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Abstract 

The concept of depth from focus involves calculating distances to points in an ob-

served scene, by modelling the effect that the camera's focal parameters have on im-

ages acquired with a small depth of field. This technique does not require special 

scene illumination, and needs only a single camera. This thesis provides a background 

understanding of the concept and theory of depth from focus, surveys the literature 

on current methods of obtaining depth from focus, analyzes the key problems, and 

presents a novel solution to the problem, complete with experimental results. 

Deconvolving and modelling the defocus operator, is the most difficult segment 

of calculating depth from focus. Isolating the defocus operator has conventionally 

been performed by taking local spatial regions, and inverse filtering in the spatial 

frequency domain. This thesis exposes some fundamental problems with this method: 

inaccuracies in finding the frequency domain representation and the presence of border 

effects. 

To solve the general depth from focus problem, a novel application of an iterative 

matrix based method is presented. This method uses two images of the same scene, 

obtained under different conditions of defocus. The defocus operator may be assumed 

using a parametric model, or experimentally measured. Trade-offs in implementation 

are resolved through regularization. The method is theoretically justified, and shown 

to eliminate the problems mentioned above. 

A constrained inverse filtering method and the author's iterative matrix based 

method are experimentally implemented on four scenes. The experiments show the 

iterative matrix solution consistently yielding more accurate results. 

ii 
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Nomenclature 

To avoid misinterpretation, the following notes clarify the nomenclature used in this 

thesis. A glossary of common symbols is also found in Appendix A. 

� The words depth, range and distance are used interchangeably to denote distance 

from the camera to a point of interest in the scene. 

� The word scene is used to describe the part of the world observed, or a two-

dimensional view of it, uncorrupted by noise and perfectly in focus throughout. 

� The word image describes a picture captured with a sensory apparatus such as a 

camera, which may be corrupted with noise or blurred in some areas. A complete 

image will be referred to as i\ or i 2 . and a local region of the image will be denoted 

as ii(x,y) or i2{x,y), where the Cartesian coordinates x and y locate the pixels. 

� The term frequency domain always implies the spatial frequency domain. 

� A function for convolution in the spatial domain is called either a point spread 

function or an operator. 

� A function for multiplication in the spatial frequency domain is called a frequency 

transfer function or an optical transfer function. 

� Where applicable, lowercase letters denote functions in the spatial domain and 

uppercase letters denote functions in the spatial frequency domain. 

� Vectors are denoted as bold letters (ie. h or H). 
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� Matrices are denoted as bold letters in square braces (ie. [H] or [he])- The 

subscript, if present, gives some clues about the structure of the matrix 

— C: Circulant; 

— D: Diagonal; 

— T: Toeplitz; 

— B: Block form; and 

— S: Stacked vector. 

� Equations are denoted in round braces and references are denoted in square 

braces. When several references are given, they are placed in chronological order. 

� A l l spatial frequency domain plots have been shifted so that fx = fv=0\s in the 

middle of the abscissa. 
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Chapter 1 

INTRODUCTION AND OVERVIEW 

1.1 C O N T E X T 

The goal of a computer vision system is to transform two-dimensional data into a 

description of the three-dimensional world [150]. The perception of depth information 

is often an intermediary step in this transformation, especially when the observed scene 

contains unconstrained or unknown objects.1 

A variety of techniques for depth perception currently exist and have been surveyed 

by several researchers [79][73][77][135][128][113][9][11][10]. The techniques include 

� Stereo disparity; 

� Motion parallax; 

� Depth from image brightness or texture gradient; 

� Active ranging with sonar, microwave or light; 

� Introducing constraints by structured lighting of the scene; 

� Size and linear perspective; and 

� Depth from focus. 

1

 Several researchers have shown [102][6] that depth information is not a necessary requirement to 

recognize and orient objects when some explicit knowledge about those objects is known a priori. 

1 
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A system for determining depth should ideally make use of a variety of techniques 

for obtaining cues from the observed scene. The human vision system, for example, 

relies on most2 of the techniques mentioned above, as well as contextual and other cues, 

which relate certain shapes, textures and objects to specific dimensions. Making use of 

all the information available, gives a system robustness to be able to discern cues that 

are fuzzy, or ambiguous. 

To allow for the development of such a robust, general purpose system for deter-

mining depth, more specific research needs to be done in the individual techniques of 

depth perception. Recently there has been renewed interest in the technique of obtain-

ing depth from focus [I20][ll7][l40]. This thesis presents a detailed investigation into 

this technique. The methods described in this thesis could be used as a segment of 

a larger, general, depth perception system, or for specific applications, the method of 

depth from focus may suffice. Other researchers are attempting to answer the problem 

of turning range data into a useful description of the three-dimensional world [126] [12]. 

1.2 M O T I V A T I O N F O R R E S E A R C H 

The motivation for this work is two-fold. It is expected that methods for determining 

depth from focus can be used: 

1. For specific applications in areas such as robotic sensing or industrial inspection, 

which are appropriate to the strengths and weaknesses of the technique; or 

2. In conjunction with other complementary techniques for depth perception, as 

part of a larger, general purpose computer vision system. 

2

 Active ranging is of course excluded. 
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1.3 C O N C E P T OF D E P T H F R O M FOCUS 

A camera's focal parameters, such as the aperture size, the position of the image plane, 

and the focal length, determine the distance to points in the scene that will be in 

perfect focus, and the depth of field.3 If a camera has a very limited depth of field, 

then only points in the observed scene that are the same distance from the camera will 

be in perfect focus. Other points in the scene, at different distances from the camera, 

will be out of focus. Therefore, the distance to an object in a scene can be deduced by 

knowledge of current camera focal parameters and the degree that the object is out of 

focus. 

In summary, the concept of depth from focus involves calculating distances to points 

in an observed scene, by modelling the effect that the camera's focal parameters have 

on images acquired with a small depth of field. This technique is passive and requires 

only a single camera. 

1.4 S T A T E M E N T OF P R O B L E M 

The problem addressed by this thesis, is given a blocks scene with featured objects an 

unknown distance from the camera, but within a known range, derive the distance to 

features in the scene using the concept of depth from focus. This will be attempted in 

a setting that is as generalized as possible. 

1.5 OBJECTIVES OF THESIS 

The objectives of this thesis are to: 

3

The depth of field is the range of distances over which objects are fairly well focused [66, p. 25|. 
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� Provide a background understanding to the concept and theory of depth from 

focus; 

� Survey the literature for current methods of obtaining depth from focus; 

� Analyze the merits and problems of current methods; 

� Investigate new general methods for obtaining depth from focus; and 

� Experimentally implement the most general methods. 



Chapter 2 

RATIONALE 

2.1 INTRODUCTION 

This chapter provides the rationale for the method of depth from focus. Its purpose 

is to give the reader a summary of the strengths and weaknesses of this method, with 

some comparisons made to other passive ranging techniques. Once this background 

has been established, Chapter 3 proceeds with the mathematical theory of defocus. 

2.2 OVERVIEW 

This chapter opens with Section 2.3, which outlines the general advantages of depth 

from focus over most other passive ranging techniques. In addition to these advantages, 

Section 2.4 explores the connections depth from focus has with biological vision systems. 

To present a balanced view, the next two sections look at some of the problems 

with depth from focus. Section 2.5 describes the disadvantages of depth from focus, 

that are somewhat unique to this technique. Then Section 2.6 looks at disadvantages 

that depth from focus shares with other passive ranging systems. 

2.3 ADVANTAGES OF D E P T H F R O M FOCUS 

This section will look at some of the advantages of depth from focus, that make the 

technique attractive. 

5 
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No correspondence problem: Any passive optical system, imaging an unknown 

object, requires at least two rays of light from the object, to determine the distance 

to the object. Simply put, a single light ray carries no information as to how far 

it has travelled, after reflecting from an object.1 

In binocular stereo vision, the two rays of light from the same point on an object, 

are obtained from two imaging systems which have a different view or projection. 

Combining the conjugate points on both images requires a clever, often hierar-

chical, correspondence algorithm. This process is computationally intensive and 

often susceptible to errors [55]. 

In a depth from focus system, the two rays of light are intrinsically matched 

by the symmetry of a normal lens system. The optical system in most cameras 

reproduces the entire observed scene into a small three-dimensional image space 

behind the lens. For an ideal single lens, all light rays from a point object at a 

distance D0 from the lens must meet at the image point, a distance D; on the 

other side of the lens, according to the Gaussian lens law [114] 

1 1 1 , , 

D J D , = - F ' ( 2 ' 1 ) 

where F is the focal length. Therefore, in a depth from focus system, the cor-

respondence problem is eliminated, and replaced instead by a series of image 

processing tasks to locate Di within the image space. 

Suitable for hardware implementation: As will be explained in Section 3.3, de-

focus can be modelled as a convolution of a scene with a defocus operator. There-

fore, in solving the depth from focus problem, the key sub-problem is isolating 

and modelling this defocus operator. As will be seen in Chapter 6, this can be 

1

With coherent light, some information could be found in the phase difference between very close 

neighbouring rays, however normal lighting is usually incoherent. 
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described as a series of deterministic image processing tasks (ie. Fast Fourier 

transforms, convolutions, or matrix operations). The predictable computational 

path simplifies the task of hardware implementation. 

Suitable for parallel processing: In solving the depth from focus problem, all of 

the information regarding the state of focus can be found within a local region, 

independent of neighbouring regions. Although focus information from neigh-

bouring regions may be useful as a continuity constraint, it is not essential. Since 

depth from focus is primarily a local task, it is quite suitable for parallel process-

ing, where any number of processing elements can determine the depth of local 

regions independent of each other. 

Requires only one camera: Another important advantage of the depth from focus 

technique, is that only one camera is required. Although two or more images 

of the same scene may be required with different focal parameters, these can be 

obtained from the same camera, since a different viewing angle or projection is 

not required. A one-camera system decreases the total cost and lends itself to a 

more compact implementation. 

No occlusion problem: In calculating depth from focus, two or more images may 

have to be obtained with different focal parameters, however these images are 

from the same perspective and viewing angle. Therefore all objects present in 

one image are also present in the other image (although they may be blurred by 

differing amounts). This avoids the occlusion problem, which can occur in other 

ranging techniques such as binocular stereo or depth from motion [142]. 
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2.4 CONNECTION TO BIOLOGICAL VISION 

Another reason for pursuing depth from focus, is a connection to biological vision, 

although it may not be readily apparent. It is recognized that accommodation2 is an 

inaccurate cue for depth perception in humans [125, p. 110][120, p. 527]. That is, 

the sole act of focusing from one object to another, yields little appreciation of their 

absolute distance from the viewer. 

However, Pentland has reported that for a fixed accommodative state, the amount 

of defocus in the rest of the scene is a direct cue to relative depth [119] [120]. He 

proposes a simple experiment to affirm this hypothesis. 

"First make a pinhole camera by poking a small, clean hole through a piece 

of stiff paper or metal. Imposition of a pinhole in the line of sight causes 

the depth of field to be very large, thus effectively removing this depth cue 

from the image. Close one eye and view the world through the pinhole, 

holding it as close as possible to the surface of your eye, and note your 

impression of depth (for those of you with glasses, things will look sharper 

if you are doing it correctly). Now quickly remove the pinhole and view the 

world normally (still using only one eye). The change in the sense of depth 

is remarkable; many observers report that the change is nearly comparable 

to the difference between monocular and binocular viewing, or the change 

which occurs when a stationary object begins to move." [120, p. 527] 

2.5 DISADVANTAGES OF D E P T H F R O M FOCUS 

To provide a balanced view of depth from focus, this section will describe some of the 

disadvantages of this technique. 

2

Accommodation means changing the focal length of the eye's lens. 
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Error increases with distance squared: One important problem with using the 

depth from focus technique, is that the error increases with distance squared [83, 

p. 235], whereas the error in binocular stereo is proportional only to the distance.3 

Therefore, by definition, the depth from focus technique is only suitable for near-

field perception. As will be shown in Section 3.7, the placement and range of 

this near-field is selected by changing the camera's focal parameters. It has been 

shown by Pentland [120], that assuming human visual system parameters, even 

at a distance of 10 meters, the error in using focus information is only twice that 

of using stereopsis. 

Problem ill-posed: As will be described in Section 5.5.2, depth from focus involves 

solving an inverse optics problem, and is often ill-posed. Therefore, a. carefully 

constructed, robust technique will be required to adequately solve this problem. 

Ambiguity about point of focus: As will be shown in Section 3.4.1, the theoret-

ical defocus operator is symmetrical on either side of the point of best focus.4 

Therefore, even if the defocus operator is accurately identified, the distance to 

the point of interest in the scene can still be one of two values. To resolve this 

ambiguity, requires a third image be taken with different focal parameters (see 

Section 7.2), or more commonly, the objects in the scene will have to be re-

stricted to a known range of distances. The latter approach will be taken in the 

experiments described in Chapter 8. 

No scene motion permitted: If more than one image is obtained with the same 

camera, then it is critical that no motion (in the scene, or of the camera) take 

3

For simple two camera geometry, as given by Horn [66, pp. 300-301]. 
4

 In a camera with non-ideal optics, it is possible for the defocus operator to be unsymmetrical on 

either side of the point of best focus, due to aberrations (this was indeed true for the camera used by 

the author for the experiments in Chapters 7 and 8), however this difference is probably t o o slight, to be 

reliably detected. 
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place between acquired images. This can be ameliorated by using a two camera 

system for depth from focus, such as presented by Pentland [117], where both 

images are acquired simultaneously. However, motion during the acquisition of 

the images may still affect the results, depending on the details of the system. 

Another approach to the problem of scene motion is to combine depth from 

focus with motion parallax, since the two are complementary ranging techniques. 

Subbarao has proposed a system for monocular motion recovery and binocular 

recovery of depth and motion [142]. 

2.6 PROBLEMS C O M M O N WITH OTHER PASSIVE RANGING SYS-

TEMS 

In addition to the disadvantages cited in Section 2.5, depth from focus also has problems 

which it shares with other passive ranging systems. 

Illuminated scene features required: Since depth from focus is passive,5 it is nec-

essary for the scene to contain high-contrast features such as edges. For example, 

this technique would not function if the scene was a blank, featureless wall. A sim-

ilar requirement also exists for other passive ranging techniques, such as binocular 

stereo or motion parallax. 

In addition to a scene with high-contrast features, a sufficient external illumi-

nation of the scene is also required. The required intensity of illumination is, 

of course, dependent on the aperture size and sensitivity of the camera used to 

acquire the images. 

5

 Although, as shown in Section 4.4.2, some researchers have simplified the depth from focus problem 

by introducing active elements into the scene, solving the problem does not require active elements and 

therefore will be called passive. 
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Repetitive patterns: Repetitive patterns present an ambiguity problem for binocu-

lar stereo, since the correspondence problem can be solved in several ways, imply-

ing different depths [107, p. 113]. Although the correspondence problem does not 

arise in depth from focus, repetitive patterns may induce a phase inversion in the 

defocused image [51, §6-4], which is also problematic. As will be shown in Sec-

tion 8.6, this problem is partially alleviated by the author's method of calculating 

depth from focus, as long as only one phase inversion has occurred. 

Other foibles: Additionally, there are other foibles which depth from focus shares 

with other passive ranging systems: 

• Camera sensor saturation or black-out introduces non-linear intensities into 

the acquired images; 

• Specularity and mirrored surfaces image the light source, giving inaccurate 

depth values of the surface; and 

• Semi-transparent surfaces, such as dirty windows, offer intermingled cues of 

two or more different depths. 



Chapter 3 

THEORY OF DEFOCUS 

3.1 INTRODUCTION 

Chapter 2 has shown that depth from focus is a viable technique for depth perception. 

To understand the nature of defocus, this chapter outlines the theoretical models given 

in the literature. This forms a necessary background for Chapter 4, which is a compre-

hensive summary of methods for determining depth from focus, as currently available 

in the literature. 

3.2 OVERVIEW 

Section 3.3 models defocus as a convolution of a scene by a point spread function. The 

next two sections then outline two traditional methods for analyzing defocus: 

1. Geometric Optics, which relies on ray-tracing and results in a first-order approx-

imation. 

2. Diffraction Theory, which uses the wave theory of light and its results are exact. 

After these models have been presented, Section 3.6 compares the two models in both 

the spatial and spatial frequency domains. The last section of this chapter presents 

some simple equations for calculating the working area of depth from focus, and the 

minimum resolution required. 

12 
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3.3 MODELLING DEFOCUS AS CONVOLUTION BY AN OPERATOR 

The transformation of an optical system can be modelled as a convolution operation. 

If it is assumed that 

� The optical system is linear and shift-invariant; and 

� The light source is incoherent, 

then Goodman [51, p. 109] gives the following equation 

(3.1) 

where 

� i(x,y) is the measured image intensity distribution; 

� s(x,y) is the intensity distribution of the scene being viewed; 

� hc(x,y) is the impulse response obtained with coherent illumination; and 

� K is a real constant. 

If the incoherent impulse response h(x.y), is defined as 

h(x,y) = K\hc(x,y)\2 , (3.2) 

then (3.1) can be rewritten as 

i(x,y) h(x,y) ® s(x,y) , (3.3) 

where <g> is the convolution operator. 
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Equation (3.3) relates the scene to the acquired image by a simple convolution 

relationship. In the spatial frequency domain, this can be expressed as 

I(fx,fy) = H(fx,fy)-S(fx,fy) (3.4) 

where 

»(x,y) <=> I{fz,fy), (3-5) 

h{x,y) <=> H(fx,fv), and (3.6) 

s(x,y) S{fx,fv), (3.7) 

are Fourier pairs. 

3.4 GEOMETRIC OPTICS 

This section outlines the geometric optics model of defocus by ray tracing in the spatial 

domain. The result is a first-order approximation. 

3.4.1 Point Spread Function 

The geometric optics model for defocusing is explained by Horn [65][66, p. .1.27]. 

From Figure 3.1, similar triangles yield a formula for R, the radius of the blur circle, 

R = 4 r - > (3-8) 
2Dfi

 K ' 

where 

� L is the diameter of the lens or the aperture; 

� Dfi is the distance from the lens to a sharply focused image of a particular object; 

and 
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Lens 

Point 

object 

Image 

plane 

Figure 3.1: Ray diagram to derive the geometric optics model of defocus. 

� 6 is the displacement of the image plane from sharp focus.1 

To a first order approximation, the brightness within the blur circle is uniform. The 

defocus operator h(x,y), where x and y are coordinates in the image plane, is defined 

as 

h{x,y) 
ifx2 + y2< R2 

0 if x 2 + y2 > R2 

(3.9) 

Blurring due to defocus can now be modelled as convolution with the pillbox given in 

(3.9) [66, p. 127). 

It is easy to turn (3.8) into an expression which relates the radius of the blur circle 

with the distance to an object. Also obtained from Figure 3.1, is the relation 

8 = D f t - Dt , (3.10) 

where JD , is the distance from the lens to the defocused image. 

*To avoid ambiguity, it will be assumed that objects are in front of the point of best focus, since 

it can be seen that a blur circle of equal radius is also formed on the other side of the point of perfect 

focus. 
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It is useful to note that for an optical system, the diameter of the aperture L, is 

often given as [66, p. 208[[60, p. 152] 

L = j , (3-11) 

where F is the focal length, and / is the /-number. Substituting (3.10) and (3.11) into 

(3.8) yields 

= FPfj-FDj 

2fDfl

 K ' 

Then, solving the lens law, where D„ is the distance from the lens to a point object, 

1 + 4=4> (3-13) 
Dfi D0 F 

for Dfi yields 

FD 
Dn = - f ^ - . (3.14) 

D0 - F y ' 

Substituting (3.14) into (3.12), eliminates Dfi, 

= FDj + FD0 - DJDQ 

2fD0

 V ; 

Or, solved for D0, (3.15) can be rewritten as 

D0 = — . (3.16) 
0 2fR + D i - F y ' 

Equations (3.15) and (3.16) are simple expressions which relate the radius of the blur 

circle R, to the object distance D0. Equation (3.16) shows that defocus (designated by 

R), is a unique indicator of depth for a point source. 

Since the experimental results will be obtained in distances mensurated in pixels, 

it is helpful to also express R in pixel units.2 Therefore, if P is the digitization ratio 

(ie. pixels/mm) of the camera, and Rp is R in pixel units, then 

RV = R-P. (3.17) 

Currently, R takes on the same units as F, Dj, and D„ 
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3.4.2 Optical Transfer Function 

Since the spatial domain model for defocus is circularly symmetric, the optical transfer 

function of defocus can be obtained by finding the Hankel transform of (3.9) [18, p. 

244][66, p. 127]. 

To find the Hankel transform, polar coordinates in both the spatial and spatial 

frequency domains must be defined: 

� r is the radial component in the spatial domain; 

� 6 is the angular component in the spatial domain; 

� fx and fv are the spatial frequency coordinates, expressed in cycles/unit, not 

radians; 

� p is the radial component in the spatial frequency domain; and 

� <j> is the angular component in the spatial frequency domain. 

Then, if a circularly symmetric f(x,y) = / ( r ) , Bracewell gives the formula for the 

Hankel transform of f(r) as [18, p. 248] 

x — r cos 6 and y = r sin 0 , (3.18) 

fx = pcoscb and fy = ps'm4> , (3.19) 

where 

(3.20) 

where JQ(X) is the zeroth-order Bessel function. 

Using (3.20), the Hankel transform of (3.9) is 

R 
(3.21) 

H9(P) = 
2Ji(2nRp) 

{2nRp) 
(3.22) 
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using the identity 

-^-zJi(z) = zJ0{z) . (3.23) 
dz 

Equation (3.22) is an expression for the optical transfer function of defocus, assuming 

geometric optics. 

To maintain compatibility with the discrete Hankel transform, which will be dis-

cussed in Section 3.6.2, the radial frequency component p, can with the help of (3.17), 

be expressed in terms of pixels as pp [123, §12.1], 

P = Pj£ , (3-24) 

where N is the number of points in the transform. 

3.5 D I F F R A C T I O N O P T I C S 

The diffraction optics model of defocus uses the wave theory of light and its results 

are exact.3 The theory is described by Hopkins [64][63][6l]. It is also covered in the 

standard reference on optics by Born and Wolf [16], and in limited form by other 

references [51][82][134]. The details will not be presented here, so the reader is referred 

to these references. Unlike the geometric optics model, the optical transfer function is 

usually derived first, and the point spread function is derived later. 

3.5.1 Optical Transfer Function 

For incoherent monochromatic light, and a circular aperture, Hopkins [61] gives the 

normalized 4 optical transfer function of defocus to be 

Hd{s) = — ^ sin a (jl-y 
na Jo \ 

dy , (3.25) 

3

That is, assuming the optics are ideal. 
4

The word "normalized" implies that the optical transfer function at /.„ = = 0 is one. 
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where s is a reduced spatial frequency related to the spatial frequency in radial coor-

dinates p, by 

5 = . (3.26) 
sin a 

Here A is the wavelength of the monochromatic light, and sin a can be calculated from 

Figure 3.2 as 

sm a = (3.27) 

Using (3.14) and (3.11), (3.27) can be transformed into 

D - F 
sin a = —= (3.28) 

yJ(D02fY + {D0-FY 

The other dimensionless parameter a, in (3.25), is given by Hopkins as 

4nw\s\ 
a = - x - ' 

where the path error of defocus w, is 

(3.29) 
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Using (3.10), (3.30) can be transformed into 

Dfi - Dj sin 2 a 
w — . (3.31) 

2 V 7 

To calculate the optical transfer function of defocus, (3.25) can be numerically-

integrated, or Hopkins also gives (3.25) as a series of Bessel functions, 

H<(,) = ± cos (̂ ) + £(-ir' (^~) (•/*„-.(«)--w«)i} -

fa* (T) IS-1'" ( % T ^ ) ^ - ̂ >M) • 
where 

P = cos" 1 (I) . (3.33) 

Other numerical approximations are given by Hopkins [62], and Stokseth [134]. 

