so that n0α > 1.
Now, by applying the operator Iα to both sides of x(t) = aIαx(t) + f (t), we have

Iαx(t) = aI2αx(t) + Iα f (t),

or equivalently,

x(t) = a2I2αx(t) + aIα f (t) + f (t).

Continuing this process to the n0-th step, we get

x(t) = a(n0+1)I(n0+1)αx(t) +
n0∑
k=0

ak Ikα f (t),

for t ∈ [0, 1]. The desired result is therefore a consequence of Lemma 2.4.

De�nition 2.3. A function x ∈ AC1[0, 1] is a solution of (1.3)-(1.4) if it satis�es the initial conditions (1.4) and
(1.3) holds for almost everywhere on [0, 1].

Lemma 2.6. x(t) is a solution of the problem (1.3)-(1.4) if and only if it is a solution of the following integral
equation

x(t) = a + b
(
t + A

Γ(4 − α) t
3−α
)
− AI3−αx′(t) + I2

[
f (t) − Bx(t)

]
, (2.1)

in the set C1[0, 1].

Proof. Let us note that this result is mainly proved in [29]. Let x(t) be a solution of the problem (1.3)-(1.4).
Then x ∈ AC1[0, 1] and the equality

x′′(t) + AI2−αx′′(t) + Bx(t) = f (t), (2.2)
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holds almost everywhere on [0, 1]. Applying the integral operator I2 to both sides of (2.2) and using
Lemma 2.1, we deduce

x(t) =a + bt − AI4−αx′′(t) + I2
[
f (t) − Bx(t)

]
=a + bt − AI3−α I1x′′(t) + I2

[
f (t) − Bx(t)

]
=a + bt − AI3−α

[
x′(t) − b

]
+ I2

[
f (t) − Bx(t)

]
=a + bt + Ab

Γ(4 − α) t
3−α − AI3−αx′(t) + I2

[
f (t) − Bx(t)

]
=a + b

(
t + A

Γ(4 − α) t
3−α
)
− AI3−αx′(t) + I2

[
f (t) − Bx(t)

]
.

(2.3)

Note that Iα tβ = Γ(β+1)
Γ(α+β+1) t

α+β , α ≥ 0, β > −1. Therefore, x ∈ C1[0, 1] is a solution of the integral equation
(2.1). Now, we suppose that x ∈ C1[0, 1] is a solution of the integral equation (2.1). It is obvious that x(0) = a
and x′(0) = b. By calculations similar to those in (2.3), we establish that

x(t) =a + b
(
t + A

Γ(4 − α) t
3−α
)
− AI3−αx′(t) + I2

[
f (t) − Bx(t)

]
=a + bt − AI3−α[x′(t) − b] + I2

[
f (t) − Bx(t)

]
=a + bt − AI2−α[x(t) − a − bt] + I2

[
f (t) − Bx(t)

]
=a + bt − AI2−α[x(t) − x(0) − x′(0)t] + I2

[
f (t) − Bx(t)

]
.

(2.4)

Di�erentiating twice, we get

x′′(t) = −AD2I2−α[x(t) − x(0) − x′(0)t] + f (t) − Bx(t), (2.5)

and so

x′′(t) + ADαx(t) + Bx(t) = f (t). (2.6)

Now it su�ces to show that x ∈ AC1[0, 1]. By di�erentiating both sides of (2.1), we have

x′(t) + AI2−αx′(t) = b
(
1 + A

Γ(3 − α) t
2−α
)
+ I1

[
f (t) − Bx(t)

]
. (2.7)

Since b
(
1 + A

Γ(3−α) t
2−α
)
+ I1

[
f (t) − Bx(t)

]
∈ AC[0, 1], the desired result is therefore a consequence of

Lemma 2.5.

3 Main results
Before continuing our investigation, we introduce a few fundamental concepts related to the required spaces
and provide some partial order on them to serve as a background for thematerials to be illustrated in the later
sections.

By C1[0, 1] we denote the class of contiuously di�erentiable functions on a �nite interval [0, 1] with the
standard norm ‖x‖C1[0,1] = max{‖x‖C[0,1], ‖x′‖C[0,1]} where ‖x‖C[0,1] = supt∈[0,1] |x(t)|. Obviously, C1[0, 1] is
a Banach space. Now, we de�ne an appropriate partial order on C1[0, 1] and prove some essential properties
in this partially ordered Banach space.

