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It is proposed to describe the temporal characteristics of a wave propagating in a random medium 
in terms of its temporal moments. The first two moments are related to the mean arrival time 
and the mean pulse width. It is shown that the one-position two-frequency mutual coherence function 
enters in the formulation naturally. The form of the expression suggests expanding the mutual 
coherence function in a narrow-band expansion whose coefficients can be solved exactly from 
the parabolic equation that takes into account all multiple scattering effects except the backscattering. 
A brief survey of the literature shows that the irregularity spectrum, under various conditions, 
has a power-law dependence. In order to conform to this observation a Bessel function spectrum 
proposed by Shkarofsky is found convenient to use since it not only reduces to the desired power-law 
form in the proper range of wavenumber space, but also has all the finite moments. Exact expressions 
for the mean arrival time and mean square pulse width are obtained; some numerical examples 
are given. Finally, the effect of noise on these moments is discussed. 

1. INTRODUCTION 

There has lately been increased interest in in- 
vestigating the effects of propagation in a random 
medium on pulses [Erukhimov et al., 1973; Liu 
et al., 1974; Lee and Jokipii, 1975; Munk and 
Zachariasen, 1976]. This interest is partially 
supported by applications in precise ranging mea- 
surements and in high data rate communication. 
In various investigations, the background medium 
can be nondispersive (such as electromagnetic 
waves in the atmosphere and sound waves in the 
ocean) or dispersive (such as electromagnetic waves 
in the ionosphere, interplanetary, and interstellar 
media). In terms of geometry, the wave may propa- 
gate entirely in the turbulent medium or the turbu- 
lence is confined only to a slab so that on exiting 
from the slab only phase mixing through diffraction 
will take place. The precise computation of pulse 
shape is sometimes mathematically demanding and 
in many applications such precision is not needed. 
In this paper the concept of temporal moments is 
introduced and it is shown that the first two moments 

are related to the mean arrival time of the pulse 
and the mean pulse width. The mathematics required 
to obtain these temporal moments is much simplified 
and general solutions can be found when the back- 
ground medium is either nondispersive or disper- 
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sive, or when the path geometry is completely 
submerged in the turbulence or when the turbulence 
is confined to a slab geometry outside of which 
wave diffraction occurs. 

The problem of wave propagation in a random 
medium is usually formulated in terms of the mo- 
ments of the wave function u(z,o•) exp •(o•t - kz) 
for a wave propagating in the z direction. Here 
the wave number k(o) corresponds to that of the 
background medium and is allowed to be an arbitrary 
function of circular frequency • such as is the case 
in a dispersive medium. The quantity u is often 
called the complex amplitude and is for convenience 
assumed to be unity at the boundary, i.e., u(0,o) 
= 1 at z = 0 at which the wave enters the medium 

and propagates in the space z > 0. A real pulse 
p(z,t) is obtained by superposing these plane waves, 
i.e., 

p(z,t) = [(o•)u(z,o•) (1) 

where the amplitude spectrum [(•o) is introduced 
to take into account the possibilities that (i) the 
impressed signal at z - 0 is modulated, for which 
[(•o) is the spectrum of impressed signal; (ii) the 
broad-band signal is detected with a narrow-band 
receiver, for which [(•o) represents the receiver 
transfer function; and (iii) both of the above, for 
which [(•o) is the product of the impressed spectrum 
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function and the receiver transfer function. For 

real p(z,t), both [(to) and u(z, to) are required to 
be even in to, which we assume. Rewrite (1) in 
the form 

p(z,t) = Re A(z,t)expj(% t- kcz) (2) 

Equation (2) represents a wave of (carrier) fre- 
quency tOc, wave number kc - k(tOc), and slowly 
varying complex envelope A given by 

A(z,t)=f (3) 

where F(11) -- [(to c + 11), U(z,11) = u(z,toc + 12) 
and 12 = to - to c. In a random medium A is random 
since u is random. 