3.6 COMPARISON OF GEOMETRIC OPTICS AND DIFFRACTION 

OPTICS 

3.6.1 Optical Transfer Function 

To compare the optical transfer function of defocus, using the geometric optics model 

and the diffraction optics model, several physical parameters will be assumed. Let 

� The focal length of the lens be F = 50 mm; and 

� The point of perfect focus be set at D 0 = 1,0 m. 

The distance to the image plane can be found by (2.1), to be £),� = 52.63 mm. It will 

also be assumed that 

� The wave length, A = 500 nm; 5 

5

The ends of the visible range, A = 400 and X = 700 nm were also tried, with no appreciable change 

in results. 



Chapter 3. THEORY OF DEFOCUS 21 

Spatial frequency pp in pixels 

Figure 3.3: Cross-sections of optical transfer functions for a point object at a distance 

D0 = 0.95 m from camera. 

-32 -16 0 16 32 

Spatial frequency pp in pixels 

Figure 3.4: Cross-sections of optical transfer functions for a point object at a distance 

D0 = 0.85 m from camera. 
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� The /-number is / = 1.3; and 

� The digitization ratio of the camera is P = 60.0 pixels/mm. 

Then using (3.15), (3.24) and (3.22), the optical transfer function for geometric 

optics can be calculated. Using (3.28), (3.26), (3.31), (3.29), (3.33) and (3.32) the 

optical transfer function for diffraction optics can be calculated. Figure 3.3 shows a 

cross-section of these two optical transfer functions for relatively little defocus, a point 

object at a distance D0 = 0.95 m. Figure 3.4 shows the same optical transfer functions, 

but for a point object at a distance D0 = 0.85 m, which is a large amount of defocus. In 

the spatial frequency domain, the two transfer functions obtained by geometric optics 

and diffraction optics, are quite similar. 

3.6.2 Point Spread Function 

Born [16] and Potmesil et al [122] have shown that the point spread function for diffrac-

tion optics can be expressed as a complex series of Bessel functions. But since the opti-

cal transfer function has already been presented and calculated for two examples in Sec-

tion 3.5.1, a simpler approach will be to take the inverse Hankel transform [116][144][52] 

of the cross-sections in Figures 3.3 and 3.4.G The point spread function for geometric 

optics is given by (3.15) and (3.9). 

Figures 3.5 and 3.6 show the point spread functions for point object distances of 

D0 = 0.95 and D0 — 0.85 m respectively. It can be seen quite clearly that the point 

spread functions for the two models are very similar. Considering the heavy computa-

tional requirements for the diffraction optics model, for the optical parameters used in 

the examples, the geometric optics model provides an adequate model for defocus. 

G

Or, the inverse Fourier transform of the full two-dimensional function can be taken and the cross-

section of the point spread function extracted. This technique, although more computationally intensive 

than the inverse Hankel transform, yielded better results. It should also be noted that taking a discrete 
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Figure 3.5:. Cross-sections of point spread functions for a point object at a distance 

D0 = 0.95 m from camera. 
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Figure 3.6: Cross-sections of point spread functions for a point object at a distance 

D0 = 0.85 m from camera. 
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3.7 WORKING A R E A AND RESOLUTION 

The working area of depth from focus, is the range of object distances which can be 

recovered. That is, the working area is between the closest object distance and the 

farthest object distance which can be accurately measured. If an application calls for 

a specific working area, the optical parameters of the camera can usually be selected 

to accommodate this requirement. Once the working area is known, the required 

resolution can be calculated. 

3.7.1 Working Area Of Depth From Focus 

The working area is governed by (3.16), 

°" = 21R + A - F ' (3'34» 

Using this equation requires two steps. 

1. A digital, depth from focus algorithm will usually require the radius of the defocus 

operator to be within an optimal range of pixel values ( i2 p ( m m ) to -R p ( m a x ) ) - That 

is, if the defocus operator is too small then it cannot be recovered, and if the 

defocus operator is too large, then it will not be contained within the local area 

examined. Using (3.17) converts -R p ( m m ) and -R p ( n i a x ) in pixel values to distance 

units -R( m m ) and -R( m a x ) . This determines the range of R. 

2. After the range of R is determined, then Z?<, F, and / can be experimentally 

adjusted as desired (although they are constrained to values obtained by available 

lenses), to achieve the desired working area jD0(mm) to £ > 0 j m a x | . 

transform can introduce small aliasing effects into the result, however it is not critical to this comparison. 
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Therefore, using (3.17) and (3.34), the working area is between 

FDi 
D o ( m a x ) = 2 f R , � > ' (3-35) 

1 j m m ' + D i - F 

and 

?(min) 2fRi \ ^(minl = o f D , . ' � ' (3-36) 

P 

To illustrate the selection of a working area, the same camera optical parameters 

used for the experiments in Chapter 8 will be assumed. For this example, let 

� The blur circle radius vary from i? f,(mj n) = 3 to -R p ( m a x ) = 15 pixels; 

� The focal length of the lens be F — 50 mm; 

� The /-number be / = 1.3; 

� The distance from the lens to the image plane be adjustable from Di = 50 to 52 

mm, which corresponds to the point of perfect focus adjusted from infinity to 1.3 

meters; and 

� The digitization ratio P — 60 pixels/mm. 

Substituting these parameters and ranges into (3.35) and (3.36), produces the working 

area shown in Figure 3.7. For any given setting of the image plane £>,, the black line 

above it represents the object distances D0 which can be detected. 

It can be seen from the graph, that for a 50 mm lens, the working area can poten-

tially be very large. For the lens focused close to infinity, the working area is about 4 

to 18 meters and for the lens focused at one meter, the working area is about 80 to 

95 cm. Different working area distributions can be obtained by selecting other values 

for the focal length F, and the /-number / . Selecting either a shorter focal length or a 

larger /-number, moves the working area closer to the camera. 
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20-1 

50.0 50.4 50.8 51.2 51.6 52.0 
D{ in mm 

o° 20 108 7 6 5 4 3 2.5 2.0 1.8 1.6 1.5 1.4 1.3 
Distance to Point of Perfect Focus in meters 

Figure 3.7: Example of working area of depth from focus, for the focal parameters 

given in the text. 
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3.7.2 Scene And Camera Resolution 

Depending on the nature of the application, the resolution problem may be stated in 

one of two ways: 

1. The smallest size of objects in the scene is known, and the camera resolution is 

desired; or 

2. The camera resolution is known, and the size of objects that can be discerned is 

desired. 

The lateral magnification m, of a simple lens system is [82, p. 168] 

m = c 7 = ^ ' ( 3 ' 3 / ) 

where S0 is the size of the object and ,5', is the size of the imaged object. Using (3.14), 

(3.37) becomes 

Si F . 
— = . 3.38 
So D 0 ~ F K ' 

For the first resolution problem, S0 is given and 5, is calculated, and for the second 

resolution problem Si is given and S0 is calculated. The optical parameters F a,nd D0 

must be known in both cases. 

For example, if 

� The camera resolution is 5; = 1/60 mm per pixel; 

� The focal length F — 50 mm; and 

� The object distance D0 = 1 meter. 

Then, using (3.38), any object less than S0 « 1 mm cannot be resolved. 
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3.8 CONCLUSIONS 

Defocus can be modelled as convolution by a point spread function. The nature of this 

point spread function can be modelled in two traditional ways: geometric optics and 

diffraction optics. For the optical camera parameters to be used in the experimental 

analysis of Chapter 8, it was shown that the diffraction optics model yields a similar 

result to geometric optics. Considering the complexity of the diffraction optics model, 

geometric optics should provide an adequate theoretical representation. 

The equations for determining the working area of depth from focus were presented. 

The location and depth of this working area is determined by selecting the appropriate 

optical parameters. From the example, it was shown that for a 50 mm lens focused 

close to infinity, the working area is about 4 to 18 meters and for the lens focused at 

close distances, the working area is about 80 to 95 cm. Selecting either a shorter focal 

length, or a larger /-number moves the working area closer to the camera. Equations 

were also given for calculating the scene resolution, given the camera resolution, and 

vice versa. 



Chapter 4 

LITERATURE REVIEW 

4.1 INTRODUCTION 

This chapter is a comprehensive summary of the work done by other researchers in 

solving the depth from focus problem. Analysis is deferred to Chapter 5. References 

were gathered by consulting 

� Results of a bibliographic database search; 

� Proceedings of major conferences in Computer Vision and Pattern Recognition; 

� Surveys of ranging techniques [79][73][77][135][128][113][9][11][10]; 

� Results of a Patent search; and 

� Citations from papers in the field. 

4.2 OVERVIEW 

Section 4.3 presents methods of depth from automatic focus. Early researchers tried 

to gain an understanding of the biological vision system and develop similar methods 

for automatically focusing a camera on the point of interest. The distance to the 

point in the scene could then be determined from the position of the lens. However, a 

key limitation of this technique was that it measured depth, one point at a time and 

required an adjustment of the lens setting for each point. 

29 
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Section 4.4 looks at methods of calculating depth by measuring the amount of 

defocus, called the focal gradient, throughout the image. Since one unfocused image 

of an unknown scene is an underconstrained problem (soft edges in the images may 

be either unfocused hard edges in the scene, or focused soft edges in the scene), three 

approaches exist: 

� Introduce extra cues into the scene; 

� Make assumptions about the scene; or 

� Take several images with different defocus operators. 

Section 4.5 examines patented approaches to solving the depth from focus problem, 

and the last section looks at the work which has begun in integrating depth cues from 

defocus, with other means of depth perception. 

4.3 D E P T H FROM AUTOMATIC FOCUS 

The technique of depth from automatic focus uses the following simple operating sce-

nario for each depth point: 

1. Identify a local region in the image for which a depth value is desired; 

2. Automatically focus on that region, through a feedback loop which uses an algo-

rithm to assess the quality of the image, and moves the lens to obtain the position 

of sharpest focus; and 

3. Use the position of the lens to calculate the distance to the region of interest. 

The most difficult task, of course, is devising a robust automatic focusing algorithm. 
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4.3.1 Biological Accommodation 

Since humans are able to effortlessly and accurately perform this task, early studies 

concentrated on understanding and modelling the human accommodation system. An 

extensive survey was done in 1966 by Crane [36], who summarized the available litera-

ture at that time, 1 and attempted to model the human visual accommodation system. 

He did so, by trying to answer the following three questions: 

1. What portion of the retinal picture is involved in accommodation control; 

2. How that portion of the picture is processed to derive a measure of defocus; and 

3. How that signal in turn is used to control the ciliary muscles. 

He concluded that the relevant portion of the retina is the fovea, but more importantly, 

he showed how neural circuits based on lateral inhibition produce a measure of defocus.2 

To model the control of the ciliary muscles, he proposed a system which used the 

information from the accommodative saccades to increase the depth of field. 

4.3.2 Image Processing For Automatic Focus 

In the late sixties, the work on automatic focusing seemed to depart from the psy-

chophysics and lay more purely in the image processing domain. Since defocus tends 

to limit the presence of high spatial frequencies, several schemes were developed which 

assessed the relative presence of high spatial frequencies. 

In 1968, Horn proposed and implemented an algorithm for automatic focusing, 

based on the Fourier transform [65]. He took a one-dimensional F F T through the 

1

 Crane primarily cites the work of F.W. Campbell (eg. [24][22]), who published numerous papers in 

the late fifties, outlining the parameters and constraints of human accommodation. 
2

This concept of visual channels, that are sensitive to specific spatial frequencies, was later developed 

by Campbell and Robson [23] and Marr [107]. 
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region of interest, and obtained the sum of the energy in a region greater than some 

minimum frequency. This was then divided by the energy in a lower frequency window 

to normalize it. In principle, this was a good approach, however it was computationally 

expensive, since the F F T computed information concerning the magnitude and phase 

information for each frequency band, which was not explicitly required. 

Another approach, explored by Tenenbaum in 1970 [145], examined the effect of 

defocusing an image, by the changes in the nature of edges. Since defocusing tends 

to decrease the gradient of an edge, the principle employed was to find the point of 

greatest focus by trying to maximize the magnitude of the gradient in the region of 

interest. The gradient was found using the Sobel operator, 

magnitude of the gradient = yji\ + iy , (4-1) 

and the convolution kernels 

/ 
-1 0 r / 

1 2 1 

- 2 0 2 h = 0 0 0 

I -1 0 1 ! 
V -1 - 2 - 1 

In 1972, Mendelsohn, Mayall and Kujoory [109][93] proposed a simple algorithm for 

focusing human metaphase chromosomes viewed under a microscope. The algorithm 

was maximizing the intensity over a threshold, 

intensity over a threshold = ^2^2{i{x,y) — , i{x,y) > ^ , (4-3) 

where i(x, y) is the image intensity and ̂  is a threshold set in the midrange of image 

greyness. This technique was also implemented by Johnson and Goforth in 1974 [76], 

and Mason and Green in 1975 [108]. It appears, however, that this technique was not 

easily generalized to other scenes. 
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Preston designed a feed-back mechanism in 1973, which focused a microscope by 

maximizing the high frequency content of a video photomultiplier during a raster scan 

of the slide [124]. A similar algorithm using a video camera was also implemented by 

Johnson and Goforth [76]. Also in 1973. Ohteru et al. combined autofocus with pattern 

recognition for their W A B O T project [115]. 

In 1974, Muller and Buffington [110] proposed three new criteria for automatic 

focusing 

1. Squared gradient: The difference between pixels was squared and maximized. For 

example, horizontally 

squared gradient = X / Kl
3

'' n) ~~ ^ — 

* v 

2. Laplacian: The second derivative, found by 

dH dH 
Laplacian — V i(x,y) = ——- + 

dx2 dy2 

was maximized, using the kernel 

Laplacian 

(X 4 1^ 

4 -20 4 

1 4 1 

(4.4) 

( 4 . 5 ) 

(4.6) 

3. Signal power: The image energy was maximized, 

signal power = X / (
l

(
x

>y) 

x v 

(4.7) 

Erteza also implemented the squared gradient and Laplacian methods in 1976 

[42][41]. 

Jarvis, in 1976 [72] proposed three other focus criteria. 
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1. Histogram entropy: If P(i) was the frequency of occurrence of the grey-level i, 

then 

histogram entropy = - P{i) ln[P(t')] , P(i) ^ 0 , (4.8) 

i 

was to be minimized. 

2. Grey level variance: If the grey levels were viewed as random variables, then the 

criterion was to maximize the variance, 

grey level variance - ^ ^ [ t ' ( i , t / ) - ^ 2] , (4.9) 
£ y 

where p is the mean of the grey levels. 

3. Sum-modulus-difference: This was perhaps the simplest criterion proposed. The 

principle was to maximize the absolute value of the intensity difference between 

neighbouring pixels. Implemented horizontally, this would be 

sum-modulus-difference = X/I ^{xiV) ~~ ^{xiV ~ 1) I � (4-10) 

z v 

Jarvis found that all three criteria showed considerable promise in focus optimization, 

and were relatively easy to calculate. Of the three, the sum-modulus-difference was the 

least ambiguous for the images tested. 

A concise comparison of most of the previously mentioned algorithms was performed 

by Ligthart and Groen in 1982 [101]. They concluded that the squared gradient and 

the grey level variance methods yielded the best results. Also in 1982, Hanma et al. 

developed a hardware technique of maximizing the high frequency content of the video 

signal [58], to implement automatic focusing in a video camera. 

In 1983, Schlag et al. [131][19], evaluated five autofocusing methods, and found the 

magnitude of the gradient to be best. A few years later, in 1987, Yamamoto et al. 
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implemented an autofocus camera system in hardware [154]. Their method maximized 

the height of the first derivative. 

Also in 1987, Luo et al. [103][104] presented two slightly different algorithms 

1. Sum: The total sum of the grey levels was maximized, 

sum = J2Y^{(x^y) � I 4- 1 1) 
i y 

2. Histogram variance: The variance in the histogram of grey levels was maximized, 

histogram variance = ^ ]P {i — N(i)^ , (4.12) 

where N(i) was the number of pixels with intensity i and N(i) was the mean. 

The most recent work on depth by automatic focusing, was done by Krotkov 

[90][84][88][83][9l][92], who implemented most of the previously mentioned algorithms. 

Krotkov found after experimenting with several different images, that maximizing the 

magnitude of the gradient, found with the Sobel operator, proved superior to the oth-

ers in monotonicity about the peak and robustness in the presence of noise. Using 

this technique, he was able to discern object distances between 1 and 3 meters to an 

accuracy of 2.5%. 

4.3.3 Computing Depth From Lens Position 

Once the position of the lens has been established through the use of an automatic 

focusing algorithm, the physical distance from the camera to the scene can easily be 

calculated with simple geometric optics [114]. For the thick-lens geometry shown in 

Figure 4.1, the Gaussian lens law (2.1) holds 

1 1 1 , 
— + — = - . 4.13 
D0 D{ F K ' 

For a particular lens, the position of the principal planes, P I and P2 can usually be 

found by calibration with known distances. 
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Figure 4.1: Thick-lens geometry. P i and P2 are the principal planes and F is the focal 

length. 

4.3.4 A Pyramid Approach 

A key limitation of determining depth by automatic focusing, is that it measures the 

depth, one point at a time, and requires an adjustment of the lens setting for each point. 

This process was streamlined in 1987 by Darrell and Wohn [37][38], who acquired images 

at five different lens positions. Then using Laplacian and Gaussian pyramids to isolate 

frequency ranges, they were able to interpolate depth to various points in the scene. 

Although this process makes it possible to acquire depth at many points in the scene, 

it would be more desirable to find a method that requires only one or two ima,ges of 

the scene. The next section examines that possibility. 

4.4 D E P T H FROM FOCAL GRADIENT 

4.4.1 Concept Of Focal Gradient 

If the amount of defocus could be measured throughout the image, then this would 

reduce the number of images needed. In 1970 Cornsweet [35, pp. 45-47] recorded 

that two images formed with different apertures were a source of depth information. 
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Jarvis also hinted at this in 1976 [72], however the first experimental work was done by 

Pentland in 1982 [118]. He used the term focal gradient [121] to describe the amount 

of defocus throughout the image. Then depth could be estimated at many points of 

the scene. 

Unfortunately, one unfocused image of an unknown scene does not contain enough 

information to recover focal gradient. Soft edges in the images may be either unfocused 

hard edges in the scene, or focused soft edges in the scene. To further constrain the 

problem three approaches exist: 

� Introduce extra cues into the scene; 

� Make assumptions about the scene; or 

� Get more information by taking several images of the same scene with different 

defocus operators. 

4.4.2 Introduction Of Extra Cues 

Several researchers have taken a number of novel approaches to constrain the scene 

with various forms of structured lighting. Although structured lighting is a common 

technique used in range finding [73] [9] [ 10], most methods assume that all parts of the 

image are in focus. The methods presented in this section take advantage of a limited 

depth of field, where defocused regions are observed. 

One technique, called the BIRIS system, was reported by Blais and Rioux in 1986 

[14][127]. The extra cue was vertical lines of laser light scanned across the scene. 

The depth sensor consisted of a C C D camera fitted with a mask, having two small 

apertures on a horizontal axis. As shown by Figure 4.2, the mask caused an object 

which was illuminated at point B, and because of its position was out of focus, to 
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project two points, 6' to the camera. The distance between these two points could then 

be triangulated to discern the depth to the object. 

Plane Object Mask Lens Detector 

Figure 4.2: Basic principle of BIRIS system. 

Also in 1986, Kinoshita et al. developed a range sensor based on a conical beam 

of light passing through an objective lens [81]. The lens was moved until the circle of 

light became a point, and range was inferred from the position of the lens. A simple 

photodiode was used as the sensor. 

Another technique was developed by Engelhardt and Hausler in 1988 [40]. Similar 

to the Talbot effect, which uses the self-imaging property of coherently illuminated 

gratings [26][96], they used an incoherently illuminated grating and detected spatial 

frequencies. 

On a much smaller scale, Corle et al. in 1987, used focusing principles to measure 

distances down to 0.04/mi [34]. The sample was vibrated in a Type II confocal scanning 

microscope to obtain a differential measurement. 

The most recent work in using structured lighting was by Girod and Scherock in 1989 

[47]. Range was calculated from the standard deviation of intensities along illuminated 

stripes. Unsymmetric al illumination patterns were used to solve the ambiguity about 

the point of perfect focus. 
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4.4.3 Assumptions Made About The Scene 

The second approach to constraining the problem is to make some assumptions about 

the scene. 

Sharp edges assumed 

A common, and sometimes reasonable assumption, is that edges in the scene are sharp 

black to white transitions. Tenenbaum in 1970 [145], measured the blur at step dis-

continuities in the scene. This assumption was also used recently by Pentland in 1982 

[118][121][120],3 who used the Laplacian to measure the width of the blurring function. 

Grossmann's work in 1987 [56], was similar to Pentland, except he used the directional 

gradient of the image. Additionally, Grossmann considered the case of ramp edges. 

In 1988, Garibotto and Storace expanded on the work of Pentland and Grossmann 

by looking at the ratio of the directional gradient of the image convolved with two 

Gaussians of different width [45]. 

The work of Pentland, and Garibotto and Storace assumed that the point spread 

function of defocus was a Gaussian. Subbarao in 1988 [143], removed that assumption, 

so that any rotationally symmetric point spread function could be used. He presented 

a method for recording the line spread function of a camera.4 Depth recovery of a step 

edge was done by measuring the spread parameter, which was considered to be the 

square root of the second central moment of the camera's line spread function. 

Bandwidth of edge assumed known 

As a different approach, Sayeh et al. [130] introduced some general equations relating 

the bandwidth of an edge, to degree of focus and hence distance. But no experimental 

3

Pentland also considered other cases which are presented in Section 4.4.4. 
4

Other work by Subbarao is presented in Section 4.4.4. 
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results were given, and it is not clear how the bandwidth of the unfocused edge could 

be robustly estimated. 

Defocus operator assumed space-invariant 

In 1987, Chuang presented a novel approach which assumed that the defocus operator 

did not change over a large area in the image (ie. the objects in the scene were all the 

same distance from the camera)[29]. One image of the scene was taken, and spatially 

displaced slices were extracted. By using Cepstrum analysis [15] [27] [28], the spectral 

effects of the scene tended to average out. while space-invariant spectral characteristics 

of the defocus operator remained. Once the defocus operator was identified, distance 

could easily be determined. 

4.4.4 More Than One Image Taken 

The third, and most general approach to constraining the ambiguity of defocused edges, 

is to acquire more than one image of the same scene but with different defocus operators. 

This is the most difficult, but also the most interesting work in deriving depth from 

focus. Researchers have used numerous methods for isolating the defocus operator from 

the scene content. 

Theory of varying the defocus operator 

The defocus operator can be changed by varying one or more of three camera param-

eters 

� Position of image plane; 

� Focal length; or 
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� Aperture. 

Assuming that the point spread function was a Gaussian, Subbarao derived the 

equations which related changes in each of these parameters to the Gaussian spread 

parameter and hence the distance to the scene. This was done for both infinitesimal 

changes [138][137], and finite changes [139]. In a follow-up paper [136] this was also 

extended to other defocus operators. 

Inverse filtering in the spatial frequency domain 

The most popular, and most general, method of isolating the defocus operator from 

the scene, is inverse filtering in the spatial frequency domain. 

Pentland introduced this work in 1982 [118], with follow-up papers in .1985 [121], 

1987 [120] and 1989 [117]. He assumed that the defocus operator was a Gaussian. As 

already mentioned in Section 4.4.3, one of his approaches was to further assume sharp 

edges. The other, more general approach, was to acquire two images with two different 

aperture settings. This was formulated as 

= �s{r,9)®g{r,al) ,4 1 4 ) 

i2{r,B) s{r,6)®g{r,o-2) 

where 

� s(r, 9) is the scene in focus; 

� H{ri^) is a local region of the image blurred with g(r, Oy) the Gaussian represent-

ing the defocus operator for one aperture and; 

� i2(r, 9) is a local region of the image blurred with g(r,u2) the Gaussian represent-

ing the defocus operator for the other aperture. 
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If the following are Fourier pairs, 

s{r,0 

ti(r,0 

h{r,9 

g{r,o-2 

<=> h{p,4>) , 

<=> k{p,4>) , 

G ( P , 

G\p, 

2n o\ 

_1 

'2lT Oi 

, and 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

then 

H P ) 

G{p,oi)oi 

G{p.a2)oi ' 
2 

^ f e x p {/2-K\O\ -a
2

) ) , 

(4.21) 

(4.22) 

where an integration has occurred over <p. 