De�nition 3.1. We de�ne the following order relation for C1[0, 1],

x � y ⇐⇒ x(t) ≤ y(t), x′(t) ≤ y′(t), t ∈ [0, 1].

Lemma 3.1. (C1[0, 1],�) is a partially ordered set and every pair of elements has a lower bound and an upper
bound.
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Proof. It is easy to see that (C1[0, 1],�) is a partially ordered set. Now we prove that every pair of elements
in C1[0, 1] has a lower bound and an upper bound. Let x, y ∈ C1[0, 1] and de�ne

x(t) =
t∫

0

min{x′(·), y′(·)}(τ) dτ + min{x(0), y(0)},

and

x(t) =
t∫

0

max{x′(·), y′(·)}(τ) dτ + max{x(0), y(0)}.

So a simple calculation shows that the functions x and x are in C1[0, 1] and are the lower and upper bounds
of {x, y}, respectively.

Dividing by A, B (distinguish the cases A · B > 0 and A · B < 0), we will consider two cases separately.

3.1 Investigation in the case A · B < 0

In this subsectionwe consider the case inwhich A ·B < 0. We consider only the case that A > 0 and B < 0. The
other case is completely similar. Before continuing, we need to introduce the coupled �xed point theorems
which play main role in our discussion. For complete details, see [34].

De�nition 3.2. Let (X,�) be a partially ordered set and G : X ×X → X. We say that G has the mixed monotone
property if G (x, y) is monotone non-decreasing in x and is monotone non-increasing in y.

De�nition 3.3. We call an element (x, y) ∈ X × X a coupled �xed point of the mapping G if

G (x, y) = x, and G (y, x) = y.

Theorem 3.1. Let (X,�) be a partially ordered set and suppose there exists a metric d on X such that (X, d) is
a complete metric space. Let G : X × X → X be a mapping having the mixed monotone property on X. Assume
that there exists a k ∈ [0, 1) with

d(G (x, y), G (u, v)) ≤ k2[d(x, u) + d(y, v)], for each x � u and y � v.

Suppose either G is continuous or X has the following property:
(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.
If there exist x0, y0 ∈ X such that x0 � G (x0, y0) and y0 � G (y0, x0), then G has a coupled �xed point (x*, y*) ∈
X × X.

We de�ne the following partial order on the product space X × X:

(x, y), (x̃, ỹ) ∈ X × X, (x, y) � (x̃, ỹ)⇔ x � x̃, ỹ � y.

Theorem 3.2. In addition to the hypothesis of Theorem 3.1, suppose that for every (x, y), (x̃, ỹ) ∈ X × X, there
exists an element (u, v) ∈ X × X that is comparable to (x, y) and (x̃, ỹ), then G has a unique coupled �xed point
(x*, y*).

Theorem 3.3. In addition to the hypothesis of Theorem 3.2, suppose that every pair of elements of X has an
upper bound or a lower bound in X. Then x* = y*. Moreover,

lim
n→∞

G n(x0, y0) = x*,

where G n(x0, y0) = G
(
G n−1(x0, y0), G n−1(y0, x0)

)
.
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In view of Lemma 2.6, we transform problem (1.3)-(1.4) as the following integral equation

x(t) =a + b
(
t + A

Γ(4 − α) t
3−α
)

− A
Γ(3 − α)

t∫
0

(t − τ)2−αx′(τ) dτ +
t∫

0

(t − τ)
[
f (τ) − Bx(τ)

]
dτ,

(3.1)

in the set C1[0, 1].

De�nition 3.4. Anelement (x0, y0) ∈ C1[0, 1]×C1[0, 1] is called a coupled lower andupper solution of problem
(1.3)-(1.4) if 

x′0(t) ≤ b
(
1 + A

Γ(3−α) t
2−α
)
− A
Γ(2−α)

∫ t
0 (t − τ)

1−αy′0(τ) dτ +
∫ t
0
[
f (τ) + |B|x0(τ)

]
dτ,

x0(0) ≤ a,
(3.2)

and 
y′0(t) ≥ b

(
1 + A

Γ(3−α) t
2−α
)
− A
Γ(2−α)

∫ t
0 (t − τ)

1−αx′0(τ) dτ +
∫ t
0
[
f (τ) + |B|y0(τ)

]
dτ,

y0(0) ≥ a,
(3.3)

for all t ∈ [0, 1].

