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ABSTRACT

The synoptic evolution and mechanisms for the largest medium-range (72–120 h) along-track errors of

tropical cyclones (TC) are investigated. The mean along-track errors (ATEs) of the 51-member European

Centre for Medium-Range Weather Forecasts (ECMWF) ensemble are evaluated for 393 forecasts (85 TCs)

during the 2008 to 2016 North Atlantic seasons. The 27 unique forecasts within the upper quintile of most

negative ATEs (i.e., slow bias greater than 500 km by 72 h) are inherently fast-moving TCs that undergo

extratropical transition as they recurve and interact with a 300-hPa upstream trough and a downstream ridge.

Both the trough and ridge are underamplified by only 5–10m ;60 h before the time of largest ATE. The

height errors then grow rapidly due to underpredicted 300–200-hPa potential vorticity advection by both the

nondivergent wind and the irrotational wind from the TC’s outflow. Both wind components are under-

predicted and result in weak biases in the trough’s developing potential vorticity gradient and associated jet

streak. The underamplification of the upstream trough is exacerbated by underpredicted 700-hPa cold ad-

vection extending from beneath the trough into the TC at 48–36 h before the largest ATE. Standardized

differences are consistent with the mean errors and reveal that weaker divergent outflow is driven by un-

derpredicted near-TC precipitation, which corresponds to underpredicted 700-hPa moisture fluxes near the

TC at ;108 h before the largest ATE. The ensemble member ATEs at 72–120 h generally show little cor-

relation with their ATEs before 36 h, suggesting that initial position uncertainty is not the primary source of

ATE variability later in the forecast.

1. Introduction

a. Background

Tropical cyclones (TCs) are among the costliest nat-

ural disasters worldwide (Wirtz et al. 2014) due to their

damaging winds, storm surge, and inland flooding.

Emergency preparations to an approaching TC, such as

the placement of evacuation zones and relief supplies,

are often commenced before the National Hurricane

Center (NHC) issues a watch or warning (48 and 36h

before the expected arrival of tropical storm force winds,

respectively). Thus, skillful forecasts of TCs at lead times

of at least 48–72h are essential, such that NHC issues

official forecasts out to 120h (Cangialosi 2018).

Leonardo and Colle (2017) verified the 72–120 h

track forecasts for North Atlantic TCs during the

2008–15 period and found that many numerical models,

including the European Centre for Medium-Range

Weather Forecasts (ECMWF) ensemble mean, had a

slow bias. While the 72-h track errors improved by up to

36% during the sample period, the models continued to

struggle forecasting certain TCs, such as Cristobal in

2014 and Joaquin in 2015, resulting in individual fore-

casts with track errors much larger than climatology.

Understanding the common causes of anomalous track

errors can aid forecasters in recognizing problematic

patterns or features that may produce biases in the

models. Such biases may be ameliorated by more ex-

tensive data assimilation (e.g., Brennan et al. 2015;

Nystrom et al. 2018) and improved representation of

physical processes (Torn and Davis 2012; Bassill 2014).

There have been few attempts to quantify and com-

pare the mechanisms that cause anomalous track errors

among multiple TCs. Carr and Elsberry (2000) qualita-

tively examined the 72-h forecasts by the U.S. Navy

version of the Geophysical Fluid Dynamics Laboratory

model (GFDN) and the Navy Operational Global At-

mospheric Prediction System (NOGAPS) models for
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the western North Pacific in 1997. They focused on

forecasts with track errors larger than 555 km and di-

vided the cases (i.e., forecasts) based on whether the TC

was in the tropics or interacting with midlatitude sys-

tems. For midlatitude TCs, 19 of the 38 large error cases

forecasted by GFDN overdeepened baroclinic systems

north of the TC, while 10 of the 37 NOGAPS TCs were

too shallow to be correctly steered by the flow aloft.

Kehoe et al. (2007) analyzed the same two models dur-

ing the 2004 western North Pacific season and found that

midlatitude influences caused at least 83% of the largest

track errors, with insufficient deepening or excessive

weakening of troughs being the most common mecha-

nisms identified. A more recent study by Peng et al.

(2017) evaluated official forecasts from five operational

centers for the 2004 through 2015 western North Pacific

seasons. They found that TCs enteringmidlatitudes near

Japan after 48 h into the forecast had a slow along-track

bias greater than 200km on average. They concluded

that 26 out of the 56 largest track error cases involved

the presence of an upstream midlatitude trough, an ad-

jacent upstream cyclonic circulation, and a downstream

anticyclone.

Other studies have used ensembles composed of 20 or

more members to quantify meteorological factors as-

sociated with the track errors of particular cases. For

example, Munsell and Zhang (2014) ran a Weather

Research and Forecasting (WRF) Model (Skamarock

et al. 2008) ensemble to simulate Hurricane Sandy

(2012) and showed that differences in the initial mid-

latitude environment had a much smaller impact on the

96-h track compared to differences in the initial near-TC

steering flow. Torn et al. (2015) analyzed an experi-

mental Global Forecast System (GFS) ensemble for

Sandy (2012) and found that the initial near-TC 450-hPa

specific humidity for the more incorrect eastward-

moving members was smaller than for the westward

members. The incorrect members had less latent heat

released and weaker negative potential vorticity (PV)

advection aloft, resulting in less amplification of the

synoptic ridge north of the TC. Meanwhile, Munsell

et al. (2015) ran aWRF ensemble to simulate Hurricane

Nadine (2012). The 300–200-hPa steering trough was

;200 km farther west in the poor members compared to

the better members by 30h, with the difference likely

associated with the initial upper-level westerlies ad-

vecting the trough.

Both Sandy (2012) and Nadine (2012) interacted

with a baroclinic environment at higher latitudes and

underwent extratropical transition (ET; Jones et al.

2003; Evans et al. 2017; Keller et al. 2019). During this

process, the TC’s warm-core structure usually becomes

shallow and is then replaced by a cold-core asymmetric

structure (e.g., Evans and Hart 2003; Hart et al. 2006),

which often includes surface fronts (Klein et al. 2000). In

many ET cases, the TC’s upper-tropospheric divergent

outflow impinges on a large PV gradient associated

with a midlatitude jet (Riemer and Jones 2010; Grams

et al. 2013; Archambault et al. 2013, 2015), which can

affect the downstream transfer of Rossby wave packet

energy (Riemer et al. 2008; Archambault et al. 2015;

Keller 2017). Underestimating this interaction can then

result in an underamplified flow that does not properly

accelerate the TC (Carr and Elsberry 2000).

b. Motivation

There have been attempts to understand the common

mechanisms associated with abnormally large track

errors. While Carr and Elsberry (2000), Kehoe et al.

