里

AUTHOR
TITLE
INSTITUTION SPONS AGENCY
REPORT NO PUB DATE CONTRACT NOTE PÚB TYPE
EDRS PRICE DESCRIPTORS

IDENTIFIERS

Wingersky, Marilyn S.; Lord, Freder,ic M.
. An Investigation of Methods for Reducing Sampling Error in Certain IRT Procedures.
Educatiopal Testing Service, Princeton, N.J.
Office of faval Reséarch, Arlington, Va. Personnel
, and Training Research Programs Office.

- ETS-RR-83-28-ONR.

Aug 83
NOOO14-80-C-0402.
57p.
Reports Research/Technical (143)
MEOL/PCO3 Plus Postage:
*Error of Measurement; Estimation (Mathematics); Item Banks; *Latent Trait Theory; Mathematical Formulas;
*Maximum Likelihood Statistics; *Research
Methodologÿ; Sample Size; . Sampling; Statistical Distributions; Test Length; Validity *Sampliffg Error

ABSTRACT

The sampling errors of maximum likelihood estimates of item-response theory parameters are studied in the case where both people and item parameters are estimated simultaneously. A check on the validity of the standard error formulas is carried out. The effect of varying sample size, tést length, and the shape of the ability distribution is investigated. Fịnally, the effect of anchor-test length on the standard error of item parameters is studied numerically for the situation, common in equating studies, where two groups of examinees each take a different test form together with the same anchor test. The results encourage the use of rectangular or bimodal ability distributions, also the use of very short anchor tests. (Authore)

[^0]

- J.	Marilyn S. Wingersky
	and
	Frederic M. Lord

This research was sponsored in part by the Personnel and Training Research Programs, Psychological Sciences Division Office of Naval Research, under
Contract No. NOOO14-80-C-0402
Contract Authority Identification Number NR No. 150-453
Frederic M. Lord, Principal Investigator

Educational Testing Service
.Princeton, New Jersey
August 1983

Us. opamammen of foucaton NATIONAL. INSTITUTE OF EDUCATION EDUCATIONAL RESOURCES INFORMATION $\not \pm$ This document has been reproduced as received from the person or organization originating it.
i] Minor changes have been made to improve - reproduction quality.

- Points of view or opinions stated in this focumont do not necessarily represent official NIE , position or policy.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

REPORT DOCUMENTATION PAGE	
PORT NUMEER•	$\because \quad . \quad T^{2}$ GOVT ACCESSION NO.
4. Titile (and Subition An Investigatio Error in Certai	of Methods for Reducing Sampling IRT Procedures.

- security classification of this page (When Data Entered)

20. Abstract (Continued)
examinees each take a different test form together with the same anchor test. The results encourage the use of rectangular or bimodal ability distributions, also the use of very short anchor tests.

An Investigation of Methods for Reducing Sampling Error
In Certain IRT Procedures 1

Abstract

The sampling errors of maximum likelihdod estimates of item-responge * theory parameters are studied in the case where both people and item parameters are estimated simultaneously. A check on the validity of the standard error formulas is carried out: The effect of varythig sample size, test length, and the shape of the ability distribution is investigated. Finally, the effect of anchar-test length on the standard error of item parameters is studied numerically for the situation, common In equating studies, where two groups of examinees each take a different test form together with the same anchor test. The results encourage the use of rectangular or bimodal. abllity distributions, also the use of very short anahor tests.

An investigation of, Methods for Reducing Samplling Eriror

In Certain IRT Procedures*

In IRT until now, the sampling variances and covariances for maximum 1ikelihood estimates of item parameters have usually been computed by assuming the abilities to be known; the sampling variances and covariances for ability estimates were: computed by assuming the item parameters to be known. In this paper, a suggested method for computing the sampling. variance-covariance matrix when all parameters are unknown (Lord and Wingersky, 1983) will be used to try to answer various, practical questions. Section 2 presents needed additional, though not conclusive, evidence that the new method for computing the variance-covariance matrix -yields correct results. Section 3 investigates the effect of changing the. number of items or the number or distribution of people on the standard errors of the item parameters and of the abilities. Section d_{4}° presents a technique for displaying and understanding the standard errors and sampling covariances of estimates of item parameters.

Section 5 deals with the practically important situation where we have two, tests that contain a set of items in common and these tests are administered to two separate groups of examinees. A problem in item

[^1]banking or test equating is putting the parameter estimates for the two rests on a common scale. One way to do this is to estimate all of the parameters for pooh tests in one calibration run. When this is done, how, does the number and quality of the common items affect the standard errors of the parameter estimates for the unique (noncommon) items?

1. Preliminaries

The three-parameter Birnbaum logistic model is used throughout. The probability of examinee a answering item 1 correctly is

$$
\begin{equation*}
P_{4}=c_{1}+\left(1-c_{1}\right) /\left(1 .+\exp \left(-1.7 a_{1}\left(\theta_{a}-b_{1}\right)\right)\right) \tag{1}
\end{equation*}
$$

where a_{1} is the discrimination of item $i ; \dot{b}_{1}$ is the difficulty for the item, c_{1} is the lower asymptote of the item response . function; and θ_{a} is the ability for examinee a . In a typical calibration run, poorly estimatable c_{1} are ordinarily fixed at' some. common value. In this paper, however, all, c_{1} are considered unknown and must be estimated. In treating all of the c_{i} as unknown we are L. looking at, the "worst case" standard errors.

In IRT, the origin and unit of measurement of the ability scale is. arbitrary. Until this scale is specified all parameters except the c_{1} are unidentifiable. The origin and unit of the ability scale must be specified in terms of (as a function of) the true parameters. If the
origin and unit of the ability scale were specified in terms of the parameter estimates, then the true parameters would be undefined. Since the true parameters are unknown but depend on the scale used, 'this means that the scale origin and the scale unit (each defined as a function of the true parameters) must be estimated from the daca. The estimated origin and scale unit are obviously subject to sampling eribrs, which affect the accuracy of all parameter estimates. It is therefore important, to define the origin and unit each by a function of parameters/that can be estimated with good accuracy.
$-3-$

The scale recommended in Lord and"Wingersky (1983) and'used here requires that the mean of the difficulty parameters of certain selected items be 0 (the origin) and that the diffèrence between 'two such means for two sets of selected items be 1 (the scale unit). This scale will be referred to as the "capital" scale: parameters on this scale will be denoted by the capital letters $A_{i}, B_{1}, C_{i}, \epsilon_{a}$. The "small" scale or the "LOGIST" scale, referred to by lower-case letters, is the scale used by the LOGIST program (Wingersky, Barton, and Lord (1982)), the computer program used here for estimating the parameters of (1) by maximum likelihood. LOGIST sets a truncated mean of the estimated abilities to 0 and a truncated standard deviration of the estimated abilities to 1 . The following formulas convert the parameters from the LOGIST scale the the capital scale:

$$
\begin{gathered}
\theta_{a}=\left(\theta_{a}-\bar{b}_{0}\right) / k \\
\vdots=b_{1}-b_{0},
\end{gathered}
$$

$$
\begin{gathered}
A_{1}=k a_{1} \\
B_{1}=\left(b_{1}-\bar{b}_{0}\right) / k \\
C_{1}=c_{1},
\end{gathered}
$$

where \bar{b}_{0} and \bar{b}_{1} are means of the b_{1} for two selected subsets of items．The capital scale is a linear transformation of the LOGIST scale． The c_{1} are not affected by the scale．

2．Variance of P_{1} ，the Proportion Correct

If we could prove that the maximum likelihood parameter estimates for the Birnbaum model are consistent when all．item and ability parameters are estimated simultaneously，the sampling variance－covariance matrix described in Lord and Wingersky（1983）would be the correct one to use． Since consistency has not yet been proven mathematically any results that confirm the appropriateness of this variance－covariance matrix makes one feel more comfortable about using it．