Theorem 3.4. Assume that (x0, y0) ∈ C1[0, 1] × C1[0, 1] is a coupled lower and upper solution of problem
(1.3)-(1.4) and k = max{2|B|, 2A

Γ(3−α)} < 1.
(i) Then the initial value problem (1.3)-(1.4) has a unique solution x* ∈ C1[0, 1].
(ii) Moreover, there exist two monotone iterative sequences {xn} and {yn} such that both sequences converge

to x* in C1[0, 1].
(iii) In addition, the following error estimates hold,

‖xn − x*‖C1[0,1] ≤
1
2

kn
1 − k

(
‖x1 − x0‖C1[0,1] + ‖y1 − y0‖C1[0,1]

)
, (3.4)

‖yn − x*‖C1[0,1] ≤
1
2

kn
1 − k

(
‖x1 − x0‖C1[0,1] + ‖y1 − y0‖C1[0,1]

)
, (3.5)

‖xn − yn‖C1[0,1] ≤
kn

1 − k
(
‖x1 − x0‖C1[0,1] + ‖y1 − y0‖C1[0,1]

)
. (3.6)

Proof. In view of (3.1), we de�ne the operator G : C1[0, 1] × C1[0, 1]→ C1[0, 1] by

G (x, y)(t) = a + b
(
t + A

Γ(4 − α) t
3−α
)
− A
Γ(3 − α)

t∫
0

(t − τ)2−αy′(τ) dτ +
t∫

0

(t − τ)
[
f (τ) + |B|x(τ)

]
dτ.

(3.7)

Obviously, for any x, y ∈ C1[0, 1], we have G (x, y) ∈ C[0, 1]. On the other hand,

G ′(x, y)(t) = b
(
1 + A

Γ(3 − α) t
2−α
)
− A
Γ(2 − α)

t∫
0

(t − τ)1−αy′(τ) dτ +
t∫

0

(f (τ) + |B|x(τ)) dτ,

and so the operator G is well de�ned.
Now we shall show that G has the mixed monotone property. Let x, x ∈ C1[0, 1] with x � x. Using the

monotonicity of integral operator, we have

G (x, y)(t) − G (x, y)(t) = |B|
t∫

0

(t − τ)
[
x(τ) − x(τ)

]
dτ ≤ 0,
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and

G ′(x, y)(t) − G ′(x, y)(t) = |B|
t∫

0

[
x(τ) − x(τ)

]
dτ

≤ 0,

for every t ∈ [0, 1]. Hence, G (x, y)(t) ≤ G (x, y)(t) and G ′(x, y)(t) ≤ G ′(x, y)(t) for every t ∈ [0, 1], that is,
G (x, y) � G (x, y). Similarly, let y, y ∈ C1[0, 1] with y � y. From the monotonicity of Riemann-Liouville
fractional integral operator, we have

G (x, y)(t) − G (x, y)(t) = − A
Γ(3 − α)

t∫
0

(t − τ)2−α
[
y′(τ) − y′(τ)

]
dτ

≥ 0.

and

G ′(x, y)(t) − G ′(x, y)(t) = − A
Γ(2 − α)

t∫
0

(t − τ)1−α
[
y′(τ) − y′(τ)

]
dτ

≥ 0.

for every t ∈ [0, 1]. Hence, G (x, y)(t) ≥ G (x, y)(t) and G ′(x, y)(t) ≥ G ′(x, y)(t) for every t ∈ [0, 1], that is,
G (x, y) � G (x, y). Thus, G (x, y) is monotone non-decreasing in x and monotone non-increasing in y.