(2007), and Peng et al. (2017) analyzed large samples

of midlatitude TCs, they focused only on the western

North Pacific basin. Their results may not be repre-

sentative of the North Atlantic basin, which has a

different climatology of ET events (Bieli et al. 2019).

All but the Peng et al. (2017) study focused on models

that are at least 15 years old, such that the extent to

which their results apply to the present is question-

able. By comparison, studies such as Munsell and

Zhang (2014) and Torn et al. 2015 have used ensem-

bles to quantitatively diagnose sources of track errors

in the North Atlantic, but only analyzed one or two

TCs. It is unclear how frequently the ensemble tracks

of large error cases are sensitive to differences in the

near-TC environment and synoptic steering features.

Our paper focuses on the causes of largest negative

along-track errors (i.e., slow biases) during the medium-

range (72 to 120 h) for the 2008 through 2016 North

Atlantic seasons. Along-track errors are important in

that they can affect the amount of time that people ex-

pect to have for emergency preparations. Slow biases

can thus correspond to the actual TC arriving sooner

than people prepared for. Along-track errors can also

determine the tide at which the TC makes landfall,

thereby affecting storm surge prediction. A separate

paper will focus on the cross-track TC errors at lower

latitudes. Different ensemble verification metrics, such

as those used by Torn et al. (2015), are used to help

answer the following questions:

d What is the geographic distribution of slow-biased

cases over the North Atlantic and does it differ from

non-slow-biased cases?
d How do the along-track errors of these cases typically

grow with time?
d What are the common synoptic features or mechanisms

associated with large slow-biased cases in comparison
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to the other cases? How do the model errors attached

to these features develop over time?

The data and methodology used in this study are de-

scribed in section 2. Section 3 shows the climatology of

the largest track error cases identified and their re-

lationship with track errors at shorter lead times. The

most common synoptic-scale patterns related to the

track errors in these cases are examined in section 4.

The feedback between the TC and the synoptic flow

through convection is assessed in section 5. Section 6

contains a summary and future work.

2. Data and methods

a. Track data and definition of large error events

This study diagnoses 72–120-h TC track forecasts with

anomalously large slow biases during the 2008 to 2016

North Atlantic seasons. The focus is on the ECMWF

ensemble (Buizza et al. 2007), which is composed of 51

members (50 perturbations and one control) and was

shown by Leonardo and Colle (2017) to have a 150–

250km mean slow bias at 120 h during the 2008–15 pe-

riod. Between 2008 and 2016, the perturbations were

generated through a combination of singular vectors,

differences between the members of an ensemble of

data assimilations, and (since 2009) stochastic physics

and backscatter methods. The horizontal resolution was

;50, ;32, and ;18km in 2008, 2010, and 2016, respec-

tively, and the number of vertical levels increased from

62 to 91 in 2013. The ECMWF cyclone tracks are ar-

chived by the THORPEX Interactive Grand Global

Ensemble (TIGGE; Bougeault et al. 2010) database and

are available online through the National Center for

Atmospheric Research (NCAR; http://rda.ucar.edu/

datasets/ds330.3/). The tracks are verified against the

NHC best track data, which is archived by NHC (ftp://

ftp.nhc.noaa.gov/atcf/archive/).

Track error is defined as the great circle distance be-

tween the model TC and best track TC positions. En-

semblemean track error is thus the distance between the

ensemble mean of all the member TC positions and the

best track TC position. To perform the diagnostics de-

scribed in section 2b, a forecast is only included if at least

20 of the ensemble members have tracker data available

after 72h. In cases where at least 20 members are avail-

able at 72h, all later times with fewer than 20 members

are excluded. The total track error (TTE) is decomposed

into along-track (ATE) and cross-track (CTE) errors

relative to the motion of the best track (See Fig. 1 in

Leonardo and Colle 2017). By this convention, a

positive (negative) ATE corresponds to a forecast TC

that is too fast (slow) relative to the observed TC.

Similarly, a positive (negative) CTE corresponds to a

forecast TC that is to the right (left) of the observed TC.

To isolate TCs undergoing ET due to interactions

with midlatitude baroclinic systems, the forecasts are

screened based on the northernmost latitude of the

verifying best track and the three cyclone phase space

(CPS; Hart 2003) parameters, which are estimated using

the 0.58 3 0.58 Climate Forecast System Reanalysis

(CFSR; Saha et al. 2010) available online through

NCAR (https://rda.ucar.edu/datasets/ds093.0/). A TC is

considered ‘‘ET’’ if both of the following conditions are

met at any time in the forecast: 1) at least one of the

three CPS parameters are consistent with the observed

TC being extratropical, and 2) the best track crosses

308N. All other cases are considered ‘‘non-ET.’’

The first CPS parameter B represents the thermal

asymmetry of the TC within the 900–600-hPa layer and

typically signifies the onset of ET upon reaching or

exceeding a value of 10 (Hart 2001). The other param-

eters, 2VL
T and 2VU

T , are proportional to the thermal

wind in the 900–600-hPa and the 600–300-hPa layers,

respectively. Negative values in 2VL
T and 2VU

T imply

that winds are increasing with height within the lower

and upper layers, respectively, thereby suggesting the

transition to cold-core extratropical systems. Thus, the

first condition for an ET case is met if B$ 10,2VL
T , 0,

or 2VU
T , 0 at any point in the forecast.

The second condition based on latitude is chosen to

better isolate TCs transitioning in response to mid-

latitude systems. The threshold of 308N is up to 58 south

of the lower quartile of latitudes at which North Atlantic

TCs typically complete ET (Hart and Evans 2001; Bieli

et al. 2019) and is chosen to obtain a slightly larger

dataset. Figure 1 shows the verifying best tracks of the

resulting 393 ET and 357 non-ET forecasts that will be

compared in this study.

Figure 2 shows the ECMWF ensemble mean ATE,

CTE, and TTE, averaged as a function of forecast hour.

FIG. 1. Best tracks of ET (blue) vs non-ET cases (red). The number

of cases are given in parentheses.
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The error bars in these and other time series represent

the 95% confidence intervals of the sample averages. They

are calculated using a bootstrap method (Zwiers 1990), in

which values are resampled from the original dataset 1000

times. The ATEs illustrate that the ECMWF under-

predicts the forward speed of ET cases significantly

more than of the non-ET cases after 36 h (Fig. 2a). By

comparison, there are only marginally negative CTEs

(left-of-track biases) of less than 50km magnitude for

both ET and non-ET cases (Fig. 2b). The TTEs for the ET

cases are indeed larger than non-ET cases by 72h (Fig. 2c).

The contribution of the along-track component is es-

timated by the ratio of the magnitude of ATE to TTE

(Fig. 2d). By 72h, 77%–82% of the TTE in the ET cases

is from the magnitude of the ATE, versus 65%–70% in

non-ET cases. Hence, most of the track error in ET cases

is in the along-track component, which on average is

significantly negative (slow-biased). The remainder of

this paper will therefore focus on the uniquely large slow

biases of ET cases, determining how theymay be related

to TC interactions with baroclinic systems.