等解路 camping variance of P_{i} ，the proportion of examinees in the sample who answer item 1 correctly，can be computed directly from familiar standard formulas；it can also be computed with some effort from the sampling variance－covariance matrix obtained by Lord and Wingersky （1983）．These two methods should give the same results if the Lord－ Wingersky matrix is correct．

The usual ilkelihood equations for \hat{b}_{1} and for \hat{c}_{1}, obtained by setting the derivative of the likelihood function equal to zero, are (Lord, 1980, eq. 12.1 and 12.2)

$$
\begin{align*}
& \left.\sum_{a=1}^{N}\left(u_{i a}-\hat{P}_{1}\left(\hat{\theta}_{a}\right)\right)\left(\hat{P}_{i}\left(\hat{\theta}_{a}\right)-\hat{c}_{i}\right) / \hat{P}_{i}\left(\hat{\theta}_{a}\right)\right)=0, \\
& \sum_{a=1}^{N}\left(u_{i a}-\hat{P}_{1}\left(\hat{\theta}_{a}\right)\right) / \hat{P}_{i}\left(\hat{\theta}_{a}\right)=0, \tag{3}
\end{align*}
$$

where $u_{1 a}$ is the score (0 or 1) of examinee a on item $1, N$ is the number of examinees, and a caret denotes substitution of parameter estimates for true parameter values. Multiplying (3) by c_{i}; adding to (2), and transposing gives

$$
\sum_{-a=1}^{N} \hat{P}_{i}\left(\hat{e}_{a}\right)=\sum_{a=1}^{N} u_{i a}
$$

Since

$$
\begin{equation*}
p_{1}=\frac{1}{N} \underset{a=1}{\sum \sum} \sum_{1 a}^{\dot{N}}, \tag{4}
\end{equation*}
$$

we h'ạ̀ve

$$
\begin{equation*}
\dot{p}_{i}=\frac{1}{N} \sum_{a=1}^{N} \stackrel{P}{p}_{i}\left(\hat{\theta}_{a}\right) \tag{5}
\end{equation*}
$$

From (4) and (5), we can derive two separate formulas for the variance of p_{1} -

For some group of examinees whose abilities are specified by the . vector $\underset{\sim}{\theta} \equiv\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{N}\right\}$, we have from (4) that

ERIC

$$
,-7-
$$

By the formula for the covariance between two sums, we have from (5) for the same group of examines that,

$$
\begin{equation*}
\operatorname{var}\left(p_{1} \mid 0\right)=\frac{1}{N^{2}} \sum_{n=1}^{N} \operatorname{cov}\left(\hat{P}_{1}\left(\hat{\theta}_{a}\right), \hat{P}_{1}\left(\hat{0}_{a}\right) \mid 01\right. \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{cov}\left(p_{1}, p_{j} \mid \theta\right)=\frac{1}{N^{2}} \sum_{a=1}^{N} \sum_{b=1}^{N} \operatorname{cov}\left(\hat{P}_{1}\left(\hat{\theta}_{a}\right), \hat{p}_{j}\left(\hat{\theta}_{b}\right)|0|\right. \tag{9}
\end{equation*}
$$

The $\operatorname{cov}\left(\hat{p}_{i}\left(\hat{\dot{\theta}}_{a}\right), \hat{\underline{p}}_{j}\left(\hat{\theta}_{b}\right)|\theta|\right.$ are evaluated by applying the delta method. (Kelley, 1947. Pp. 524-526; Kendall and Stuart, 1969, Section 10.6) to (1). For fixed " θ (for simplicity, the notation." | θ " is omitted from the following formula)

$$
\begin{gathered}
\operatorname{cov}\left(\hat{p}_{i}\left(\hat{\theta}_{a}\right), \hat{p}_{j}\left(\hat{\theta}_{b}\right)\right)=w_{1 a} w_{j b}\left(t _ { 1 a } t _ { j b } \left[\operatorname{cov}\left(\hat{\theta}_{a}, \hat{0}_{b}\right)-\operatorname{cov}\left(\hat{b}_{i}, \dot{\hat{\theta}}_{b}\right)\right.\right. \\
\vdots \\
\left.-\operatorname{cov}\left(\hat{\theta}_{a}, \hat{b}_{j}\right)+\operatorname{cov}\left(\hat{b}_{i}, \hat{b}_{j}\right)\right]+v_{1 a} t_{j b}\left[\operatorname{cov}\left(\hat{a}_{i}, \hat{\theta}_{b}\right)-\operatorname{cov}\left(\hat{a}_{i}, \hat{b}_{j}\right)\right]
\end{gathered}
$$

$$
+y_{j b} \dot{t}_{i a}\left[\operatorname{cov}\left(\hat{\theta}_{a}, \hat{a}_{j}\right)-\operatorname{cov}\left(\hat{b}_{i}, \hat{a}_{j}\right)\right]+v_{i a} v_{j b} \operatorname{cov}\left(\hat{a}_{i}, \hat{a}_{j}\right)
$$

$$
+t_{j b}\left[\operatorname{cov}\left(\hat{c}_{i}, \hat{\theta}_{b}\right)-\operatorname{cov}\left(\hat{c}_{i}, \hat{b}_{j}\right)\right] / 1.7+\left[v_{j b} \operatorname{cov}\left(\hat{c}_{i}, \dot{\theta}_{j}\right)\right.
$$

$$
\left.+v_{1 a} \operatorname{cov}\left(\hat{a}_{1}, \hat{c}_{j}\right)\right] / 1.7+t_{1 a}\left[\operatorname{cov}\left(\hat{\theta}_{a}, \hat{c}_{j}\right)-\operatorname{cov}\left(\hat{b}_{i}, \hat{c}_{j}\right)\right] / 1.7
$$

$$
\begin{equation*}
+\operatorname{cov}\left(\hat{c}_{1}, \hat{c}_{j}\right) /(1.7)^{2\}} \tag{io}
\end{equation*}
$$

3. Effects of Changing Number of Items, Number of Examinees, or the Frequency Distribution of Ability

To Investigate the effect of changing the number of items, the number of examinees, or the distribution of abilities on the sampling errors of parameter estimates, various sets of parameters were specified. The simplest set of parameters represents the administration of a 45-1tem test to 1500 examinees. The numerical values used as the true θ_{a} were a spaced sample of $1500 \quad \hat{\theta}_{a}$ drawn from the ability estimates obtained by LOGIST for a regular administration of the Test of English as a Foreign Language (TOEFL). A spaced sample of fifteen items were drawn from the sixty TOEFL items whose parameters were estimated in the same run as the abilities. The estimated parameters for thèse fifteen items were used as the true parameters. These fifteen items were then replicated twice to get a total of 45 items, where items $16-30$ and items $31-45$ have the same item parameters as items 1-15. Note that various parameters were specified, but no sets of artificial data were generated for this study, since sampling variances and covariances depend only on the true parameters, not on sample observations.

To Investigate the effect of increasing the number of examinees, each
of $1500 \theta_{a}$ was repeated four times to represent the θ_{a} of 6000 examinees. To study the effect of increasing the number of items, another 45 items were added exactly like the first 45 to create a 90-item test. For a different distribution of abilities, a rectangular distribution of $1500 \quad \theta_{a}$ between -3 and 3 was randomly generated.

Tables 1-4 give the standard errors of the parameter estimates that would• be obtained from actual data in the various situations investigated. Only the standard errors for the fifteen unique items are given in the tables of the standard erroys for the item parameters. The abilities are grouped into 16 intervals between -4° and 3. Two of the intervals had no examinees. N is the number of examinees and n is the number of items. The values of both the "small" and "capital" parameters are given. The constants to convert from the small scale to the capital scale are $\bar{b}_{0}=-.305$ and $k=0.976$.