Now, for x, y, x, y ∈ C1[0, 1] with x � x, y � y, we have

∣∣∣G (x, y)(t) − G (x, y)(t)
∣∣∣ = ∣∣∣|B| t∫

0

(t − τ)
[
x(τ) − x(τ)

]
dτ − A

Γ(3 − α)

t∫
0

(t − τ)2−α
[
y′(τ) − y′(τ)

]
dτ
∣∣∣

≤ |B|2 sup
t∈[0,1]

|x(t) − x(t)| + A
Γ(4 − α) sup

t∈[0,1]
|y′(t) − y′(t)|,

≤ |B|2 ‖x − x‖C1[0,1] +
A

Γ(4 − α)‖y − y‖C1[0,1],

and

∣∣∣G ′(x, y)(t) − G ′(x, y)(t)
∣∣∣ = ∣∣∣|B| t∫

0

[
x(τ) − x(τ)

]
dτ − A

Γ(2 − α)

t∫
0

(t − τ)1−α
[
y′(τ) − y′(τ)

]
dτ
∣∣∣

≤ |B| sup
t∈[0,1]

|x(t) − x(t)| + A
Γ(3 − α) sup

t∈[0,1]
|y′(t) − y′(t)|.

≤ |B|‖x − x‖C1[0,1] +
A

Γ(3 − α)‖y − y‖C1[0,1].

Therefore,

‖G (x, y) − G (x, y)‖C1[0,1] ≤ |B|‖x − x‖C1[0,1] +
A

Γ(3 − α)‖y − y‖C1[0,1].

≤ k2

[
‖x − x‖C1[0,1] + ‖y − y‖C1[0,1]

]
. (3.8)

Furthermore, it is easy to see that, if {xn} is a monotone non-decreasing sequence in C1[0, 1] that converges
to x ∈ C1[0, 1] and {yn} is a monotone non-increasing sequence in C1[0, 1] that converges to y ∈ C1[0, 1],
then xn � x and y � yn, for all n.
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On the other hand, from (3.2), we have

x′0(t) ≤ b
(
1 + A

Γ(3 − α) t
2−α
)
− A
Γ(2 − α)

t∫
0

(t − τ)1−αy′0(τ) dτ +
t∫

0

[
f (τ) + |B|x(τ)

]
dτ

= d
dt

[
a + b

(
t + A

Γ(4 − α) t
3−α
)

− A
Γ(3 − α)

t∫
0

(t − τ)2−αy′0(τ) dτ +
t∫

0

(t − τ)
[
f (τ) + |B|x0(τ)

]
dτ


= G ′(x0, y0)(t),

(3.9)

for every t ∈ [0, 1]. Now by applying the integral operator I1 on both sides of inequality (3.9) and using
x(0) ≤ a, we deduce

x0(t) ≤ x0(0) + b
(
t + A

Γ(4 − α) t
3−α
)
− A
Γ(3 − α)

t∫
0

(t − τ)2−αy′0(τ) dτ +
t∫

0

(t − τ)
[
f (τ) + |B|x0(τ)

]
dτ

≤ a + b
(
t + A

Γ(4 − α) t
3−α
)
− A
Γ(3 − α)

t∫
0

(t − τ)2−αy′0(τ) dτ +
t∫

0

(t − τ)
[
f (τ) + |B|x0(τ)

]
dτ

= G (x0, y0)(t),

for every t ∈ [0, 1]. Furthermore, using (3.3) and applying similar calculation, we get y′0(t) ≥ G ′(y0, x0)(t)
and y0(t) ≥ G (y0, x0)(t) for every t ∈ [0, 1]. Therefore,

x0 � G (x0, y0) and y0 � G (y0, x0). (3.10)

Consequently, Theorem 3.1 yields the existence of coupled �xed point (x*, y*) ∈ C1[0, 1] × C1[0, 1] for the
oparator G .

Also, C1[0, 1] × C1[0, 1] is a partially ordered set if we de�ne the following order relation in C1[0, 1] ×
C1[0, 1]:

(x, y) . (x, y) ⇐⇒ x � x, y � y.

Now, if for every (x, y), (x, y) ∈ C1[0, 1] × C1[0, 1], we de�ne

x̃(t) =
t∫

0

max{x′(·), x′(·)}(τ) dτ + max{x(0), x(0)},

and

ỹ(t) =
t∫

0

min{y′(·), y′(·)}(τ) dτ + min{y(0), y(0)}.

then (x̃, ỹ) ∈ C1[0, 1] × C1[0, 1] is comparable to (x, y) and (x, y). The uniqueness of the coupled �xed point
(x*, y*) therefore follows from Theorem 3.2. Finally, an application of Theorem 3.3, together with Lemma 3.1,
yields x* = y*. This establishes the �rst assertion.