Define the nth temporal moment by the equation 

((t"(z))) ---- (A*(z,t)t"A(z,t)) dt, n = O, 1, 2 .... 

(4) 

Definitions of this kind have been used in 

computations of quantum mechanical packets 
[Baird, 1972], in studies of wave dispersion [Ander- 
son and Askne, 1974], and in calculating the spatial 
fluctuations of a light beam [Kon et al., 1974]. 
Because A is random, the ensemble average denoted 
by ( ) is also introduced in (4). Insertion of (3) 
in (4) leads immediately to 

-- (k I - k2)E]}d• l d• 2 dt (5) 

where k• -- k(oo•) = k(oo• + ll•) and k 2 = k(tO2) 
= k(oo• + 112). As can be seen in (5) the two- 
frequency and one-position mutual coherence func- 
tion 

I"-- (U(z,•-•i)U*(z,•'•2)) -- (u(z,tol)u*(z,to2)) (6) 

enters in the formulation naturally. A more thorough 
discussion of F will be postponed until the next 
section; here it is useful to point out that for plane 
waves F(•'•i,•'•2,z -- 0) = F(•'• 1 -- •'•2,g > 0) = 
1 under the forward scatter assumption. 

In order to interpret (4) physically we need to 
impose two conditions. They are (i) normalization 
condition ( (tø(z)) ) = 1, and (ii) time origin condition 

((t(0))) = 0. The normalization condition implies, 
from (5), 

2,r F*(II)F(11) dll = 1 (7) 

If the amplitude spectrum of the impressed signal 
F(II) is not normalized according to (7), the right- 
hand side of (4) must be divided by the left-hand 
side of (7) so that ((t"(z))) can be interpreted as 
temporal moments. The time origin condition is 
useful because it provides a convenient time refer- 
ence that the mean time of arrival of the signal 
at z = 0 is 0. But, from (5), 

<<t(0)>> = F*(dF/dll)dll (8) 

which in general does not vanish. If the impressed 
signal has a real symmetric envelope, i.e., A(O,t) 
= A(0,-t) = A*(0,t), F(12) must then be real and 
even in 12, which implies ((t(0))) = 0 and the 
time origin condition is automatically established. 
For convenience, such a symmetric envelope will 
be assumed, unless otherwise stated. For general 
pulses one must then subtract the right-hand side 
of (8) in order to establish the time origin. 

Integrate (5) with respect to t by using the relation 

• t • e j(n 1--112)I' dt = 2,r(-/)" g (") (fl - fl 2) 1 (9) 

where 15(")(11• - •'•2) is the nth-order Dirac delta 
function. Subsequent integration with respect to 
11• is made easy by the presence of the Dirac delta 
function, yielding 

((t.(z))) = F*(f12)ei•'2z[O"F(fl 1)F 
ß e-ik, z/011 •'] 11, =112d 112 (10) 

Further integration of (10) requires knowledge in 
F, which is given in the next section. The form 
of (10) suggests an expansion of F in the series 

F(kl ' k2 ) = Fo + Fl • + F2 •2 + ... 

where xl = (k 2 - kl)/k 2, F 0 = F(k2,k2), and 

(11) 

r.= [(-1)"k•'/n!]o"F/ok•' 
kl=k2 

Note that in expanding (11), the independent varia- 



bles k• and k 2 have been chosen instead of 
and 12 2 . This is done for later convenience (see 
section 2.2). As can be seen in (10), the nth temporal 
moment depends only on F o, F•, ..., F, and not 
on F,+ l and beyond. This property has an important 
implication in that we only need to compute the 
beginning few coefficients in the expansion (11) 
since in practice the most important temporal mo- 
ments are the beginning few. As is shown in the 
next section, these coefficients can be computed 
exactly even for cases where the random fluctua- 
tions of the properties of the media are large, thus 
allowing us to study the behavior of the temporal 
moments of the signal propagating in strongly 
turbulent media. 

