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Abstract
Deep Neural Networks (DNNs) are becoming widely accepted
in automatic speech recognition (ASR) systems. The deep
structured nonlinear processing greatly improves the model’s
generalization capability, but the performance under adverse en-
vironments is still unsatisfactory. In the literature, there have
been many techniques successfully developed to improve Gaus-
sian mixture models’ robustness. Investigating the effective-
ness of these techniques for the DNN is an important step to
thoroughly understand its superiority, pinpoint its limitations
and most importantly to further improve it towards the ultimate
human-level robustness. In this paper, we investigate the effec-
tiveness of speech enhancement using spectral restoration al-
gorithms for DNNs. Four approaches are evaluated, namely
minimum mean-square error spectral estimator (MMSE), max-
imum likelihood spectral amplitude estimator (MLSA), max-
imum a posteriori spectral amplitude estimator (MAPA), and
generalized maximum a posteriori spectral amplitude algorithm
(GMAPA). The preliminary experimental results on the Aurora
2 speech database show that with multi-condition training data
the DNN itself is capable of learning robust representations.
However, if only clean data is available, the MLSA algorithm is
the best spectral restoration training method for DNNs.
Index Terms: speech enhancement, spectral restoration, deep
neural networks.

1. Introduction
Developing systems that would be much more robust against
variability and shifts in acoustic environments, reverberations,
external noise sources, communication channels, speaker and
language characteristics has always been the goal of speech
recognition researchers. In recent years, Deep Neural Net-
works (DNNs) have been successfully applied to various speech
tasks, such as context-independent phoneme recognition [1, 2]
and context-dependent large vocabulary speech recognition [3].
The DNN system has been shown to be capable of reducing
the word error rate (WER) by up to one third on a challenging
conversational speech transcription task compared to the dis-
criminatively trained Gaussian mixture model (GMM) systems
in [4]. This further intrigues the interest of adopting DNNs for
the noise robust speech recognition. In [5], the Recurrent Neu-
ral Network (RNN) and the DNN have been shown to gener-
alize much better than GMMs and MLPs on the Aurora 2 task
[6]. In [7], a deep recurrent denoising autoencoder (DRADE)
is trained on the stereo data to reconstruct the clean utterances
from the noisy input features. It has been shown to outperform
the SPLICE denoising algorithm [8] and the hand-engineered
ETSI2 advanced front end (AFE) denoising system [9]. More-

over, DNNs trained from noisy data, i.e. the multi-condition
trained DNNs, yield even better results and outperform GMM
systems with various compensation techniques [10, 11]. How-
ever, both the DRADE and the multi-condition trained DNN are
more dependent upon the training data to provide a reasonable
sample of noise environments that could be possibly encoun-
tered at test time. This may limit the DNN performance due to
the lack of heterogeneous data.

Speech enhancement techniques that aim to reduce back-
ground noise from noisy speech signals may thus be helpful in
such cases. Many existing ASR systems employ enhancement
schemes as a pre-processor to improve the speech quality. It
is interesting to understand how the enhancement algorithms
affect the DNN based acoustic model. Generally speaking,
speech enhancement algorithms can be grouped into three cate-
gories, namely filtering, spectral restoration, and speech model
techniques [12]. In this study, we focus our discussion on the
spectral restoration approach, which estimates a gain function
to perform noise reductions in the frequency domain. Success-
ful examples include minimum mean square error spectral es-
timator (MMSE) [13, 14, 15, 16], maximum a posteriori spec-
tral amplitude estimator (MAPA) [12, 17, 18], and maximum
likelihood spectral amplitude estimator (MLSA) [12, 19, 20].
Although these techniques have shown effectiveness on noise
reduction, they may have limited capability to achieve high
performance in both high and low signal-to-noise (SNR) ratio
conditions. For example, MAPA provides good noise reduc-
tion performance in low SNR conditions but possibly generate
distortions due to over-compensations in high SNR conditions.
On the other hand, MLSA maintains high quality in clean con-
ditions along with limited noise attenuation capability in low
SNR conditions. Recently, a generalized maximum a posteriori
spectral amplitude (GMAPA) algorithm has been proposed to
address this problem [21]. Although these techniques are effec-
tive for the GMM system, it is unknown how they perform for
the DNNs.