Figure 1 contains plots corresponding to these tables. Gaps in the curve for the \hat{B}_{i} are due to some points out of the range of the plot. The standard error for \hat{c}_{1} was not plotted against C_{i}, since most of the C_{1} were, equal, but against $B_{1}-2 / A_{1}$ instead. $B_{1}-2 / A_{1}$ is an indicator of the ability level at which the item response curve becomes asymptotic. The higher $B_{1}-2 / A_{1}$, the better one should be able to estimate C. .

As expected, quadrupling the number of examinees halved the standard errors of the estimated item parameters; doubling the number of items, decreased the standard errors of the estimated abilities by a factor of $\sqrt{2}$ - Quadrupling the number of examinees reduces the largest standard errors for $\hat{\theta}_{a}$ sharply, but hā̆ little effect on the smaller standard errors; doubling the number of items has only a moderate or -

$$
-11-
$$

-Table 1
Standard Errors for \hat{A}_{1}

Standard Errors for						
			Bell-shaped distribution			Rectangular
Item No.	a_{1}	A_{1}	$\begin{gathered} n=45 \\ \mathrm{~N}=1500 \\ \hline \end{gathered}$	$\begin{gathered} n=90 \\ N=1500 \\ \hline \end{gathered}$	$\begin{array}{r} n=45 \\ N=6000 \\ \hline \end{array}$	$\begin{aligned} & n=45 \\ & N=1500 \\ & \hline \end{aligned}$
1	0.99	0.96	0.234	0.192	0.117	0.178
2	0.35	0.34	0.134	0.131	0.067	0.072
3	1.38	1.34	0.318	0.243	0.159	0.235
4	0.78	0.76	0.147	0.126	0.073	0.099
5	0.1	0.41	0.100	0.106	0.050	0.055
6	0.9	0.90	0.178	0.145	0.089	0.120
7	0.92	0.90	0.179	0.147	0.089	0.119
8	1.06	1.04	0.209	0.168	0.104	0.141
9	1.34	1.31	0.262	0.205	0.131	0.180
10	1.50	1.46	0.317	0.259	0.158	0.231
11.	0.87	0.85	0.180	0.151	0.090	0.117
. 12	0.62	0.60	0.142	$0.1-28$	0.071	-0.086
13	1.09	1.06	0.234	0.197	0.117	
14	1.39	1.36	0.311	0.265 0.283	0.156 0.166	0.204 0.209
15	${ }^{2} 1.50$	1.46	0.333	0.283	0.166	0.209

$\because \because$. . ans

䓵

- Table 20
- Standard Errors for B_{1}

\because Standard Errors for B_{1} Bell-shaped distributson Rectangular						
$\begin{aligned} & \text { Iten } \\ & \text { No: } \end{aligned}$	1		$\begin{array}{r} n=45 \\ N=1500 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{n}=90 \\ & \mathrm{~N}=1500 \end{aligned}$	$\begin{gathered} n=45 \\ N=6000 \\ \hline \end{gathered}$	$\begin{array}{r} n=45, \\ N=1500 \\ \hline \end{array}$
1	-2.01	-1.75	0.516	0.466	0.258	0.339
2	-1.61	-1.33.	2.544	2.344	11.272	1.470
3	-1.09	-0.80	0.353	0.259	0.177	0.242
4	-0.77	-0.48	0.257	0.240	0.128	0.177
5	-0.67	-0.38	0.965	0.929	0.483	0.591
6	-0.34	-0.04	0.191	0.161	0.095	0.141
7	-0.15	016	0.165	0.141	0.082	0.128
8	0.00	0.31	0.143	0.117	0.071	0.113
9	0.11	$\bigcirc 0.42$	0.124	0.096	0.062	0.096
10	0.26	0.58	0.110	0.092	0.055	0.097
11	0.46	0.79	0.103	0.101	0.051	0.098
12	0.57	0.90	0.178	0.179	0.089	0.148
13	0.68	1.01	0.085	0.086	0.043	0.086
14	0.90	$1!23$	0.082	0.080	0.041	0.076
15	1.16	1. 1.50	0.103	0.089	0.052	0.077

17

Table 3
Standard Errors for $\hat{\mathbf{c}}_{1}$
0.

J

Table 4
Standard Errors for $\hat{\theta}_{a}$

际路

Figure 1 . Comparison of the standard for $\hat{A}_{1}, \hat{B}_{1}, \hat{C}_{1}$, and $\hat{\theta}_{\mathbf{a}}$ for different numbers of items, different numbers of examinees and for a different distribution of examinees
small effect onsthe standard errors of item parameter estimates. Note that the effects discugsed in the previous sentence cannot be investigated at all using the usual standard error formulas, which assume either that the item parameters are known or else that the θ_{a} are known.

The rectangular distribution of abilities definitely gives better estimates of the item parameters than the bell-shaped distribution of abilities. For C_{i} where $B_{i}-2 / A_{i}$ is low, the rectangular distribution gave standard error's nearly as low as the standard errors with quadruple the number of examinees.
.4. Displaying Standard Errors and Sampling Covariances

In looking at tables of standard errors it is hard to see how the standard errors for \hat{A}_{1}, \hat{B}_{i}, and \hat{C}_{i} interrelate and how the standard errors relate to the magnitude of the parameters. A plot of the threedimensional asymptotic joint normal distribution of \hat{A}, and \hat{C}.中ould be useful but difficult to read. 'However, projections of the contours of this distribution onto the three two-dimensional planes will give a graphical representation not only of the magnitule of the standard errors but also of the sampling correlations between the parameter estimates. The projected contours are two-dimensional ellipses. These plots are a refinement of a suggestion by Thomas Warm (personal communcation, 1982).

For convenience, the subscript 1 will now be dropped. To plot the projection of the three dimensional contour onto the (\hat{A}, \hat{B}) -plane, only $\operatorname{var}(\hat{A}), \operatorname{var}(\hat{B})$, and $\operatorname{cov}(\hat{A}, \hat{B})$ are needed. The exponent of
the asymptotic bivariate normal distribution of \hat{A} and \hat{B} is given by the right side of (11): The quadratic in brackets is asymptotically distributed as chi square with 2 degrees of freedom. The 95 th percentile for a x^{2} with 2 degrees of freedom is 5.99. Thus 95 percent of the time the obtained (\hat{A}, \hat{B}). will lie within the ellipse given by the equation

$$
\begin{equation*}
599=\frac{1}{1-\rho^{2}}\left[\frac{(\hat{A}-A)^{2}}{\operatorname{Var}(\hat{A})}-\frac{2 \rho(\hat{A}-A)(\hat{B}-B)}{\sqrt{\operatorname{Var}(\hat{A}) \operatorname{Var}(\hat{B})}}+\frac{(\hat{B}-B)^{2}}{\operatorname{Var}(\hat{B})}\right] \tag{11}
\end{equation*}
$$

where

$$
\rho=\frac{\operatorname{Cov}(\hat{A}, \hat{B})}{\sqrt{\operatorname{Var}(\hat{A}) \operatorname{Var}(\hat{B})}}
$$

Similar equations apply for the projections onto the $(\hat{A}, \hat{C})-$ and $(\hat{B}, \hat{C})-$ planes. The ellipse plotted from (11) for a given N is identical to the 53 -percent ellipse that would be plotted for a sample size N/4.

- The following procedure was used to plot a representative set of ellipses. A hypothetical test of 60 items was created by selecting 60 tems from an operational SAT mathematics test and treating these item parameter estimates as the true' parameters. A standard normal distribution of 1000
abilities was generated. We then created 15 new items with all combinations of the parameters $a=.5,1.0,1.5 ; b=-2,-1,0,1,2 ;$ and $c=15$. Using these new items, fifteen 61 -item tests were created, each containing the 60 original items and one of the new items. The sampling variance-: covariance matrix for each of the fifteen, 61 -item tests was obtained. These matrices differ only because the $61 s t$ item differs for each matrix. Only the variances and covariances for the 61 st item were used in (11) to compute the ellipses.