The largest ensemble-mean ATE between 72 and

120 h is found for each forecast in which the TC un-

dergoes ET. The distribution of these ATEs is skewed

toward negative values (Fig. 3), with only;50 out of the

393 forecasts havingATEs that are positive and larger than

100km. The lower (slowest) and upper (fastest) quintiles

of the distribution are compiled and called ‘‘lower 20’’

(L20) and ‘‘upper 20%’’ (U20) cases, respectively. The

quintiles are chosen as a compromise betweenmaintaining

adequate sample sizes in each subset and ensuring that the

ATEs in the L20 cases are at least 500km in magnitude.

The L20 cases comprise the tail of significantly negative

ATEs in Fig. 3 and are of greater interest in this study

compared to the small ATEs of the U20.

The largest ATEs from each ET forecast were av-

eraged as a function of year to assess any trends

throughout the sample period (not shown). The slow

bias of ET cases overall improves by up to ;200km

between 2008 and 2016. The percentage of ET cases per

year that are within the L20 decreases from 50% to

;10% between 2009 and 2016. However, the number of

FIG. 2. ECMWFmean (a) ATEs, (b) CTEs, (c) TTEs, and (d) the ratios of absoluteATE to TTE for ET and non-

ET cases averaged as a function of lead time. Error bars indicate the 95% confidence interval using bootstrap

resampling without replacement.
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ET cases per year varies between 12 in 2009 and 96 in

2012, making it difficult to assess statistical significance.

Nevertheless, it is hypothesized that the overall im-

provement in both the average slow bias and percentage

of forecasts with track errors larger than 500km corre-

sponds to the major upgrades in the ECMWF.

It is important to note that many of the forecasts in

either the L20 orU20 subsets are for the same TCs and are

from successive initializations of the ECMWF. The con-

tribution of these potentially autocorrelated forecasts in a

subset is minimized in the following manner. For each of

the L20 TCs, the most negative ATE forecast within the

72–120h period is included. The second most negative

ATE is also included if it was initialized at least 48h before

or after the first. The third most negative ATE is also in-

cluded if initialized at least 48h before or after both the

first and second, and so on for the next. The procedure is

repeated for the U20 cases but considering the most pos-

itive ATEs. The result is 27L20 cases and 34 U20 cases.

Analogous to Archambault et al. (2015), the cases are

compared in a ‘‘T 2 X’’ hour framework. In our paper,

the forecast hour of largest ensemble-mean ATE serves

as the reference time (‘‘T 2 0 h’’) to compare the prior

evolutions of different cases. T 2 0 h can occur at any

forecast hour between 72 and 120h. While the number

of cases is therefore limited from T 2 120 h to T 2 72 h,

at least 20 of the 27L20 cases are available by T2 108 h.

The various time series and composites later shown are

averaged in this temporal framework.

b. Meteorological fields and compositing techniques

The ECMWF forecasts are archived at 0.58 resolu-

tion and are available online through TIGGE (https://

apps.ecmwf.int/datasets/data/tigge/levtype5sfc/type5cf/).

The forecast fields for the identified cases are analyzed

using various ensemble verificationmetrics. Thesemetrics

are composited using two different approaches. The first

(‘‘best track–relative’’) approach simply takes a grid cen-

tered on the best track position in both the ECMWF

and CFSR fields of a case. Thus, for each individual case

and time, the ensemble member and CFSR fields are

compared at matching geographical (latitude/longitude)

points. The second (‘‘TC-relative’’) approach more

closely follows Zhang and Colle (2017) and takes the

grids of the ECMWF members each centered on their

respective TC positions, compared to the reanalysis

centered on the best track position. Hence, the grid points

in the individual ensemble member and reanalysis fields

are no longer necessarily at matching latitudes and lon-

gitudes but are at matching positions (in degrees longi-

tude and latitude) relative to their respective TC centers.

Figure 4 shows an example of the errors (model–

reanalysis) given by the best track– and TC-relative

frameworks for a single case at T 2 0 h. For the best

track–relative approach (Fig. 4a), there are positive

biases in the 300–200-hPa divergent wind speeds collo-

cated with the model TC positions south of the best

track position. The TC-relative comparison is achieved

in Fig. 4b by superimposing the orange boxes around

each of the ECMWF TC positions (only two of the 51

members are shown for visual clarity) over the black box

around the best track position in Fig. 4a. Comparing

Fig. 4a with Fig. 4b, the positive divergent wind speed

biases near the model TC in the best track–relative

framework are not present in the TC-relative frame-

work. These positive biases in the best track–relative

framework are therefore more likely a consequence of

the southward position bias of the TC, as opposed to an

overprediction of the TC outflow. However, the appar-

ent northward bias of the model’s 300-hPa trough (e.g.,

the 930-dam height contour) in the TC-relative frame-

work is partially caused by the model TC being too far

south, as opposed to a large geographical location error

in the trough itself. Therefore, the best track–relative

framework captures the differences in the large-scale

environment (e.g., synoptic features moving indepen-

dently of the TC), while the TC-relative framework

better captures differences in the structure of the TC.

Both approaches will thus be used in this study.

Two different metrics are calculated and composited

using the two aforementioned frameworks. For the first

metric, the mean error in a field for any one case is cal-

culated by subtracting the CFSR from the ECMWF en-

semble mean. Given that each reanalysis has biases, other

datasets were tested to verify the ECMWF fields. How-

ever, the results were similar (not shown), such that the

errors that will be shown are larger than the differences

FIG. 3. Histogram of the largest day 3–5 ECMWF mean ATEs,

with blue and red lines showing the thresholds for the L20 and

U20 cases.
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between reanalyses. Bootstrap resampling is used to de-

termine whether the mean error composited from multi-

ple cases is statistically different from zero. Specifically,

the 95% confidence bounds are created by randomly

resampling the cases 1000 times, each time extracting 20

ensemble members from each case at random.

The second metric subsets the 10 ‘‘slowest’’ (most

negative) and 10 ‘‘fastest’’ (most positive) ensemble

members of each case based on their individual ATEs at

T–0 h. Note that almost all ensemble members in the

L20 cases have negative ATEs (not shown), such that

the 10 fastest members are usually still slow biased, but

most closely match the best track. Comparing the dif-

ferences with mean errors confirms which features are

influencing the TC track and that these features behave

more like the reanalysis in the fastest members. Fol-

lowing Torn et al. (2015), the standardized differences

between these two subgroups are calculated as follows:

Dx
i
5

xSlowesti 2 xFastesti

s
xi

, (1)

where xSlowesti (xFastesti ) denotes the mean of the ith state

variable for the slowest (fastest) ensemble members and

sxi is the ensemble standard deviation of xi computed

from all members. The normalization by ensemble

spread allows for comparisons between different fields,

vertical levels, and times. To assess the statistical sig-

nificance of Dxi for a single case, two subsets of 10 en-

semble members are randomly drawn from the full

ensemble 1000 times. Each time, the difference of the

two means is calculated, thereby giving the 95% confi-

dence bounds on Dxi for a single case.