Physical interpretations are easy for the first few 
moments given in (10). The case n = 1 can be 
interpreted as the mean arrival time at z > 0. The 
case n = 2 is also useful as (((t- ((t)))2)) can 
be interpreted as the mean square pulse width 
centered at the mean arrival time. The higher-order 
moments are related to temporal distortion of the 
pulse, but in a manner less easily interpreted [Baird, 
1972]. 

2. TWO-FREQUENCY MUTUAL COHERENCE 
FUNCTION 

The mutual coherence function needed in calcu- 

lating the temporal moments in (10) satisfies a 
transport equation which can be derived in various 
ways [Chernov, 1970; Tatarskii, 1971;Brown, 1972; 
Lee, 1974]. The reader should be cautioned that 
most early publications are concerned with mutual 
coherence functions at the same frequency while 
what we need in (10) is the two-frequency mutual 
coherence function. The two-frequency mutual co- 
herence function arises from considerations of pulse 
distortion [Erukhimov et al., 1973; Liu et al., 1974; 
Lee and Jokipii, 1975; Sreenivasiah et al., 1976] 
and they can be derived by following similar mathe- 
matical reasoning. The general starting point is the 
Helmholtz wave equation for the wave function 

X72• + k 2 (1 + 131•)• = 0 (12) 

where the time dependence exp(j•ot) is understood. 
The random function ( is assumed to be a homoge- 
neous random field and is independent of frequency; 
the frequency dependence, if any, is taken care 
of by the factor 13. The validity of (12) for various 
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waves has been discussed by Tatarskii [1971]; in 
general it requires that the typical turbulent scale 
be large compared with the wavelength, which we 
assume. This assumption is especially essential for 
electromagnetic waves because otherwise depo- 
larization effects must be taken into account. As 

examples, the quantities 13 and 1• are listed below 
for three cases. 

(i) Electromagnetic waves propagating in a non- 
dispersive turbulent atmosphere with fluctuating 
dielectric permittivity A•' 

• = 1, • = 

(ii) Electromagnetic waves propagating in a 
turbulent plasma such as ionosphere, interplanetary, 
or interstellar media with fluctuating electron den- 
sity AN: 

13 =-to2/(to2- to2p), •=AN/N 

where top is the circular plasma frequency of the 
background. 

(iii) Sound propagation in an ocean with fluctua- 
ting sound speed A C' 

-2, • = ac/ c 

Under the quasi-optics forward scattering assump- 
tion (better known as the parabolic equation ap- 
proximation in the Russian literature), the complex 
amplitude u, given by ß = u exp(-jkz), is found 
to satisfy 

X72 u- 2]kOu/Oz + k213(to)((b,z) u = 0 (13) T 

Here X7 2 = 02/Ox 2 q- 02/Oy 2 and • = (x,y). From 
(13), under the Markov approximation, the equation 
for the two-frequency, two-position mutual coher- 
ence function 

r = (u(5,, z, o•) u,(O•,z,o• O) 

can be derived [Tatarskii, 1971; Liu et al., 1974]. 

or/oz + (j/2k I k2)(k2 v2 - k V2T2) r Ti 1 

- (1/2) A. (•2 - fil )r = 0 (14) 

The function Ap is related to the medium parameters 
in the following way. Let 

•(•,z) = (•(•',z')•(•'+ b,z'+ z)) 

be the correlation function of the homogeneous 
random field/•. Define a two-dimensional correla- 
tion as 
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Then 

(15) 

Ap(•2- •)= -(1/4)[(k 2 : + : • 13• t•: 13•) A•(0) 

- 2• 13• •:13:A•(5: - 5•)] (•6) 

where 13• = 13(co•), 13 2 -= 13(co2). 
If the impressed wave at z = 0 is plane, F is 

a function of •2 - • = • for which (14) reduces 
to 

2 (•)F = 0 (17) • + •X7rF - • Ap 
OZ 2k•k 2 2 

where Ak = k 2 - k•. The "initial" condition for 
(17) is F - 1 at z = 0. Our aim is to solve for 

F in (17). Past attempts at solving this equation 
have been carried out for specific media with various 
approximations and assumptions; we choose to 
approach it with calculation of temporal moments 
in mind. 