Then after taking the natural log of (4.22), formulating it as a linear regression of 

p 2, and assuming that one aperture was a pinhole (CTI = 0), Pentland gave this equation 

for distance to the scene,
5 

FD, 
(4.24) 

Di-F- o2kf ' 

where k was an experimentally determined constant. 

In his latest paper [117], Pentland's technique was extended. He estimated the 

power in one or more frequency bandwidths, for one image taken with a pinhole aper-

ture, and one image taken with another aperture. These two values were then compared 

5

Pentland uses the relation f = F/r for the /-number of a lens, where r is the radius of the aperture. 

Since the correct relation is / = F/(2r) [66, p. 208][60, p. 152], (4.24) should be 

D0 = 
FDj 

D, - F - 2cr2fc/ 
(4.2c 
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to a lookup table to produce an estimate of range. Parseval's theorem was used to per-

form the calculations in the spatial domain. 

Pentland also extended his data acquisition equipment to include a two camera sys-

tem which acquired two images, at different apertures simultaneously. By performing 

the calculations in hardware, he was able to process an impressive four images a second, 

with an RMS accuracy of 2.5%. 

Using a similar two-camera system and acquiring one image with a pinhole aperture, 

Bove [17] described a slightly different technique. He took the two-dimensional Fourier 

transform of windowed regions in each image, collapsed them to the radial dimension 

and divided the two frequency domain signals. Then he used a higher order regression 

solution than Pentland, to model the division result to a polynomial approximation of 

the geometric optics model of defocus. No accuracy results were given. 

Subbarao has performed the theoretical work for a more general solution [136][140]. 

He removed Pentland's constraint of one image being formed by a pin-hole camera, 

and gave a closed form solution assuming a Gaussian defocus operator. The reader is 

referred to the references for the details, but the key equation was 

* fl + Py 

- 2 
In ( 

Il(fzJy) 

) dfxdfi 
v 

(4.25) 

where 

(4.26) a 

(4.27) 

and 

� ki and k2 were experimentally derived constants; 

� R was the local region in (fx,fy) frequency space; 
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� A was the area of local region R; 

� fy)
 a n - d I2(fx, fy) were the Fourier transforms of the two local image regions; 

and 

� CT2 was the spread parameter of the Gaussian defocus operator. 

Note that some, or all of the camera parameters Li,L2

 o r Fi,F2

 o r Du,D2{ may 

be changed, although if Fi ^ F2 or Du # D2i then the images must be adjusted for 

magnification changes. Changing the aperture seems more convenient since only a 

brightness adjustment is needed. 

Equation (4.25) needs to be solved for o2 and the distance to the object is obtained 

from 

Subbarao also extended this technique to other models of the defocus, by general-

izing o~ to be the square root of the second central moment of the defocus operator. He 

claimed that (4.28) still holds. Subbarao gave no experimental results to confirm these 

methods. 

Other methods for isolating the defocus operator 

Other methods for isolating the defocus operator have also been presented in the liter-

ature . 

In 1988, Jarvis [74] defined a ratio R as 

D0 

k2L2D2iF2 

(4.28) 
k2L2{D2l - F2) - F2a2 " 

(at V 2 G ® «i(x,y) zero crossings) 

(elsewhere) 

(4.29) 

where 
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� G(r, o) was the Gaussian; 

� ii(x,y) was an image obtained with a pin-hole aperture; and 

� i2(x,y) was an image obtained with a larger aperture and objects were more out 

of focus towards the front. 

R was then uniquely related to distance. This method had a good intuitive basis, 

but no theory proving that it would work for all types of edges was presented. The 

technique was tried on real images, but no accuracy results were given. 

Another interesting technique was implemented by Hwang, Clark and Yuille in 1988 

[70] [69]. They proposed a differential algorithm which exploited the following property 

of the Gaussian, 

— G(r,a) = oV2G(r,o) . (4.30) 
oo 

Then the relation t is related to distance to the scene, 

dijx, y) 

t = , (4.31) 
V2i(x,y) 

where Di is the distance from the lens to the image, and i{x,y) is the imaged scene. 

Hwang et al. took two images, varying Di, although this method could be adapted to 

a change in aperture. Since the technique is implicitly dependent on (4.30), it will not 

generally work for focus operators other than the Gaussian. 

4.5 PATENTED APPROACHES 

The patent literature reveals developments in depth from focus systems, which because 

of proprietary reasons, may not be found in the scientific literature. Patents, by nature, 

usually address very specific problems. In the patent search done by the author, a 

large number of patents were found which used information concerning the state of 
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focus to determine the distance to a single object. No patents were found which used 

information concerning the state of focus to determine the distance to a plurality of 

objects in the same scene simultaneously. Some of the techniques for single object 

distance detection, may however, be extended to determine depth over an entire scene. 

4.5.1 Camera Autofocus 

Most of the Assignees for these patents were the manufacturers of Single-Lens Reflex 

cameras, who require "through-the-lens" automatic focusing methods, and need to find 

the distance to the center of the image. Golberg [48], explained three schemes that have 

been patented. 

Pentax autofocus 

The Pentax system did something which the human eye cannot do: it simultaneously 

compared the quality of focus at two different focal lengths. It employed a beam splitter 

which optically placed two one-dimensional detectors equidistant on either side of, and 

parallel to, the film plane. When the film plane was in focus, the pattern on each 

detector strip, although out of focus, was identical. The feedback loop to control the 

lens position compared the two detector strips, and indicated if the lens was going in 

the right direction, as well as when the scene was in focus. 

Honeywell autofocus 

The Honeywell system [94][39] was based on the relationship between an object and the 

resulting light distribution which leaves the exit pupil of the lens. When the object was 

in focus, the intensity profile across the pupil was constant, regardless of the viewing 

angle from the optical axis. The system had a row of detector pairs perpendicular to 
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the optical axis, with tiny microlenses that split light from each half of the exit pupil 

onto its corresponding detector. The object was in focus, if the light distribution on 

all detectors was equal along each half. 

Leitz Correfot system 

The Leitz Correfot System employed the same principle as the Honeywell system, except 

only two pair of detectors were used and a prismatic grating scanned perpendicular to 

the optical axis. 

4.5.2 Other Depth From Focus Patents 

Other techniques in the patent literature included: 

� A beam splitting arrangement [ i l l ] which optically produced multiple images 

of the object (similar to Blais [14][127]), where the distance between the images 

relates to the distance to the object. 

� A device [71] which correlated various parts of the image to form weighted signals 

corresponding to three different distances. These weighted signals were interpo-

lated to determine the distance to the object. 

� A device [112] which correlated the point spread function of a defocused object 

in two different optical planes to determine the distance to the object. 

4.6 C O M B I N I N G D E P T H F R O M F O C U S W I T H O T H E R M E T H O D S 

As indicated in the introductory chapter, a robust vision system for discerning depth 

must integrate several means of depth perception. Several researchers have already 

begun to combine depth from focus systems with other methods. 



Chapter 4. LITERATURE REVIEW 48 

Subbarao combined his earlier work in depth from focus outlined in Section 4.4, plus 

work in monocular motion recovery to propose a new system for binocular recovery of 

depth and motion [142]. Krotkov and Kories have combined their depth from focus 

system together with a stereo ranging system [89][86][87][85]. 

Abbott and Ahuja have sought to dynamically integrate focus, camera vergence and 

stereo [2], and Clark and Ferrier [33] addressed the problem of controlling an attentive 

vision system with depth from focus as one of its attributes. 

4.7 CONCLUSIONS 

This chapter has summarized the work of other researchers in solving the depth from 

focus problem. Early researchers tried to gain an understanding of the biological vision 

system, and develop similar methods for automatically focusing a camera on the point 

of interest. The distance to the point in the scene could then be determined from the 

position of the lens. However, a key limitation of this technique was that it measured 

depth, one point at a time and required an adjustment of the lens setting for each 

point. Key papers were published by Horn [65], Jarvis [72], Ligthart and Groen [101], 

Krotkov [90][84][88][83][91], and Darrell and Wohn [37][38]. 

More recently, researchers have attempted to measure the amount of defocus, called 

focal gradient in different parts of an image and therefore infer distance to a variety of 

points in the scene. Since one unfocused image of an unknown scene was an undercon-

strained problem (soft edges in the images may be either unfocused hard edges in the 

scene, or focused soft edges in the scene), three approaches were presented: 

� Introduce extra cues into the scene; 

� Make assumptions about the scene; or 
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� Take several images with different defocus operators. 

The key papers published in this area were by Pentland [118][121][119][120][117 

Subbarao [138][137][139][142][143][136][141][140] and Bove [17]. 



Chapter 5 

A N A L Y S I S O F D E P T H F R O M F O C U S P R O B L E M 

5.1 I N T R O D U C T I O N 

This chapter builds on the literature review of Chapter 4. The problem of depth 

from focus is defined and general purpose approaches to the problem are outlined. 

This chapter provides the necessary background for Chapter 6, which describes the 

theoretical basis for the author's new approach. 

5.2 O V E R V I E W 

Section 5.3 defines the problem of depth from focus, which is addressed by this thesis. 

To sift through the variety of solutions presented in Chapter 4, Section 5.4 describes 

the desired characteristics of solutions to the problem. It is desirable for the solutions 

be as general as possible. The key problems and trade-offs in solving the problem are 

itemized in Section 5.5. The last section, draws from the work of other researchers to 

outline approaches to general purpose solutions of the problem. 

5.3 P R O B L E M D E F I N I T I O N 

The problem addressed by this thesis, is given a blocks scene with featured objects an 

unknown distance from the camera, but within a known range, derive the distance to 

features in the scene using the concept of depth from focus. This will be attempted in 

a setting that is as generalized as possible. 

50 



Chapter 5. ANALYSIS OF DEPTH FROM FOCUS PROBLEM 51 

5.4 DESIRED CHARACTERISTICS OF SOLUTIONS 

This section defines the desired characteristics of solutions to the problem of depth 

from focus. Although it is not possible to define the "best" solution to the problem, 

this section seeks to bring out characteristics which would allow the solutions to be 

applied to the broadest number of applications. 

5.4.1 General Purpose Solutions 

A key motivation in this research was to investigate general solutions to the problem, 

rather than a solution which took advantage of special features which may be found in 

a particular application. The characteristics of general purpose solutions are outlined 

below. 

Least constraints on scene 

Other than the constraints given in Section 2.6, which are common to most passive 

ranging systems, it is desirable to place no additional constraints on the scene ob-

served. It is recognized that some particular applications may lend themselves to the 

introduction of constraints, which in turn simplify the problem. But for more general 

solutions, it is not desirable to 

� Introduce any structured illumination into the scene, since this illumination may 

be confused with features in the scene; 

� Assume that the edges in the scene are perfect black to white transitions or that 

the bandwidth of scene features is known, since this may not be the case; or 

� Require one image to be taken with a pin-hole aperture, since this in turn requires 

a very sensitive camera, or high scene illumination. 
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Method independent of defocus operator model 

Although the defocus operator has to be modelled, it is desirable that the method of 

solving the depth from focus problem be independent of any particular model. Some 

researchers have simplified the problem of depth from focus by restricting their solu-

tions to a particular defocus operator. The Gaussian function, advocated by Pentland 

[118][121][120][117], seems to be the most popular in the literature. But as observed 

by Subbarao [140] and confirmed by the experiments of the author in Section 7.8, the 

Gaussian may not be an appropriate model. 

Although the defocus operator can be defined theoretically for an ideal optical 

system as shown in Chapter 3, an actual lens, unless it is of very high quality, will have 

aberrations which produce a unique defocus operator. Therefore a general method for 

depth from focus should still work, regardless of which model may be found appropriate 

for the defocus operator. 

Selective control of trade-offs 

It is inevitable that the solutions to the problem will involve trade-offs which determine 

the nature of the solution. To keep the solutions general however, it is desirable that 

the trade-offs remain explicit and adjustable by the user. The key trade-offs for the 

depth from focus problem are described in Section 5.5. 

Space-variant solution 

The most general solution to the depth from focus problem is to model the defocus 

operator as space-variant 

(5.1) 

where 
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� s(x, y) is the scene; 

� i(x,y) is the acquired image; and 

� h(x,y; £,n) is the defocus operator which is dependent on its global location in 

the scene, as indicated by the co-ordinates x and y. 

The changing shape of the defocus operator is, of course, a direct result of the changing 

depth throughout the scene. 

A l l the present literature on depth from focus simplifies this problem to a space-

invariant formulation, so that within a local region (5.1) becomes 

/

oo rco 

/ h(x - £,y - T])s[£,ri)d$,dT] and (5.2) 
- o o J—oo 

i{x,y) = h(x,y) <g> s{x,y) . (5.3) 

This simplification was also followed by the author, since the more general solution is 

beyond the scope of this research.1 

5.4.2 Accuracy 

It is desirable for the solutions to approach the fundamental limitations of the technique. 

The fundamental limits are determined by camera resolution, noise in the system, the 

nature of the scene observed, and the difference in size between two defocus operators. 

5.4.3 Minimal Data Required 

It is desirable for the solutions to require a minimum amount of data. This usually 

means that less time is required for data acquisition, and it decreases the probability 

that something will move or change in the scene, between acquired images. 

1

More is said about the space-variant solution in Section 9.4.4. 
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5.4.4 Speed 

It is a reasonable assumption that most applications desire fast solutions. However, in 

the course of this research, accuracy will not be explicitly sacrificed for speed.2 

5.5 K E Y PROBLEMS AND TRADE-OFFS 

This section will articulate the key problems and trade-offs faced in the depth from 

focus problem. 

5.5.1 Isolating And Modelling The Defocus Operator 

The most difficult segment of the depth from focus problem is deconvolving and mod-

elling the defocus operator, or a ratio of defocus operators from the scene. Solving this 

segment of the problem is the focus of Chapter 6. 

5.5.2 Problem Ill-posed 

Subbarao [140] states that depth from focus is a well-posed problem, although perhaps 

ill-conditioned. Hadamard [57] defined a mathematical problem to be well-posed if 

� A n answer exists; 

� The answer is unique; and 

� A small error induced into the data does not produce large fluctuations (insta-

bility) in the answer. 

The depth from focus problem satisfies the first two criterion, but fails miserably 

on the third. This instability is best illustrated in the spatial frequency domain. Let 

2

This is summarized by the colloquial statement, "First you get good, then you get fast." 
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the Fourier transforms of the local regions Ii(fx,fy) and I2(fx,fy) be written as 

h{f*,f„) = SifzJJ-HiiUJJ+NyiftJy) and (5.4) 

W z J v ) = S(fxJv)-H2(fxJv)+N2(fxJy) , (5.5) 

where 

� S{fx,fy) is the Fourier transform of the scene; 

� Hi(fx,fy) and H2(fx,fy) are the optical transfer functions of the two defocus 

operators; and 

� Ni(fx,fy) and N2(fx,fy) are the Fourier transforms of the noise in the image 

acquisition process. 

Then the ratio of the defocus operators Hs(fx, fy), can be found by inverse filtering. 

That is, the Fourier transforms of the two local regions I2(fx,fy) and Ii{fx,fy), are 

divided to form 

rr I r f } _ h{fx,fy) _ S(fx, /„) � H2(fx, fy) + N2{fx, fy) , . 

n 3 U x , J y , h [ L J y ) 5 ( / I , / y ) - J r? 1(/x , / v ) + ^ i(/x 5/,) '
 1 ' ' 

As shown by (5.6), the noise although usually small, prevents the frequency domain 

scene S (fx, fy) from cancelling in the equation. Therefore, the zero-crossings of S(fx, fy) 

will cause Hz(fx, fy) to become unstable. In the spatial domain, (5.6) can be formulated 

as a matrix equation, whose solution requires inverting a matrix (see Appendix B) . 

Although dependent on the scene, noise will usually cause instability in the inverted 

matrix. 

There are two ways of dealing with the ill-posed nature of the problem. 

1. Smoothing: Most approaches in the literature employ some form of smoothing 

or averaging to control the instability of the problem. For example, Pentland 

[117, §3] multiplies his power estimates by a Gaussian to minimize instability. 
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2. Impose Known Shape onto Solution: The shape of the defocus operator, as 

a function of depth, can be known a priori, so that it can be imposed onto the 

solution. A recognized approach to solving ill-posed problems of this nature is 

the regularization method of Tikhonov [146] [8]. 

For example, consider the matrix equation 

[ii]-h3 = J 2 , (5.7) 

which is to be solved for hs, where the solution is known to be one of a family of 

patterns. The regularized form of (5.7) minimizes the functional 

| | ] � h 3 - i 2 | |
2

 + A ||[C] � h 3 | |
2

 = minimum (5.8) 

where 

� A is a scalar parameter; and 

� [C] is a matrix which minimizes the magnitude of the second term if h 3 

belongs to the expected family of patterns. 

Intuitively, regularization is preferred above smoothing, since the solution space 

is constrained to a known family of solutions. To the author's knowledge, applying 

regularization to the depth from focus problem has not been previously reported in the 

literature. 

5.5.3 Size Of Local Region 

One of the most critical trade-offs is the size of the local region which is extracted from 

the images. Since depth changes throughout the scene, it is desirable for this region 

to be as small as possible, yet accurate identification of the defocus operator is only 

possible if the area is larger than the defocus operator. 
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The best compromise is probably an iterative approach, where the size of the area 

considered varies, depending on the estimated size of the defocus operator. To guard 

against false solutions, the initial area considered would have to be slightly greater than 

the largest defocus operator expected. 

5.6 A P P R O A C H E S T O S O L U T I O N S 

In the literature review of Chapter 4, two main approaches to the depth from focus 

problems were presented: 

� Depth from automatic focus; and 

� Depth from focal gradient. 

Since the first approach measures requires a mechanical lens adjustment for every depth 

value, the second approach, which requires only one optical parameter adjustment for 

the whole scene, has a greater speed potential. Therefore, based on the desired criteria 

of Section 5.4.4, the first approach will not be considered and depth from focal gradient 

will be analyzed. 

As indicated in Section 4.4.1, this implies that at least two images of the scene will 

need to be acquired, with two different defocus operators. Local regions from these two 

images will be selected, and then either one, or a ratio of the two operators must be 

isolated.3 There are at least two different methods for isolating the defocus operator:4 

1. Inverse filtering; and 

2. A matrix based approach. 

3

Either approach is valid since Subbarao [140], explains that the two operators are necessarily linked 

by known camera parameters. 
4

Other methods of deconvolution exist [7][l33], but were not actively considered. The methods 

presented, were chosen because they have the potential of working on very small local mens, which is 

critical to the depth from focus problem. 
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5.6.1 Inverse Filtering 

From a theoretical stand-point, inverse filtering in the frequency domain is elegant, be-

cause convolution in the spatial domain now becomes multiplication [50, §5.4]. There-

fore, at first glance, the ratio of the defocus operators H3(fx, fy), can be found simply 

by dividing the Fourier transforms of the two local regions in the images h(fx,fy) and 

h{fXi /y)i 

TT ( f f \ _ h{fx, fy) S{fx, fy) � H2{fx, fy) , , 

where 

• S(fx,fy) is the Fourier transform of the scene; and 

• Hi(fx,fy) and H2(fx,fv) are the optical transfer functions of the two defocus 

operators. 

However, there are several fundamental problems with inverse filtering, which will 

be detailed in Section 6.5.2. 

5.6.2 Matrix Based Solutions 

Solving the depth from focus problem by matrix analysis in the spatial domain avoids 

the fundamental problems associated with inverse filtering, however the processing 

requirements are often greater. The matrix based approach seeks to deconvolve the 

defocus operator from the images by characterizing the problem as a large system of 

linear equations, similar to the superposition method of Backus and Gilbert [5]jand 

Frieden [43]. The exact nature of matrix based solutions and their justification is 

presented in the next chapter. 
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5.7 CONCLUSIONS 

This chapter has defined the problem of depth from focus, and outl ined some of the 

desired characteristics of general purpose solutions to the problem. After the key prob-

lems and trade-offs were examined, a general approach to the problem was proposed, 

motivated by the work of other researchers. 

This approach wi l l be to acquire at least two images of the scene, blurred wi th two 

different defocus operators. Local regions from these two images wi l l be selected, and 

then either one, or a ratio of the two operators must be isolated. Two methods of 

isolating the defocus operator are 

1. Inverse filtering; and 

2. A matr ix based approach. 



Chapter 6 

THEORETICAL BASIS FOR NEW M E T H O D 

6.1 INTRODUCTION 

This chapter builds on the problem analysis of Chapter 5 to present several solutions to 

the depth from focus problem. The theoretical justifications for the solutions are con-

structed incrementally, with a number of simplifying assumptions introduced initially, 

and gradually relaxed to build up the solutions. The author's new matrix solution is 

presented and theoretically justified. The implementation of this solution is the subject 

of Chapter 7. 

6.2 OVERVIEW 

Section 6.3 articulates the computational goal in solving the problem of depth from 

focus. A defocus operator hs(x,y) called a convolution ratio is introduced. 

In Section 6.4 it is assumed that no noise is present in the acquired images. A 

formula for h3(x, y) is derived and shown to be a unique indicator of depth. Continuing 

with the assumption of noise and allowing only one image to be blurred, Section 6.5 

introduces the author's new matrix based solution to the depth from focus problem and 

contrasts it to the traditional approach of inverse filtering. Even under the simplified 

assumptions, it will be shown that inverse filtering in the frequency domain has two 

serious problems: 

60 
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� Difficulties in accurately finding the frequency domain representation and distor-

tions caused by windowing; and 

� Presence of border effects. 

It will also be shown that these problems do not occur with the proposed matrix based 

approach, and that the defocus operator can be exactly recovered. 

In Section 6.6, one assumption is relaxed and the second image can now be defocused 

as well. Finally, Section 6.7 re-introduces noise into the model and explains that a 

regularized approach should be taken. A closed form matrix based solution in the 

spatial domain is given, as well as a more general, iterative solution. The inverse 

filtering approach is also extended to a constrained inverse filtering solution. 

Although the solutions will be given in two dimensions, some of the formulas and 

illustrations may be presented only in one dimension for simplicity. In these cases, 

extensions to two dimensions are straightforward. 

6.3 COMPUTATIONAL GOAL IS TO FIND h3{x,y) 

The solutions presented in this chapter are based on Figure 6.1. Two images and 

i-i of the same scene are acquired with two different defocus operators. A local region 

of the scene will be called s(x,y). If hx(x,y) is the defocus point spread function of 

the smaller defocus operator, and rii(x.y) is the noise in the image acquisition process, 

then ii(x,y), a local region of the acquired image can be written as 

ii{x,y) = s(x,y) [®] hi(x,y) + nx(x,y) . (6.1) 

The operator. [®] designates restricted convolution, where the borders of the kernel 

hi(x,y) are not convolved past the borders of the scene s(x,y). This restricted defini-

tion is necessary, because the result of convolving the kernel past the ends of the local 
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region of the image is unknown. 

hi(x, y) — small 

defocus operator 

1 

s(x, y) — local 

region of scene 

defocus operator 

ni(x,y). 

= noise 

1 
+ + 

n2{x,y) 

= noise 

h{x,y) = 

local region of scene 

blurred with small 

defocus operator 

+ + 
local 

hz(x,y) 

blurred with large 

defocus operator 

Figure 6.1: Block diagram of the depth from focus problem. The computational goal 

is to find h3(x,y). 