For the second assertion, we de�ne iterative sequences {xn} and {yn} as follows

xn = G (xn−1, yn−1), yn = G (yn−1, xn−1), n = 1, 2, · · · , (3.11)

where x0 and y0 are the coupled lower and upper solutions of problem (1.3)-(1.4). We intend to prove by
induction on n that {xn} and {yn} are non-decreasing and non-increasing sequences, respectively. The case
n = 1 being immediate from (3.10). Nowwe take an arbitrary positive integer n and we assume that xn−1 � xn
and yn � yn−1. Then, using the mixed monotone property of G , we have

xn = G (xn−1, yn−1) � G (xn , yn−1) � G (xn , yn) = xn+1,
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and
yn+1 = G (yn , xn) � G (yn , xn−1) � G (yn−1, xn−1) = yn .

Moreover, both sequences {xn} and {yn} converge to x* which follow from Theorem 3.3. This proves assertion
(ii).

Now we prove the error estimates. From (3.8) it follows that

‖x2 − x1‖C1[0,1] ≤
k
2
(
‖x1 − x0‖C1[0,1] + ‖y1 − y0‖C1[0,1]

)
, (3.12)

‖y2 − y1‖C1[0,1] ≤
k
2
(
‖x1 − x0‖C1[0,1] + ‖y1 − y0‖C1[0,1]

)
. (3.13)

Again employing (3.8) and using (3.12) and (3.13), we deduce

‖x3 − x2‖C1[0,1] ≤
k2
2
(
‖x1 − x0‖C1[0,1] + ‖y1 − y0‖C1[0,1]

)
,

‖y3 − y2‖C1[0,1] ≤
k2
2
(
‖x1 − x0‖C1[0,1] + ‖y1 − y0‖C1[0,1]

)
.

By a mathematical induction, we obtain

‖xn+1 − xn‖C1[0,1] ≤
kn
2
(
‖x1 − x0‖C1[0,1] + ‖y1 − y0‖C1[0,1]

)
, (3.14)

‖yn+1 − yn‖C1[0,1] ≤
kn
2
(
‖x1 − x0‖C1[0,1] + ‖y1 − y0‖C1[0,1]

)
. (3.15)

Then for any m ≥ n ≥ 1,

‖xm − xn‖C1[0,1] ≤
m−n−1∑
j=0
‖xn+j+1 − xn+j‖C1[0,1]

≤
m−n−1∑
j=0

kn+j
2
(
‖x1 − x0‖C1[0,1] + ‖y1 − y0‖C1[0,1]

)
= 1
2
kn − km
1 − k

(
‖x1 − x0‖C1[0,1] + ‖y1 − y0‖C1[0,1]

)
.

(3.16)

Letting m →∞ in both sides of (3.16), we can obtain the error estimate (3.4). A similar argument can also be
used to prove error estimate (3.5). Finally, (3.6) follows immediately from (3.4) and (3.5).

Remark 3.1. In view of Theorem 3.4, the sequences de�ned by (3.11) generate a sequence {(xn , yn)}which each
of its elements is a coupled lower and upper solution of problem (1.3)-(1.4).

Remark 3.2. Let (x0, y0) be a coupled lower and upper solution of problem (1.3)-(1.4) such that x0 � y0 and let
{xn} and {yn} be the sequences de�ned by (3.11) such that ‖xn − x*‖C1[0,1] → 0 and ‖yn − x*‖C1[0,1] → 0. Then

x0 � x1 � · · · � xn � · · · � x* � · · · � yn � · · · � y1 � y0. (3.17)

Example 3.1. Let us consider the following problem{
x′′(t) + 2

5D
3
2 x(t) − 1

4 x(t) = f (t), 0 < t < 1,
x(0) = 0, x′(0) = 1,

(3.18)

where f (t) = 1
4 t

2 − 1
4 t −

8
5

√
t√
π − 2 and the exact solution is x(t) = t(1 − t). Observe that, we have k =

max{2|B|, 2A
Γ(3−α)} = 0.90267 < 1. Now, de�ne G : C1[0, 1] × C1[0, 1]→ C1[0, 1] by setting

G (x, y)(t) =
(
t + 2

5Γ(4 − α) t
3−α
)
− 2
5Γ(3 − α)

t∫
0

(t − τ)2−αy′(τ) dτ

+
t∫

0

(t − τ)
(
1
4 τ

2 − 1
4 τ −

8
5

√
τ√
π
− 2 + 1

4 x(τ)
)
dτ.