2.1. Approximate solutions. Introduce the 
transformation 

r = exp(• + 4>) (18) 

where q• = -(k2• [3 • + k22[3 •)Ae (0)z/8. The equation 
for 4• is obtained when (18) is inserted in (17), 
yielding 

04/az + (iAk/2klk2)[V • • r4' + (X7r4) ] 

= (1/4) k I •1 k2 •2 Ai• (•)) (19) 

with the "initial" condition 4• = 0 at z = 0. Equation 
(19) is nonlinear and cannot be solved analytically 
in its general form. In a weakly random medium, 
the nonlinear term (V,402 can be neglected, result- 
ing in the Rytov solution [Liu et al., 1974]. 

• 2 • 2 • (•r,0)[1 _ exp(jAkKrz Ak e 

+ 2k•k2)]exp(-]• r. 0) d2KT/K 2 r (20) 

where (I)e(k,,Kz) is the spatial spectrum of the 
random field ( and is the Fourier transform of the 
correlation function Be(•,z). If the turbulence is 
confined to a slab from z = 0 to z = L, the solution 
(20) is valid up to z = L, beyond which there will 
be no scattering and only diffraction. The problem 
for z -> L can be formulated similarly by setting 

Ae = 0 in (19), but its "initial" condition at z =' 
L is obtained by solving the problem inside the 
slab. The final result is, for z > L, 

4• • • • (• r,O)[exp(jAk• r • 
Ak • 

ß (z- L)- exp(jAk•}/2k,k2)z]exp(-j• r. •) 
2 ' d2nr/Kr (21) 

For narrow-band applications, we may expand 4• 
and 13 in the form 

14) = 14) 0 -1 t- 14) 1 'lq -1 t- 4)2 '1] 2 -{- ... (22) 

13• = 13 2 + b• xl + b 2 xl 2 + ... (23) 

where xl -= Ak/k 2. If, further, we expand Ae(•) 
for an isotropic random field in the form 

p2 +A p4+... At•(•) = Ao + A2 4 

it is possible to obtain from (21) 

(24) 

(bo (P = 0) = k22132AoL/4 (25) 2 

4•, (p = 0) = (-j/4)k21322A2L(2z - L) 

+ (1/4)k22132 (b, - 132)AoL (26) 

4>2 (P = 0) = (1/4)k•132 (b 2 - b,)AoL 

- (j/4)k2132blA2L(2z - L) - (2/3)1322A4 L 

ß (L 2- 3Lz + 3z 2) (27) 

These expressions will be useful in computing the 
temporal moments according to (10). In a strongly 
random medium, the Rytov solution (21) is no longer 
valid. One has to look for other approximate solu- 
tions. Fortunately, what is needed in (10) is the 
one-position, two-frequency mutual coherence 
function. This suggests the expansion 

4--•)0 q- •)2 p2 q- •)4 p4 + ... (28) 

Substituting (28) and (24) in (19), one gets a hierarchy 
of equations. In case of strong multiple scattering, 
the transverse correlation distance of 4• is small 
in comparison with that of •. This suggests approxi- 

p2 mating Ae(•) by A o + A 2 as done by $hishov 
[1974], Lee and Jokipii [1975], and Sreenivasiah 
et al. [1976]. The hierarchy is then reduced to two 
equations: 

OO) o j2Ak ~ 1 
+•4•2 = • • 2 OZ klk 2 7 k • k2• Aø (29) 
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0•2 •2Ak 1 
+ • 2e = k•[5 ke[5 Ae (30) Oz k• k• '• • • 

This set is now closed even thou• nonlinear and 
can be integrated to give 

•o (z) = k, •1 ke •2Ao z/4 

- In[cos (•1 •2A2Ak/2i )1/2 z] (31) 