Similarly, if h2(x,y) is the defocus point spread function of the large defocus opera-

tor, n2(x,y) is the added noise, and i2(x,y) is a local region of the image blurred with 

this operator, then 

i2(x, y) = s(x, y) [®] h2(x, y) + n2(x, y) . (6.2) 

It will be assumed that the noise, nx{x,y) and n2[x,y): 

� Has a zero mean; 

� Is additive to the signal; and 

� Has a Gaussian distribution. 
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The computational goal will be to find a new point spread function h3(x,y), which 

will transform i\(x,y) into i2{x,y) according to 

ii{x,y) [®] h3(x,y) = i2{x,y) . (6.3) 

Various solutions for hz(x,y) are developed in the following sections. 

6.4 NO NOISE IN IMAGES 

To understand how h3(x,y) can be obtained, it is necessary to first make some simpli-

fying assumptions, which will be relaxed later. Initially it will be assumed that there 

is no noise in the acquired images. That is 

n-i(x,y) - n2{x,y) = 0 (6.4) 

Based on this assumption, a formula for h3(x,y) is easy to derive. 

6.4.1 A Formula For hs(x,y) 

This section will derive a formula for h?J(x, y) assuming there is no noise in the acquired 

images. Then (6.1) becomes 

ii(x,y) = s(x,y) [<g>] hx(x,y) , (6.5) 

and (6.2) becomes 

i2{x,y) = s(x,y) [®] h2(x,y) . (6.6) 

Substituting these equations into (6.3) produces 

s(x,y) [®] ht(x,y) [®] hs(x,y) = s(x,y) [®] h2(x,y) and 

h\(x,y)\®]h3(x,y) = h2(x,y) . (6.7) 
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Since hi{x,y) has a limited spatial extent, (6.7) can be generalized to 

hi{x,y) <g) ho{x,y) = h2(x,y) . (6.8) 

In (6.8), h3(x, y) will be called the convolution ratio of the two defocus operators h2(x, y) 

and hi(x, y). 

6 .4 .2 Uniqueness Of h3(x,y) For Geometric Optics 

Since Chapter 3 has shown that a defocus operator is a unique indicator of depth, then 

hi(x,y) and h2(x,y) correspond uniquely to scene depth. Although it is not possible to 

prove that h3{x,y) corresponds uniquely to depth for any arbitrary defocus operator,1 

it is possible to show this uniqueness assuming geometric optics. The uniqueness of 

hs(x,y) is best illustrated by showing the uniqueness of H3(fx, fy), its Fourier transform. 

Deriving h3(x,y) in the spatial domain is a little more difficult, and is deferred to the 

next chapter. 

Using (3.22) and (6.8), 

Then, substituting in (3.24) 

It can also be stated from (3.15) that 

(n̂ ) 
ftlPpJi I wr*— 

FDi + FD0 - D { D 0 

Ri = � — — and 6.11 

= 2hD. • (6-12) 

1

 Although by showing this is true for geometric optics, it will be assumed to be true for defocus in 

general. 
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F inal ly , substitut ing (6.11) and (6.12) into (6.10) yields 

ppf2Ji ( 2TT 

PpfiJi ( 2T 

FDj + FDn - DjD, 
N2f2D0 

FDj + FDn - DjD, 

N2hD0 

(6.13) 

Since F, Di, N, P, f\ and f2 are usually fixed, then (6.13) shows that H?}{pv) is a 

unique function of the distance D0. In Figure 6.2, using fixed parameters F — 50 mm, 

Di = 52.63 mm, / i = 2.0, f2 = 1.3, A r = 64, and P = 60.0 p ixe ls/mm, the shape of 

Hs(pp) is graphed using (6.13) for distances D0 — 0.90 and 0.95 meters. The unique 

characteristic of H3(pp) is the down-turned quadratic-type shape, centered at pp = 0. 

The width of this quadratic varies uniquely with distance. This relationship wil l be 

formulated in Section 6.7.3. 

-32 -16 0 16 32 

pp in pixels 

Figure 6.2: W i t h the fixed parameters given in the text, Hz{pp) is shown graphed for 

distances D0 = 0.90 (*) and 0.95 (�) meters. 
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6.5 ONE BLURRED IMAGE WITHOUT NOISE 

To develop solutions for h3(x,y), it is necessary to first make some simplifying assump-

tions, which will be relaxed later. Initially it will be assumed that: 

1. ii is acquired with a pinhole aperture (hi(x,y) is an impulse function); 

2. There is no noise (rii(x,y) = n 2 (x,y) = 0); 

3. The spatial extent of /i3(x,y) is less than, or equal to N points; and 

Based on these assumptions, ii(x,y) — s(x,y) and h2(x,y) = /i3(x, y). Then (6.3) 

There are at least two main approaches to the goal of solving (6.14) for /i 3(x,y): 

1. Inverse filtering approach; and 

2. Matrix based approach. 

It will be argued that the matrix based approach has an accuracy greater than or equal 

to the inverse filtering approach, and that for most scenes, it is more accurate. 

This can be shown in two ways. 

1. Appendix B contains a mathematical proof, that in one dimension, the exact 

recovery of a kernel h(x) where 

can be performed for a larger family of signals s(x) and i(x) using the matrix based 

approach in the spatial domain, than the inverse filtering approach in the spatial 

frequency domain. Unfortunately, the proof yields little intuitive insight into why 

errors are incurred using inverse filtering, and their corresponding symptoms. 

becomes 

(6.14) 

(6.15) 
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2. This section will give an analysis of the key sources of error in the inverse filtering 

approach, and how these are eliminated in the matrix based approach. 

6.5.1 Matrix Solution For hs(x,y) 

A convolution in the spatial domain can be exactly represented by a series of matrix 

equations. The details are given in Appendix B, but the restricted convolution equation 

(6.3) in one dimension, can be written as the matrix equation 

where [IIT] is a Toeplitz matrix formed from i\{x) according to (B.37), I13 is a vector 

formed from h3{x), and \-i is a vector formed from ^(x) . 

Equation (6.16) can be solved for I13 as 

To invert [iix] in (6.17), there are traditional methods by Levinson [100][99][123, 

§2.8] and Trench [148] which take advantage of the persymmetry of the Toeplitz matrix. 

A recent method by Yarlagadda and Babu treats the Toeplitz matrix as a submatrix 

of a circulant matrix [155]. For two dimensional images, it would be necessary to 

invert a Toeplitz-block Toeplitz matrix. Extensions have been developed for the two 

dimensional case [3][78][151], however, even for a local image region of 64 x 64 pixels, 

this would involve solving a linear equation with 4096 variables! 

Therefore, there is an incentive to try to reduce the computational requirements by 

performing the deconvolution with inverse filtering in the frequency domain. However, 

it will be shown that this cannot generally be done without incurring errors. 

[IIT] • h 3 = 12 , (6.16) 

h3 = [ilT] • 12 • (6.17) 
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6.5.2 Inverse Filtering Solution For hz(x,y) 

From a theoretical stand-point, the inverse filtering solution in the frequency domain is 

convenient, because convolution in the spatial domain now becomes multiplication. To 

enable transformation to the frequency domain, (6.1) is windowed [59] with wi(x,y),2 

ii{x,y) � t«i(x,y) = [s{x,y) [®] fti(x,y)] • tui(x,y) • (6.18) 

Taking the Fourier transform of both sides, 

Ii{fz,fy)<SW1(fx,fu) = \S{ft,fy) �H1(fx,fy)}®Wl(fxJy) , (6.19) 

where the following are Fourier pairs: 

h{x,y) <=> h(fx,fv), (6.20) 

hx{x,y) Hx(fxJy) , (6.21) 

wx{x,y) ^ WtiftJy) and (6.22) 

s(x,y) <=^ S(fx,fy). (6.23) 

Similarly for i2(x,y), 

h{fx,fv)®W2{fxJy) = [S(fxJy)-H2(fx,fy)]®W2(fx,fy) . (6.24) 

To isolate the defocus ratio operator from the scene, (6.24) is divided by (6.19) 

h{fXJy)®W2(fx,fy) = (S(fxJy)-H2(fxJy))®W2(fxJy) 

h{f*Jv)®Wi{fxJv) ( S i f ^ M - ^ i h J ^ t t W ^ J , ) � { - * 

It is generally assumed that W\[fx, fv) and W2(fx,fy) have a small spread in the fre-

quency domain,
3 

hiftJy) S(fxJy)-H2(fXJy) 

h(fXJy) S{fzJv)-HX{fZify) 

h(fX,fy) „ H2(fxJy) 

and (6.26) 

h{fx,fy) Hi(fx,fy) 
= H3(fx,fy). (6.27) 

2

Recall that the noise ni(x, y) is assumed to be zero for now. 
3

Although this causes problems which are described in Section 6.5.3. 
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The defocus ratio function H3(fx,fy), the Fourier transform of h3(x,y), has been iso-

lated by inverse filtering. From it, depth can be inferred. 

6.5.3 Problems With Inverse Filtering 

Inverse filtering by division in the frequency domain is fraught with two key problems. 

Accurate conversion to frequency domain and window effects 

Difficulties arise in accurately estimating the frequency domain representation I\{fx, fy) 

and h{fxi fy) of local regions i i (x , y) and i'2(x, y). A n important constraint, is that since 

depth changes throughout the scene, it is desirable for these regions to be as small as 

possible, yet accurate frequency domain analysis benefits from larger local areas. 

Frequency domain conversion and spectral analysis is an a,ctive field of research and 

many techniques have been proposed in the literature [105]. The conventional method 

of finding the frequency domain representation is by computing the Fourier transform 

of a windowed portion from the spatial domain. A l l researchers working on the depth 

from focus problem in the frequency domain have advocated the Fourier transform. 

One alternate form of frequency estimation, the Wigner Distribution [152][30][31] 

[32], was attempted by the author with little success. The Wigner Distribution is noted 

for its ability to provide a better resolution than the F F T [46, §3.2]. Unfortunately this 

better resolution comes at the expense of cross-terms. The presence of these cross-terms 

occluded the answer when the two frequency domain images were divided according to 

(6.26). 

Although windowing is necessary to calculate the Fourier transform of a local region 

[59], it causes other residual problems. Looking at (6.26), h{fxify) contains two types 

of zero crossings: 
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1. Those that arise from the scene S(fx,fy); and 

2. Those that arise from H2(fx,fy). 

The result for H3(fx, fy) must be independent of the scene S(fx, fy), since H\(fT, fy) and 

^ ( / n / v ) are independent of the scene. Therefore, the zero crossings in I2(fx, fy) that 

are due to S(fx,fy) must be matched by zero crossings in Ii(fx,fv), so that they can 

cancel.4 Unfortunately, the result of convolving I2{fx,fy) with W2(fz,fy) and I-\(fx,fv) 

with W1(fx,fy) is that the zero crossings shift slightly. This small movement can cause 

large variations in the quotient H$(fx,fv). 

Since the errors incurred in inverse filtering due to windowing are dependent on 

a number of factors, including the scene s(x,y) and the windowing functions wx(x,y) 

and w2(x,y), it is difficult to provide a closed form equation. But by making some 

reasonable assumptions, an example of some of the errors incurred can be shown. 

Dealing in one dimension for simplicity, it will be assumed that one defocus operator 

hi(x), is an impulse function and hence from (6.1), ii = s, since the noise is assumed 

to be zero for now. Let the scene be a simple black to white transition, 

s = n = (0,...,0,0,1,1,1,...,1) . (6.28) 

It will also be assumed that the other blurring operator is a gate function, 

h2{x) = (1,1,1) . (6.29) 

Also, using (6.8), 

hz{x) = h2{x) = (1,1,1) . (6.30) 

The second blurred image can be calculated using (6.2), 

i2 = (0,...,0,1,2,3,3,...,3) . (6.31) 

4

T h e zero crossings caused by S(fx, / „ ) that may match the zero crossings of # 2 ( / * > fn) n r e

>
 0 1

 course, 

excluded. 
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Using the Gaussian window,5 

w1(x) — w2(x) = 
2TT O 

(6.32) 

Working in the frequency domain, if 7 1 is the inverse Fourier operator, it can be 

deduced from (6.25) and (6.27) that 

- i (W2(fx)®I2(fx)\ 

h3(x) = r (6.33) 

where h3(x) is the estimated pattern for h3(x). The error e/, caused by calculating 

h.3(x) by inverse filtering, can be written as 

e
f
 = £ [ M * ) - M * ) ] 

JV-l 

x=0 

M x ) " - U ( / . ) ® W . ) 

(6.34) 

(6.35) 

For various sizes N, of data used, the RMS errors calculated from (6.35), are shown 

in Table 6.1. The tables shows that the error decreases as N increases, however, to 

N % Error 

4 65.8 

8 23.7 

16 6.4 

32 1.1 

Table 6.1: Errors which result from windowing a blurred black to white transition in 

the spatial domain, before inverse filtering by division in the frequency domain. 

drive the error down to 1%, it is necessary to observe a length that is about an order 

of magnitude larger than the blurring operator! 

^The Gaussian is used, because as shown by Gabor [44], it is simultaneously, optimally localized in 

both the spatial and frequency domains. 
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Using a matrix based approach, this example can be solved exactly, using dimensions 

as small as JV = 3. A Toeplitz matrix [iiTJi is constructed by inverting i\ given by 

(6.28), and shifting sections into each row, according to (B.37), 

1 0 0 

1 1 0 

1 1 1 

(6.36) 

To confirm that b.3 can be calculated exactly by matrix manipulation, (6.36) and (6.31) 

can be substituted into the one-dimensional form of (6.16) and solved for b . 3 , 

1 0 0 

1 1 0 

1 1 1 

•h. 

1 

2 (6.37) 

1 0 0 

- 1 1 0 

0 - 1 1 

1 

2 

3 

and (6.38) 

(6.39) 

This example has illustrated the errors caused by windowing a scene in the spatial 

domain, before inverse filtering in the frequency domain. The correct solution was 

obtained exactly by a matrix based solution. 

Border effects 

Another problem with inverse filtering by frequency domain division, is selecting the 

most appropriate spatial area for analysis. According to conventional inverse filtering, 
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the same sizes of t\(x,y) and i2(x,y) are used to calculate I\{fx,fy) and I2{fx-,fy), 

so that in (6.26) frequency components of the same value can be divided. As shown 

by Figure 6.3, using the same size x N of ii(x,y) and i2(x,y), infers that different 

dimensions (N + Nx — l ) 2 and (N + N2 — l ) 2 of the scene s(x,y) are used. Therefore 

i2(x,y) may contain spurious data from bordering edges. 

N + N 2 - l 

|* N + ^ - 1 -*j 

>*i(z,!/) 

|*JV!*| 

— 7Y — * 

Figure 6.3: Differences in scene area s(x,y), when the same image areas for i]{x,y) 

and ii(x,y) are used. The dimensions of i\(x, y) = s(x,y) [(g)] hj(x,y) and 

i ' 2 ( i , ! / ) = ^(x, y) [®] h2(x,y) are illustrated. 

Pentland briefly refers to the problem of border effects [120] and offers Gaussian 

windowing as the solution. Since windowing has other problems associated with it, 

as shown in the last section, perhaps depth from focus analysis by inverse filtering 

could be improved, if Ii(fx,fy) and hifzify) were the Fourier transforms of different 

dimensional areas.6 Since the Fourier transforms now have different discrete component 

separation, a common set would have to be interpolated, and substituted into (6.26). 

However, the problems associated with accurately estimating the frequency domain 

images and windowing, still remain. This method is mentioned again in Section 9.4.2. 

°A caveat to this technique is that JVi and A
r

o are not known exactly until the problem is solved. 

This suggests an iterative approach. 
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To illustrate the border effect problems, a one-dimensional example will be pre-

sented. It will be assumed that one defocus operator hi(x), is an impulse function, and 

hence from (6.1), i\ = s, since the noise is assumed to be zero for now. Let the scene 

be 

3 = t'i = (1 , . . . ,1 ,1 ,0 ,0 ,0 ,1 ,3 ,1 ,0 ,0 ,0 ,1 ,1 , . . . ,1) . (6.40) 

Again, it will also be assumed that the other blurring operator is a gate function, 

h2{x) = (0,0,0,1,1,1,0,0) . (6.41) 

Also, Using (6.2) and (6.3), 

h3{x) = h2{x) = (0,0,0,1,1,1,0,0) . (6.42) 

The second blurred image can be calculated using (6.2), 

i2 = (3 , . . . , 3,2,1,0, 1,4, 5,4,1,0,1,2, 3 , . . . , 3) . (6.43) 

A local, symmetric region of eight points of ii(x) and i2{x) will be selected,7 so that 

the Fourier transform is wholly real. 8 Then 

ti(x) = (0,0,0,1,3,1,0,0) and (6.44) 

i2(x) = (1,0,1,4,5,4,1,0). (6.45) 

If the discrete Fourier transforms of i\{x) and i2{x) are h{fx) and I2{fx) respectively, 

then 

Wx) = (0.000,-1.657,4.000,9.657,16.000,9.657,4.000,-1.657) and (6.46) 

h{fx) = (1.000,1.586,3.000,4.414,5.000,4.414,3.000,1.586). (6.47) 

7

It is assumed that the kernel hz{x) is known to be less than or equal to eight points long. 
8

 According to usual conventions, symmetry is about the point to the right of tlie middle of the 

sequence. The Fourier transforms will be shifted so that the zero frequency is in the middle. 
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If the two frequency domain signals are divided similar to (6.33) then 

^>=7" (m) � 
where hs(x) is the estimated pattern for h3{x). Using (6.48), 

h3(x) = (0.448,-0.171,0.067,0.971,1.019,0.971,0.067,-0.171) 

The result is close, but not equal to the original pattern of 

h3(x) = (0,0,0,1,1,1,0,0) . 

(6.48) 

(6.49) 

(6.50) 

Using the matrix solution, where A" = 8 to parallel the inverse filtering case, the 

convolution can be represented by (6.16) 

where 

J

1 T = 

12 = 

[i1T] � h 3 = i 2 , 

3 1 0 0 0 1 1 1 

1 3 1 0 0 0 1 1 

0 1 3 1 0 0 0 1 

0 0 1 3 1 0 0 0 

0 0 0 1 3 1 0 0 

1 0 0 0 1 3 1 0 

1 1 0 0 0 1 3 1 

1 1 1 0 0 0 1 3 

1 0 1 4 5 4 1 0 

(6.51) 

and (6.52) 

(6.53) 

Then solving (6.51) by inverting [iix]? yields 

0 0 0 1 1 1 0 0 (6.54) 
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which is the expected result. Since the convolution kernel hs(x), is essentially only 

three points long, it could also have been recovered for N — 3. 

This example has shown that using inverse filtering, border effects can cause signif-

icant distortions to the recovery of a convolution kernel, throughout the extent of the 

kernel. This problem is caused by the use of equal spatial areas for the scene ? i ( x ) , and 

the blurred image i2(x). With the matrix based approach, border effects are taken into 

account since unequal spatial areas of i\{x) and i2(x) are considered. Therefore, in the 

absence of noise, a kernel can be recovered exactly.9 

6 . 6 T W O B L U R R E D I M A G E S W I T H O U T N O I S E 

One of the constraints imposed at the beginning of the chapter will now be relaxed, and 

ii can be acquired with any defocus operator, as long as the spread of hj(x,y) is less 

than the spread of h2(x, y ) . 1 0 Although this does not affect the form of the matrix based 

or inverse filtering solutions, it changes the nature of h3{x,y) considerably. Under the 

previous assumption, /i 3(x,y) had a limited spatial support, but now it will be shown 

that even if both hx{x,y) and h2(x,y) have a finite spatial extent, /?,3(x,y) can have an 

infinite extent. 

Therefore, a windowing operation will have to be performed on /?,3(x,y), so that 

it can be represented within a local spatial region of less than N points. Although 

Section 6.5.2 was critical of windowing iy{x,y) and i2(x,y) in order to perform inverse 

filtering in the frequency domain, it will be shown that windowing /i 3(x, y) has less 

serious implications. 

If w 3 (x,y) is the window applied to /? 3(x,y), then the error caused by windowing in 

°Tliat is, assuming the scene has sufficient features to allow the effect of the kernel to be seen. 
l u

This was an original condition, noted in Figure 6.1. 
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the spatial domain em, is expressed simply as 

N-l N-l 

€m= YI Y, [M
x

>y) - w3(z,y) � M
x

>y)]
2

 � (
6

-
5 5

) 
x-0 y=0 

The contributions to em come primarily from the truncated tails, which are generally 

small. 

This can be compared to (6.35) in two dimensions, the error caused by windowing 

for inverse filtering in the frequency domain, 

N-l N-l 

r=0 y=0 \Wi{fxJv) ® IlUxJyjJ \ 

In Section 6.5.3, the effect that windowing ii(x, y) and i2(x,y) had on H$(fx, fy) was 

discussed. From this it can be expected that contributions to e, can occur throughout 

the extent of hs(x,y). Although dependent on the nature of ii(x, y) and i2(x,y), as 

well as the windows employed, it can be generally expected that e,- will be larger than 

e 1 1 

c77l' 

To demonstrate that e, is generally larger than em, the following one-dimensional 

example can be considered. Let 

hx(x) = (0,... ,0.1,1,1,0,... ,0) , (6.57) 

h2{x) = (0, ...,0,1,1,1,1,1,0, ...,0) and (6.58) 

s = (0, ...,0,0,0,1,1,1,..., 1) . (6.59) 

Now the local images can be calculated 

t'i(x) = s(x) [®] hi(x) and (6.60) 

i2(x) = s[x) [®] h2(x) , (6.61) 

1 1

 It is assumed that i\(x,y) and 12(2, y) are windowed with non-adaptive windows (ie. Gaussian, 

box-car, etc.). If adaptive windows are used, based on ii(x, y) and i 2(i:,y) so that the integrity of the 

zero crossings discussed in Section 6.5.3 are maintained, then conceivably e, can equal e,„. The form of 

these adaptive windows, is however not known, and may be very difficult to calculate. 
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and the Toeplitz matrix [ ijx] can be formed according to ( B . 4 0 ) . This example is 

rather extreme, since h3(x) has an infinite extent. This is caused by the sharp edges 

on h-2(x). If h,2(x) had more rounded edges, then the spatial extent of hz(x) would 

decrease. Recall that, by definition, h2{x) is wider than hl(x). 

To calculate the error, a comparatively large section of h3[x) was calculated using 

(6.17) with a matrix size of 6 4 . Let the windowing functions be a Gaussian for Wi{x) 

and ui2(x), and a box-car for w3(x) of width N, 

1 *2 

Wi(x) = v)2(x) = �,—— e 2^2 A R M ( 6 . 6 2 ) 

V 2 7 T a 

w3{x) = (1,1, . . . ,1,1) . ( 6 . 6 3 ) 

Equations ( 6 . 5 5 ) and ( 6 . 5 6 ) were used to calculate e m and respectively. The 

results are shown in Table 6 . 2 for various matrix sizes N. This shows that even for this 

extreme example, the errors caused by windowing h3(x) in the spatial domain e,„, are 

still less severe than the errors e,, caused by windowing i\{x) and i2 (x). 

N 

% Error 

N U 

4 60.0 55.9 

8 60.4 54.5 

16 55.8 50.0 

3 2 49.0 41.4 

Table 6 . 2 : Comparison of windowing errors et and e 

6.7 TWO BLURRED IMAGES WITH NOISE 

In the absence of noise, and with one blurred image, it has been shown tha,t the matrix 

based deconvolution of segments from image segments, can be performed exactly in 

the spatial domain. With two blurred images, only a windowed portion of li3(x,y) can 
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be recovered. These operations can be performed more accurately by using a matrix 

based approach, than by inverse filtering. When noise is added to the model, solving 

(6.16) for hs(x,y) becomes very unstable. This section augments the inverse filtering 

and matrix based solutions, to deal with noise in the image acquisition process. 