In this work, we thus investigate the effectiveness of
these spectral restoration algorithms in the hybrid DNN-hidden
Markov model (HMM) speech recognition systems. Prelimi-
nary experimental results on the Aurora 2 speech database [6]
indicate that the MMSE, MAPA and GMAPA algorithms could
slightly degrade the DNN’s performance due to the distortion
brought by the restoration process. The MLSA method has
been shown to be more capable of maintaining both the orig-
inal speech signals and useful noise statistics and could thus
further improve DNN’s performance. However, when more and
more layers are added in the DNN model, collecting multi-
condition data seems more useful than adopting any of these
spectral restoration algorithms.
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Figure 1: Block diagram of a speech enhancement system using
the spectral restoration process.

2. Spectral Restoration Techniques
In this section, we review the overall spectral restoration process
with the MMSE, MLSA, MAPA and GMAPA algorithms and
discuss their relations to DNNs.

2.1. Spectral Restoration Process

In the time domain, we consider a noisy speech signal, y[n], as
a sum of a clean speech, s[n], and a noise signal, v[n], as

y[n] = s[n] + v[n], (1)

where n denotes the time index. In the frequency domain, the
noisy speech spectrum of the m-th frame, Y [m, l], can be ex-
pressed as

Y [m, l] = S[m, l] + V [m, l], l = 0, · · · , L− 1, (2)

where l is the frequency bin corresponding to the frequency
ωl = 2πl

L
. S[m, l] and V [m, l] are speech and noise spec-

trum, respectively. To simplify the notation, we will denote
Y [m, l], S[m, l] and V [m, l] as Y, S and V .

Figure 1 shows the overall spectral restoration process,
which can be divided into noise tracking and gain estimation
stages. Firstly, the noise tracking stage computes noise power
from the noisy speech, Y , to obtain a priori SNR ξ and a poste-
riori SNR γ [22, 23] using following equations:

ξ =
σ2
s

σ2
v

and γ =
|Y |2

σ2
v

, (3)

where σ2
s = E[|S|2] and σ2

v = E[|V |2]. In this work, we
adopt the minima controlled recursive averaging (MCRA) noise
tracking algorithm [22, 23] for computing these statistics.

The gain estimation stage calculates a time and frequency
dependent gain function, G[m, l] (denoted as G), based on the
computed a priori and a posteriori SNR statistics ξ and γ, to ob-
tain the enhanced speech, Ŝ[m, l] (denoted as Ŝ), by filtering Y
through G. By decomposing noisy and clean speech spectrum,
Y and S in Eq. (2), into amplitude and phase parts, we have

Y = Yk exp(jθYk ) and S = Sk exp(jθSk ), (4)

where Yk = |Y |, Sk = |S|, θYk = ∠Y and θSk = ∠S. 1 To
restore S from Y , we first estimate the phase of clean speech
spectrum by [12, 24]

θ̂Sk = arg min
θSk

E[| exp(jθYk )− exp(jθSk )|2], (5)

which gives
θ̂Sk = θYk . (6)

Then the spectral amplitude is computed as

Ŝk = G ∗ Yk. (7)

1We use k to distinguish between the complex number and its mag-
nitude.

Finally, the clean speech spectrum is given by

Ŝ = Ŝk exp(jθ̂Sk ) = G ∗ Yk ∗ exp(jθYk ). (8)

The only thing unknown is the gain function G. Different ob-
jective functions have been formulated to estimate the G which
then leads to various spectral restoration algorithms.

2.2. Spectral Restoration Algorithms

This section introduces four well-known gain estimators:
MMSE, MLSA, MAPA and GMAPA. The calculations of noise
power and gain function are derived based on two assumptions:
a) speech and the noise signals are independent, and the noise
signal is additive; b) both speech and noise signals are random
processes.