• •z) = •1 k•/:)0'•l••/:ak) 1/• 

ß tan[(•l • A•Ak/2i)l/•z ] (32) 

For the case of scattering from a slab of turbulent 
irregularities confined to 0 • z • L, the solution 
can be similarly obt•ned by using (31) and (32) 
at z = L as initi• conditions for the problem (29) 
and (30) with A o = A• = 0. The result is, for 
Z• L, 

• = •o (L) - In [1 + ]2xl(z - L) • (L)/k,] 

+ •e (L)pe/[1 + ]2•l(z - L) •e (L)/ k,] (33) 

If one applies the narrow-band expansion (22) to 
(33), one can show that •o (P = O) is identical to 
(25) and (D1 (P --- O) is identical to (26). In place 
of (27), one gets 

•)e(p - O) - (1/4)k• I•e (b e - b,)AoL 

- (j/4)k:l•b, AeL(2z - L) - (1/48)k•[5•A•L e 

ß (6z e - 8Lz + 3 L 2) (34) 

A comparison of (27) and (34) shows that the last 
term of (27) is missing in (34) because this term 
is proportional to A 4, the fourth derivative of A• 
at p = 0 which is ignored in the derivation of (34) 
by truncation. This comparison also shows that the 
last term of (34) is missing in (27) because the Rytov 
approximation ignores the nonlinear term (V•(I)): 
in (19). Hence the source of discrepancy in (27) 
and (34) can be completely explained in terms of 
the nature of approximations. 

2.2. Narrow-band expansion. For the purpose 
of computing temporal moments according to (10), 
it is not necessary to first obtain F by solving (17). 
The form of (10) suggests an expansion of F accord- 
ing to (11). In this vein we let 

r - Wexp 

and expanding W in the form 

(35) 

w= wo+ w,n+ + ... (36) 

When (35) and (36) are substituted in (17), the 
following set of equations is obtained. 

OWo/OZ- k•[SeA (fi)Wo/4 = 0 

OW,/Oz- k•Ae(•)W,/4-- g, W o 

OW./Oz- k•[5 e Ae(•)W./4 = g W o (37) 2 n 

where the expressions for the right-hand side are 
given by 

g, W o = (-i/2k•)V• W o + k•[5e(b, - [5e)Ae(•) Wo/4 

ge W o = (-]/2ke)•7•(W o + W,) + k•[SeAe(•) 

ß [(b• - b,)W o + (b, - •e)W,]/4 

. . . (38) 

Integrating (37) by noting the "initial" conditions 
Wo= 1, W•= W 2=... =Oatz=O, weobtain 

W o = exp(k• 132• Ae(•)z/4) 

W,,= W o g,,(g)dg, n= 1,2 .... 
o 

Our solution is then 

(39) 

r= 1 + •" g,,(g)dg Woexp• 
n=l 0 

(40) 

A similar approach can be applied to the problem 
of scattering from a turbulent slab confined within 
z - 0 and z = L. For z •- L, one obtains 

+ g',,(g)dg W o (L) expqffL) (41) 
L 

where g', and W' are obtained by solving (37) with 
A(p) = 0 and the boundary conditions W',(L) = 
W.(L). It is interesting to compare the solution 
just obtained with those gi•,en in section 2.1. For 
these solutions to be identical it is necessary that 

W• (z) / W o (L) = •1 (P = O) 
p----O 

(42) 

We (z) / Wo (L) 
p=O 

= cbe(p = 0) + (1/2)[oh1 (p = 0)] 2 

(43) 
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After some rather tedious algebraic manipulations, 
it is possible to show that (42) is exactly satisfied 
for • given by (26), and (43) is satisfied if the 
last term of (34) is included in (27), i.e., the missing 
term in (27) or (34) is restored. With the missing 
terms restored in the Rytov solution or using the 
solution (41), one can compute the coefficients in 
the expansion (11) when p = 0, obtaining for z 
•-- L: 

I•o = 1 

[•2 A L(2z - L) F• = (-]/4)k 2 2 2 

F2=(-1/8)k2([52 - b•)2A L-(]/4)k [• b•A L 2 0 2 2 2 

ß (2Z- L) - (2/3)•22AnL(L 2 - 3Lz + 3z 2) 

-- (1/96)k22[• 4 A2L2(24z 2 - 28zL + 9L 2) (44) 2 2 

The coefficients F, for n >- 3 can be computed 
in practice if desired in a similar manner, except 
that the algebra involved will be rather tedious. 