6 . 7 . 1 Closed Form Matrix Solution 

Because the depth from focus problem is unstable,1 2 it is advisable to apply all the 

information available to the problem. An important, unused piece of information, is 

that the defocus operators hi{x,y) and h2(x,y) have shapes which can be theoretically 

or experimentally derived. Referring to (6.8), it can be seen that although h?){x,y) is 

unknown, it must belong to a family of patterns, which can be known a priori.13 A 

recognized approach to solving ill-posed problems of this nature is the regularization 

method of Tikhonov [146] [8]. 

The regularized form of (6.16) minimizes the functional, 

||[iiT-] ' h-3 - its[[
2

 + A ||[C] � h 3 | |
2 = minimum , (6.64) 

where 

� A is a scalar parameter; and 

� [C] is a matrix which minimizes the magnitude of the second term if h 3 belongs 

to the expected family of patterns. 

The Euler equation [8] for (6.64) is solved for h 3 as follows 

[ i 1 T ]
r

[ i i T ] h 3 - [ i 1 T ] r i 2 + A[C]
r

[C]h 3 = 0, and 

h 3 = ([irrf [iiT] + A [C]
T

 [C])
 _ 1

 [ i 1 T ]
T

 i 2 . (6.65) 

i 2

Small changes in the data ii(x) due to noise, can produce large fluctuations in the matrix [ i ^ ] 

used in (6.17). 
13

Although this is a difficult step which is explained in detail later in Section 7.3.2. <, 
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In practice, solving (6.65) is computationally expensive. Additionally, finding [C] 

is difficult for anything other than simple parametric families (ie. Gaussian, quadratic, 

cubic) of h3(x,y). Since h3(x,y) can be quite complex (see Section 7.3.2), and not easily 

coerced into a parametric shape, it is not generally possible to find [C]. Therefore, in 

a generalized implementation, the closed form (6.65) cannot be used. An alternative 

approach is to introduce an iterative technique. 

6.7.2 Iterative Matrix Solution 

Using (6.8), a table of h3(x,y) patterns can be calculated a priori, to any desired detail. 

Each h3(x,y) pattern in the table corresponds to a known scene depth. Recall (6.3), 

i\{x,y) [®\ h3(x,y) = i2{x,y) . (6.66) 

Therefore, for any given image regions i1(x,y) and i2(x,y), the table of h3(x, y) patterns 

can be searched iteratively for the best h3(x,y) which minimizes 

J2 E [ ^ K y ) M h{x,y) -i2{x,y)] = minimum , (6.67) 

1=0 y=0 

where the size of ii(x, y) is N x N, the kernel h3(x,y) is k x k, and therefore i2(x,y) 

is N — k + 1 x N — k + 1. The mechanics of this new approach are worked out in 

Chapter 7. 

6.7.3 Constrained Inverse Filtering 

Using regularization, the inverse filtering solution in the frequency domain can also be 

constrained, to make it more robust. For convenience, this solution will be derived 

using matrix notation, however it should not be confused with the matrix solution of 

the previous section. This inverse filtering solution, although constrained, still has the 

problems detailed in Section 6.5.3. 
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As shown in Figure 6.2, the uniquely characteristic part of H3(fx,fy) is the down-

turned quadratic-type shape, centered at fx — fv = 0. Therefore H3(fx,fy) can be 

modelled by least squares fitting to a quadratic. The only problem with this approach, 

is that the quadratic model is valid only within a limited circle around fx = fy — 0, 

and the radius of this circle is dependent on the width of the quadratic. Assuming 

that only points within the valid radius are used, 1 4 regularization can be used to find 

Hs{fx: fy)- The regularized form of (6.27) minimizes the functional, 

||[IiDs] • H 3s - l2s||
2 + A ||[C] • H3s||

2 = minimum , (6.68) 

where 

• [IiDs] is a matrix with Ii(fx,fy) stacked along its diagonal as shown by Gonzalez 

and Wintz [50, §5.2); 

• H 3s is a stacked vector formed from H3(fx,fy); 

� las is a stacked vector formed from h{fx,fy)\ 

� A is a scalar parameter, which can be adjusted to be small and place more em-

phasis on fitting H 3s to the data, or large and place more emphasis on fitting 

H 3s to a quadratic shape; and 

� [C] is a matrix which minimizes the magnitude of the second term if H 3 g has a 

quadratic shape. 

The matrix [C] is relatively easy to find. Let H3(fx,fy) be represented by the 

quadratic 

H3{fxJy) = a(f2

x + py) +b. (6.69) 

1 4

The experimental implementation in Section 8.3.1 avoids the problem of iteratively finding the valid 

radius by calculating it based on the known depth value. 
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Then in matrix form, (6.69) can be written as 

where 

H S S = [Q]-A, 

[Q] 

/o 2 + /( 

fl+ft 

fh-i + fo 

fl + fl 

fl + fl 

ftr-x + fl 1 

f,\-i + fli-i 1 

and 

A = 

Using general least squares [123, §14.3], (6.70) can be solved for A as 

A=([Q]r[Q])- [Q] TH3 S 

(6.70) 

(6.71) 

(6.72) 

(6.73) 

Now A contains the parameters to the best fitted quadratic, and the best quadratic is 

[Q1A 

Multiplying (6.73) by [Q] on each side, yields 

(6.74) 

[Q]A = [Q]([Q]T[Q])_1[Q]
T

H3S 
(6.75) 
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Then the error between H3S and the best quadratic is 

H S S - [ Q ] ( [ Q ] R [ Q ] ) ~ [ Q ] R H 3 S | | 2 which 

( [ I ] - [ Q ] ( [ Q ] r [ Q ] ) - 1 [ Q ] T ) H 3 S | | 2 , (6.76) 

where [I] is the identity matrix. Comparing (6.76) with (6.68) reveals that 

[C] = [ I ] - [ Q ] ( [ Q f [ Q ] ) - [ Q f . (6.77) 

Now that an expression for [C] has been derived, the original regularization equation 

can be solved. The Euler equation [8] for (6.68) is solved for H 3 g as follows 

But since the quadratic parameters A , are desired from H 3 s , then using (6.73), 

(6.78) becomes 

A = ( [ Q f [ Q ] ) " 1 [ Q f ( [ I I D S ] 1 " [ I I D S ] + A [ C f [ C ] ) _ 1 [ I l D s f I 2 S � (6.79) 

The last step in solving the defocus problem by constrained inverse filtering, is to 

relate the quadratic parameters a and b in A , to the distance to the scene D0. This 

will be done in two steps: a and 6 will be related to the radius of the geometric optics 

defocus operator R, and the relationship of R to D0 has already been established. 

The most convenient way of relating a and b to R, is to equate the zero crossing of 

the quadratic and the analogous pattern in Hs(pp). Recall from (6.10) 

[ I i D s f [ I I D S ] H 3 S - [ I i D s f I 2 s + A [ C f [C] H 3 S = 0 , 

( [ I l D s f [ I I D S ] + A [ C f (C[) H 3 S = [ I 1 D S f I 2 S , and 

H 3 S = ( [ I m s f [ I I D S ) + A [cf [ C ] ) _ I [ I l D S f I 2 S . (6.78) 

(6.80) 
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The zero crossings of (6.80) are found when 

[2nR2pvP\ 

Ji ^r~) = 0 . (6.81) — ) 

The first zero crossing occurs when the argument of Jy is equal to 3.83. Therefore 

^ f l l = 3. 8 3 ) a n d ( 6. 8 2 ) 

3.83N 

The same zero crossing in the quadratic model can be found by equating (6.69) to 

zero 

0 = a(f2

x + f2

y) + b . (6.84) 

Then, from the definition of p in (3.19), if a and 6 are in pixel units, 

0 = ap\ A b and (6.85) 

PP = ' \ / ~ � (6-86) 

Substituting (6.86) into (6.83) yields 

3.83JV 
R2 = = . (6.87) 

Finally, substituting (6.87) into (3.16) yields an equation for distance, 

FD 

To summarize, constrained inverse filtering can be performed by taking two local 

regions ii(x,y) and i2(x,y) of the same size and windowing them with u>i(x,y) and 

w2{x,y) respectively. After taking the discrete Fourier Transform, of both windowed 

regions, a regularized division and fit to a quadratic is done using (6.79). The quadratic 

parameters a and b in A, are related to distance to the scene D0, using (6.88). 
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6.8 CONCLUSIONS 

This chapter has shown that solving the depth from focus problem can be condensed 

into the computational goal of finding the convolution ratio hs(x, y), which is a solution 

to the equation 

The operator [<g>] designates restricted convolution, where the borders o f the kernel 

hs(x,y) are not convolved past the borders of the image ii(x,y). The local image 

region ii(x,y) was acquired with the defocus operator / i i ( x , y ) , and i2(x,y) was a local 

image region acquired with the defocus operator h2(x,y). It was also shown that with 

no noise, h3(x,y) can be expressed in terms of / i i ( x , y ) and h2(x,y), as 

Using the geometric optics model for defocus, it was shown that /?,3(x,y) is a unique 

indicator of depth. 

The solution for hs(x,y) can be formulated with inverse filtering or with a matrix 

based approach. When only one of the images was blurred, in a noiseless environ-

ment, it was shown that the inverse filtering solution in the frequency domain had two 

fundamental limits to accuracy: 

� Finding the Fourier domain representation of a local signal requires windowing 

the spatial domain signal, however it introduces residual distortions in the spatial 

frequency domain; and 

� Border effects from neighbouring regions can introduce spurious data. 

A novel application of a matrix based method was introduced, which circumvents 

the two problems with the inverse filtering solution. When two images were blurred, 

(6.89) 

hi(x,y) <g> hz{x,y) = h2(x,y) . (6.90) 
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hs(x,y) must also be windowed. The problem of border effects was still solved by the 

matrix based method. 

When noise was added to the model, the matrix based approach was augmented 

with regularization to deal with the ill-posed nature of the problem. Since a closed form 

solution was generally not possible for an arbitrary model of the defocus operator, an 

iterative solution was given, which solved for / i 3 ( x , y ) and hence determined depth. To 

provide a fair comparison for the experimental work in Chapter 8, the inverse filtering 

approach was also augmented with regularization to produce a constrained inverse 

filtering solution. 

This chapter has introduced two concepts which have previously not been reported 

in the depth from focus literature: 

1. A generalized solution by a matrix based method; and 

2. The application of regularization to the problem. 



Chapter 7 

IMPLEMENTATION OF NEW M E T H O D 

7.1 INTRODUCTION 

This chapter describes the implementation of the author's new iterative matrix based 

method for solving the depth from focus problem. Chapter 6 provided the theoretical 

basis for this method, and Chapter 8 will present the experimental results. 

7.2 OVERVIEW 

The new method proposed by the author for solving the depth from focus problem is 

summarized in Figure 7.1. Before the method is implemented, the family of possible 

patterns for h3(x,y) must be calculated. These patterns are stored in a table which 

will be searched, under the conditions below. 

Two images of the same scene i\ and i2, are acquired with two different defocus 

operators. To change the defocus operator, any of three camera parameters can be 

varied: 

1. Position of image plane; 

2. Focal length; or 

3. Aperture. 

Changing each camera parameter has some adverse side effects: the first two affect 

87 
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Acquire and correct images i\ and i2 

I 
Locate local regions at edges in ix 

Select local regions ix(x,y) and i2(x, y) Select local regions ix(x,y) and i2(x, y) 

\ 
Take best guess at h3(x,y) 

ii{x>y) = li{x,y) [ ® ] hz{x,y) 

Compare i2{x,y) and i2(x,y) 

Calculate depth from hs(x,y) 

Finished 

Figure 7.1: Flow chart of new, iterative matrix based method for solving the depth 

from focus problem. 
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the image magnification, and the third influences the image brightness.1 Varying the 

aperture was selected as the best choice, although the method described in this chapter 

is not restricted to that choice. 

After the images are corrected radiometrically, local regions are selected at edges 

in i\. For each set of local regions ii(x, y) and i2(x,y), (6.67) is solved itera,tively for 

the best h3(x,y), as proposed in Section 6.7.2. This chapter provides the details for all 

the steps in Figure 7.1. 

7.3 CALCULATING A TABLE OF ha(x,y) PATTERNS 

To implement the new method, a table of all possible h3(x,y) patterns must be calcu-

lated, and this may be done a priori. To calculate this table, a model of the defocus 

operator must be assumed, or experimentally derived. To keep the method general, 

a table of h3(x,y) patterns will first be calculated by assuming the geometric optics 

model of defocus. This model has been used by several researchers [65][66][17], and 

has a good theoretical justification, as shown in Section 3.4. In Section 7.8, another 

table of h3(x,y) patterns will be calculated using an experimentally derived defocus 

operator, which is then optimized to a particular lens. 

Calculation of a table of h3{x,y) patterns, begins with (6.8), 

hi{x,y) ® h3(x,y) = h2{x,y) . (7.1) 

Expressed in matrix form, (7.1) becomes 

[hiBc] • h3s = h2s , (7.2) 

where [hiBc] i s a

 block circulant matrix, and h3g and h2s are row-stacked vectors 

1

More than one camera parameter can be varied, as long as the affects don't cancel. Referring to 

(3.15), this means that for a constant D0, the new parameters F, £>,, or / mn.st change the value of R. 
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formed as shown by Gonzalez and Wintz [50, §5.2].2 At first glance, (7.2) can be solved 

for h3s by 

has = [hiBc]
-1

 -h2s (7.3) 

A n immediate problem with solving (7.3) is its size. For example, if hx{x, y) and h2{x, y) 

are 64 x 64 pixels, this requires the inversion of [hjjgc]> with a size of 4096 x 4096! 

Fortunately, it is possible to take advantage of the fact that hi(x,y) and h2(x,y) 

are circularly symmetric. This can generally be expected of defocus operators formed 

from optical systems with circular apertures [140].3 As shown in the next section, 

deconvolution of circularly symmetric operators can be performed in one dimension. 

7.3.1 Justification For Calculations In One Dimension 

To prove that (7.1) can be solved in one dimension, it will first be presented in two 

dimensions in the frequency domain. Let the following be Fourier pairs: 

hi{x,y) <=> Hi(fx,fy) , 

h2{x,y) H2{fxJy) and 

h3(x,y) H3(fx,fy) . 

Then according to the convolution theorem, (7.1) becomes 

H1{fx,fy)-H3(fx,fy) = H2{fx,fy) 

Since hi(x,y), and h2(x,y) are circularly symmetric, Hi(fx,fy) and H2(fx,fy) are also 

circularly symmetric [18, p. 247]. By implication of (7.7), H3(fx, fy) is circularly sym-

metric as well. Also, Hi(fx,fy), H2{fz.fy) and H3(fx,fy) can be centered at the origin 

2

Note that hx(x, y) has a limited spatial extent so that a circulant convolution matrix can be used. 

This is different from the situation examined in. Appendix B, where i\.{x) was a local part of an image, 

which resulted in a Toeplitz convolution matrix. 
3

 Another approach, of course, would be to perform the computations in the frequency domain, how-

ever the reason for staying in the spatial domain will become obvious in Section 7.3.2, once regularization 

is introduced. 

(7.4) 

(7.5) 

(7.6) 

(7.7) 
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with no loss of generality. Then (7.7) can be expressed in one-dimensional form, since 

Hi{fx,fy), H2{fx,fy) and H 2 ( f x , f v ) are uniquely identified by one slice through the 

origin. Again, with no loss of generality, this slice will be taken at fx = 0. Then, 

H l y ( f y ) � H3y(fy) = H2y(fy) , (7.8) 

where 

HM) = î(/„/,)|/,=0 , (7-9) 

H 2 y ( f y ) = H 2 ( f x , f v ) \ f m = 0 and (7.10) 

H 3 y ( f y ) = H 3 ( f x J v ) \ f x = 0 . (7.11) 

To return to the spatial domain, let the following be Fourier pairs: 

hly(y) « H l y ( f y ) , (7.12) 

h2y(y) <=> H2y(fy) and (7.13) 

h3y(y) <=~ Hsy(fy). (7.14) 

Then (7.8) becomes 

hiv{y) ® h3«{y) = h2y(y) � (7-15) 

According to the projection slice theorem [129, §8.2], if H i v ( f y ) is one slice of 

H i { f x , f v ) at f x = 0, and H l y { f y ) = J{hlv{y)) then 

/

oo 

h1(x,y)dx . (7-16) 
-oo 

Also similarly 

h2y{y) = / h2(x,y)dx and (7-17) 
.' - oo 

poo 
hsy{y) = / hz(x,y)dx . (7.18) 
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That is, in the spatial domain, hiy(y). h2y(y) and h3y(y) are not slices of the two-

dimensional functions, but rather an integration over x. Then (7.15) can be rewritten 

as 

/

oo roo roo 

h1(x,y)dx® / h3(x,y)dx — / h2(x,y)dx , (7.19) 
- oo J — oo J —oo 

which is the expression of (7.1) in one dimension. 

The final step involves reversing the integration process, and transforming the one-

dimensional function h3y(y) back into the two-dimensional function h3{x,y). This is 

possible because h3(x,y) is rotationally symmetric, and can be written as h3(r). Fig-

ure 7.2 illustrates the geometry of the problem.4 Let 

� Ai be the area in the annulus sector to the right of line 1; 

� A2 be the area in the large annulus sector to the right of line 2; and 

� A3 be the area in the small annulus sector to the right of line 2. 

The transformation from h3y(y) to h3{r) is done according to the following steps: 

MiV) = ^[p- (7-20) 

M J V _ 1 } = M ' V - D - M A Q ^ A N D ( 7 2 I ) 

A3 

h3(N-2) = etc. (7.22) 

Using these results, (7.2) becomes the matrix equation 

[h-ic] -h 3 = h 2 and (7.23) 

h 3 = [hxc]"
1

-^, (7.24) 

where 

4

This is also based on the assumption that the ends of h^tl(y) go to zero. This assumption will be 

confirmed in the Section 7.3.2. 
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• b.3 and h 2 are vectors formed from h3y{y) and h2y(y)\ and 

• [hie] is a circulant matrix formed from h\y{y) according to Gonzalez and Wintz 

[50, §5.2]. 

Unfortunately, (7.24) will still not yield a usable result for hs(x,y). To illustrate 

the problems and what can be done about them, the next section will work through an 

example with specific defocus operators assigned to hi(x,y) and h2(x,y). 

7.3.2 An Example Of Calculating One / i 3 ( x , y ) Pattern 

Continuing with the geometric optics model of defocus, one h3{x,y) pattern will be 

calculated in this section. Let 

� The focal length of the lens F — 5 0 mm; and 

� The point of perfect focus be set at D0 — 1.0 meter. 

Then the distance to the image plane can be found by (2.1) to be D, = 52.63 mm. 

Next, it will assumed that 

� The distance to the object D0 — 0.85 meters; 

� Image ii is taken with an aperture of fi — 2.0; 

� Image i2 is taken with an aperture of f2 = 1.3; 

� The digitization ratio is P = 60.0 pixels/mm. 

Then using (3.15) and (3.17) it can be seen that hy{x,y) is a pillbox with a radius of 

Rip = 6.97 pixels, and h2(x,y) is a pillbox with a radius of R2p = 10.72 pixels. Next, 

hi[x,y) and h2{x,y) can be integrated according to (7.16) and (7.17) to form hiy(y) 

and h2y(y). These examples are shown in Figure 7.3. 
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0.10 - i 
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Figure 7.3: Examples of functions hiy{y) and h2y{y) with the camera parameters given 

in the text. 

If (7.24) is now solved, using a dimension of N = 64 pixels, the resulting I13, shown 

in Figure 7.4, has two undesirable qualities: 

� It shows wild fluctuations which are likely sensitive to any noise in h1(x,y) or 

h2(x,y); and 

� The ends of the waveform do not taper to zero, which means that it cannot be 

contained within the spatial support given. 

At this point there are two ways to proceed: 

1. Define criterion for the "best" I13 and try to find it; or 

2. Find any b.3 which yields "good" qualitative results. 
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Figure 7.4: Example of I13 solved by matrix inversion. 

Experience in working with this problem has shown the author that the success of 

the proposed method is not critically dependent on finding the "best" pattern for h 3.
5 

Therefore any h 3 which yields "good" qualitative results should suffice. The quality of 

h 3 will be checked at the end of this Section, by substituting it back into (7.23). 

Smoothing I13 

To smooth out h 3, (7.23) can be incorporated into a regularization equation [8], 

|| [h i c] • h 3 - h2||
2 + Aj| | [C c] • h3||

2 = minimum , (7.25) 

where 

� [Cc] can be any circulant matrix which detects the roughness of a function (such 

as a differentiating function); and 

5

This will be illustrated later in Section 8.3.2. The set of I13 patterns based on geometric optics, are 

significantly different from the set of h3 patterns based on the experimentally obtained defocus operator, 

yet the two will recover depth almost equally well. 
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� Ai is a scalar parameter which controls the emphasis on the data (the first term) 

or the smoothness (the second term). 

The matrix [Cc], will be defined as the Laplacian of the Gaussian put into a circu-

lant matrix, where 

and (7 = 1. 

The resulting I13 for Xx = 0.1 is shown in Figure 7.5. 

-32 -16 0 16 32 

Pixels in y 

Figure 7.5: Example of b.3 solved by regularization with smoothing. 

Containing the spatial spread of h 3 

The next problem to be tackled, is containing the spatial spread of h 3. Extra terms 

can be introduced into the regularization equation (7.25), to force the sides of h 3 down 
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to zero. The new regularization equation is 

|| [h i c] • h 3 - h2||
2 + A x | | [ C c ] � h3||

2 + A 2 | | [T D] • h3||
2 = minimum , (7.27) 

where 

• [Tpj] is a diagonal matrix, formed from a function which penalizes h 3 for having 

non-zero tails; and 

� A 2 is a scalar parameter which controls the emphasis on the minimizing the tails 

of h 3. 

Although, somewhat arbitrary, [TD] was formed as the diagonal form of the function 

(7.28) 

This function is zero at y = 0 and rises to one for y = ±N/2. Finally with X\ = 0.1. 

and A 2 = 1.0, the resultant h 3 is shown in Figure 7.6. 

The design of h 3 involves trade-offs, however the regularization technique controls 

how far h 3 strays from the original data, by adjustment of A x and A 2 . The qualitative 

test of h 3 is to substitute it back into (7.23) to get a new h 2, 

h 2 = [hic] • h 3 . (7.29) 

The new h 2 can then be compared to the original h 2. Figure 7.7 graphs the resulting 

h 2 as well as the original h 2, to show that h 3 is still faithful to the original data. After 

working through this example, a table of h3(x,y) patterns can now be calculated for a 

range of expected distances. For distances closer to the point of focus, h3(x,y) has a 

smaller spatial extent, so that it can be represented in less than 64 x 64 pixels. 
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Pixels in y 

Figure 7.6: Example of b.3 solved by regularization with smoothing and suppression of 

ends. 
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7.3.3 Table Of hs(x,y) Patterns For Geometric Optics 

In a manner similar to the example shown in the last section, a table of h3{x, y) patterns 

was calculated for DQ = 0.80 to D0 = 0.95 meters. A total of 16 patterns were stored, 

corresponding to 1 cm increments. Patterns at distances in between stored patterns, 

can be calculated by simple linear interpolation. 

7 . 4 ACQUIRING T H E IMAGES 

As explained in Section 7.2, two images of the same scene will be acquired at two 

different aperture settings. This section explains the details of image acquisition and 

correction. 

The experimental equipment used for this research was 

� A JAVELIN Model JE2062 black and white digital C C D camera with 384 pixels 

horizontal and 485 pixels vertical resolution, and RS-170 standard video output; 

� A 50 mm and a 16 mm lens; 

� A PC VISION frame grabber with 512 x 512 resolution at 8 bits; and 

� A n 8 MHz IBM PC XT for data acquisition control and processing. 