3. Climatology of TCs with large along-track errors

The inherent differences in the geographical locations

and trajectories of the L20 and U20 best tracks are il-

lustrated in Fig. 5. Most of the L20 are associated with

TCs that recurve and accelerate to the northeast at

midlatitudes (Fig. 5a). In contrast, most of the U20 TCs

on average travel total distances of less than 3000km

throughout the forecasts and stay south of 458N (Fig. 5b)

Figure 6 shows the ensemble mean of various metrics

averaged as a function of lead time before largest mean

ATE. The ATEs (Fig. 6a) for the L20 cases first become

significantly different from the U20 cases by;T2 72 h.

Afterward, the L20 ATEs grow exponentially more

FIG. 4. ECMWF mean 200–300-hPa divergent wind speed errors (shaded) and 300-hPa geopotential heights of

the CFSR (black contours in dam) and ECMWF (gray contours) at forecast hour 120 (T 2 0 h before the time of

largest ATE) from the 0000UTC 18 Sep 2010 forecast of TC Igor. The black and orange dots in (a) indicate the best

track and two of the ECMWF member TC positions, respectively. The boxes surrounding the TC positions in

(a) are the grids used for the TC-relative differences shown in (b).
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negative (slow-biased), while the U20 ATEs only be-

come significantly positive after;T2 24h. The forward

speeds of the model TCs are also calculated and verified

against those of the best tracks. Comparing the best

track forward speeds of the L20 and U20 cases (Fig. 6b),

the L20 cases are up to 4ms21 faster than the U20 at

;T2 48 h, which is significant at the 95% level. The L20

cases continue to accelerate afterward, their averaged

observed forward speeds reaching 15m s21 by T 2 12h,

compared to;6ms21 for the U20 cases. Comparing the

FIG. 5. Best tracks of (a) L20 and (b) U20 cases color-coded byATE. The positions at the forecast initializations are

given by the black dots.

FIG. 6. (a) ATEs, (b) observed forward speed and (c) forward speed errors, and (d) meridional flow index errors

composited for L20 and U20 cases.
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forward speed errors (Fig. 6c), the L20 cases become

increasingly negative (i.e., too slow), reaching 26m s21

by T 2 12 h.

The slow bias of the L20 cases may correspond to an

underamplification of the extratropical flow. Following

Archambault et al. (2013) and Fowler and Galarneau

(2017), the meridional flow index (MFI) is computed

from the area-average magnitude of the meridional

component of the wind at the dynamic tropopause (the

2.0 potential vorticity unit (PVU) surface, where 1.0

PVU 5 1.0 3 1026Kkg21m2 s21 (e.g., Hoerling et al.

1991; Holton et al. 1995). In this paper, the MFI is cal-

culated over the midlatitude North Atlantic and North

America encompassing 358–658N and 1108–108W.While

larger than the domain used by Fowler and Galarneau

(2017), this region encompasses the many different

tracks of the U20 and L20 cases. Subtracting the MFI of

the CFSR from those of the individual ECMWF mem-

bers and averaging the results gives the meanMFI error.

The MFI errors of the L20 and U20 cases are similar

before T2 60 h (Fig. 6d). Afterward, the L20 cases show

an increasingly negative (underamplified) bias, which

reaches 20.8m s21 by T 2 24 h. By comparison, the

errors of the U20 cases are not significantly different

from zero at any time.

The accelerated growth of the L20 ATEs motivates

investigation into a potential correlation between the

ensemble member ATEs at T 2 0 h and the ATEs ear-

lier in the forecast. For example, are the members with

the most negative ATEs at T 2 0 h also the most nega-

tive earlier at T 2 96 h? Fig. 7a shows the average

Pearson R correlations between member ATEs at T 2

0 h and at different lead times for L20 and U20. About

50% of the L20 do not have positive correlations sig-

nificantly different from 0 to T 2 84 h. However, these

correlations quickly grow afterward, exceeding 0.60 on

average and reaching statistical significance in;90% of

L20 cases by T 2 60h. In contrast, the U20 only have

average correlations of 0.10 by T 2 60 h, with statistical

significance in only ;30% of the cases.

4. Large-scale error evolution

a. Steering flow errors

To determine how much of the ATEs originate from

errors associated with synoptic steering features, such as

troughs and ridges, the L20 andU20 are compared using

best track–relative composites of the 300-hPa geo-

potential height errors and 850–200-hPa layer-averaged

wind errors (Fig. 8). In this section, the wind errors are

calculated byfirst removing theCFSR(ECMWFmember)

TC winds within 88 from the best track (ECMWF

member) TC position (e.g., Galarneau and Davis 2013).

AtT2 84 h, the average heights for the L20 andU20 are

similar (Figs. 8a,b). Both sets of cases have a trough

more than 2000km northwest of the TC, though the

trough in the L20 appears to be ;200–500km farther

east than in the U20. The L20 have a more defined

subtropical high centered east of the TC given by a

broad closed 970-dam contour, as well as an incipient

midlatitude ridge more than 1500km to the northeast.

The composite height errors for both sets show no co-

herent significance patterns and are only ;5m in mag-

nitude over a few small regions.

By T 2 60h, the L20 cases have a deepening trough

about 1500km northwest of the TC and a ridge 1000–

1500km northeast of the TC (Fig. 8c). Statistically sig-

nificant positive height biases of ;10m are associated

with the eastern flank of trough, suggesting that the

model is underpredicting the trough and tilting its axis

too far to the west. Meanwhile, a broad region of neg-

ative height errors of over 5m is situated over the

downstreammidlatitude ridge. As a result, 850–200-hPa

steering flow errors are developing east of the trough,

the vectors implying an underprediction of the southerly

flow. By comparison, the T 2 60h height errors of the

U20 are still largely below;5m in magnitude (Fig. 8d).

By T 2 36h, the adjacent trough–ridge couplet in the

L20 amplifies rapidly (Fig. 8e). Both the trough and

ridge are underpredicted by more than 25m, consistent

with an anticyclonic (cyclonic) 850–200-hPa wind error

northwest (northeast) of the TC. As a result, the

southerly flow steering the TC is underpredicted by

more than 5ms21. Meanwhile, the U20 only begin to

show height biases of up to 10m attached to an ap-

proaching trough to the north, though the biases are not

FIG. 7. Pearson correlations (R3 100%) between member ATEs

at T 2 0 h and member ATEs at different leads before T 2 0 h,

averaged for L20 and U20 cases. The dashed lines are the percent-

ages of cases that have statistically significant positive correlations.
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statistically significant (Fig. 8f). The U20 cases thereby

have significantly smaller systematic biases in the large-

scale steering and will not be shown in the remainder of

this paper.