The plots were made for an N of 16,000 to avoid confusing overlap of the ellipses. These ellipses are also the 53% confidence ellipses for an N of 4000. The left and bottom axes are labeled with the "small" scale, the right and top axes are labeled with the "capital" scale. The standard errors used are for -parameter estimates on the capital scale. The transformation parameters to transform from the small to the capital scale are $\bar{b}_{0}=.001$, $k=1.336$. The center of the ellipse is marked by a " + " \because "

Figure 2 shows the ellipses on the (\hat{A}, \hat{B})-plane \quad The plot shows that the standard error of \hat{A} increases with A. The standard error of \hat{B} increases as B approaches the extremes. The sampling correlation between \hat{A} and \hat{B} is moderately or strongly positive for easy items and moderately or strongly negative for hard items.

Figure 2. Projections onto the (\hat{A}, \hat{B})-plane of the 95% elifipses for
an of 16,000 an N of 16,000 .

Figure 3 shows the projections onto the (\hat{B}, \hat{C})-plane. At each value of B there are three ellipses, which are concentric because c. $=\mathbf{C}=.15$ for all-items. The longest elifpse along the C axis is for $a=.5^{\circ}$, the middle ellipse is for $a=1.0^{\circ}$, and the shortest is for $a=1.5$. The other triples of ellipses are similarly ordered on a . The standard error of \hat{C} is large for easy items and moderately small for difficult items; the standard error of \hat{C} decreases as a increases. As a decreases, the sampling correlation between \hat{B} and \hat{C} becomes strongly positive except for hard items where \hat{C} is well determined.

Figure 4 shows the projections onto the (\hat{A}, \hat{C})-plane. There are five concentric ellipses for each value of A. The ellipse with the longest c-axis is for $b=-2.0$, the ellipse with the shortest c-axis is for $b=2.0$. Again \hat{C}, has large standard errors for easy items and for items with low a 's. For hard items the sampling correlation between \hat{A}, and \hat{C} is positive and sometimes high; for easy items, the correlation is negative.
4. Standard Errors for Two Tests with Common Items

- Suppose that each of two tests measuring the same ability is administered to adifferent group of examinees. We want to use item response theory either to put the items for both tests cinto a common item pool or to equate the two tests. Fof either purpose it is necessary that all the estimated parameters be on the same scale.

Figure 3. Projections onto the (\hat{B}, \hat{C}) -plane of the 95% ellipses for an N of 16,000 .

Unless equivalent groups of examinees are used, methods for doing this usually require a subset of items that are common to both tests. The unique items are the items in each test that are not common to the other test. The item parameters for each test can then either be estimated separately in two calibration runs or together in one calibration run. If the parameters are estimated in two separate runs, there are two different parameter estimates for each common item. These should be the same except for sampling error and the arbitrary origin and unit of measurement of the ability scale. There are several methods for determining the linear transformation necessary to transform the item parameter estimates for both tests to the same/scale. These mêthods will not be described here (see Stocking and Lord, 61983): However, if $\dot{a} 11$ of the ftems for both tests are calibrated in'one run, called a concurrent calibration, the parameters for both tests are automatically put on the same scale and no linear transformation is necessary. This concurrent procedure is most effictent; ft provides sualler standard errors and-involves fewer assumptions than other procedures. The concurrent procedure is the procedure studied here

One question that arises when applying the common item method for putting the parameters for both tests on a common scale 1s: How many common items are necessary? Vale, Maurel11, Gfalluca, Weiss, and Ree (1981) Investigated this problem using simulated data with 5,15 , and 25 common items and three different shapes of the common item section test information curve: peaked, normal, and rectangular. They also investigated many other linking methods. For the common ftem method, they assumed that one already had good estimates of the parameters for the comon items and required that one have enough common and unique items to get good estimates of the abilities. They
used two estimates of the ablifities, one obtained from the common items, the other from the unique items to determine the transformation to put the unique items onto the common scale. They found that 15 to 25 items were necessary and that the common item sections with a rectangular or norinal information function were-better than those with-a-peaked-information function.

Another study to determine the number of common items necessary was done by McKinley and Reckase (1981). They compared the concurrent method and several other methods for obtaining the inear transformations using the two sets of item parameter estimates for the common items. A large set of items using real data from a multidimensional achievement test covering seven subareas was calibrated in one calibration run and these parameter estimates were used as the criterion for determining how well the other linking procedures put the parameter estimates for subsets of these items on a common scale. A chain of three links was created, that is, test A was linked to test B through one set of common items, test B to test C through another set of common items, and test C to test D through a third set. Five sample sizes ranging from 100 examinee to 2000 examinees were used. All four tests were then calibrated in one run for the concurrent method for each sample. The linking was done with 5,15 and 25 common Items. Each individual test was 50 Items long including the common items. McKinley and Reckase concluded that 5 items were not adequate, 25 items were better than 15 ; but 15 wére adequate for linking with the concurrent method.

Given the sampling variance-covariance matrix for all parameter estimates in our single concurrent run when ali parameters are treated as unknown, we

$$
-25=
$$

can investigate what effect the number of common items has on the sampling standard errors of the unique items in both tests. Note that this problem cannot be investigated at all with the limited sampling-error formulas that assume that efther item or ability parameters are known.

Numerical Procedures

Suppose test 1 has a section of unique items labeled V4, and ${ }^{\circ}$ test 2 has a section of unique items labeled 25 . Both tests have the same set of common Items labeled $C O$ One group of examinees, group X, took test 1 , another group of examinees, group Y, took test 2. The information matrix $I_{p q}$, which must be inverted to get the variance-covariance matrix, has the following structure (Lord and Wingersky; 1983):

The. S submatrices $\left(S_{11}\right.$ for the $V 4$ items; S_{22} for the common items; S_{33} for the $\mathrm{Z5}$ items) contain 3×3 Fisher information matrices for a_{1}, b_{1}, c_{1} on the diagonal. The T submatrices are the diagonal information matrices for the examinees:- T_{11} for the examinees that took test 1; T_{22} for the examinees that took test 2. The F submatrices contain the vectors f_{\sim}, each of which is the 3×1 Fisher information vector for item 1 and examinee a. Note that for Group \dot{Y}, this is ${ }_{\sim}^{0}$ for the V4 items; for Group X, this is 0 for $Z 5$ -

The matrix $I^{\prime} \mathrm{pq}^{\prime}$ is inverted by grouping the abilities for group X Into sixteen groups and by grouping the abilities for group Y Into another set of sixteen groups. Then the formulas for inverting a partitioned matrix using the method described in Lord and Wingersky (1983) are successively.applied.

Data and Results
To study the effect of the number of common items on the standard errors of the parameter estimates for the unique items, we selected two 60-item SAT Mathematics tests with an additional 25-item common-item section. The 60 unique items in the first test will be referred to as V4 and the 60 unique items in the second test will be referred to as 25 . Estimates of all of the parameters were obtalned in one concurrent LOGIST run. These estimates were treated as true parameter values in computing the standard errors for all 145 items.
$=$ We then doubled the length of the common item section by simply replicating the parameters for the 25 common items. Surprisingly, the standard errors for the 120 unique items in $V 4$ and $\mathrm{Z5}$ computed with 50 common items agreed with the standard errors computed with only 25 common Items to two decimal places. If doubling the number of common items makes so little difference, what is the effect of halivig the number of common items? Or at the extreme, reducing the number of common items to 2 ?

This is really not as absurd as it sounds. Providing the common items are not part of the test score, other than improving the estimates of the abilities, the function of the common items is to put the parameters for the two sets of unique items on the same metric. If the model holds, onily a linear transformation is required to convert the parameters from one scale to another. only 2 parameters are necessary to determine this Inear transformation. with 2 common items we are estimating four parameters that affect the scale, the two 解's Influence the scale unit and the two b 's influence both the scale unit and origin. The two c 's are not affected by the scale. Consequently with 2 items we actually have two more parmeters than absolutely necessary. However, If the 2 common items have parameter estimates with large standard errors, the scale will be less well determined than if the estimates have small standard errors.