2.2.1. MMSE Algorithm

For MMSE, the spectral amplitude, Ŝk, is given by the condi-
tional mean [12]

Ŝk = E[Sk|Yk]. (9)

By assuming both the noise and speech spectrum are from
Gaussian distributions, we can obtain the MMSE based gain
function as

GMMSE = Γ(
3

2
)

√
δ

γ
exp(− δ

2
)[(1 + δ)I0(

δ

2
) + δI1(

δ

2
)], (10)

where δ = [ξ/(1 + ξ)]γ; Γ(.) is the Gamma function; I0(.)
and I1(.) are the modified Bessel function of the zero-order and
first-order, respectively.

2.2.2. MLSA Algorithm

For MLSA, the spectral amplitude, Ŝk, is calculated by [19, 20]

Ŝk = arg max
Sk

ln(p[Y |Sk]). (11)

By solving this optimization problem, we can obtain the MLSA
based gain function as

GMLSA =
1 +

√
(Y 2
k − σ2

v)/Y 2
k

2
. (12)

2.2.3. MAPA Algorithm

MAPA estimates the spectral amplitude, Ŝk, based on [17, 18]

Ŝk = arg max
Sk

ln(p[Y |Sk]p[Sk]). (13)

And solving this optimization problem gives us the MAPA
based gain function as

GMAPA =
ξ + (1 + ξ)ξ/γ

2(1 + ξ)
. (14)

2.2.4. GMAPA Algorithm

For GMAPA, the spectral amplitude, Ŝk, is calculated by [21]

Ŝk = arg max
Sk

ln(p[Y |Sk](p[Sk])α), (15)

where α is the prior scale parameter for GMAPA which can
be optimally determined for each utterance automatically [21].
Similarly, by differentiating the GMAPA objective function



with respect to Sk and equating the result to zero, we can obtain
the GMAPA gain function as

GGMAPA =
ξ +

√
ξ2 + (2α− 1)(α+ ξ)ξ/γ

2(α+ ξ)
. (16)

When setting the scale parameter to 0, i.e. α = 0, the GMAPA
algorithm is actually the MLSA method; while for α = 1, it
then becomes to the MAPA method.

2.3. Relations to DNNs

From a different perspective, we may deem the gain function
as a feature transformation with the objective of noise reduc-
tion. This then seems similar to the processing involved in the
DNN which is inherently a cascade of linear transformations
with interleaved nonlinearities. However, they are quite differ-
ent. The gain function is utterance dependent. All the neces-
sary statistics are estimated from the current single utterance.
On one hand it may suffer from the imperfect estimation; on the
other hand it has no data assumption. While for the DNN, it
learns the transformations from a large set of training data and
assumes the test data is also samples drawn from the same dis-
tribution. Due to this complementary aspect, the integration of
the speech enhancement algorithms into the DNN model is be-
lieved to give better performance when the test data is not from
the training data distribution. Moreover, the gain function has
no sense of the linguistic information in the speech while the
DNN transforms are discriminatively optimized. This may help
DNN have a better internal noise estimation than the unsuper-
vised enhancement methods when dealing with noisy speech.

3. Experiments
To understand the effectiveness of these spectral restoration
techniques for the DNN based ASR systems, we conduct a se-
ries of experiments on the Aurora 2 task. It contains 8,440
sentences of clean training data and 8,440 sentences of multi-
condition training data. Utterances with 4 types of noises (sub-
urban train, babble, car and exhibition hall) at 5 different SNRs
(clean, 20dB, 15dB, 10dB and 5dB) are included in the multi-
condition training data. The test sets comprise 8 different noises
(suburban train, babble, car, exhibition, restaurant, street, air-
port, and train station) at 7 different noise levels, (clean, 20dB,
15dB, 10dB, 5dB, 0dB, -5dB), totally 56 different test scenar-
ios. They are further grouped into three broad test sets, namely
Set A with noise types seen in the training data, Set B with
noise types unseen and Set C with both seen and unseen addi-
tive noise and channel distortions. All the HMM systems are
built on traditional 39-dimensional MFCC 0 D A features and
have 16 states per digit and 20 Gaussian per state following the
standard “complex back-end” Aurora 2 recipe [25]. For all the
DNN systems, the 40-dimensional log filter bank (FBank) fea-
tures and the log energy together with the corresponding delta
and accelerate parameters are adopted. A context window of
9 adjacent frames is used as the DNN inputs. A simple equal-
probability digit loop language model is employed for decod-
ing. The word error rate (WER) is used for recognition perfor-
mance evaluations.