The role of the synoptic environment in the L20 cases

is further analyzed with best track–centered composites

of standardized differences (10 slowest 2 10 fastest

members) in 300-hPa geopotential height and 850–200-

hPa steering flow (Fig. 9). At T 2 108h, there is some

suggestion that the slowest members have lower heights

along a developing ridge north of the TC in 50% of the

cases (Fig. 9a). By T 2 84h, 50% of the cases also sug-

gest that the 10 slowest members have higher heights

near the trough located up to 2000km west of the TC

(Fig. 9b). The height differences associated with the

deepening trough and ridge grow in magnitude between

T 2 84 h and T 2 60 h (Fig. 9c). Consistent with Fig. 8c,

the higher heights along the trough and lower heights

over the ridge result in the slowest members erroneously

having a more northerly (less southerly) 850–200-hPa

wind than the fastest members. ByT2 36h (Fig. 9d), the

height differences grow to over one standard deviation

in magnitude and the wind differences resemble the

mean error composites for the L20 cases. The height

differences attached to the trough and ridge are statis-

tically significant in more than 70% of the cases. Hence,

the height and wind fields of the fastest members are

more amplified and more closely resemble the CFSR.

FIG. 8. Best track–relative composites of mean 300-hPa geopotential height errors (shaded) and 300-hPa

geopotential heights of the CFSR (black contours in dam) and ECMWF mean (gray contours) for L20 cases at

(a) T2 84 h, (c) T2 60 h, and (e) T2 36 h before the time of largest ATE. (b),(d),(f) As in (a),(c),(e), but for U20.

Green dotted regions indicate where the composited mean height error is statistically significant. Vectors indicate

errors in the 850–200-hPa mean steering flow (after removing the TC circulation) greater than 1m s21.
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A closer qualitative inspection of the individual

27 L20 cases reveals that at least 20 of them have a

similar pattern to the one described by Peng et al.

(2017): an adjacent upstream trough or cutoff low and a

downstream area of ridging. These and other L20 cases

are listed in Table 1. There also tends to be another ridge

west of the trough in these cases, though this upstream

ridge typically does not have significant biases attached

to it. The resulting ridge–trough–ridge segment possibly

suggests an incipient Rossby wave packet like those

shown occurring 72h prior to ‘‘strong interaction’’ cases

by Archambault et al. (2015).

In four of the seven cases not involving an upstream

trough and downstream ridge, a steering trough or cutoff

low is within 500 km east of the TC at the forecast ini-

tialization. The observed TC phases with the trough and

progresses northeastward, while the model TC mean-

ders behind. In these cases, the TC appears to be close

to a bifurcation point similar to the ones described by

Riemer and Jones (2014), such that a slight initial drift in

the TC and/or the trough can determine whether the two

systems phase with or completely miss each other.

Hence, some ensemble members have the TC correctly

interact with the downstream trough and closely match

the best track. Hurricane Nadine (2012) was already

shown by Munsell et al. (2015) to have this behavior.

b. Upper-level potential vorticity interaction

The development of the trough–ridge couplet in the

L20 cases is further examined by analyzing 300–200-hPa

layer-averaged potential vorticity advection (PVA),

which is composited in the best track–relative framework

in Fig. 10. PVA by the nondivergent and irrotational

winds are compared side by side. Starting when the

trough heights first become underamplified at T 2 60h,

PVA by the nondivergent wind shows a region of nega-

tive biases 700–1000km northwest of the TC (Fig. 10a).

This negative PVAbias grows from23 to25 PVU�day21

between T 2 48h (Fig. 10c) and T 2 36 h (Fig. 10e),

connecting the trough with the northern portion of the

TC. During this time, the PV associated with the trough

changes consistently with the PVA by the nondivergent

wind. The ECMWF’s weaker PVA results in PV lines

that are less meridionally oriented north of the TC than

in the CFSR. The negative PVA bias corresponds to an

underprediction of positive PVA east of the trough’s tip.

Hence, the underprediction of the trough’s amplitude

can be partially explained by PVA errors.

FIG. 9. Best track–relative composites of standardized differences (10 slowest2 10 fastest ensemble members) in

300-hPa geopotential height for L20 cases at (a) T2 108 h, (b) T2 84 h, (c) T2 60 h, and (d) T2 36 h. Percentages

of L20 cases in which the difference at each grid point is statistically significant are contoured in different shades of

green to gold. Black and gray contours are the composited 300-hPa geopotential heights (in dam) of the 10 fastest

and 10 slowest ensemble members of each case, respectively, and vectors indicate the slowest 2 fastest member

differences in 850–200-hPa mean steering flow (after removing the TC circulation) greater than 1m s21.
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Within the region of negative PVA errors, the non-

divergent wind error vectors point southeastward from

the trough to the TC. These wind errors are caused by

the ECMWF winds being both weaker and more east-

ward than the CFSR. PV increases westward going from

the TC to the trough, such that the model wind is going

down the PV gradient. Thus, the negative bias in PVA

mainly comes from the model underpredicting the PV

gradient.

Meanwhile, at T2 60h (Fig. 10b), the TC’s divergent

outflow interacts with the trough–ridge system by ad-

vecting relatively low PV north and northwestward. The

irrotational wind errors converge north of the TC cen-

ter, implying that the ECMWF’s outflow is too weak.

The irrotational wind speeds are underpredicted by 1 to

2ms21within an 800-km radius from the TC center. The

negative PVA is thus underestimated, corresponding

to a region of positive biases east of the trough and

partially into the downstream ridge. This positive bias in

PVA by the irrotational wind persists from T 2 48h

(Fig. 10d) to T 2 36 h (Fig. 10f), consistent with the

2-PVU contour of the ECMWF failing to fold north-

westward 500–700km northwest of the TC.

After T 2 60h, the negative biases in PVA by the

nondivergent wind begin to cancel-out the positive

biases in PVA by the irrotational wind from the TC.

However, the irrotational wind plays a significant role in

amplifying the PV gradient, as demonstrated by the

schematic in Fig. 11. East of the trough, the non-

divergent wind is east-northeastward and the irrota-

tional wind is northwestward (Fig. 11a). Focusing on

the PV gradient east of the trough, the nondivergent

wind crosses the PV contours, advecting the contours

eastward (Fig. 11b). Meanwhile, the irrotational winds

are perpendicular to the contours, advecting lower

values of PV northwestward. The resulting deforma-

tion of the total wind (i.e., the sum of the irrotational

and nondivergent wind) increases the PV gradient.