To study the effect of two common Items on the standard errors of the unique items, we selected 2 "good" Items and 2 "bad" Items from the 25 common items. The Item parameters and their standard errors for \& the 2 "good" 1 tems were

\mathbf{a}	$\operatorname{SE}(\hat{A})$	b	$\operatorname{SE}(\hat{B})$	\mathbf{c}	$\operatorname{SE}(\hat{\mathrm{C}})$
.98	.09	-.10	.02	.06	.02
.96	.10	.21	.02	.15	.02

The item parameters and their standard errors for the 2 "bad" common 1tems were

	$\mathrm{SE}(\hat{A})$	b	$\operatorname{SE}(\hat{B})$	c	$\operatorname{SE}(\hat{\mathrm{C}})$
.32	.10	-1.51	.47	.07	.24
.53	.07	-1.19	.12	.07	.10

These standard errors were computed for the situation where all 25 common items are included in the parameter estimation run.

We then obtained the variance-covariance matrix for the V4 and $Z 5$ items When only the 2 good common items are included in the estimation run and also the variance-covariance matrix when only the 2 bad common items are used. The constants to transform from the small scale to the capital scale are $\bar{b}_{0}=-.261$ and $k=1.914$. Only V4 and $Z 5$ 1tems were used to compute \bar{b}_{0} and k_{v} that the s聐e transformation would apply to all four varlancecovariance matrices.

Table 5 gives the medians, and the bot tom and cup quartiles of the standard errors for \hat{A}, \hat{B}, and \hat{C}, for the $Z 4$ and $V 5$ unique items computed for four different situations: using 50 common 1tems, using 25 common items, using 2 good common items, and using 2 bad common items. Using 2 good common items gives smaller standard errors for the unique items than, using 2 bad common 1tems. The standard errors using the 2 good items

are not much larger than the standard errors using 25 common items. Even rellance on just 2 bad common items gives surprisingly good results. Since the purpose of the common items is to determine the scale, it. is not surprising that the number of common items has a negiigible effect on the standard error of ${ }^{\prime} \hat{C}$., since c is independent of the ability scale.

Table 6 gives the bitandard errors for the abilities computed with the four different sets of common items. Not surprisingly, if we increase the number of common items to 50 we reduce the standard error of the abilities, although not uniformly as shown by the ratio column. The standard error for the abilities at -2 were lower when computed using the two bad common items, which were easy items, than when computed using the two good common items.

Even though there is little difference between the standard errors when there are 2 common items and when there are 25 common items, the parameter estimates for the $V 4$ and $Z 5$ items will not have been adequately put on the same scale if all of the parameter estimates for V4. items err in one direction and all of the parameter estimates for 25 items err in the opposite direction. Is this what will happen fn practice? To determine how Well an anchor test of only 2 common items puts tests $V 4^{\circ}$ and 25 on the same scale, we reestimated-the parameters twice, once in a LOGIST run with the items for 25 and $V 4$ and the two "good" common items, the other in a LOGIST run with the items for $\mathrm{Z5}$ and V 4 and the two "bad" common items.

The estimated parameters for 25 and $V 4$ computed with the 25 common items will be used as the criterion for evaluating the calibrations

Table 6
Comparison of the Standard Errors of Estimated Abllities across
the' Four Sets of Common Items

with 2 common items. The 2 good common items did fairly well at putting the parameters on this scale. The' 2 bad items did not do so well. The top plot in Figure 5 compares the b 's for the 60 unique V4 items estimated with 2 good items with the b 's estimated with 25 coumon items. Similarly, the bot plom compares the \hat{b} 's for the unique 25 items. If the parameters inere on the same metric the ' \hat{b} 's in both plots should fall on a 45° line. The difference from the 45° line is hard to distinguish. The two points for 25 that are far away from the 45° ilne had the c 's fixed by LOGIST at the coumon c value in one calibration but not in the other.

Figüre 6' shows the plots for the 's for $V 4$ and 25 respectively. Here it definitely looks as if the a \hat{a} are not on the same scale. The \hat{a} 's for the $\mathbf{v} 4$ items have a slope greater than 45°.

Figure 7 compares the b 's estimated, with the 2 bad common items with the b 's estimated with 25 common ftems. Here the points for the V4 items are above the 45° line, and points for the 25 items are below the line. The plots comparing the \hat{a} ' s in Figure 8 confirm that the 2 bad common items do not put the parametefs for $Z 5$ and,$V 4$ on the same metric. As suspected, with the 2 bad items the parameters for one set of the unique Items err in one direction and for the other set, in the opposite direction.

The reason for putting 25 and $V 4$ on the same scale was to equate 25 to V_{r} using true-score equating. What effect does using only 2 common items to put the two forms on the same scale have on the tivz-core equating

Figure 5. Comparison of the b estimated with 2 good common Items and the b's estimated (with 25 common items, separately for V 4 and 25.
-34-

Figure 6.. Comparison of the a 's estimated with 2 good common itema and the a.'s estimated with 25 common items, separately for $V 4$ and 25 .

39

Figure 7. Comparison of the b 's estimated with 2 bad common items and the b 's estimated with 25 comon items, separately for $V 4$ and 25.

Figure 8. Comparison of the a's estimated with 2 bad common items and the a 's estimated with 25 common items, separately for $V 4$ and 25.
between the two forms? Figure 9 shows three true-score equating lines: the solid line is the equating line found when, the parameters are estimated using 25 common items, the dotted ifne is the equating line found when the parameters are estimated using just the 2 good common titems, the dashed 11 ne is found when the parameters are estimated using just the 2 bad common items. : For this equating, true scores on form 25 are first equated to true scores on V4. Then the true scores on V4, are converted to scaled scores between 100 and 800 by a linear transformation. Using the equating Ine with the 25 items as a criterion, the equating using 2 bad common items is worse than the equating using 2 good common items. The equating using the 2 good common items is close to equating with 25 common items; the maximum scaled score difference is 8 points.

All of these results assume that the item parameters estimated using 25 common items are on the same scale. This analysis should be repeated In a situation where one knows that all of the parameters used as a criterion are. on a common scale. From the reaitts so far, it appears that good linking may $\stackrel{\text { be obtained with as few as five common items or less. However, these results }}{ }$ only apply when the item parameters for the two forms are put on a common scale by estimating all of them in one calibration run. These results do not apply when the two tests are calibrated in two separate runs and the parameters are put on a common scale using some linear transformation determined from the common items.

Figure 9. Comparisons of the three true-score equatings of test $\mathbf{Z 5}$ to test V4 : using 25 common items, using 2 good common items, and using 2 bad common items.

The conclusion that good linking may be obtained with as few as five common items is more optimistic, than the conclusions reached by Vale et al (1981) and by McKinley and Reckase (1981). Our differences with Vale et al. may be due to the facts that 1) their scaling was based on estimated θ 's, and 2) they used three estimation runs instead of one concurrent run. Our differences with McKinley and Reckase are probably due to the facts that In their study 1) the responses of some examinees to some items (as we understand $1 t$) often appeared twice in the same concurrent LOGIST run, violating the assumption of local Independence; and, more fmportantly, 2) they pooled the Iowa Tests of Educational Development covering seven different achievement areas, and analyzed the resulting multidimensional pool of items as if it were unidimensional.

Summary

The asymptotic sampling variance-covariance matrix of maximum likelihood estimators when both abilities and item parameters are unknown was used to study several problems in item response theory, such as the extent to which more. Items, more examinees, or a different distribution of abilities will provide better estimates of parameters. It was found for the values of n-and N studled that that the standard error of θ varles Inversely as \sqrt{n}, but 18 only moderately affected by changes $1 n$, N, the standard error of the estimated item parameters varles inversely as \sqrt{N}, but is only slightly affected by changes in n.