3.1. Clean Training

In this experiment, the DNN acoustic model is trained using
clean data without enhancement and tested on the enhanced
noisy data. To decide the number of hidden layers for the
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Figure 2: Overall WER performance for clean trained DNN
with different number of hidden layers.

Table 1: WER performance of different spectral restoration
techniques at different SNRs on the clean-data trained DNN-
HMM system. “None” indicates no enhancement. The last two
lines are GMM-HMM system results from [21] for comparisons.

SNR None MMSE MLSA MAPA GMAPA
clean 0.32 0.60 0.53 0.64 0.94
20dB 1.53 1.47 1.38 1.49 1.81
15dB 3.15 3.11 2.93 3.12 3.58
10dB 8.25 8.31 7.91 8.32 8.71
5dB 20.29 20.60 19.33 20.64 19.83
0dB 43.55 43.94 41.92 44.13 42.44
Avg. 15.35 15.48 14.46 15.54 15.28

clean[21] 0.36 0.39 0.34 0.36 0.33
Avg.[21] 40.56 31.72 36.88 31.91 29.14

DNN we experiment with up to 8 hidden layers. The overall
WERs, i.e. averaged among all the three test sets, of DNNs
with different number of hidden layers are illustrated in Fig-
ure 2. The 4-hidden layer system (DNN-4H) with the lowest
overall WER of 15.35% is selected as the baseline system. The
noisy test data are then processed using different enhancement
algorithms and forwarded to the clean trained DNN-4H for de-
coding. The recognition results are listed in Table 1. The MLSA
and GMAPA approaches improve the DNN performance while
the other two slightly degrade the performance. On the clean
testing data, all the spectral restoration techniques have higher
WERs than the baseline system. It may implies the DNN is
more sensitive to the distortions brought by these enhancement
methods. Although the MMSE and MAPA degrades the over-
all performance, they improve over the baseline system in high
SNRs such as 20dB and 15dB. This may indicate that these two
methods over-compensate the low SNR speech during the en-
hancement. For comparison purpose, we also include some of
the previously reported GMM results [21], which are the last
two lines in Table 1. Due to the limited modeling capabilities of
GMMs, the gain of these enhancement methods surpasses the
distortions they brought by. The DNN itself has captured many
levels of variations in the speech signals. The clean trained
DNN is already much better than the best enhanced GMM sys-
tem. Some enhancement methods may thus be redundant to the
DNN; moreover, the side-effects, i.e. distortions, may lead to
performance degradations. From the current comparison, the
MLSA seems to have less distortions and more complemen-
tary information to the DNN. One possible explanation is that
the maximum likelihood based optimization in the MLSA ap-
proach maintains more data statistics which the discriminative
DNN model may favor.
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Figure 3: Overall WER performance for DNNs with different
number of hidden layers trained on different spectral restoration
techniques enhanced multi-condition data. “None” indicates no
enhancement.

Table 2: WER performance on different test sets. All the DNNs
have 8 hidden layers.“None” indicates no enhancement.

Test None MMSE MLSA MAPA GMAPA
Set A 4.55 5.47 4.75 5.74 6.08
Set B 5.68 6.55 5.82 6.76 7.15
Set C 5.62 6.16 5.35 6.54 6.18
Avg. 5.22 6.04 5.30 6.31 6.53