Note that the nondivergent wind alone would only

advect the PV contours eastward without increasing

the gradient.

From Fig. 10, the irrotational winds are under-

predicted, while the nondivergent winds are both un-

derpredicted and too eastward. The model PV lines are

thereby not concentrated enough, causing the PV gra-

dient and subsequent steering flow to become further

underpredicted, such that the model TC is too slow. The

combination of these PVA errors may correspond to the

model trough becoming less negatively tilted than ob-

served, similar to what was shown byAtallah and Bosart

(2003) for Hurricane Floyd (1999).

The 300–200-hPa PVA by the divergent wind is fur-

ther analyzed through best track–relative composites of

standardized differences between the slowest and fastest

TABLE 1. L20 forecasts sorted by synoptic features associated with their track errors. The initialization dates of the forecasts are in

parentheses.

L20 error interaction types

Underamplified upstream trough

and downstream ridge

Downstream trough

bifurcation point

Erroneous interaction with

downstream cut-off low

Not explained by

synoptic flow

Gustav (0000 UTC 1 Sep 2008) Omar (0000 UTC 15 Oct 2008) Bertha (0000 UTC 17 Sep 2008) Ida (0000 UTC 6 Nov 2009)

Hanna (1200 UTC 3 Sep 2008) Nadine (1200 UTC 12 Sep 2012) Gabrielle (1200 UTC 5 Sep

2013)

Ike (0000 UTC 11 Sep 2008) Jerry (1200 UTC 30 Sep 2013)

Bill (0000 UTC 20 Aug 2009) Cristobal (0000 UTC 24 Aug

2014)

Danielle (0000 UTC 27 Aug 2010)

Igor (0000 UTC 18 Sep 2010)

Otto (1200 UTC 6 Oct 2010)

Tomas (0000 UTC 7 Nov 2010)

Irene (0000 UTC 25 Aug 2011)

Katia (1200 UTC 5 Sep 2011)

Ophelia (0000 UTC 30 Sep 2011)

Kirk (0000 UTC 29 Aug 2012)

Leslie (0000 UTC 7 Sep 2012)

Rafael (1200 UTC 13 Oct 2012)

Rafael (0000 UTC 16 Oct 2012)

Arthur (1200 UTC 2 Jul 2014)

Cristobal (1200 UTC 26 Aug 2014)

Gonzalo (1200 UTC 14 Oct 2014)

Ian (1200 UTC 12 Sep 2016)

Karl (1200 UTC 21 Sep 2016)
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ensemble members (Fig. 12). About 40% of the cases

have statistically significant positive PVA differences

in a small region 500–1000km north-northeast of the TC

center at T 2 84 h (Fig. 12a). The PVA of the slowest

members over this region is on average ;0.2 standard

deviations less negative than the fastest members, con-

sistent with the slowest members having divergent winds

that are ;0.5m s21 weaker. The positive PVA differ-

ence shifts to the northwest of the TC and along the

incoming trough by T 2 60h (Fig. 12b). While less

pronounced than the biases in Fig. 10b, this region of

positive PVA differences suggests that in 40% of the

cases the outflow of the fastest members more correctly

interacts with the trough than that of the slowest

members. The region where the slowest member di-

vergent winds are 0.5m s21 weaker than the fastest ex-

tends more than 1000km northwest of the TC by T 2

48h (Fig. 12c). As a result, the PV lines along the trough

of the fastest members become more concentrated and

meridionally oriented like the CFSR. By T 2 36h

(Fig. 12d), the PVA along the trough of the slowest

members is 0.6 standard deviations less negative than

the fastest members, the difference reaching significance

in;60%of the cases. Thus, there is a dependence on the

TC’s outflow starting around T 2 60h, in which weaker

divergent winds correspond to less negative PVA along

the eastern flank of the trough. The trough does not be-

come as negatively tilted as observed and the downstream

FIG. 10. L20 best track–relative composites of mean errors in 300–200-hPa potential vorticity advection by the

nondivergent wind (shaded), nondivergent wind errors (vectors greater than 1m s21), and potential vorticity of the

CFSR (black contours in PVU) and ECMWFmean (gray contours) for L20 cases at (a) T2 60 h, (c) T2 48 h, and

(e) T2 36 h before the time of largest ATE. (b),(d),(f) As in (a),(c),(e), but using the divergent wind. Green dotted

regions indicate where the composited mean advection errors are statistically significant.
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ridge underamplifies. The northward flow east of the

trough is too weak and does not accelerate the TC.

During ET, upper-level jet streaks are often en-

hanced as the TC’s outflow impinges on the PV gra-

dient (Riemer and Jones 2010; Grams et al. 2013;

Archambault et al. 2013, 2015). The associated

ageostrophic circulations can enhance the tempera-

ture advection along the trough (Cammas and

Ramond 1989; Clark et al. 2009) and therefore affect

the steering trough’s amplitude. The development of

FIG. 11. Schematic of (a) PV (black dashed lines), nondivergent wind (blue streamlines), and irrotational wind

(red vectors). (b)A close-upwithin the orange box in (a), showing PV at times t (gray dashed lines) and t1 dt (black

dashed lines).

FIG. 12. L20 best track–relative composites of standardized differences in 300–200-hPa potential vorticity ad-

vection by the divergent wind at (a) T2 84 h, (b) T2 60 h, (c) T2 48 h, and (d) T2 36 h. Percentages of L20 cases

in which the difference at each grid point is statistically significant are contoured in different shades of green to gold.

Black and gray contours are the composited 300–200-hPa potential vorticity (in PVU) of the fastest and slowest

ensemble members, respectively, and vectors indicate the member differences in 300–200-hPa divergent wind

greater than 0.2m s21.
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this jet is examined through best track–relative com-

posites of 300–200-hPa winds and wind speed errors

(Fig. 13). At T2 72 h (Fig. 13a), a 25–30ms21 jet streak

is;1800–2000km north of the TC center. As the TC and

jet streak draw closer at T 2 60h (Fig. 13b), the di-

vergent outflow, as given by the 2ms21 contour, ex-

pands by more than 500km in all directions and begins to

interact with the trough’s PV gradient. By T 2 48h

(Fig. 13c), the entrance region of the jet near this region of

interaction intensifies to 35ms21, but the ECMWF un-

derestimates the intensification by ;3–4ms21. The jet

further intensifies to more than 40ms21 by T 2 36h

(Fig. 13d), with theECMWFunderpredicting the speed by

5–10ms21. There is also a region of positive wind speed

biases to the south of the jet, corresponding to the model

jet also having a slight southward bias, which may be as-

sociated with differences in the TC position affecting the

location of the TC’s outflow. The L20 cases are thus as-

sociated with strong ET interactions that amplify upper-

level jet streaks. This interaction is significantly under-

predicted, again consistent with the trough becoming fur-

ther underamplified.

c. Upstream trough thermodynamic interactions

The rapid growth of the underamplification of the

trough after T2 60h (Fig. 8c) may correspond to errors

in temperature advection. From a dry perspective, in-

sufficient 300-hPa height falls in the trough may result

from an underprediction of cold advection decreasing

with height below this level per the quasigeostrophic

height tendency equation (Holton and Hakim 2013).