A rectangular distribution of abilites gives smaller standard errrors for the item parameters than doubling the number of items. In fact, for low A.s, also for c 8 for itelas with,,$-2 / A$ 1ess, than, 1 , the standard errors computed with a rectangular distribution of ability were nearly as low as the standard errors computed with a bell-shaped distribution and quadruple the number of people.

With the variance covariance, matrix computed when allparameters are treated as unknown, one can study the effect of the number of common items on the standard errors of the unique items when each of two tests containing common items is administered to a different group of examinees and the parameters for both tests are calibrated in one LOGIST run. This problem cannot be dealt with at all by previously available sampling error formulas. The number of comon items has little effect on the standard errors of the parameters for the unique items. The standard errors indicate that as few as 2 items may be sufficient providing the parameter estimates for these two items are well determined. However when two tests were actually calibrated in one LOGIST run using 2 common items that had parameter estimates with low standard errors, the parameters were not quite on the
 were very close to the same scale but the a a \boldsymbol{f} for one of the tests were on a slightly different scale. Although 2 items are not quite enough, adequate linking may be possible with as few as five items.

References

Kelley, Y, L. Fundamentals, of statistics. Cambridge, Mass:- Harvard University Press, 1947.

Kendal1, M. G. \& Stuart A. The advanced theory of statistics (Vol. 1 , 3 rd ed.). New York: Hafner, 1969.

Lord, F. M. Applications of item response theory to practical testing problems. Hillsdale, N.J.: Lawrence Eribaum Assoclates, 1980. Lord, F. M. \&. Wingersky, M. S. Sampling varlances and covariances of parameter estimates In item response theory. In D. J. Weiss (Ed.), Proceedings of the Item Response Theory and Computerized Adaptive Testing Conference. Minneapolis, Minn.: University of Minnesota, Department of Psychology, Computerized Adaptive, Testing Laboratory, 1983, In press.

Mckinley, R. L. \& Reckase, M. D., A comparison of procedures for constructing large Item poolis. Research Report $81-3 \cdot$, Columbla, Mo.: University of Missourl, 198$\}$
Stocking, M. L. \& Lord, F. M. Deyeloping a common metric in item response theory. Applied Psychological Measurement, 1983, 7, 201-210.

Vale, C. D., Maurelll, V. A. Glalluga, K. A., Welss; D. J., and Rée, M. J. Methods for linking item parameters: Brooks Air Force Base, Texas: Air. Force Human Resources Laboratory, 1981.

Warm, T. A. : Personal, communtcation, 1981 :
Wingersky, M. S., Barton, M. A., \& Lord, F. M. LOGIST, user: s guide.
Princeton, N.J.: Educational Testing Service, 1982.

Navy
1 Dr.ED Alken Navy Personnel R\&D Center San Dlego, CA 92152
1 Dr. Arthur Bachrach Environmental Stress Program Center Naval ledical, Research Institute Bethesda, MD 20014

1. Dr, Meryl S. Baker
Navy Personnel R\&D Center San DIego, CA 92152
1 Lialson Scientist Office of Naval Research Branch Office London Box 39
FPO New York, NY 09510
1 Lt. Alexander Bory
Applied Psychology Measurement Division NANRL
NAS Pensacola, FL 32508
1 Dr. Robert Breaux NAVTRAEQUIPCEN
Code $N-095$ R
Orlando, FL, 32813
1 Dr: Robert Carroll
NAVOP 115
Washington, DCT 20370
1 Chief of Naval Educatión and Training Liason Office Air Force Human Resource Laboratory Flying Training Division W1111ams A1r Force Base, AZ 85224
1.Dr. Stanley Collyer Office of Naval Technology 800 N. Quincy Street Arlington, VA, 22217

1 CDR Mike Cur ran
Office of Naval Rescarch
800 North Quincy Strcet
Code 270
Arlington, VA 22217
1 Dr-Tom Duffy
Navy Personnel R αD Center San D1ego, CA, 92152

1 Mr. Hike Durmeyer
Instructional Program Developnent
Building, 90
NET-PDCD
Great Lakes NTC, IL, 60088
1 DE R1chard E1ster
Department of Adminlstrattve Sclences
Naval Postgraduate Sctoool
Monterey, CA 93940
1.Dr. Pat Federlco

Code P13
Navy \& Personnel $R \& D$ Center
San D1ego, CA 92152
1 Dr/Cathy Fernandes
Navy Personne1 A \& D Center
San Diego, CA 92152
1 Dr. John Ford
Navy Personnel $1, \& D$ Center
San Dlego, CA 92152

1 Dr . JIm Hollan
Code 14
Navy Personnel R \& D Center
San Diego, CA 92152
$1 /$ Dr. Ed Hutchins
Navy Personnel $1, \&$ Center San Dlego, CA, 92152
1.Dr, Norman J.-Kerr Chief of Nava1 Technical Training. Naval A1r Station Memphis (75) Millington, TN 38054

1 . Dr. Peter Kincald Training Analysis \& Evaluation Group Department of the Navy Orlandó, FL, 32813

1 Dr-R. W. King Director, Naval. Education and Tralning Program Naval Training. Center, Bidg, 90 Great Lakes, IL 60088

1 Dr. Leonard Kroeker Navy Personnel R \& D Center San Diego, CA 92152

1 Dr. W1111am L. Maloy (02) Chlef of Naval Education and Training Naval Air Station Pensacola, FL 32508

1 Dr. Kneale Marshall Chairman, operations Research Dept. Naval Post Graduate School Monterey, CA 93940

1 Dro James McBride Navy Personne1 R \& D Center San D1ego, CA 92152

1 Dr. W1111am Montague NPRDC Code 13 San Dlego, CA 92152

1 Mr. W1111am Nordbrock 1032 Fairlawn Avenue LIbertyville, IL, 60048

1, Library, Code, P201L Navy Personnel R \& D Center San Dlego, CA, 92152

Technical Dircetor
Navy Personnel $R, \& D$ Center San Dlego, CA 92152
6. Personnel\& Iraining Research Group Code 442 FI
Office of Naval Research
Arlington, VA 22217
1 Special asst, for Education and Train1ng ($0 \mathrm{P}-01 \mathrm{E}$)
Room 2705 Arlingtón Annex
Washington, DC 20370
1 LT Frank C. Petho, MSC, USN
CNET ($\mathrm{N}-432$)
NAS
Pensiacola, FL 32508
1 Dr: Bernard RImland (01 C)
Navy Personne1 R \& D Center
San Dlego, CA' 92152
1 Dr. CarlRoss
CNET-PDCD
Bullding 90
Great Lakes NTC, IL , 60088
1 Dr. Worth Scanland, Director CNET ($\mathrm{N}-5$)
NAS
Pensacola, FL, 32508
1 Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-987H
Washington; DC. 20350
1 Dr., Alfred F. Smode, Dlrector Trainligg Analysis and Evaluation Group Department of the Navy
Orlando, FL, 32813
1 Dr. R1chard Sorensen
Navy Personne1R \& D Center
San D1ego, CA, 92152

1 Dr. Fredérick Steinheiser
CNO - OP115
Navy Annex
Arlington, VA 20370
1 Mr- Brad Sympson
Naval Personnel R \& D Center
San Diego, CA 92152
1 Dr. Frank Vicino
Navy Personne1 $R \& D$ Center
San Diego, CA 92152
1 Dr. Edward Wegman
Office of Naval Research (Code 411S\&P)
800 North Quincy Street
Arlington, VA 22217
1 Dr. Ronald Weitzman
Code 54 WZ
Department of Administrative Services
U.S. Naval Postgraduate School

Monterey, CA 93940
1 Dr. Douglas Wetzel
Code 12
Navy Personnel $R \& D$ Center
San Diego, CA 92152
1.Dr. Martin F.Wiskoff

Navy Personnel R \& D Center San Diego, CA 92152

1 Hr. John H. Wolfe
Navy Personnel R \& D Center
San Dicgo, CA 92152
1 Dr. Wallace Wulfeck, III
Navy Personnel $R \&$ D Center San Diego, CA 92152