3.2. Multi-condition Training

To further investigate how the spectral restoration techniques
affect the DNN acoustic models, we build DNN systems using
differently enhanced multi-condition data. Similarly, for each
method, up to 8 hidden layers are trained. The overall WER
performance for these DNN systems are illustrated in Figure 3.
First, the DNN trained directly on the FBank features without
any enhancement has already achieved a much lower WER. The
DNN-8H system without enhancement yields the best WER of
5.22%. Comparing with the clean trained results in Table 1, data
from adverse environments are much more effective than those
noise reduction techniques. This is probably due to the lack of
thorough understanding of the DNN model and those spectral
restoration algorithms proposed for conventional GMMs can-
not tackle the DNN’s weakness. On the other hand, it again
proves the DNN’s powerful learning capability. Comparing the
different spectral restoration algorithms, the MMSE and MAPA
still degrades the performance. Unlink the clean training, the
GMAPA does not perform well for multi-condition training.
These are probably due to the imperfect noise estimations dur-
ing the enhancement, which may cause the loss of necessary
phonetic variations. The MLSA consistently improves the DNN
performance; however, the gain diminishes with the increase of
the network depth. It is surpassed by the baseline FBank fea-
tures when 8 hidden layers are used. This may suggest that with
sufficient depth DNNs could model the processing involved in
many spectral restoration algorithms.

Moreover, the per test set WER results are reported in Ta-
ble 2 for the 8-hidden layer DNNs trained on differently en-
hanced speech signals. Although the MLSA algorithm is sur-
passed by the baseline system, the 5.35% WER on the test

set C still has relatively 4.80% improvement over the base-
line’s 5.62%. It probably indicates that the conventional spectral
restoration techniques especially the MLSA algorithms may im-
prove the DNN performance more under those adverse environ-
ments that are far more different from what the DNN models are
trained. This may also suggest that for DNN-based real world
speech applications, a dynamical speech enhancement module
would be more preferable to a compulsory one.

4. Discussions
From both the clean and multi-condition training, the DNN has
shown its superior variation modeling capabilities to GMMs.
The many layers’ simple nonlinear processing forms an ad-
vanced representation learning process that is capable of gen-
erating high level abstract internal representations, which are
more robust to variations such as environmental noises in the
original speech signals. Due to this deep structure, the noise
reduction processing in the traditional spectral restoration tech-
niques such as MMSE, MAPA and GMAPA has probably been
subsumed. The application of MMSE, MAPA and GMAPA to
the DNN’s input speech signals thus only brings in the harm-
ful distortions and leads to performance degradations. How-
ever, the MLSA algorithm has been shown to be helpful for
the DNN system. A probable explanation is that the maximum
likelihood based clean speech reconstruction has maintained
some complementary data statistics. From Eq. (12), ignoring
the constant scaling of the amplitude, i.e. the halving, the re-
constructed spectral amplitude is the summation of the original
spectral amplitude and a noise dependent term. That’s to say the
original spectral amplitude together with the noise estimation is
well maintained in the reconstruction. However, for other ap-
proaches, the original spectral amplitudes are all in some way
scaled by the noise estimation. On one hand, if perfect noise
estimations are achieved, these approaches will be more effec-
tive than MLSA’s addition. While on the other hand, with an
imperfect noise estimation, these methods may incur more dis-
tortions. Therefore, speech enhancement methods that could
both maintain sufficient original data statistics and also provide
accurate noise statistics for the DNN rather than modifying the
original signals based on imperfect noise estimation would be
more preferable.

5. Conclusions
Spectral restoration based speech enhancement algorithms aim
to reconstruct the clean speech from the noisy one for im-
proved recognition performance. Techniques such as mini-
mum mean-square error (MMSE), maximum likelihood spec-
tral amplitude (MLSA), maximum a posteriori spectral ampli-
tude (MAPA) and generalized maximum a posteriori spectral
amplitude (GMAPA) algorithms have been successfully applied
for the Gaussian mixture models. In this paper, we investigate
their effectiveness in the Deep Neural Network (DNN) based
recognition systems. Our preliminary results on the Aurora 2
corpus show that only the MLSA algorithm could further reduce
the DNN error rates. Comparing these algorithms, we found
that the maximum likelihood based MLSA integrates the noise
estimation into the original speech signals using an additive way
which may be more suitable for DNNs, while others scale the
original signals with the imperfect noise estimation. This may
suggest that due to DNNs’ powerful modeling capability, main-
taining and presenting the uncertainties such as imperfect noise
estimation in the inputs for DNNs would be more preferable.
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