3. IRREGULARITY SPECTRUM 

It is seen in the previous section that the propaga- 
tion of waves in random media is intimately related 
to the correlation, or equivalently to the spectrum, 
of the random field •. There exist in the literature 
many theories and many measurements, some mea- 
surements made in situ and some made by inference, 
which seem to suggest a power-law spectrum for 
various situations, i.e., the power spectrum has the 
spatial wave number dependence 1/K v. Examples 
can be found for the turbulent atmosphere given 
by the Kolmogorov-Obukhov theory in the inertial 
range (summarized by Tatarskii [1971] who also 
gives some experimental results), for the turbulent 
ocean [Garrett and Munk, 1975], for the turbulent 
ionosphere [Elkins and Papagiannis, 1969; Dyson 
et al., 1974; Phelps and $agalyn, 1976], for the 
turbulent interplanetary medium [Jokipii and Holl- 
weg, 1970], for the plasma irregularities behind the 
comet's tail [Lee, 1976], and for the interstellar 
turbulence [Lee and Jokipii, 1976]. In each case, 
the power index p may differ in numerical values, 
but the power-law dependence seems to be valid 
nearly always. There are cases in which a more 
complex spectrum is inferred [Wernik and Liu, 
1974; Lotova, 1975], but such a possibility is ignored 
in the following. 

A three-dimensional power spectrum of the form 

1/•c v has several difficulties. First, for p > 2 its 
associated correlation will not exist. Second, for 
any finite value of p some spectral moments will 
always fail to exist. In order to remedy this situation, 
Tatarskii [1971] introduces an outer scale l o and 
writes the spectrum as 

F(p/2) l•½r• 2 
(I)• (K) = 3/2 (45) ß r r [(p - 3)/2] (1 + K 2 1o2) •/2 

2 __ 

where F represents the gamma function and ere - 
{/• 2). This spectrum has been criticized by Shkaro•- 
sky [ 1968] who introduces in addition an inner scMe 
r o by writing the spectrum as 

•½ (K) = (K 0 ro)(P-3)/2 r•/(2•) 3/2 K(p_3)/2(K 0 fo) 
=/[r o (• + ß K./=[r o (• + 

(46) 

where •o = 1/1 o and K is a Hankel function of 
imaginary argument. The spectrum (46) is more 
convenient than the one introduced by Lee and 
Jokipii [1976] because all the related correlation 
functions can be evaluated analytically. For exam- 
ple, the corresponding three-dimensional correla- 
tion to (46) is 

•(r) = [•o(r = + r•)'/=] •"-3•/• 
2/(•o ro)•"-3>/2 ' K•.-3>/= [•o ( r= + r•)'/=]"• 

' K(.-3)/2 (•o to) (47) 

The corresponding two-dimensional correlation de- 
fined by (15) is 

A•(p) = •2• [•o(p = + rb'/=] 
2/•o(•oro)•,-3•/2 ß K•._=>/=[•o(p = + r•)'/• ]• 

' K•p-3>/2 (•o ro) (48) 

Upon expanding A•(p) in p in the form (24), it 
is possible to find 

Ao (2•rro/Ko)l/2 2 = 0. 6 K(p_2)/2 (KO I'o)/K(p_3)/2(K 0 ro) 
(49) 

A2 _(•rKo/2ro)•/2 2 = O't• K(p-4)/2 (Ko/'0 ) / K(p-3)/2 ( KO/'0) 
(50) 

= 2 (K ro) (Ko ro) A4 (•T•03/2•ro3)'/E½r• K(•6)/2 0 /K(•3)/2 
(51) 

These expressions are needed in (44). 