Marine Corps

1 Dr. H. WIIllam Greenup Education Advisor (E031) Education Center, MCDEC Quantico, VA 22134

1. Director, Office of Manpower Utillzation
HQ, Marine Corps (MPU)
$B C B$, Bu11ding 2009
Quantico, VA, 22134
1 Headquarters, U, S. Marine Corps Code MPI-20.
Washington, DC 20380
1 Special Assistant for Marine Corps Matters
Code 100N
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217
1 Dr.A.L. Slafkosky
Scientific Adyisor
Code RD-1
HQ, U.S. Marine-Corps
Washington, LC 20380°
1 Major Frank Yohannan, USAC

- headquaters, marinc Gorns
(Code MPI-20)
Washington, DC 20380

Army

1 Technical Director
U.S. Army Research Institute for the

Behavioral and Social Sciences.
-5001 E1scnlower Avenue
Alexandria, VA 22333
1 Mr. James Baker
U.S. Army Researeh Institute

5001 E Isenhower A venue
Alexandr1a, VA, 22333
1 Dr. Kent Eaton
U.S. Army Research Institute

5001 E1senhower Avenue
Alexandrla, VA 22333

1 Dr. Beatrice J.ofarr
U.S. Arny Research Institute

5001 Eisenhower Avenue
Aloxandria, VA 22333

1. Dr. Myron wischl
11.s. Namy hesearch Lnstilute for the Social and Behavioral Sclences
5001 Elsenhower Avenue
Alexandria, VA, 22333
2. Dr. M1t on S. Katz

Training Technićal Area
U.S. Army Research Institute

5001 Eisenhower Avenue
Alexandria; VA 22333
1 Dr. llarold F. O'NeIl, Jr. Director, Tralning Research Lab U.S. Army Research Institute

5001 Eisenhower Avenue
Alexandria, VA 22333
1 Commander, U.S. Army Research
Institute
ATTN: PERI-BR (Dr. Judith Orasanu)
5001 EIsenhower Avenue
Alexandrla, VA 22333
1 Ur. Joseph Ysotka
ATTN: PERI-1C
U.S. Army Research Institute
b001 Eisenhower Avenue
Alexandria, VA 22333
1 Mr. Robert Ross
U.S. Arny Research Institute for
the Socíal and Behavioral Sclences
5001 Eisenhower Avenue
Alexandild, V R 22333
1 Dr- Lobert Sasmor
U.U. Army Rescarch Institute for the Social and Behavioral Sciences 50 Cl Elsenhower Avenue
Alexandrla, VA, 22333

1 Dr. Joyce Shields
U.S. Arny Research Institute

5001 Eisenhowertavenue
A1cxandr 1 a, VA $\quad 22333$
1-Dr. H11da W1ng
U.S. Army Research Institute

5001 Elsenhower Avenue
Alexandr1a, VA, 22333
1 Dr Robert WI sher
U.S. Army Research Institute

5001 Eisenhower Avenue
Alexandria, VA 22333

Alr Force

1 Alr Force Human Resources Laboratory AFIIRL/MPD
Brooks A1r Force Base, TX 78235

1. Technical Documents Center

Alr Force Human Resources Laboratory
WPAFB, OH, 45433
1.U.S.A1r Force Office of Sclentiflc Research
Life Sclences Dlrectorate, NL
Bolling Alr Force Base
Washlngt on, DC, 20332
1 A1r University Library
AUL/LSE $76 / 443$
Maxwe 11 AFB, AL $\quad 36112$
1 Dr.EarlA.A11u1s1
$\mathrm{HQ}, \mathrm{AFHRL}$ (AFSC)
Brooks. A1r Force Base, TX 78235 ,

1. Mr. Raynond E. Christal

AFHRL/NOE
Brooks AFB, TX, 78235
1 Dr. Alfred R. Fregly AFOSR/NL
Bolilng AFB; DC, 20332

Civilian Agencies

1: Dr. Vern W. Urry
Personnel R \& D Center
Office of Personnel Management
1900 E Street, NW
Washington, DC 20415
1 Mr. Thomas A. Warm
U.S. Coast Guard Institute
P.O. Substation 18 Oklahoma City, OK 73169

1 Dr. Frank Withrow :
U.S. Office of Education
400. Maryland Avenue, SW

Washington, DC 20202

1. Dr. Joseph L. Young, Director Memory and Cognitive Processes National Science Foundation Nashington, DC 20550

Private Sector

1 Dr. James Algina
University of Florida
Gainesville, FL: 32611
1 Dr. Patricia Baggett Departnent of Psychology
University of Colorado
Boulder, CO 80309
1 Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08541
1 Dr. Henucha Birenbaum
School of Education Tel Aviv University Tel Aviv, Ranat Aviv 69978 ISRAEI

1 Dr. R. Darrell Bock
Department of Education
University of Chicago
Chicago, IL 60637
1 Dr. Robert Brennan
American College Testing Programs P.O. Box 168

Iowa City, IA 52243
1 Dr. Glenn Bryan
6208 Poe Road -
Bethesda, MD 20817
1 Dr. Ernest R. Cadotte
307. Stokely

University of Tennessee
Knoxville, TN 37916
1 Dr: Pat Carpenter
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA. 15213
1 Dr. John B. Carroll
409 Elliott Road
Chapel Hill, NC 27514 -
1 Dr. Norman Cliff
Department of Psychology
University of Southern California
University Park:
Los Angeles, CA 90007

1. Dr. Allan M. Collins

Bolt, Beranek, and Newman, Inc. 50 Moulton Street
Cambridge, MA 02138
1 Dr. Lynn A. Cooper
LRDC
University of Pittsburgh
3939 O'Hararstreet
Pittspurgh, fi 15213

Private Sector
Private Sector

1 Dr. llans Crombag
Education Research Center
University of Leyden
liocrhaavelaan 2.
2334 EN Leyden
THE NETHERLANDS

1. Dr. Dattpradad Divgi

Syracuse University
Department of Psychology
Syracuse, NY 33210
1 Dr. Susan Embertson
Psy.chology Department University of Kansas Lawrence, KS 66045

1 ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014
1 Dr. Benjanin A. Fairbank, Jr.

- McFann-Gray and Associates, Inc.

5825 Cá1laghan
Suite 225
San Antonio, TX 78228
1 Dt. Leonard Feldt
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242
1 Prof. Donald Fitzgerald University of New England Armidale, New South Wales 2351 AUSTRALIA

1 Dr. Dexter Fletcher WICAT Research Institute 1875 S. Statce Street Oreq. UT 22333

1 Dr. John R: Frederiksen Bolt, Beranek, and Newman 50 Moulton Street Cambridge, MA 02138

1 Dr. Janice Gifford
University of Massachusetts School of Education Amherst, MA 01002

1. Dr. Robert Glaser LRDC
University of Pittsburgh
39390^{\prime} Hara Street
Pictsburgh, PA 15213
1 Dr. Bert.Green Department of Psychology Johns Hopkins University Charles and 34 th Streets
Baltimore, MD^{21218}
1 Dr. Ron Hámbleton
School of Education
University of Nassachusetts
Amherst, MA 01002
1 Dr. Paul Horst .
677 G Street, \#184
Chula Vista, CA 90010
1 Dr. Lloyd Humphreys
Department of Psychology
University of Illinois
Champaign, IL 61820
2. Dr. Jack Hụnter

2122 Coolidge Street
Lansing, MI 48906
$\because 1$ Dr. Huynh Auynh
College of Education
University of South Carolina
Columbia, SC 29208
1 Dr. Douglas H. Jones
10 Trafalgar Court
Lawrenceville; NJ 08648

Private Sector

1 Prof. John A. Keats
Department of Psychology
University of Newcastle
Newcastle, New South Wales 2308
AUSTRALIA
1 Dr. William Koch
University of Texas-Austin
Nieasurement and Evaluation Center
Austin, TX 78703
1 Dr. Pat Langley
The Kobotics Institute
Carnegie-Miellon University
Pittsburgh, PA 15213
1 Dr. Alan Lesgold
Learning R \& D Center
University. of Pittsburgh
3939 o'Hara Street
Pittsburgh, PA 15260
1 Ur. Hichael Levine
Department: of Educational Psychology
210 Education Building
University of Illinois
Champaign, IL 61801
1 Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Croningen
Oude boteringestraat 23
9712 CC Groningen
NETHERLANDS
1 - Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801
1 Mr. Phillip Livingston Systems and Applied Sciences Corporation 68111 Y.enilworth Avenue Riverdale, MD 20840

1 Dr. Robert Lockman Center for Naval Analyols 200 Horth Beauregay Street Alexandria, VA 22311

1 Dr. Frederic M. Lord Educational Testing Service Princeton, NJ 08541.

1 Dr. James Lumsiden Department of Psychology University of Western Australia Nedlands, Western Australia 6009 ajstralia.