The 50 mm lens was used for the experiments described in Chapter 8. As shown 

in Section 3.7, the long focal length allowed the active area to be farther away from 

the camera. The experiments were performed with the point of sharpest focus set at 

1 meter from the camera, and objects were placed within the interval of 0.95 to 0.80 

meters from the camera. 

Keeping the active area far away from the camera also tended to minimize the 

perspective angle between objects at the border of the image and the optical axis. 
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This in turn minimized the difference between the tangent distance directly to the 

object and the distance along the optical axis. Therefore, it was reasonable to treat 

the acquired images as orthographic. This simplified the geometric calculation of the 

actual distances. 

The two aperture settings chosen were fi = 1.3 for the large defocus operator and 

fx — 2.0 for the small defocus operator. Since these aperture settings were only one 

/-stop apart, the difference in illumination between the two images was minimized. 

However, the difference between the defocus operators was also slight, making recovery 

of h3(x,y) a more challenging problem. 

To help minimize the noise, sixteen images were averaged to produce the image used 

for processing. To measure the noise, 16 images (64 x 64 pixels) of a white surface 

were averaged. As shown in Figure 7.8, the histogram of the noise was confirmed to 

have a Gaussian distribution with good symmetry, indicating the mean was zero as 

previously assumed in Section 6.3. 

7.5 CORRECTING T H E IMAGES 

7.5.1 Radiometric Correction 

Since depth from focus relies on the relative grey levels between the two acquired 

images, radiometric correction is critical. The intensity values are influenced by two 

main blocks of the system. 

1. In addition to blurring the scene by convolution with the defocus operator, the 

optical system introduces the following undesirable changes: 

� Aberrations change the shape of the defocus operator from the ideal theo-

retical case [132, §2.4.2]; 
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Figure 7.8: Histogram of noise with fitted Gaussian, after averaging 16 images (64 x 

64) of a white surface. 

� The intensity of the image with the smaller aperture setting is darkened in 

relation to the image with the larger aperture setting; and 

� The illuminance off the axis is darkened by cosine effects which darkens the 

illumination proportional to cos
4 a, where a is the angle with the optical 

axis, and vignetting which further darkens the off-axis illumination. [75, 

§7 .17 & §7.18][132, §2.4.1]. 

2. The sensor and data acquisition system may introduce further non-linearities into 

the grey values of the image. 

The convolution of the scene with the defocus operator takes place as the image 

goes through the lens of the camera, before it it digitized by the sensor. Since the scene 

is to be deconvolved from the image after it has been digitized, it is important that the 

image acquisition process be made linear. Therefore, the two distortions above must 
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be undone in the opposite order which they occurred. Since intensity differences due 

to different apertures is spatially invariant, it is easier to bundle this together with 

correction of sensor non-linearities. Then the images will be corrected in the following 

two steps, before deconvolving the defocus operator: 

1. Correct non-linearities in sensor and data acquisition system and intensity differ-

ences due to different apertures, which are spatially invariant. 

2. Correct spatially variant cosine effects and vignetting. 

Space-invariant corrections 

The first correction, for spatially invariant factors was accomplished by a radiometric 

linearization to a known standard. The calibration was done on a small local area at 

the center of the sensor, so that space-variant errors would be negligible. The reference 

was a Kodak Gray Scale, which had 20 steps in 0.10 density increments, between a 

"white" density of d = 0.0 and a "black" density at d = 1.90. For each density level, 

an average image intensity was recorded at both aperture settings. The reflectance 

percentage p, is related to density d, by the formula [67][80, p. 389] 

100 
P = — 7 � 7.30 

I0d v ' 

The results are shown in Figure 7.9.6 A polynomial was fitted to both lines to linearize 

them to the same reflectance values. 

To corroborate these results, the pixel intensity values were also compared to values 

obtained with a radiometer mounted beside the camera. The radiometer measured 

the light intensity in /uW/cm 2 . These units are related linearly to the light intensity 

°The large non-linearity was puzzling, since the CCD has been reported to be fairly linear [67], After 

some investigations, it was discovered that most of this non-linearity was due to the PC VISION frame 

grabber, which seems to be taking the square root of the intensity, before the image is digitized. 
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Figure 7.9: Radiometric calibration of camera sensor and data acquisition system to 

Kodak Grey Scale. 

which according to Section 3.3, was necessary for deconvolution. The results shown 

in Figure 7.10, show a strong qualitative similarity to the Kodak calibration curves of 

Figure 7.9.
7 

Space-variant corrections 

The correction for cosine effects and vignetting was performed by acquiring a series of 

images of a uniformly lit white sheet, at different light intensities. These images were 

radiometrically corrected as outlined above, and a polynomial fitted to each surface. 

The surfaces showed a peak close to the middle and less intensity toward all the borders, 

as shown in Figure 7.11. It was found that for any given set of coordinates, the surface 

peak was related linearly to the measured intensity. This result was quantified as a set 

7

These results were considered less accurate however, because the calibration information had to be 

obtained beside the camera sensor, and also the light level had to be changed for the various readings. 
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Figure 7.10: Radiometric calibration of camera sensor and data acquisition system to 

an external Radiometer. 

of tables, which for all image coordinates gave a multiplier and an offset to drive the 

intensity level to the peak intensity. This correction effectively raised up all the sides 

of the surface to a flat plane at the same intensity as the peak value. 

The experimental results were not compared to the theoretical model, since the 

geometric parameters of vignetting were unknown. 

Resolving power of aperture 

The resolving power of the aperture can be shown to be adequate for the lens geometry 

and C C D sensor used. Using Rayleigh's criterion, the minimum resolvable separation 

of geometrical images is [51, p. 130], 

^ideal = ! -
2 2 (7.31) 

L 

For the images acquired, the worst case numbers are: 
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� A = 800 nm for the peak spectral response of a C C D [13, p. 91][l][13]; 

� Di — 52.63 mm is the distance from the lens to the sensor; and 

� L = 25 mm is the diameter of the aperture at / = 2.0 for the 50 mm lens. 

Then 6-1([EA\ — 2.05 x 10~6 m. The sensor used for these experiments has a pixel size of 

Actual = 1-67 X 10~5 m. Since 

^actual > îdeal > (7.32) 

then the resolving power of the aperture is adequate for the sensor used. 

Chromatic effects 

It was also shown experimentally that chromatic aberrations had a minimal affect on 

the defocus operator. According to the method outlined in Section 7.8, the point spread 

function was calculated for three images: 

� One with an orange filter placed in front of the camera; 

� One with a blue filter placed in front of the camera; and 

� One with no filters.8 

The results, after scaling amplitudes and smoothing, were virtually identical. On that 

basis, it was decided that the shape of the defocus operator could be estimated inde-

pendent of the chromatic content of the illumination. 

8

Kodak Wratten gelatin filters were used. Orange and blue were chosen since they are toward 

the opposite ends of the colour spectrum (although red would have been better, if it was available). 

Although the exact frequency band-pass characteristics of the filters were not known, it was of secondary 

importance, since the experiment was first trying to establish if the filters made a difference or not. 



Chapter 7. IMPLEMENTATION OF NEW METHOD 108 

7.5.2 Geometric Correction 

The experimental data was not corrected for any geometric distortion. Correction for 

geometric distortion is well documented in the literature [149] [98], and was considered 

beyond the scope of this work. More work could be done in this discussed in 

Section 9.4.1. 

7.6 FINDING EDGES 

After the images had been acquired and corrected, the next step in the implementation 

of the new method for depth from focus, was to find edges in the images. Edges were 

located, because they were a prime source of information concerning the nature of the 

defocus operator. The sharper image i\, was used as the input to the edge detector. 

To find the edges, the V
2 G operator of Marr and Hildreth [106][107] was used, 

where decreasing a increases the sensitivity. This filter is rotationally invariant and easy 

to implement in one convolution pass. Although this method suffers from localization 

problems [147], which may be ameliorated by a directional filter such as Canny's [25] 

and other edge detectors, the location of edges was instead corrected by checking the 

original image. Local regions for depth processing were identified by the following steps 

in software: 

1. The V
2 G filtered image was scanned for zero crossings; 

2. The center of the edge was found by a search in the original image and 

3. The size of the local region iy{x,y) was set to N x iV, to include the complete 

(7.33) 
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width of the edge.9 

Each of these local regions can now be processed to identify the distance from the 

camera to that local region in the scene. Potentially, all of these local regions can be 

processed in parallel, however in this implementation they were processed sequentially. 

7.7 FINDING DISTANCE TO SCENE 

To find the distance to a local region in the scene, the best h?J[x,y) pattern which 

minimized (6.67), 

N-kN-k ^ 

E ]C [li(x>y) M h3(x,y) - t2(x,!/)] = minimum , (7.34) 

i=0 y=0 

had to be found. This minimization was performed iteratively by the following steps: 

1. One ha(x, y) pattern was picked, called h3(x, y) with dimensions kx k. Intuitively, 

the best place to start was with the pattern in the middle of the table, which 

represented the mid-point of expected distances in the scene. 

2. The local region ii(x,y) of size N x N, was convolved with /i 3(x,y) to obtain 

h{x,y)- This was a restricted convolution, where the borders of h?J(x,y) stayed 

within the borders of ii(x, y). The area of i2(x, y) was therefore N — k + lxN-

k + 1, which was smaller than the area of i\(x, y ) . The area of i2(x, y) was chosen 

to match the area of i2(x,y). 

3. Final radiometric correction was performed on i2{x,y). Although both images 

were radiometrically corrected as indicated in Section 7.5.1, slight variations still 

existed. Therefore, the final radiometric adjustment was performed by finding 

9

For simplicity in this implementation, the scanning for these three steps was done horizontally, which 

favoured vertical edges. Extensions to include edges of any orientation are straightforward. 
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a scale m and offset b which best matched i 2 (x,y) to i 2 (x ,y) . That is, x 2 w a s 

minimized, according to 

N-kN-k ^ 2 

X 2 = ' ( " ^ ( x . y ) + b - i' 2(x,y)) = minimum . (7.35) 

The optimal m and 6 were easily found, by solving the Euler equations of (7.35), 

S ;. - SiSi/(N-k + l ) 2 

where 

*a = E E ^ K y ) ) 2 , (7-38) 

5 « = ££*2(x,y)*2(s,y) , (7.39) 
r y 

3 = EE»«(*.y)- (7-40) 

i v 
Si = E E ^ y ) , (7.41) 

z y 

(7.42) 

and ( N —fc + l ) 2 was the total number of points in the local region. Experimentally 

it was found that some reasonable upper and lower bounds had to be placed on 

m and b. This substantially reduced the probability of the minimization process 

getting caught in a local minimum. If the original radiometric correction was 

good,then 

m ^ 1 and 6 ^ 0 . (7-43) 

4. If x2 w a s l e s s than a minimum threshold, then the best h$(x,y) had been found, 

and the process was complete. Otherwise, the next step was executed. 
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5. The values of x 2 from previous iterations and Brent's method [20][123, §10.2] was 

used to determine the next guess for h3(x,y). Brent's method was a technique 

which determined the best guess for h3[x,y) based on up to six previous values 

of x
2

, and no knowledge of the slope of the function being minimized. 

6. Goto step 2. 

It is important to note that the value of k varied dynamically, depending on the choice of 

h3(x, y) for each iteration. Therefore the area of i2{x, y), which was TV — fc + 1 x N — k + 1, 

may also vary for each iteration. The area of i1(x,y), which was N x N, had been 

previously fixed, according to Section 7.6. After the best h$(x, y) was found, its location 

in the table of patterns yielded the estimated depth to the scene. 

7.8 CALCULATING A N OPTIMIZED T A B L E OF h3{x,y) PATTERNS 

In Section 7.3 the geometric optics model of defocus was assumed to determine hi{x, y) 

and h2(x,y), and hence derive the patterns for hs(x,y). This table can be optimized 

to a particular lens by experimentally deriving hi(x,y) and h2(x,y). 

The point spread function of defocus can be derived, by imaging a scene of an 

impulse function. A n impulse function can be formed with a black dot on a white 

background, or if necessary, a sharper contrast can be obtained by placing a light source 

behind a black background containing a pinhole. Figure 7.12 shows a radiometrically 

corrected, experimental point spread function of defocus, obtained by imaging a black 

dot. 1 0 It can be seen that this experimentally obtained defocus operator is significantly 

different than the theoretical defocus operators shown in Chapter 3. Figure 7.12 also 

shows some rotational variance, which is probably due to an off-axis point source [4, p. 

1 0

The intensity values have been reversed (ie higher numbers represent darker intensity), to better 

illustrate the function. 
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Figure 7.12: Example of a defocus operator formed with a lens having aberrations. 
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76]. This rotational variance is slight and will be ignored in the remaining analysis. 

Since the method for deriving hs(x.y), as described in Section 7.3, uses integrated 

functions hiv(y) and h2y(y) in one dimension, it is convenient to derive these directly. 

They can be obtained by imaging a scene s(y) which has no variation in x. This can 

be shown by working out the convolution equation 

/

CO r oo 

/ s(y - v)hi(^,v)<i^T] and 
- CC J — OO 

/

cc r o o 

4y-l) h1{^v)dCdr1 . (7.44) 
- CO J — o o 

Using the definition of hly(y) from (7.16), yields 

r c o 

&{y) ® hi(x,y) = / s(y - n)hly(v)dri and 
J — CO 

s{y) ® M x , y ) = -q(y) ® ^iv(y) � (7-45) 

Therefore, convolution of the defocus operator hi(x,y), with a one-dimensional scene 

s(y), is identical to convolution of the same scene with an integrated defocus operator 

hi„[y). 

Furthermore, if s(y) is an ideal black to white transition with amplitude of 3, then 

h\y{y) can be isolated by simple differentiation [97]. If 

i ' i(y) = M y ) < M y ) > ( 7 - 4 6 ) 

and both sides are differentiated, then 

^ i ( y ) = ^ ( M y ) ® * ( y ) ) � ( 7 - 4 7 ) 

But the right hand side can be rewritten [95, p. 416], 

^*1(y) = M y ) ® Q ^fo) ) � ( 7 - 4 8 ) 
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Since the scene is a black to white transition of amplitude (3, its derivative is simply (3. 

Therefore 

KM = i (£.-.<v)) � (7.49) 

This means that hiy(y) can be obtained directly, by taking the derivative of a defocused 

black to white transition. A similar reasoning also applies to h2y{y). 

O.lO-i 
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Figure 7.13: Experimental examples of functions h\y(y) and h2y(y) with the optical 

parameters given in the text. 

Examples of experimentally obtained hiy{y) and h2y(y) are shown in Figure 7.13. 

They can be directly compared to Figure 7.3, the theoretically predicted defocus oper-

ators. This shows that the geometric optics model is a close approximation, however it 

doesn't completely model the actual defocus operators. The actual defocus operators 

were modelled with a trapezoidal shape as shown in Figure 7.14. 

A number of optimized patterns for hiy(y) and h2y{y) were obtained experimentally, 

and modelled with a trapezoidal shape, using the same optical parameters that the 
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Figure 7.14: Models of the experimental functions hiv(y) and h2y{y) shown in the 

previous Figure. 

theoretical patterns were calculated in Section 7.3. That is fx = 2.0, f2 = 1.3, the point 

of perfect focus was set to 1 meter, and the distance to the scene ranged from D0 — 0.80 

to D0 = 0.95 meters. A total of 16 patterns each for hly(y) and h2y{y) were derived, 

corresponding to 1 cm increments. From these, trapezoidal models were fitted, and 

an optimized table of h3(x,y) patterns was calculated using the regularization method 

outlined in Section 7.3. 

A n example b.3 pattern for D0 =0.85 meters is shown in Figure 7.15. This can 

be directly compared to the theoretical h$ shown in Figure 7.6. It can be seen that 

the patterns are quite different, since the geometric optics model does not adequately 

model the defocus operator of the camera used in the experiments. 

The optimized table of h3(x,y) patterns, along with the table of h?\x,y) patterns 

derived assuming geometric optics will be used in the next chapter. Chapter 8 will 

outline the experimental results of implementing the new method of depth from focus 
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described in this chapter. 

116 

7.9 CONCLUSIONS 

This chapter presented the steps necessary to implement the author's new iterative 

matrix solution for calculating depth from focus. Two tables of h?J(x,y) patterns were 

calculated: 

� One assumed geometric optics; and 

� One was based on the experimentally derived defocus operator. 

Differences in the tables showed that the geometric optics model is a reasonable ap-

proximation, however it does not exactly model the experimentally derived defocus 

operator. 



Chapter 7. IMPLEMENTATION OF NEW METHOD 117 

The implementation of the iterative matrix solution can be summarized by the 

1. Acquire two images i\ and i2 of the same scene with different camera optical 

parameters, such as a change in aperture. 

2. Radiometrically correct images ?'i and i2. 

3. Locate local regions at edges in i , . 

4. Select a local region. 

5. Iteratively select h3(x,y) from the table, to find the one which minimizes 

following steps: 

N-kN-k 

(7.50) 
i=0 y=0 

6. The position of h3(x,y) in the table yields the distance to the local region in the 

scene. 

7. Goto step 4. 
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EXPERIMENTAL RESULTS 

8.1 INTRODUCTION 

This chapter presents the experimental results using the author's new iterative matrix 

based method for calculating depth from focus. These results were obtained by follow-

ing the steps detailed in Chapter 7. Conclusions and possibilities for further research 

work are given in Chapter 9. 

8.2 OVERVIEW 

Using four different experimental scenes, this chapter details the results of solving the 

depth from focus problem using the author's new iterative matrix based method as well 

as constrained inverse filtering. Each scene contains features at known distances from 

the camera so that explicit accuracy results will be given. The scenes processed are: 

1. A flat sheet of paper with various letters of the alphabet. The paper is sloped so 

that the distance to the camera ranges linearly from 0.95 to 0.80 meters. 

2. Two blocks which show a shadow edge, an occlusion edge, and a printed grey 

edge. 

3. A flat sheet of paper with printed, grey, ramp edges of increasing width. 

4. A sloped piece of paper with equally spaced, vertical, black bars which produces 

a phase inversion in the acquired images. 

118 
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The experimental equipment used for these tests has already been described in 

Section 7.4. The focal length of the camera lens is 50 mm, and it is adjusted so 

that scene features which are one meter from the camera, are in perfect focus. Two 

images are acquired with apertures set at fx — 2.0, and f2 — 1.3. The images are 

radiometric ally corrected according to Section 7.5. As described in Section 7.6, edges 

are found in the sharper image (/ = 2.0), which identifies the local regions used for 

processing of depth information. 

Experimental results of obtaining depth from focus using images obtained with two 

different apertures, where one is not a pinhole, have not previously been reported in 

the literature. 

8.3 SCENE WITH TWO-DIMENSIONAL FEATURES 

The first scene imaged was a flat sheet of paper with various letters of the alphabet. 

The paper was arranged so that the distance to the camera ranged linearly from 0.95 

meters at the left hand side of the image, to 0.80 meters at the right hand side of the 

image. The acquired images are shown in Figures 8.1 and 8.2. 

8.3.1 Constrained Inverse Filtering 

The first solution to the depth from focus problem is obtained using constrained inverse 

filtering, as described in Section 6.7.3. A total of 242 local regions, of size 64 x 64 pixels 

were processed,1 and one depth point was calculated for each local region. A mesh plot 

of the results is shown in Figure 8.3. The dashed line on the side of the plot shows the 

expected depth values for the scene being imaged. 

1

The problem of providing a limited circular window for the quadratic, mentioned in Section 6.5.2, 
is avoided by calculating the expected width of the quadratic based on known depth values. Although 

this is not possible in practice (since the depth values are not known a priori), it was done in these 

experiments to obtain a best case performance of the constrained inverse filtering method. 
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Horizontal Pixels 

Figure 8.1: Slanted image of alphabet at f i = 2.0. 

150-. 

Horizontal Pixels 

Figure 8.2: Slanted image of alphabet at / 2 = 1.3. 
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Figure 8.3: Mesh plot of calculated depth values from using constrained inverse filtering 

on the "alphabet" images. The dashed line shows the expected depth values. 
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The experimental results are consistent with the theoretical observations of Sec-

tion 6.5.3. The most consistently accurate depth values in the plot are found on the 

left hand side, for both large and small scan lines. In the images of Figures 8.1 and 

8.2, this corresponds to the bottom and top of the letters " A " and " B " . Here the er-

rors associated with windowing and border effects are minimal. Windowing errors are 

small because a majority of the outside perimeter of the local areas, are about the same 

intensity. Border effects are also slight, because the width of the defocus operator is 

relatively small. 

The least accurate depth values are on the right hand side of the plot, towards 

the center. Here windowing effects are large, since a local area can likely have a dark 

intensity on one side and a light intensity on the other side. The border effects are also 

large, since the defocus operators are wide and edges from adjacent local areas "bleed" 

into each other. 

Using an 8 MHz I B M P C with no hardware acceleration or math coprocessor, and 

floating pointing point arithmetic implemented in Pascal, the a.verage computational 

time was about 4.4 minutes per depth point.2 The RMS errors over the scene are shown 

in Table 8.1. It can be clearly seen that the error increases for distances closer to the 

camera, which is also increasing defocus. The average RMS error for the scene was 

42% over the expected range, and 6.8% in terms of distance from the camera. 

2

Benchmarks performed by the author indicate that this could be reduced to 15 seconds, by us-

ing integer arithmetic in machine language, although it was not implemented. This number allows a 

fair comparison to be made with the processing times taken by the iterative matrix based method in 

Section 8.3.2. 
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Expected depth 

(meters) 

RMS error over 

expected range (%) 

RMS error in distance 

to camera (%) 

Number of 

points 

0.95 > D0 > 0.90 23.7 3.88 89 

0.90 > D0 > 0.85 40.5 6.78 92 

0.85 > D0 > 0.80 59.9 9.57 61 

0.95 > D0 > 0.80 41.7 6.79 242 

Table 8.1: RMS errors in depth values from using constrained inverse filtering on the 

"alphabet" images. 

8.3.2 Iterative Matrix Solution 

Using geometric optics 

The table of hs(x,y) values calculated in Section 7.3, assuming geometric optics, was 

used for this test. Using the steps described in Section 7.7, 242 depth points were 

calculated with the author's new iterative matrix based solution. 3 A mesh plot of the 

results is shown in Figure 8.4. Smoothing of the data was not required.4 

The iterative process of finding the best h5(x,y), described in Section 7.7, converged 

after about six iterations. The algorithm always converged, for this scene as well as all 

the others in this chapter. The best results were obtained when the parameters ra, and 

6, described in Section 7.7, were constrained to the limits 

0.98 < m < 1.02 and (8.1) 

-5.00 < 6 < 5.00 . (8.2) 

Using an 8 MHz I B M P C with no hardware acceleration, the average computational 

3

The center of the local areas were located at the same point as the constrained inverse filtering 

method, however for the iterative matrix based method, the size of ix(x,y) varied according to the 

width of the edges in the scene, and the size of i2(x,y) was additionally determined by the size of 

hs(x, y). The average size of ii(x, y) was about 64 X 64 pixels. 
4

The mesh program required a regular grid to be calculated. Grid values close to data points were 

simply assigned the value of the data point, and other grid points were interpolated by minimizing the 

curvature of the grid. This method should yield a faithful representation of the original data. 
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Figure 8.4: Mesh plot of calculated depth values from using iterative matrix solution 

on the "alphabet" images, and assuming the geometric optics model of defocus. The 

dashed line shows the expected depth values. 



Chapter 8. EXPERIMENTAL RESULTS 125 

time per depth point, was 3.3 minutes. The RMS errors over the scene are shown in 

Table 8.2. The RMS error over the expected range was 10%, and it was 1.7% in terms 

Expected depth 

(meters) 

RMS error over 

expected range (%) 

RMS error in distance 

to camera (%) 

Number of 

points 

0.95 > D 0 > 0.90 10.67 1.71 89 

0.90 > D0 > 0.85 8.67 1.45 92 

0.85 > D0 > 0.80 10.69 1.89 61 

0.95 > D0 > 0.80 9.96 1.67 242 

Table 8.2: R M S errors in depth values from using iterative matrix solution on the 

"alphabet" images, and assuming the geometric optics model of defocus. 

of distance from the camera. These values represent a substantial improvement over 

the errors obtained using the constrained inverse filtering technique. 