In usual applications, r o << /o; it is therefore 
possible to find a range of • values between 1/l o 
and 1/r o for which the spectrum (29) reduces to 
the Tatarskii spectrum (45). The behavior of the 
spectrum, including the three-dimensional as well 
as the one-dimensional correlations, has been given 
by Shkarofsky [ 1968] and will not be repeated here. 
It is sufficient to point out that all spectral moments 
exist as well as derivatives of Ae(@) at @ = 0. 

4. MEAN ARRIVAL TIME AND MEAN SQUARE PULSE 
WIDTH 

The mean time of arrival of a pulse for an observer 
at z is given by (t0) with n = t. The needed 
expression in (10) is 

(O/Oil,) F(II ,)Fe -•,: 
• =•2 

= [F'(•=)- Fr, •/•,•- ]k•Fz]e-i•= • 

where F' (•=) = 0F(•=) / 0•=, k• = Ok= / 0m=, and 
F• is given by (44). Inserting the above expression 
in (10) and dropping the subscript 2 on •, the mean 
arrival time becomes 

((t(z))) = 2-rri F*(F' - FF, W /•- ii' Fz)dfi 

(52) 

The first term in (52) is just ((t(0))) according 
to (8) and it vanishes identically for pulses with 
real symmetric envelopes. The evaluation of the 
remaining terms in (52) requires the specification 
of the F(11) and the medium. If F(11) is sharply 
peaked at fi = 0, i.e., •(•o) is sharply peaked at 
•o c, we may approximat• k by the sum 

k(m) -• k c + k'cl] + (1/2)id'cl'l 2 + (1/6)k"• f•3 (53) 

where k c = k(•o •). This narrow-band approximation 
reduces (52) to 

(<t(z))) = (z/v•)[• + (v'•/v•- v"•/2v•)U '• 

+ L(2z - L) / zz s ] (54) 

for the case of slab geometry. The result when 
the receiver is inside the random medium can be 

obtained by setting L = z in (54). In (54) v• is 
the group velocity at the carrier frequency and the 
prime on v• denotes differentiation with respect 
to •Oc. The contributions to the mean arrival time 
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in (54) are contained in three terms. The first term 
is well known since a pulse propagating over a 
distance z with group velocity vs has its time of 
arrival equal to z/vs. The second term is a correction 
to the first term due to finite bandwidth in the 

signal. This second term is proportional to the mean 
square bandwidth defined by 

112 =2-rrf7 F*FI'I2dI'I (55) 
and the dispersive characteristics of the medium. 
It can be called a term of higher-order dispersion. 
In a nondispersive medium this second term van- 
ishes. The third term in (54) results from random 
scattering and diffraction. The distance Z s = 
-4/A2[32c is that distance of propagation in the 
turbulence medium (i.e., z = L = Zs), at the end 
of which the contribution to arrival time from 

scattering is equal to z/vg. The quantity A 2 for 
the power-law spectrum is given by (50). If we 
take p = 4, the distance Z s can be easily expressed 
as 

2 2 ro ) (56) z s = -4/Koge 13cln(K o 

The distance Z s is usually quite large. But even 
when z << Z s, there may be occasions when scatter- 
ing effects should be taken into account. This may 
be so, for example, in precise ranging measure- 
ments. As a numerical example, we take a case 
of transionospheric propagation. Assuming an ir- 
regularity layer of 200 km thickness (L = 200 km) 
at a height z = 500 km with a 20% density fluctuation 
from its background ([• = 10 MHz), with K o = 10 -4 
m-• and r o = 10-1 m, a ranging signal at 250 MHz 
with (112)•/2/2xr = 10 MHz will experience a time 
delay due to random scattering of the order of 20 
nsec, while the contribution from the higher-order 
dispersion is negligibly small. 