(3.19)
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A relatively simple calculation, with the help of Maple, shows that (x0(t), y0(t)) = (−3t, 3t) is a coupled lower
and upper solution of problem (3.18). Therefore, all the assumptions of Theorem 3.4 hold and consequently,
problem (3.18) has a unique solution in C1[0, 1]. Moreover, the unique solution of (3.18) can be obtained as
limn→∞ G n(x0, y0)where G n(x0, y0) = G

(
G n−1(x0, y0), G n−1(y0, x0)

)
. For simplicity, we set xn = G (xn−1, yn−1)

and and yn = G (yn−1, xn−1). Using simple calculation, with the help of Maple, we can now form the �rst few
successive approximations as follows

x1 = G (x0, y0) = t −
16
15

t
3
2
√
π
− 0.24072 t

5
2 + 0.02083 t4 − 0.16667 t3 − t2,

y1 = G (y0, x0) = t +
32
15

t
3
2
√
π
− 0.24072 t

5
2 + 0.02083 t4 + 0.08333 t3 − t2.

Therefore, we have

x2 = G 2(x0, y0) = G (x1, y1)
= t − 0.00001 t

5
2 − 0.03438 t

7
2 − 0.00764 t

9
2 + 0.00017 t6 − 0.00208 t5

+0.05333 t3 − 1.32 t2

and

y2 = G 2(y0, x0) = G (y1, x1)
= t + 0.00001 t

5
2 + 0.06877 t

7
2 − 0.00764 t

9
2 + 0.00017 t6 + 0.00104 t5

+0.05333 t3 − 0.83996 t2.

Similarly,

x3 = G 3(x0, y0) = G (x2, y2)
= t − 0.03851 t

5
2 − 0.011 t

7
2 − 0.00052 t

11
2 − 0.00008 t

13
2 − 0.00001 t7 + 0.002 t5 − 0.02 t4 − t2,

and

y3 = G 3(y0, x0) = G (y2, x2)
= t + 0.07703 t

5
2 − 0.011 t

7
2 − 0.00104 t

11
2 − 0.00008 t

13
2 + 0.002 t5 + 0.01 t4 − t2.

It is interesting to point out that (xn , yn) =
(
G n(x0, y0), G n(y0, x0)

)
, n = 1, 2, 3 serve as an approximation to

the unique coupled �xed point of G of increasing accuracy as n →∞. On the other hand, from Theorem 3.3, the
unique solution of (3.18) can be obtained as

x* = lim
n→∞

G n(x0, y0) = lim
n→∞

G n(y0, x0).

The graphs of xn and yn, for n = 0, 1, 6 are shown in Figure 1. Furthermore, the graphs of x′n and y′n, for n =
0, 1, 6 are shown in Figure 2.
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Figure 1: Graphs of xn and yn

Figure 2: Graphs of x′n and y′n

Remark 3.3. To derive the same results for the case in which A < 0 and B > 0, we can apply the same technique
as mentioned above. The main di�erence is the structure of the function G and consequently the de�nition of
coupled lower and upper solution of the problem (1.3)-(1.4). We could carry out a similar argument to prove the
existence, uniqueness and approximation results.

3.2 Investigation in the case A · B > 0

In this subsection we consider the case in which A · B > 0. Before continuing, we need to introduce the �xed
point theorem which play main role in our discussion. For complete details, see [31–33].

Theorem 3.5. Let (X,�) be a partially ordered set such that every pair x, y ∈ X has a lower bound and an
upper bound. Furthermore, let d be ametric on X such that (X, d) is a complete metric space and G is monotone
(i.e., either order-preserving or order-reversing) map from X into X such that

∃ 0 ≤ k < 1 : d(G (x), G (y)) ≤ kd(x, y), ∀ x � y,
∃x0 ∈ X : x0 � G (x0) or x0 � G (x0).