Using (3.15) and (3.17), the different values of i ? l p , the radius of /i](x,y) and R2p, 

the radius of h2(x,y) are calculated and shown in Table 8.3. For distances close to 

D0 (m) R\p (pixels) R2p (pixels) 

0.95 

0.80 

2.1 

9.9 

3.2 

15.2 

Table 8.3: Values of i ? l p and R2p for the range of distances D0 in the experimental 

scene. 

0.95 m, it can be seen that the difference between R\p and R2p is slight, yet by looking 

at Figure 8.4 the results are still comparatively good in this region. Therefore it can 

be seen that the algorithm performs well, even though the two images were acquired 

with a difference of only one /-stop. 
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Using experimental defocus operator 

Using the table of hs(x,y) values found in Section 7.8, another set of depth values was 

calculated from the same images shown in Figures 8.1 and 8.2. A mesh plot of the 

results is shown in Figure 8.5. 

The R M S errors over the scene are shown in Table 8.4. The table shows a progres-

Expected depth 

(meters) 

RMS error over 

expected range (%) 

RMS error in distance 

to camera (%) 

Number of 

points 

0.95 > D0 > 0.90 4.89 0.79 89 

0.90 > D0 > 0.85 7.85 1.36 92 

0.85 > D0 > 0.80 9.57 1.72 61 

0.95 > D0 > 0.80 7.44 1.29 242 

Table 8.4: R M S errors in depth values from using iterative matrix solution on the 

"alphabet" images, and an experimentally derived defocus operator. 

sion of increasing error for distances closer to the camera, where the defocus operator 

is larger. This seems intuitive, since a larger defocus operator limits the bandwidth of 

information about the images. The larger errors for distances close to 0.80 m seem to 

indicate that the 64 x 64 region used to calculate h3(x,y) in Section 7.3.2, is probably 

too small. The RMS error over the expected range was 7.4%, and it was 1.3% in terms 

of distance from the camera. This is a reduction, from the error found in the last 

section, while assuming the geometric optics model of defocus. 

8.4 SCENE WITH VARIOUS EDGES 

Although the images of the alphabet contained an assortment of two-dimensional fea-

tures, they had only sharp black to white printed edges. The next scene contains three 

other types of edges: 

1. A soft edge caused by a shadow (penumbra); 



Figure 8.5: Mesh plot of calculated depth values from using iterative matrix solution on 

the "alphabet" images, and an experimentally derived defocus operator. The dashed 

line shows the expected depth values. 
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2. A n occlusion edge; and 

3. A printed, grey, ramp edge. 

Conditions under which depth from focus will not work, and features that will yield 

inaccurate depth values have already been discussed in Sections 2.5 and 2.6, and are 

deliberately excluded from the scene. They are 

� Featureless areas; 

� Specularity and mirrored surfaces: 

� Scene motion; 

� Features outside of the active range; 

� Excessive image noise; 

� Semi-transparent surfaces, such as dirty windows; and 

� Illumination causing camera saturation or black-out. 

To construct the three edges mentioned at the beginning of this section, a top 

view of the scene geometry is shown in Figure 8.6. The resulting images are shown in 

Figure 8.7 and 8.8. 

8.4.1 Constrained Inverse Filtering 

Using constrained inverse filtering, eleven local regions on each of the three edges were 

processed. The errors in the results are shown in Table 8.5. These errors are somewhat 

greater than the errors found in Section 8.3.1, when processing the "alphabet" images. 

The occlusion edge yielded invalid results at all local regions tested.5 

5Referring to the method described in Section 6.7.3, the modelled quadratic was up-turned, resulting 

in invalid depth points. 
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Shadow 

\ Edge 
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\ Occlusion \ p r i n t e d / 

\ Edge \ G r e y / 

\ \ Edges / 

0.9 m 0.85 m 

Figure 8.6: Top view of scene geometry to obtain images with various edges. 

Scene edges RMS error over 

expected range (%) 

RMS error in distance 

to camera (%) 

Number of 

points 

Shadow edge 34.8 5.86 11 

Occlusion edge — — 11 

Printed grey edge 71.3 11.16 11 

Total 49.7 8.1 oo 
oo 

Table 8.5: R M S errors in depth values from using constrained inverse filtering on the 

images of various edges. 
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Horizontal Pixels 

Figure 8.7: Image with various edges at / t = 2.0. 

Horizontal Pixels 

Figure 8.8: Image with various edges at / 2 = 1.3. 



Chapter 8. EXPERIMENTAL RESULTS 131 

8.4.2 Iterative Matrix Solution 

The iterative matrix solution was also implemented on the images of various edges. 

For this test and all successive tests in this chapter, the experimentally derived table 

of h3(x,y) was used, since Section 8.3.2 showed that it yielded superior results to the 

table formed assuming geometric optics. The results are shown in Table 8.6. The 

Scene Feature RMS error over 

expected range (%) 

RMS error in distance 

to camera (%) 

Number of 

points 

Shadow edge 2.99 0.50 11 

Occlusion 2.83 0.50 .11 

Printed grey edge 4.90 0.86 11 

Total 3.70 0.64 33 

Table 8.6: R M S errors in depth values from using iterative matrix solution on the 

images of various edges. 

errors shown are even lower than those found while processing the "alphabet" images. 

This seems somewhat counter-intuitive, since the "alphabet" images had sharp edges, 

whereas all three of the edges in the current images are softer. The answer is found in 

the next section, which will consider a series of grey, ramped edges of various widths. 

8.5 SCENE WITH R A M P E D EDGES 

The third scene imaged, is a fiat sheet of paper with printed grey edges of increasing 

width. The scene is shown in Figure 8.9.6 The images acquired of this scene are shown 

in Figure 8.10 and 8.11. 

°Note the sharp white to black transition has a measured ramp edge of four pixels because of band-

width limitations in the camera and frame grabber board. 
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Width of edge in pixels, when in focus 

Figure 8.9: Actual scene of ramped edges. 
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Figure 8.10: Image with various ramped edges at f i — 2.0. 

0 50 100 150 200 250 300 350 400 450 

Horizontal Pixels 

Figure 8.11: Image with various ramped edges at f2 — 1.3. 
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8.5.1 Constrained Inverse Filtering 

Using constrained inverse filtering, eleven local regions on each ramp edge were pro-

cessed. The errors in the results are shown in Table 8.7. These errors are also shown 

Ramp edge width 

(pixels) 

RMS error over 

expected range (%) 

RMS error in distance 

to camera (%) 

Number of 

points 

4 42.4 6.51 11 

8 38.8 6.07 11 

12 25.0 3.99 11 

16 56.0 9.09 11 

20 24.0 3.85 11 

24 53.5 9.04 11 

Total 41.8 6.76 66 

Table 8.7: R M S errors in depth values from using constrained inverse filtering on the 

images of ramp edges. 

graphed in Figure 8.12. The error is expected to rise as the ramp in the grey edge 

becomes wider, since the difference between the two acquired images becomes smaller. 

However, the results are not consistent enough to draw any firm conclusions. 

8.5.2 Iterative Matrix Solution 

The iterative matrix solution was also implemented on the images of the ramp edges. 

The results are shown in Table 8.8 and graphed in Figure 8.13. The graph shows a 

result which may not be intuitively obvious. That is, the minimum error is achieved 

with ramp edges of about 8 pixels, and not with sharp black to white transitions. The 

reason for this can be found in the example given in Section 6.6. Here it was seen that 

sharp edges require h3(x,y) to have an infinite extent, whereas the /i 3 (x,y) used for the 

experiments has been smoothed and windowed, as explained in Section 7.3.2. 

After the minimum is reached, the error continues to rise as the width of the ramp 
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Figure 8.12: RMS errors in depth values from using constrained inverse filtering on the 

images of ramp edges. 

Ramp edge width 

(pixels) 

RMS error over 

expected range (%) 

RMS error in distance 

to camera (%) 

Number of 

points 

4 5.75 0.97 11 

8 3.10 0.52 11 

12 3.22 0.54 11 

16 5.89 0.99 11 

20 7.74 1.31 11 

24 13.68 2.34 11 

Total 7.47 1.27 66 

Table 8.8: R M S errors in depth values from using iterative matrix solution on the 

images of ramp edges. 
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Figure 8.13: RMS errors in depth values from using iterative matrix solution on the 

images of ramp edges. 

increases, which is the expected result. 

8.6 P H A S E INVERSION 

Image restoration is a difficult problem, but image restoration after phase reversal is 

an even more difficult problem [153]. As previously shown in Figure 3.4, the higher 

spatial frequencies of the optical transfer function for defocus can swing below zero. 

This implies a phase reversal in the spatial domain [51, §6-4] when features are close 

together. The effect of this phase reversal is illustrated by Figure 8.14. The scene 

viewed is a sheet of paper with a series of equally spaced, vertical, black bars. The 

paper was arranged in the manner described in Section 8.3, so that the distance to the 

camera varied linearly from 0.95 meters on the left hand side, to 0.80 meters on the 

right hand side. 
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Figure 8.14: The center strip shows a pinhole image of the scene, while the upper strip 

is the image acquired at fi = 2.0 and the lower strip is the image acquired at f2 = 1.3. 

The center strip of Figure 8.14 shows the scene in perspective, as seen through a 

pinhole camera. The top strip is an image blurred at fx = 2.0 and the bottom strip is 

an image blurred at f2 = 1.3. It can be seen that the bars on the right hand side of 

both blurred images are out of phase with the unblurred scene. When the two blurred 

images are compared to each other, they are in phase on the left, out of phase in the 

center, and in phase again on the right hand side. 

8.6.1 Constrained Inverse Filtering 

The constrained inverse filtering technique was attempted on these images, with the 

depth results of points along a horizontal line shown in Figure 8.15, and the errors 

shown in Table 8.9. The graph shows constrained inverse filtering working reasonably 

well before the phase reversal, however after one image is phase reversed, the results 

are quite unstable. 
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Figure 8.15: Depth results from using constrained inverse filtering on the images of 

vertical bars with phase reversal. The dashed line shows the expected depth values. 

Area R M S error over 

expected range (%) 

RMS error in distance 

to camera (%) 

Number of 

points 

Both images good 32.4 5.97 18 

ft bad 12.4 2.05 7 

/ 2 phase reversed 45.3 7.49 10 

h bad 55.2 8.85 5 

Both phase reversed 46.0 7.33 4 

Total 38.2 6.46 44 

Table 8.9: RMS errors from using constrained inverse filtering on the images of vertical 

bars with phase reversal. 
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8.6.2 Iterative Matrix Solution 

The author's iterative matrix solution was also applied to the same horizontal line of 

points from both blurred images, with the range results shown in Figure 8.16 and the 

errors shown in Table 8.10. The graph shows excellent results when both waveforms 

0.95 -i 

Horizontal Pixels 

Figure 8.16: Depth results from using iterative matrix solution on the images of vertical 

bars with phase reversal. The dashed line shows the expected depth values. 

are good, with some degradation when the / 2 = 1.3 image fades out. During phase 

reversal of one image, the results are still fair. The algorithm does fail, however, when 

both images are phase reversed, since this condition closely mimics a small amount of 

defocus. This test shows that the author's iterative matrix solution is robust enough 

to handle phase inversion of one image relative to the other. 
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Area RMS error over 

expected range (%) 

RMS error in distance 

to camera (%) 

Number of 

points 

Both images good 3.83 0.64 18 

fa bad 14.2 2.49 7 

fi phase reversed 15.7 2.82 10 

fx bad 23.1 3.93 5 

Both phase reversed 78.8 12.6 4 

Total 26.8 4.37 44 

Table 8.10: R M S errors from using iterative matrix solution on the images of vertical 

bars with phase reversal. 

8.7 CONCLUSIONS 

The following four scenes were processed with the author's iterative matrix solution 

and constrained inverse filtering: 

1. A sloped sheet of paper with various letters of the alphabet. 

2. Two blocks which show a shadow edge, an occlusion edge, and a printed grey 

edge. 

3. A flat sheet of paper with printed, grey, ramp edges of increasing width. 

4. A sloped piece of paper with equally spaced, vertical, black bars which produces 

a phase inversion in the acquired images. 

On all of the four experimental scenes processed, the iterative matrix solution was 

consistently more accurate than constrained inverse filtering. The following conclusions 

can also be made about the iterative matrix solution: 

1. For the camera lens employed, geometric optics provides a good first approxima-

tion; 
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2. The most accurate depth results can be achieved when the actual defocus operator 

is experimentally measured and modelled; 

3. The accuracy of the algorithm increases as the defocus operators become smaller, 

and the images are less blurred. 

4. The algorithm is most accurate when the scene contains edges with a small 

ramped, grey transition area. 

5. The best features processed, had an RMS error of 2.8% in terms of expected range, 

and 0.5% in terms of distance from the camera; and 

6. The algorithm is able to cope with phase reversal in one image. 

Experimental results of obtaining depth from focus using images obtained with two 

different apertures, where one is not a pinhole, have not previously been reported in 

the literature. However, the author's results still compare favorably with Pentland's 

measured error of 2.5%, where one image was acquired with a pinhole aperture. 



Chapter 9 

SUMMARY, CONCLUSIONS AND FURTHER WORK 

9.1 OVERVIEW 

This chapter is divided into three sections. Section 9.2 gives a summary of Chapters 2 

to 4 which describe the current state of depth from focus. Section 9.3 presents the con-

clusions based on the author's work in Chapters 5 to 8. These conclusions summarize 

the original contribution of the thesis. Opportunities for further work are described in 

Section 9.4. 

9.2 SUMMARY OF D E P T H FROM FOCUS 

The method of depth from focus and its current state can be summarized as follows: 

1. The concept of depth from focus involves calculating distances to points in an 

observed scene, by modelling the effect that the camera's focal parameters have 

on images acquired with a small depth of field. This technique is passive and 

requires only a single camera. 

2. Depth from focus is a viable technique for depth perception, since it has several 

key advantages over other passive techniques of depth perception. 

� It does not suffer from the correspondence problem, since depth is shown by 

a blur in the images rather than a parallax. 

142 
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� It is suitable for hardware implementation, since the problem has a pre-

dictable computational path of deterministic sub-problems. 

� It is suitable for parallel processing, since the depth calculation for any 

locality can be done independently from neighbouring local regions. 

� It requires only one camera. 

� It has no occlusion problem, since all images are taken from the same viewing 

angle and projection. 

Depth from focus has some disadvantages, such as 

� Error increases with distance squared; 

� Problem is ill-posed; 

� Ambiguity about point of focus; and 

� No scene motion is permitted: 

however in most controlled applications, these can usually be overcome, or suffi-

ciently constrained. 

3. Defocus can be modelled as a convolution by a point spread function. The nature 

of this point spread function can be modelled in two traditional ways: geometric 

optics and diffraction optics. For the optical camera parameters which were used 

in the experimental analysis, it was shown that the diffraction optics model yields 

a similar result to geometric optics. Considering the complexity of the diffraction 

optics model, geometric optics provides an adequate theoretical representation. 

4. Early researchers trying to solve the depth from focus problem, developed meth-

ods for automatically focusing a camera on the point of interest. The distance 
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to the point in the scene could then be determined from the position of the lens. 

However, a key limitation of this technique was that it measured depth, one point 

at a time and required an adjustment of the lens setting for each point. 

More recently, researchers have attempted to measure the amount of defocus, 

called focal gradient in different parts of an image, and therefore infer distance 

to a variety of points in the scene. Since one unfocused image of an unknown 

scene was an underconstrained problem (soft edges in the images may be either 

unfocused hard edges in the scene, or focused soft edges in the scene), three 

approaches were presented: 

� Introduce extra cues into the scene; 

� Make assumptions about the scene; or 

� Take several images with different defocus operators. 

9.3 CONCLUSIONS 

The following original conclusions can be made, based on the contents of this thesis: 

1. The general solution to the depth from focus problem can be condensed into the 

computational goal of finding a convolution ratio h3(x,y), which is a solution to 

the equation 

ii{x,y) [®] h3(x,y) = i2(x,y) . (9.1) 

The operator [<g>] designates restricted convolution, where the borders of the ker-

nel h3(x,y) are not convolved past the borders of the image ij(x,y). The local 

image region i\(x,y) was acquired with the defocus operator hx(x,y), and i2{x,y) 

was a local image region acquired with the defocus operator h2(x,y). It was 
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also shown that with no noise, h?J(x,y) can be expressed in terms of hi(x,y) and 

h2{x,y), as 

Using the geometric optics model for defocus, it was shown that h?J(x,y) is a 

unique indicator of depth. 

The solution for hs(x, y) can be formulated with inverse filtering or with a matrix 

based approach. When only one of the images was blurred, in a noiseless envi-

ronment, it was shown that the inverse filtering solution in the frequency domain 

had two fundamental limits to accuracy, over the matrix based approach: 

� Finding the Fourier domain representation of a local signal requires window-

ing the spatial domain signal, however it introduces residual distortions in 

the spatial frequency domain: and 

� Border effects from neighbouring regions can introduce spurious data. 

When both of the images are blurred, the problem of border effects still remains. 

2. In a noiseless environment, given signals s(x) G di(x) and i(x) € ?K(x), and the 

convolution kernel h(x) G 9?(x), where 3?(x) is the set of all real signals, and the 

relation 

where the symbol [®] represents restricted convolution such that the ends of h(x) 

do not convolve beyond the ends of s(x). If I{s(x),i(x)} is the set of all signals 

s(x) and i(x) where the exact recovery of h(x) is possible using inverse filtering in 

the spatial frequency domain, and M{s(x),i(x)} is the set of all signals s(x) and 

i(x) where the exact recovery of h(x) is possible using a matrix based approach 

hi (x, y) © hz (x, y) = h2 (x, y) . (9.2) 

s{x) [®] h(x) = i(x) , (9.3) 
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in the spatial domain, then 

I{s{x),i{x)} C M{s(x),i{x)} . (9.4) 

That is, the exact recovery of h(x) can be performed for a larger family of local 

signals 5 ( 2 ; ) and i(x) by using a matrix based approach in the spatial domain, 

than by using inverse filtering in the spatial frequency domain. 

3. To deal with noise present in acquired images, the technique of regularization 

has been used to augment the inverse filter method into a constrained inverse 

filtering solution. Regularization has also been used to augment the matrix based 

approach into an iterative matrix based solution. 

4. A novel application of a general iterative matrix solution has been theoretically 

justified, which circumvents the problem of border effects encountered with in-

verse filtering. This new method is general for the reasons below. 

Minimal constraints on the scene: The two images can be obtained under 

any differing conditions of defocus (change of aperture, position of image 

plane, or focal length), one image need not be obtained with a pinhole 

aperture, and no assumptions are made about the nature of the edges in the 

scene. 

Independent of the defocus operator model: The defocus operator may 

be assumed to be a parametric shape, or for more accuracy it can be exper-

imentally measured. 

Selective trade-offs: The trade-offs in forming the convolution ratio h?>(x,y); 

fit to data and fit to expected models, are resolved through regularization. 
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5. The following four scenes were processed with the author's iterative matrix solu-

tion and constrained inverse filtering: 

(a) A sloped sheet of paper with various letters of the alphabet. 

(b) Two blocks which show a shadow edge, an occlusion edge, and a printed 

grey edge. 

(c) A flat sheet of paper with printed, grey, ramp edges of increasing width. 

(d) A sloped piece of paper with equally spaced, vertical, black bars which pro-

duces a phase inversion in the acquired images. 

On all of the four experimental scenes processed, the iterative matrix solution 

was consistently more accurate than constrained inverse filtering. The following 

conclusions can also be made about the iterative matrix solution: 

(a) For the camera lens employed, geometric optics provides a good first ap-

proximation; 

(b) The most accurate depth results can be achieved when the actual defocus 

operator is experimentally measured and modelled; 

(c) The accuracy of the algorithm increases as the defocus operators become 

smaller, and the images are less blurred. 

(d) The algorithm is most accurate when the scene contains edges with a small 

ramped, grey transition area. 

(e) The best features processed, had an RMS error of 2.8% in terms of expected 

range, and 0.5% in terms of distance from the camera; and 

(f) The algorithm is able to cope with phase reversal in one image. 
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Experimental results of obtaining depth from focus using images obtained with 

two different apertures, where one is not a pinhole, have not previously been 

reported in the literature. However, the author's results still compare favorably 

with Pentland's measured error of 2.5%, where one image was acquired with a 

pinhole aperture. 

9.4 OPPORTUNITIES FOR FURTHER WORK 

This section outlines some suggestions for further work, which stem from the research 

work described in this thesis. 

9.4.1 Geometric Correction 

Since the geometric correction of images acquired with a camera is well documented in 

the literature [149][98], it was considered unlikely that a peripheral effort could result in 

any unique contribution. Therefore it was not attempted as part of this thesis research. 

It is very likely, however, that including geometric corrections into the depth from 

focus algorithm will improve the experimental results. For example, it was observed 

that the aspect ratio of the digitization process was 20% from unity, whereas the 

construction of the table of h3(x,y) patterns assumed that it was unity. 

9.4.2 Speed Up Implementation 

The greatest disadvantage of the iterative matrix based solution presented in this thesis, 

is the time required to calculate the depth values. Almost all of the computational 

time is spent convolving the local region ii(x,y) with the estimated convolution ratio 

h3(x,y) to obtain i2(x,y). Since finding the best h3(x,y) is an iterative process, several 

convolutions must be performed. Currently all the convolutions are done in software, 
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and the resulting i2(x,y) is discarded after each iteration. 

There are two ways of speeding up these calculations. 

1. Implement convolutions in hardware. 

2. Make some approximations to the iterative process, so that the results of the 

previous convolution are used to obtain the results for next convolution. 

Another possible way to speed up this algorithm, may be to implement part of 

the spatial domain convolution in the frequency domain in the manner introduced in 

Section 6.5.3. This differs from the inverse filtering solution offered by other researchers, 

in that different sized pieces are taken in spatial domain. At this point however, the 

exact algorithm has not yet been identified. 

9.4.3 Further Experimental Tests 

A variety of further experimental tests are possible, which would give further insight 

into the strengths and limitations of the current algorithm. Tests could be performed on 

a variety of featured scenes, including textured scenes. The most interesting test would 

be to take the two images i\ and i2, with a larger aperture separation, since the tests 

in Chapter 8 were performed with the images differing by only one /-stop. Intuitively, 

it should be possible to gain greater accuracy this way, although this constrains the 

scene to be more illuminated. 

9.4.4 Spaee-variant Solution 

This is perhaps the most challenging future course of research, which involves wrap-

ping another layer around the current algorithm. The depth points from the present 

algorithm would act as a starting point and then treating the image as a whole, with 
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the defocus operator space-variant, another iteration could take place. This fine tun-

ing should help to eliminate errors where multiple and conflicting depths have been 

present in a previously chosen local area. This algorithm may also want to take depth 

continuity into consideration, however step discontinuities, which often occur in range 

images would also have to be taken into account. 



Appendix A 

GLOSSARY OF C O M M O N SYMBOLS 

Dfi The distance from the lens to the image, when the image is guaranteed 

to be in focus. 

Di The distance from the lens to the image, which may or may not be in 
focus. 

D0 The distance from the lens to an observed object. 

/ The /-number of an optical system. 

fx, fy The spatial frequency domain components (cycles per spatial unit). 

F The focal length of a lens. 

7 The Fourier operator. 

7~x The inverse Fourier operator. 

h(x,y) A defocus operator. 

hi(x,y) The small defocus operator. 

h2{x,y) The large defocus operator. 

h3(x,y) The convolution ratio of the large and small defocus operators. 

I13 The vector formed from h?J(x). 

h3(x,y) A guess at h3(x,y). 

H(fx,fy) A defocus operator in the spatial frequency domain. 