Errors in the TC’s location and intensity can impact

when and how strongly the TC’s surface circulation

becomes embedded in the approaching trough’s tem-

perature gradient (Veren et al. 2009), thereby causing

temperature advection errors at low to midlevels.

Meanwhile, the underprediction of the jet streak cor-

responds to a weak bias in its associated ageostrophic

circulation, whose lower branch can also impact cold air

advection below the jet entrance region.

Figure 14 shows best track–relative and TC-relative

errors in 700-hPa temperature advection of the L20

composited side by side. Compared to 700-hPa, the

temperature advection errors at 500 and 300 hPa are

small (not shown). Thus, the errors in differential tem-

perature advection, and the subsequent errors in height

falls along the upper-level trough, are largely from

errors at 700 hPa. In the best track–relative compos-

ites, 700-hPa temperature advection errors of ;1 to

2Kday21 are found within 500 km of the TC center at

T 2 60 h (Fig. 14a), with insufficient warm and cold

advection northeast and southwest of the TC,

FIG. 13. L20 best track–relative composites of mean 300–200-hPa wind speed errors (shaded), and CFSR 300–200-

hPa winds (vectors greater than 20m s21), CFSR divergent wind speeds (dashed purple contours every 2m s21), and

CFSR potential vorticity (gray contours) at (a)T2 72 h, (b)T2 60 h, (c)T2 48 h, and (e)T2 36 h before the time of

largest ATE. Green dotted regions indicate where the composited wind speed error is statistically significant.

470 MONTHLY WEATHER REV IEW VOLUME 148

Unauthenticated | Downloaded 08/27/22 03:59 PM UTC



respectively. The development of these advection errors

is consistent with ;2 to 3ms21 errors in the 700-hPa

winds circulating around the TC center. There is also a

region of underpredicted 700-hPa frontogenesis in-

side of 500 km north-northeast of the TC. By T 2 48h

(Fig. 14c), the region of underpredicted cold advection

expands to more than 700 km northwest of the TC cen-

ter, extending from the trough to the TC. The wind er-

rors northwest of the TC are up to ;5ms21 and point

northwestward into the trough. This region of south-

easterly wind errors is more apparent by T 2 36h

(Fig. 14e), at which point the cold advection is under-

predicted by;5Kday21 over an area extending 1000km

northwest of the TC.During this time, the weak biases in

frontogenesis expand over 700km north of the TC,

while a 2–3Kday21 underprediction of warm advection

extends more than 1000km northeast of the TC.

A comparison with TC-relative composites helps to

determine whether the wind errors, and hence advection

errors, are a consequence of the TC position errors. At

T 2 60h (Fig. 14b), the TC-relative composites have

;1–2ms21 northeasterly wind errors inside of 500 km

from the TC center, compared to the southeasterly

wind errors northwest of the TC in Fig. 14a. There is

still an underprediction of both warm advection and

frontogenesis north of northeast of theTC.West of theTC,

there are ;1m s21 easterly wind errors and a small

region of underpredicted cold advection. The wind

FIG. 14. L20 best track–relative composites of mean 700-hPa temperature advection errors (shaded),

frontogenesis errors (purple contours every 1022Kkm21 day21, only showing negative values), and temperatures

of the CFSR (black contours inK) andECMWFmean (gray contours) at (a)T2 60 h, (c)T2 48 h, and (e)T2 36 h

before the time of largestATE.Green dotted regions indicatewhere the composited temperature advection error is

statistically significant. (b),(d),(f) As in (a),(c),(e), but using the TC-relative framework.
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errors are southeasterly between ;1000 and 2000 km

northwest of the TC, crossing into the trough. From

T 2 48h (Fig. 14d) to T 2 36 h (Fig. 14f), these south-

easterly wind errors grow and draw closer to the TC,

corresponding to ;2Kday21 warm biases in advection

over regions similar to Fig. 14e. However, the advection

errors within 500km south of the TC are significant

over a smaller region than in Fig. 14e. During this time,

the weak biases in warm advection and frontogene-

sis again expand farther north of northeast of the

TC. Thus, the temperature advection errors inside of

500 km from the TC are caused by TC displacement

errors and weak biases in the TC wind. However,

southeasterly wind errors farther northwest of the

TC are associated with the trough and may corre-

spond to the underprediction of the ageostrophic

circulation induced by the upper-level jet and low-

level frontogenesis.

The thermodynamics of the trough–ridge system are

further examined through TC-relative standardized

differences in 700-hPa temperature advection (Fig. 15).

At T 2 84h (Fig. 15a), 50% of the cases have a signifi-

cantly negative difference;500 km north of the TC. By

T 2 60 h (Fig. 15b), the differences along the trough to

the west become significantly positive in at least 50%

of the cases, the fastest members having 0.4 standard

deviations more cold advection than the slowest

members. Between T 2 48 h (Fig. 14c) and T 2 36 h

(Fig. 14d), this positive difference increases to ;0.6

standard deviations and is significant in 60% of the

cases. The slowest–fastest member wind differences

west of the TC and across the trough are southeasterly

and 1–2ms21 in magnitude. Thus, the underamplification

of the trough in the slowest members is accelerated by

the underprediction of midlevel cold air advection

beneath the trough. The growing slow bias of the TC

further reduces the southeastward extent of the cold

advection.

5. Impact of moisture fluxes and precipitation

Section 4b demonstrated that the errors in the steering

trough are caused by errors in PVA from the non-

divergent and irrotational winds, both of which are un-

derpredicted. The irrotational winds are largely driven

by from convection near the TC. Thus, the standardized

differences in precipitation rate are composited for all

L20 cases in Fig. 16. To isolate the differences in TC

structure, the composites in this section are within the

TC-relative framework. At T2 108 h (Fig. 16a), at least

FIG. 15. L20 TC-relative composites of standardized differences in 700-hPa temperature advection at

(a) T2 84 h, (b) T2 60 h, (c) T2 48 h, and (e) T2 36 h before the time of largest ATE. Black and gray contours

are the composited 700-hPa temperatures (in K) of the fastest and slowest ensemble members, respectively.