Suppose also that either G is continuous or X is such that if xn → x is a sequence in X whose consecutive terms
are comparable, then there exists a subsequence {xnk} of {xn} such that every term is comparable to the limit
x. Then G has a unique �xed point x*. Moreover, for every x ∈ X, limn→∞ G n(x) = x*.
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In view of Lemma 2.6, we transform problem (1.3)-(1.4) as x = G (x) where G : C1[0, 1] → C1[0, 1] is de�ned
by

G (x)(t) = a + b
(
t + A

Γ(4 − α) t
3−α
)
− A
Γ(3 − α)

t∫
0

(t − τ)2−αx′(τ) dτ +
t∫

0

(t − τ)
[
f (τ) − Bx(τ)

]
dτ.

De�nition 3.5. An element x0 ∈ C1[0, 1] is called a lower solution of problem (1.3)-(1.4) if
x′0(t) ≤ b

(
1 + A

Γ(3−α) t
2−α
)
− A
Γ(2−α)

∫ t
0 (t − τ)

1−αx′0(τ) dτ +
∫ t
0
[
f (τ) − Bx0(τ)

]
dτ,

x0(0) ≤ a,
(3.20)

for all t ∈ [0, 1] and it is an upper solution of (1.3)-(1.4) if the above inequalities are reversed.

Theorem 3.6. Assume that x0 ∈ C1[0, 1] is a lower solution of problem (1.3)-(1.4) and k = |B| + |A|
Γ(3−α) < 1.

(i) Then the initial value problem (1.3)-(1.4) has a unique solution x* ∈ C1[0, 1].
(ii) Moreover, the iterative sequence {xn} de�ned by

xn(t) = a + b
(
t + A

Γ(4 − α) t
3−α
)

− A
Γ(3 − α)

t∫
0

(t − τ)2−αx′n−1(τ) dτ +
t∫

0

(t − τ)
[
f (τ) − Bxn−1(τ)

]
dτ,

converges to x* in C1[0, 1].
(iii) In addition, the following error estimates hold,

‖xn − x*‖C1[0,1] ≤
kn

1 − k ‖x1 − x0‖C1[0,1].

‖xn+1 − xn‖C1[0,1] ≤ k
n‖x1 − x0‖C1[0,1].

Proof. The proof is similar to that for Theorem 3.4. It su�ces to de�ne G : C1[0, 1]→ C1[0, 1] by

G (x)(t) = a + b
(
t + A

Γ(4 − α) t
3−α
)
− A
Γ(3 − α)

t∫
0

(t − τ)2−αx′(τ) dτ +
t∫

0

(t − τ)
[
f (τ) − Bx(τ)

]
dτ,

and to apply a similar arguments as in the proof of Theorem 3.4 correspondig to Theorem 3.5.

Example 3.2. Let us consider the following problem{
x′′(t) − 2

5D
3
2 x(t) − 1

2 x(t) = f (t), 0 < t ≤ 1,
x(0) = 0, x′(0) = 9

16 ,
(3.21)

where f (t) = −12 t
3 + 3

4 t
2 + 183

32 t − 3 −
4
5

√
t(−3+4t)√

π and the exact solution is x(t) = t3 − 3
2 t

2 + 9
16 t.

Here A = −25 and B = −12 . Observe that k = |B|+ |A|
Γ(3−α) = 0.95135 < 1. Now, de�ne G : C1[0, 1]→ C1[0, 1]

by

G (x)(t) = 9
16

(
t − 2

5Γ(4 − α) t
3−α
)
+ 2
5Γ(3 − α)

t∫
0

(t − τ)2−αx′(τ) dτ

+
t∫

0

(t − τ)
(
−12 τ

3 + 3
4 τ

2 + 183
32 τ − 3 −

4
5

√
τ(−3 + 4τ)√

π
+ 1
2 x(τ)

)
dτ.
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A relatively simple calculation, with the help of Maple, shows that x0(t) = −12 t is a lower solution of problem
(3.21). Therefore, all the assumption of Theorem 3.6 hold and consequently, problem (3.21) has a unique solution
in C1[0, 1]. Moreover, the unique solution of (3.21) can be obtained as limn→∞ xn where xn = G (xn−1). The
graphs of xn and yn, for n = 0, 1, 6 are shown in Figure 3. Furthermore, the graphs of x′n and y′n, for n = 0, 1, 6
are shown in Figure 4.

Figure 3: Graphs of xn and exact solution

Figure 4: Graphs of x′n and derivative of exact solution
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