Hi{fx,fy) The small defocus operator in the spatial frequency domain. 

H2{fx,fy) The large defocus operator in the spatial frequency domain. 

Hz(fx, fy) The frequency domain division of the large and small defocus operators. 

i An acquired image, which may be corrupted with noise or blurred in 
some areas. 

i(x,y) A local region of an acquired image. 
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ii(x,y) The local image region acquired with defocus operator hy(x,y). 

i' 2(x,i/) The local image region acquired with defocus operator h2{x,y). 

i2(x,y) A guess at i2(x,y). 

12 A vector formed from i2{x)-

I{fx,fy) A local image function in the spatial frequency domain. 

Ii(fx,fy) The local image function i\(x,y) in the spatial frequency domain. 

I2(fx,fv) The local image function i2(x,y) in the spatial frequency domain, 

[ii] A matrix formed from i\(x). 

Jn(x) The Bessel operator of order n. 

L The limiting diameter of the lens or aperture. 

ni(x,y) First noise distribution in the spatial domain. 

n2(x,y) Second noise distribution in the spatial domain. 

TV The number of points in a vector or one dimension of a matrix. 

P The digitization ratio of the camera. 

R The radius of the blur circle. 

Rp The radius of the blur circle in pixels. 

s(x,y) The spatial domain description of the scene being imaged. 

S{fx,fy) The scene function in the spatial frequency domain. 

Wi(x,y) First windowing function in the spatial domain. 

w2(x,y) Second windowing function in the spatial domain. 

w3(x,y) Third windowing function in the spatial domain. 

Wi(fx,fy) First windowing function in the spatial frequency domain. 

W M / x j / y ) Second windowing function in the spatial frequency domain. 

x,y The spatial domain components in a local area. 

6 The distance from the image plane to the point of perfect focus, 

e. Errors due to inverse filtering in the frequency domain. 

em Errors due to matrix based solution in the spatial domain. 
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0 The angular component in the spatial domain. 

A A scalar parameter in a regularization equation. 

p The radial component in the spatial frequency domain. 

pp The radial component in the spatial frequency domain measured in pixel 
units. 

o The spatial constant for the Gaussian function. 

<f> The angular component in the spatial frequency domain. 

<8> The convolution operator. 

[<g>] A convolution operation such that the borders of the convolution kernel 
do not extend beyond the borders of the signal. 



Appendix B 

DECONVOLUTION OF LOCAL SIGNALS 

B . l INTRODUCTION 

Given a signal s(x) and a convolution kernel h(x), the result i(x) in a noiseless envi-

ronment, can be expressed as, 

s(x) ® h(x) = i(x) . (B.5) 

The convolution theorem [50, p. 84] states that the dual of this operation can be rep-

resented in the spatial frequency domain as 

S(fx) � H(ft) = I(fx) , (B.6) 

where the following are Fourier pairs 

s(x) S(fx), (B.7) 

h(x) ^ H(fx) and (B.8) 

»�(*) / ( / , ) . (B.9) 

The deconvolution problem states that given s(x) and i(x), find h(x). A simple way 

of solving the deconvolution problem is by inverse filtering. This is usually implemented 

in the frequency domain. Solving (B.6) for H(fx) yields 

H(U) = . (B.10) 
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If the signal s(x) is part of a larger signal s, then convolution of a local region can 

be written as 

s[x) [®] h(x) = i(x) . ( B . l l ) 

The operator [®] designates restricted convolution, where the ends of the kernel h(x) 

are not convolved past the ends of the signal s(x). This restricted definition is necessary, 

because in this case the result of convolving the kernel past the ends of the local region 

of the signal is unknown. 

Under these conditions, for most signals s(x) and i(x), the deconvolution problem 

cannot be solved exactly by using inverse filtering, even in a noiseless environment. 

This appendix will present a matrix based approach as a more appropriate and accu-

rate solution. The matrix based approach exhaustively specifies and solves the linear 

equations formed by the restricted convolution of ( B . l l ) . 

B.2 OBJECTIVE 

This appendix presents a proof for the following theorem. 

Theorem 1 In a noiseless environment, given signals s(x) £ 9?(x) and i(x) 6 9?(x), 

and the convolution kernel h(x) E 5R(x), where 9?(x) is the set of all real signals, and 

the relation 

s{x) [®] h{x) = i(x) , (B.12) 

where the symbol [®] represents restricted convolution such that the ends of h(x) do 

not convolve beyond the ends of s(x). If I{s(x),i(x)} is the set of all signals -s(x) and. 

i(x) where the exact recovery of h(x) is possible using inverse filtering in the spatial 

frequency domain, and M{s(x),i(x)} is the set of all signals s(x) and i(x) where the 

exact recovery of h(x) is possible using a matrix based approach in the spatial domain, 
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then 

I{s{x),i[x)} C M{s{x),i{x)} . (B.13) 

That is, the exact recovery of h(x) can be performed for a larger family of local signals 

s(x) and i(x) by using a matrix based approach in the spatial domain, than by using 

inverse filtering in the spatial frequency domain. 

This theorem will be proved in one dimension for simplicity, however the results 

can be directly extended to two dimensions. 

B.3 OVERVIEW 

Proof of Theorem 1 will come as a result of four lemmas. The first two lemmas establish 

some necessary representations. Lemma 1 will establish that the multiplication of 

two signals in the discrete Fourier domain can be represented by multiplication of a, 

circulant matrix with a vector, in the spatial domain. Then Lemma 2 will show that, 

more generally, the restricted convolution of a local region of a signal with a kernel, 

can be represented by the multiplication of a Toeplitz matrix and a vector. 

The next two lemmas build on the last two lemmas, to draw some conclusions 

regarding the solution of the deconvolution problem using both methods. Lemma 3 

will prove that all deconvolution problems that can be solved using inverse filtering, 

can also be solved with a matrix based approach. Next, Lemma 4 will prove that some 

deconvolution problems which can be solved using the matrix based approach cannot 

be solved by inverse filtering. 

The logical conclusion from Lemmas 3 and 4, is that more deconvolution problems 

can be solved exactly using the matrix based approach than by inverse filtering, which 

is the proof of Theorem 1. 
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B.4 REPRESENTATION 

B.4.1 Inverse Filtering Approach 

Lemma 1 Given complex signals S(fz). H(fx) and I(fx) in the discrete Fourier do-

main, and the relation 

S(fx)-H(fx) = I(fx), (B.14) 

this can be equivalently represented in the spatial domain by the matrix equation 

[s c]-h = i , (B.15) 

where [SQ] is a circulant matrix formed from s(0),s(l),s(2),. . . ,s(N — 1) according to 

s(k — i) for i < k , and 
sc{k,i) 

s(k - i + N) for i > k , 

(B.16) 

where k, i = 0 ,1 ,2 , . . . , N — 1 and s(x) is the inverse Fourier transform of S(fx). Also, 

h and i are vectors formed from the inverse Fourier transforms of H(fx) and I(fx) 

respectively. That is, the multiplication of signals in the discrete Fourier domain, can 

be equivalently represented by multiplication of a circulant matrix with a vector in the 

spatial domain. 

Before the proof of Lemma 1 is presented, a number of matrix equivalencies must 

first be established. The expressions below follow Gonzalez and Wintz [50, §5.2], a.nd 

are also presented by Hunt [68]. 

Consider an JV x N circulant matrix [sc], where 

5(0) s(N-l) s{N-2) ��� 5(1) 

5(1) .s(0) s{N-l) ��� 5(2) 

ISC] = 5(2) 5(1) 5(0) ��� 5(3) , (B.17) 

s ( J V - l ) s[N-2) s(N-3) 5(0) 
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defined for scalars s(0), s( l ) , 5(2),..., s(N - 1) and k, i — 0,1,2,..., N - 1, as 

!

s(k — i) for i < k 

s{k - 1 + N) for i > k . 

Also given, is a scalar function A(fc), of the form 

\{k) = s(0)+ s ( J V - l ) e x p ( j ^ A ; ) + s(/Y - 2) exp (j^2fc) +��� 

(B.18) 

+ 5 ( l ) e x p ( j ^ ( 7 V - l ) A : ) , 

where y = \/—1, and a vector w(/c), where 

(B.19) 

w{k) = 

exp ( i f A;) 

exp ( j f 2/c) (B.20) 

e x p ( y £ ( J V - l)fc) 

for k = 0,1,2,. . . , N — 1. It is evident, by matrix multiplication, that 

[s c]w(fc) = A(fc)w(A:). (B.21) 

Equation (B.21) indicates that w(/c) is an eigenvector of the circulant matrix [sc], and 

X(k) is its corresponding eigenvalue [123, §11.0][49, p. 333]. 

It is now possible to form an N x N matrix [W], by arranging the N eigenvectors 

of [sc] as columns of [W]. Then, the kith element of the matrix [W] is expressed as 

2n 

W(k,i) = exp [j—ki (B.22) 

where k, i = 0,1, 2,..., N — 1. The inverse matrix [W] can be written by inspection 

as 

W(fc,t) = ^ e x p ( - y ^ f c t ) , (B.23) 
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and it can be verified using (B.22) and (B.23), that 

[W] � [Wp
1

 = [W]-
1

 � [W] = [I] , (B.24) 

where [I] is the N x N identity matrix. It follows that 

[sc] = [W]-[S D ] . [W]-
1

 , (B.25) 

if [SD] is a diagonal matrix, whose elements, 

Sr,{k,k) = \{k) , (B.26) 

are the eigenvalues of [sc] [123, §11.0j. Finally, using (B.24), (B.25) becomes 

[SD] = [W]-
1

.[sc]-[W] . (B.27) 

After the key matrix identities above have been established, the proof of Lemma 1 

follows. The expression 

S(fx)-H{fx) = I{fx), (B.28) 

where S(fx), H(fx) and I(fx) are complex signals in the discrete Fourier domain, can 

be represented in matrix form as 

[ S D ] - H = I, (B.29) 

where [Sr>] is made up of the elements of S(fx) placed on the diagonal, and H and I are 

vectors formed from H(fx) and I(fx) respectively. Then using (B.27), (B.29) becomes 

[W]
_ 1

 � [sc] � [W]-H = l a n d (B.30) 

[ s c P [ w l - H = [ W p i . (B.31) 

It can be recognized from (B.22) that the matrix [W], when multiplied by a vector, 

performs the inverse discrete Fourier transform on that vector. Therefore, let 

[W]-H = h , (B.32) 
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where h is a vector representing the inverse Fourier transform of H . Similarly, let 

[W] - I = i , (B.33) 

where i is a vector representing the inverse Fourier transform of I. Then, using (B.32) 

and (B.33), (B.31) can be rewritten as 

[ s c ] - h = i . (B.34) 

Therefore, it has been shown that the multiplication of signals in the discrete Fourier 

domain, can be equivalently represented by multiplication of a circulant matrix with a 

vector in the spatial domain, which completes the proof of Lemma 1. 

B.4.2 M a t r i x Based A p p r o a c h 

L e m m a 2 Given spatial domain signals s(x) and i(x), a convolution kernel h(x), and, 

the relation 

s(x) [®] h(x) = i(x) , (B.35) 

where the symbol [®] represents restricted convolution such that the ends of h(x) do not 

convolve beyond the ends of s(x). This can be represented by the m,atri,x equation 

[ s T ] -h = i , (B.36) 

where [sx] is a Toeplitz matrix formed from s(l — N),s(2 — N),... ,s(0),. . . ,s(N — 1) 

according to 

sT{k,i) = s(k - i) , (B.37) 

where k,i = 0 , 1 , 2 , . . . , ^ — 1. Also h and i are vectors formed from h(x) and i(x) 

respectively. That is, convolution of a signal by a kernel, where the ends of the kernel 

do not convolve past the ends of the signal, can be represented by a multiplication of a, 

Toeplitz matrix with a vector. 
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The proof for Lemma 2 is similar to the presentation by Andrews and Hunt [4, 

Appendix A]. Consider Figure B . l which shows s(x) and i(x) as two segments of larger 

waveforms 5 and i. Let i(x) and h(x) be N points long. Since s(x) is part of a larger 

waveform, the ends of the kernel h(x) cannot convolve past the ends of s(x). Then by 

looking at (B.35), it is easily seen that s(x) will need to be 2N — 1 points long, to fully 

recover h(x)} 

A critical point to note, is that this representation is not the conventional form of 

convolution. Conventionally the convolution kernel h(x) moves past the ends of s(x) 

so that the resulting i(x) is longer than s(x). In the representation above, the kernel 

moves within s(x) so that the resulting i(x) is smaller than s(x). This allows the 

deconvolution problem to be solved for local regions of larger waveforms. 

To simplify the analysis, but without further loss of generality, it will be assumed 

that both h(x) and i(x) start with an index of — (N — l ) /2 , and are centered at the 

origin. 

Then by inspection, the restricted convolution equation (B.35), can be written as 

the following series of linear equations 

t ( - * = i ) = s{o)h(-£=±) + s(-i)h{-£=&) + ��� + s(l-N)h{&=±) , 

i ( - £ f 3 ) = s(l)h(-^) + s(0)h{-*=2) +•••+ 3(2-N)h(£j±) ' 

i{*=±) = 3{N-l)h(-£f±) + s ( N - 2 ) h ( - ^ ) +��� 

+ s(0)h(^) � (B.38) 

The linear equations above can be represented by the matrix equation 

[ s T ] -h = i , (B.39) 

1

 Since the formulation is slightly different if JV is even or odd, TV will be considered to be odd for 

this analysis. 
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Figure B . l : The local segments s(x) and i(x) of the larger signals 5 and i are denoted 

by (�) symbols, and the (*) symbol denotes the extra length of s(x) required by the 

convolution kernel h(x). 
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where 

ST 

5(0) S ( -1 ) 

5(1) 5(0) 

s(N-l) 

� � � 5(1 — N) 

5(1) 5(0) 

(B.40) 

h(-*=*) 
and (B.41) 

(B.42) 

Note that sequence of s(x) has been inverted and shifted row by row into the matrix 

[ST] in (B.40). Then [sx] can be recognized as a Toeplitz matrix, since [sx] is TV x iV and 

there exist scalars s ( l -N),s(2-N),... ,s(0), . . . ,s(N- 1), for k, i = 0 ,1 ,2 , . . . , TV - 1, 

such that [49, page 183], 

sT(k,i) = s(k - i) . (B.43) 

Therefore, convolution of a signal by a kernel, where the ends of the kernel do not 

convolve past the ends of the signal, can be represented by a multiplication of a Toeplitz 

matrix with a vector, which completes the proof for Lemma 2. 

B.5 SOLUTIONS 

Lemmas 1 and 2 can now be used to draw some conclusions about solving restricted 

deconvolution problems using both inverse filtering and matrix based methods. 
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L e m m a 3 In a noiseless environment, given signals s(x) £ 5c(x) and i(x) £ dl(x), and 

the convolution kernel h(x) £ 3?(x), where di(x) is the set of all real signals, and the 

relation 

s(x) [®] h{x) = i(x) , (B.44) 

where the symbol [®] represents restricted convolution such that the ends of h(x) do 

not convolve beyond the ends of s(x). If I{s(x),i(x)} is the set of all signals s(x) and, 

i(x) where the exact recovery of h(x) is possible using inverse filtering in the spatial 

frequency domain, and M{s(x),i(x)} is the set of all signals s(x) and i(x) where the 

exact recovery of h(x) is possible using a matrix approach in the spatial domain, then 

I{s{x),i{x)} C M{s{x),i(x)} . (B.45) 

That ts, all restricted deconvolution problems that can be solved using inverse filtering 

in the spatial frequency domain can also be solved using a matrix approach in the spatial 

domain. 

The proof of Lemma 3 follows closely after Lemma 1. Given the complex signals 

S(fx), H(fx) and I{fx), which are the discrete Fourier transforms of s(x), h(x), and 

i(x) respectively, the restricted convolution equation has been represented by the matrix 

equation (B.29), 

[ S D ] - H = I and (B.46) 

H = [ S D ] " 1 - ! . (B.47) 

The diagonal matrix [SD], is invertible as long as all of its elements are non-zero. 

Therefore, a solution to the restricted deconvolution problem using inverse filtering is 

possible if [SD] has no non-zero elements. 
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From the proof of Lemma 1, it was concluded that (B.46) in the discrete Fourier 

domain can be equivalently expressed as (B.34) in the spatial domain, 

[s c] -h = i and (B.48) 

h = [ sc ] " 1 - ! - (B.49) 

The circulant matrix [sc], is invertible if it is not singular. But a matrix is singular 

if and only if it has a zero eigenvalue [21, p. 60]. It was shown by (B.21) and (B.26) 

that [SD] contains the eigenvalues of [sc]- Therefore, if (B.4.7) can be solved for H, 

(B.49) can be solved for h. Therefore, all restricted deconvolution problems that can 

be solved using inverse filtering in the spatial frequency domain can also be solved with 

a matrix based approach in the spatial domain. 

That completes the proof of Lemma 3. As corroborating evidence, it can be pointed 

out that representation of the restricted deconvolution problem using inverse filtering 

yielded a circulant matrix in the spatial domain, while the representation of the re-

stricted deconvolution problem in the matrix approach could be more generally ex-

pressed using a Toeplitz matrix. Since a circulant matrix is a specialized form of a 

Toeplitz matrix, therefore it appears that solutions calculated using inverse filtering 

are a subset of the solutions possible with a matrix based approach. This suspicion is 

confirmed in the next lemma. 

Lemma 4 In a noiseless environment, given signals s(x) € 9?(x) and i(x) G 9?(x), and 

the convolution kernel h(x) € 3t(x), where 3?(x) is the set of all real signals, and. the 

relation 

s(x) [©] h(x) = i[x) , (B.50) 

where the symbol [®] represents restricted convolution such thai the ends of h(x) do 

not convolve beyond the ends of s(x). If I{s(x),i(x)} is the set of all signals s(x) and 
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i(x) where the exact recovery of h(x) is possible using inverse filtering in the spatial 

frequency domain, and M{s(x),i(x)} is the set of all signals s(x) and i(x) where the 

exact recovery of h(x) is possible with a matrix based approach in the spatial domain, 

then there exists a subset Ms{s(x),i(x)}, 

Ms{s(x),i(x)} C M{s{x),i{x)} , (B.51) 

such that 

Ms{s{x),i(x)} £ I{s{x),i{x)} , (B.52) 

That is, some restricted deconvolution problems that can be solved using a m.atrix ap-

proach in the spatial domain, cannot be exactly solved using inverse filtering in the 

spatial frequency domain. 

Based on Lemmas 1 and 2, Lemma 4 can be proved, if it is found that a gen-

eral Toeplitz matrix (representing the restricted deconvolution problem using a matrix 

based approach in the spatial domain) cannot always be converted into a circulant 

matrix (representing the restricted deconvolution problem using inverse filtering in the 

spatial frequency domain). 

The steps of the proof will follow Gray [53][54], who has shown that a Toeplitz 

matrix is only asymptotically equivalent to a circulant matrix. The proof begins with 

(B.39), the matrix equation for restricted convolution, and (B.40) the definition of [sx], 

[ST] - h = i , (B.53) 

where 

s(0) 

s(l) 

s(-l) 

s(0) 

s(l - N) 

(B.54) 

s{N - 1) S(l) 6(0) 



Appendix B. DECONVOLUTION OF LOCAL SIGNALS 167 

The objective will be to replace [sx] with a circulant matrix [s'c]. The only possible 

way to turn [sx] into [s'c] is to expand its size to 2N — 1 x 2N — 1, since modifying 

any of the elements in the current-sized [sx] would violate the exa,ct relations given in 

(B.39). If [sx] is expanded, then the vectors h and i must be expanded to h' and i' 

respectively, each of length 2iV — 1. Then (B.53) becomes 

h' i' and 

? ? ? ? 

ST h i 

? ? ? ? 

(B.55) 

(B.56) 

s(l-N) ? 

The question marks represent values which are yet to be assigned. The matrix of 

interest is 

? ? 

? 3(0) , ( - 1 ) � 

! 5 (1) 5 (0) ��� 

? ; •-. ••. s ( - i ) ; 

? S(N-1) ��� 5(1) 5 (0) ? 

? ? ? ? ? 

Some of the question marks can be filled in immediately, according to the definition of 

a Toeplitz matrix in (B.43), 

[s'c] = (B.57) 

? ? 

s ( l - i V ) ? 

5 (0) 5 ( - l ) ��� � 

5 (1) 5 (0) 5 ( - l ) � 

� 5(1) 5 (0) ��. ; ? 

? ; � � . � � . 5 ( - i ) i 

? s ( N - l ) ��� 5(1) 5 (0) 5 ( - l ) 

? ? ? � � � 5(1) 5 (0) 

(B.58) 
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however the upper right hand corner and lower left hand corner need further consider-

ation. The definition for a circulant matrix was given in (B.18) for s(x) ranging over 

5(0), s(l), 5(2),..., s(N — 1), however in this case the function s(x) is defined over a 

larger range 5(1 — JV) , . . . , 0 , . . . ,s(N — 1). Gray gives the general form for [s'c] as 

[s'c] 

3{0) 

s{N-l) 

5(0) 

5(1 - JV) 

.(0) 

s{N - 1) s(l) 

s{N - 1) 

5(1 - JV) 

s(-l) 

5(0) 5(1 - JV) 

5(1 - JV) 

��� *(0) 

5 ( J V - 1 ) ��� 5(0) 

(B.59) 

It can be seen from (B.59), that to comply with the circulant requirements, the upper 

right corner and lower left corner must repeat or wrap-around. This directly contradicts 

the requirements in building up the Toeplitz matrix (B.40) from Figure B . l , since there 

is no guarantee that the general waveform s(x) is periodic. 

Therefore, in general, the Toeplitz matrix created from the local waveform s(x) 

cannot be exactly coerced into a circulant matrix, since s(x) is not generally periodic. 

Therefore, there exist some restricted deconvolution problems that can be solved with a 

matrix based approach in the spatial domain, yet cannot be exactly solved using inverse 

filtering in the spatial frequency domain. That completes the proof of Lemma 4. 2 

Finally, from the proof of Lemma 3, all restricted deconvolution problems that can 

be solved using inverse filtering in the spatial frequency domain can also be solved using 

2Gray [53][54] goes on to show, however, that if the question marks in (B.57) are filled with zeros, then 

only as N approaches infinity, are the eigenvalues of the Toeplitz and circulant matrices asymptotically 

equivalent. 
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a matrix based approach in the spatial domain, and from the proof of Lemma 4, some 

restricted deconvolution problems that can be solved using a matrix based approach 

in the spatial domain cannot be solved using inverse filtering in the spatial frequency 

domain. Therefore it can be concluded that more restricted deconvolution problems 

can be solved exactly with a matrix approach in the spatial domain than by using 

inverse filtering in the spatial frequency domain, which is the proof of Theorem 1. 

B.6 CONCLUSION 

This appendix has proved that in one dimension, in a noiseless environment, given 

signals s(x) G 9ft(x) and i(x) G 9t(x), and the convolution kernel h(x) G 9?(x), where 

di(x) is the set of all real signals, and the relation 

s{x) [®] h(x) = i(x) , (B.60) 

where the symbol [<g>] represents restricted convolution such that the ends of h(x) do 

not convolve beyond the ends of s(x). If I{s(x),i(x)} is the set of all signals �s(z) and 

i(x) where the exact recovery of h(x) is possible using inverse filtering in the spatial 

frequency domain, and M{s(x),i(x)} is the set of all signals s(x) and i(x) where the 

exact recovery of h(x) is possible using a matrix based approach in the spatial domain, 

then 

I{s{x),i{x)} C M{s{x),i{x)} . (B.61) 

That is, the exact recovery of h(x) can be performed for a. larger family of local sig-

nals s{x) and i(x) by using a matrix based approach in the spatial domain, than by 

using inverse filtering in the spatial frequency domain. Extension to two dimensions is 

straightforward, since another dimension does not change any of the basic premises on 

which this proof is based. 
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