Vectors indicate slowest – fastestmember differences in 700-hPawinds greater than 0.5m s21. Percentages ofL20 cases in

which the difference at each grid point is statistically significant are contoured in different shades of green to gold.
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60% of cases have statistically significant negative dif-

ferences inside of ;500 km north of the TC center, the

slowest members having rainfall rates that are ;0.6

standard deviations lower than the fastest. Rainfall as-

sociated with the upstream trough is visible by T 2 84h

(Fig. 16b). Between T 2 60 h (Fig. 16c) and T 2 36h

(Fig. 16d), the precipitation along the trough merges

with the TC and the precipitation region elongates

northeastward. This merger happens sooner in the

fastest members, corresponding at least in part to

growing differences in the forward speeds of the TCs.

The region of negative differences north of the TC also

spreads northeastward by T 2 36 h, the difference av-

eraging ;0.8 standard deviations in magnitude and

reaching significance in up to 70% of the cases.

Therefore, the fastest members have higher rainfall

rates and stronger divergent outflow, which amplifies the

steering flow.

Torn (2010) showed that the ridging downstream of

two western Pacific ET cases was significantly correlated

with the lower-tropospheric horizontal moisture fluxes

on the east side of the TCs. These moisture fluxes in-

creased the precipitation along the baroclinic zone and

hence enhanced the divergent outflow interacting with

the ambient PV, which strengthened the steering flow.

To test his hypothesis on the L20 cases, TC-relative

standardized differences in 700-hPa moisture fluxes are

plotted in Fig. 17. Consistent with Fig. 16a,;60% of the

cases at T 2 108 h have statistically significant negative

difference inside of 500 km northeast of the TC, the

fastest members having moisture fluxes up to 0.6 stan-

dard deviations greater than the slowest members

(Fig. 17a). Between T 2 96 h (Fig. 17b) and T 2 84h

(Fig. 17c), these differences continue to grow in mag-

nitude and extend more than 500km along the eastern

flank of the TC, reaching statistical significance in up to

70% of the cases. By T2 36h, the fastest members have

fluxes that are more than one standard deviation greater

than the slowest members (Fig. 17d). Thus, the differ-

ences in moisture fluxes affect the ATEs by modulating

FIG. 16. L20 TC-relative composites of standardized differences in precipitation rate at (a) T 2 108 h,

(b) T 2 84 h, (c) T 2 60 h, and (e) T 2 36 h. Black and gray contours are the composited precipitation rates (in

mm�h21) of the fastest and slowest ensemble members, respectively. Percentages of L20 cases in which the dif-

ference at each grid point is statistically significant are contoured in different shades of green to gold.
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the near-TC precipitation rates and hence the diabatic

outflow interacting with the ambient extratropical flow.

6. Conclusions

The goal of this study is to determine the most com-

mon causes of large ATE forecasts in North Atlantic

TCs from the ECMWF ensemble during the 2008–16

period. This study is the first to apply quantitative

ensemble-based diagnostics to multiple North Atlantic

TCs, correlating relevant meteorological fields with the

track errors of each case and compositing the statistics in

geographic and storm-centered frameworks. We cur-

rently focus on the ECMWF’s slow bias for TCs un-

dergoing ET. These ET forecasts are sorted by their

72–120h ATEs, with the lower and upper quintiles

considered L20 and U20 cases, respectively. L20 cases

involve observed TCs that accelerate northeastward,

reaching speeds;5–10ms21 faster than those associated

with U20. The ECMWF significantly underpredicts this

acceleration of L20 TCs, such that the L20 ATEs grow

rapidly with time after the first 36h. For each case, the

correlation is calculated between ensemble member

ATEs at 72–120h and their ATEs at earlier lead times.

The correlations are small for lead times earlier than 48h,

but become significantly positive for a large percentage of

L20 cases, implying that the slowest ensemble members

at ;48h remain the slowest at 72–120h.

Composites reveal that the L20 cases tend to be as-

sociated withmore amplified flow patterns that aremore

significantly underpredicted than the U20 by T 2 60h

before the largest mean ATE. More specifically, 20 of

the 27L20 cases underpredict the amplitudes of an up-

stream 300-hPa trough and a downstream 300-hPa ridge.

In the L20 cases, the ECMWF ensemble members un-

derpredict the TC’s 300–200-hPa divergent outflow

throughout the forecast and its subsequent role in en-

hancing the trough–ridge couplet through the following

FIG. 17. TC-relative composites of standardized differences in 700-hPa moisture flux at (a) T 2 108 h,

(b) T2 96 h, (c) T2 84 h, and (e) T2 60 h. Black and gray contours are the composited 700-hPa specific humidity

(in g�kg21) of the fastest and slowest ensemble members, respectively. Vectors indicate slowest–fastest member

differences in 700-hPa wind. Percentages of L20 cases in which the difference at each grid point is statistically

significant are contoured in different shades of green to gold.
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sequence: the TC’s underpredicted outflow does not

enhance the potential vorticity (PV) gradient along the

eastern flank of the trough between T 2 72h and T 2

60h. The model trough remains too positively tilted,

with an underprediction of both positive PV advection

around the trough’s tip and negative PV advection along

the ridge. The positive PV advection is driven by the

nondivergent wind, which acts with the irrotational wind

to enhance the PV gradient. The 700-hPa cold air ad-

vection is underpredicted beneath the trough, corre-

sponding to the insufficient 300-hPa height falls and

hence the trough’s underamplification. The extent of

this cold air advection is influenced by the TC’s under-

predicted circulation and position errors. The under-

amplification of both the trough and the ridge result in a

weaker meridional flow that does not adequately ac-

celerate the TC northeastward.

The insufficient divergent outflowof theL20 cases can be

attributed to lower precipitation rates near and north of the

TC center. In agreement with past published case studies,

the lower precipitation rates are a consequence of weaker

700-hPa moisture transport east of the TC at T 2 108h.

Future work will further examine the error mechanisms in

greater detail, determining the contributions of observation

errors andmodel parameterizations in individual cases.

Numerical simulations will also be run for select cases,

in which small perturbations will be applied to lower-

tropospheric moisture and wind fields east of the TC to

assess their impacts on the atmospheric evolution and

TC track.

The standardized differences between the 10 slowest and

10 fastest ensemble members of each forecast show con-

sistency with the mean errors in depicting the sequence of

events, implying that the more correct ensemble members

behavemore like the reanalyzed atmosphere. Thus, similar

ensemble diagnostics can be adapted to aid forecasters in

focusing on the more likely ensemble members for these

cases, as demonstrated by Dong and Zhang (2016) and

Ancell (2016). For example, when the 72-h track

forecast of a potential ET case shows sensitivity to the

24-h amplitude of an upstream trough–ridge couplet,

forecasters may give more weight to the faster mem-

bers if observations 24 h later indicate that the couplet

is underamplified. However, developing a statistical

framework would require a larger sample size.
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