1 Dr. Gary Marco Stop 31-E Educational Testing Service Princeton, NJ 08541

1 Dr. Scott Maxwell Department of Psychology University of Notre Dame Notre Dame, IN 46556

1 Dr. Samuel T. Mayo Loyola University of Chicago 820 North Michigan Avenue Chicago, IL 60611.

1 Mr. Robert McKinley American College Testing Programs P.O. Box 168

Iowa City, IA, 52243
1 Dr. Robert Mislevy. 711 Illinois Street Geneva, IL 60134

1 Dr. Allen Munro Behavioral Technology Laboratories 1845 Elena Avenue, Fourth Floor Redondo Beach, CA 90277

Private Sector. Private Sector

1 Ur. Alati Nicewander
University of ${ }^{\prime}$ Oklahoma Departnent of Psychology Oklahona City, OK 73069

1 Dr. Donald A. Norman Cognitive Science, $\mathrm{C}-015$
University of California, San Diego La Jolla, CA 92093

1 Dr. Melvin R. Novick
356 Lindquist Center for Measurement University of Iowa
Iowa City, IA 52242
1 Ur. James 01son
WICAT, Inc:
1875 S. State Street
Orem, UT 84057

1. Dr. Wayne M. Patience

- Americari,Council on Education

GED Testing Service, Suite 20
One Dupont Circle, NW
Washington, DC 20036
:
1 Dr. James A: Paulson
Portland State University
P.O. Box 751

Portlatid, GR 97207
1 Ur. James W. Pellegrino
Univeristy of California,
: Santa Barbara
Department of Psychology
Santa Barbara, CA- 93106
1 Dr. Mark D: Reckase
ACT
P.O. Box 168.

Iowa Ci゙ty, IA 52243

1 Dr. Laưren Resnick LRDC
University of Pittsburgh
$3 y 39$ O'llara Street
Pittsburgh, PA 15261

1 Dr. Thomas Reynolds University of Texas, Dallas Narketing Department
P.O. Box 688

Richardson, TX ' 75080
1 Dr. Andrew Rose
American Institutes for Research
1055 Thomas Jefferson St., NW
Washington, DC 20007
1 Dr. Ernst Z \because Rothkopf Bell Laboratories Murray Hill, NJ 07974

1 Dr. Lawrence Rudner
403 Elm Avenue
Takoma Park, MD 20012 .
1' Dr.J. Ryan
Department of Education University of South Carolina
Columbia, SC. 29208
1 Prof Fumiko Samejima
Department of Psychology
University of Tenne'ssee
2 ${ }^{-} \quad$ Knoxville, TN 37916

1. Dr. Walter Schneider Psychology Department 603 E. Daniel
Champaign; IL 61820
1 Dr...Lowell. Schoer
Psychological: and Quantitative Foundations
College of Education
University of Iowa
Iowa City, IA. 52242
2. Dr. Robert J. Seidel

Instructional Technology Group - HUNRRO
$300^{\circ} \mathrm{N}$. Washington Street
Aiexandria, VA . 22314

Private Sector

1 Dr. Kazuo Shigemasu
University of Tohoku
Department of Educational Psychology
Kawauchi , Sendai 980
JAPAN

1 Dr. Edwin Shirkey
Depiartincul of lesychology
University of Central Florida
Orlando, $\underset{L}{ } \mathrm{~L} 32816$
1 Dr. William Sims
Center for Naval Analysis
200, North Eeauregard Street

- Alexandria, VA 22311

1 jr. H. Wallace Sinaiko
Program Director
Nanpower Research and Advisory. Services
Suithsonian Institution
80l North Pitt'Street
Alexandria, VA 22314
1 Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305
1 Dr. Kathryn T. Spoehr ;
Psychology Department
Lrown University
Providenće, KI 02912
1 Dr. Robert Sternberg
Department of Psychology
Yale University
Box lla, Yale Station
New Haven, CT 06520
1 Dr. Peter Stoloff
Center for Naval Analysis
200 North. Beauregard Street
Alexandria, VA ${ }^{\circ} 22311$

Private Sector

1 Dr. William.Stout University of Illinois Department of Nathematics
U'rbana, IL 61801
i Dr. Patrick Suppes
Institute for Mathematical Studies
in the Social Sciences
Stanford Uniuersity
Stanford, CA 94305
1 Dr. Hariharan Swaminathan Laboratory of Psychometric and

Evaluation Research
School of Education
University of Massacuusetts
Amhers t, MA. 01003
1 Dr. Kikumi Tatsuoka
Computer Based Education Research Laboratory
252 Engineering Research Laboratory University of Illinois Urbana, IL' 61801

1 Dr. Maurice Tatsuoka
220 Education Búilding
1310 S. Sixth Street
Champaign, Il 61820
1 Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044
1 Dr. Douglas Towne
University of Southern California
Behavioral Tech'nology Labs
1845 S: Elena Avenue ${ }^{\circ}$
Kedondo Beach, CA 90277
1 Dr.* Robert Tsutakawa
Department of Statistics
University of Missouri
Columbia, NO 65201

Private Sector

1 Dr. V. R. R. Uppuluri Union Carbide Corporation Nuclear Division
P.O. Eox Y

Oak Ridge, TN 37830
1 Dr. David Vale
Assessment Systems Corporation 2233 University Avenue Suite 310
St. Paul, \mathbb{N} 551:1:4
1 Dr. Kurt Van Lehn Xerox PARC
3333 Coyote Hill Road Palo Alto, CA 94304

1 Dr. Howard Wainer Educational Testing Seryice Princeton, NJ 08541

1 Dŕ. Hlchael T. Waller Department of Educational Psychology University of Wisconsin Milwaukee, WI 53201.

1 Dr. Brian Waters IIUMRRO
300 North Washington
Alcxandria, VA 22314
1 Ur. Phyllis Weaver 2979 Alcxis Drive Palo Alto, CA 94304

1 Dr. David J. Weiss 1660 Elllott Hall University of Minnesota 75 kicist River koad Minneapolis, MN 55455

1 We. Keill 'J. Wescourt lerevplionics, Inc. '54's Niddloileld Road
suile 140
Monlo link, (A yán

Private Sector ${ }^{-}$
1
1 Dr. Rand R. Wilcox
University of Southern Calffornd
Department of Psychology
Los Angeles, CA 90007
1 Dr. Wolfgang Wildgrube
Streitkraefteamt
Box 2050 03
D-5300. Bonn 2
WEST GERMANY
1 Dr. Bruce Williams
Department of Educational Psychc
University of Illinois
Urbana, IL 61801
1 Dr. Wendy Yen
CTB/McGraw-H111
Del Monte Research Park
Monterey, CA 93940

[^0]:
 Reproductions supplied by EDRS are the best that can be made from the original document..

[^1]: *This work was supported in part by contract NO0014-80-C-0402, project designation NR 150-453 between the Office of Naval Research and Educational Testing Service. Reproduction in whole or in part in ${ }^{\circ}$ permitted for any purpose of the United States Government.