The second temporal moment is just (t0) with 
n = 2 and it can be evaluated similarly, except 
that many more terms will result. When the square 
of the mean arrival time is subtracted out from 

the second moment, the resulting expression is the 
mean square pulse width. Under the narrow-band 
approximation where only leading terms are re- 
tained, one obtains for the slab geometry 

<<t=(z))) - <<t(z)))'• = <<t'•(o))) + z'•(v'•'•/v4•)fi '• 

+ (1/4)AoL([•c/V • + I3'•kc) 2 + (4/3)([•2c/kecV• 2) 
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ß A n L(L 2- 2Lz + 3z 2) 4- L 2 (6L 2- 16Lz + 12z 2) 

2 V 2 d- [2V'e 2 zL(2z - L) / v n z ] f/2 (57) -: 3Zs g g s 

The first term on the right-hand side of (57) is the 
mean square pulse width of the impressed signal 
at z = 0. The second term on the right-hand side 
arises from dispersive characteristics of the medium 
and it vanishes in a nondispersive medium. The 
remaining terms are all related to scattering and 
diffraction as well as dispersion. The relative 
importance of each term depends on the parameters 
of the medium and the signal. For example, the 
ratio between the term involving A o and the term 
involving A 4 is proportional to the quantity 
[(FO/KO)I/2(•.Z) 1/2] to the fourth power. This 
quantity is the ratio of the geometric mean of the 
inner and outer scale sizes to the Fresnel radius. 

Using available data for the atmospheric turbulence 
(• o = 10-1 m- 1, ro = 10- 3 m), for visible light pulse 
propagation in the atmosphere, the contribution to 
the pulse lengthening due to the A o term is dominant. 
For the ionospheric case, however, the situation 
is quite different. For all possible combinations of 
the outer and inner scale sizes 
10-Sm -• r o = 10 -1 --• 10-2m) the term involving 
A 4 seems to be the most important one for carrier 
frequencies up to GHz range. As an example, we 
take L=200 km, z=500 km, [p= 10 MHz, 
((AN/No)2) 1/2-- 1%, K o = 10-4m -l r o = 10-2m 
For a pulse with (f•:)l/: _ 107 at the carrier 
frequency of 1 GHz, the most important pulse 
broadening term is due to the A n term and is equal 
to 10 -•5 sec 2, which is approximately equal to 
((t 2 (0))), the original mean square pulse width. 
That is, under these circumstances, the pulse length 
is approximately doubled even at a frequency as 
high as one gigahertz. 

Higher-order temporal moments can be similarly 
computed at least in principle, although owing to 
the large number of terms the computations will 
be algebraically tedious. These higher-order mo- 
ments show the skewness and other higher-order 
properties of the pulse. 

5. DISCUSSION AND CONCLUSION 

We have proposed to describe the temporal signal 
characteristics after propagating through a random 
medium in terms of their temporal moments defined 
by (4). In order to interpret the physical meaning 
of these moments, two conditions are imposed' the 

normalization condition and the time origin condi- 
tion. With the imposition of these two conditions, 
the first moment can be interpreted as the mean 
arrival time, and the second moment minus the 
square of the first moment can be interpreted as 
the mean square pulse width. In the process of 
derivation it is shown that the one-position, two- 
frequency mutual coherence function enters in the 
formulation naturally. The form of the expression 
suggests expanding the mutual coherence function 
in the form (11) where the coefficients F o, F•, F:, 
... can be solved exactly, as is done in section 
2, from the parabolic equation (17). The first three 
coefficients have been derived and are given in 
(44). Higher-order coefficients can be similarly 
obtained if one is sufficiently patient. All of these 
coefficients are of course dependent on the statisti- 
cal properties of the medium such as the irregularity 
spectrum. Current data suggest strongly that under 
a variety of conditions, the random irregularities 
in nature seem to follow a power-law spectrum 
for which we need to introduce both an inner scale 

and an outer scale. This is discussed in section 

3. In this section the Bessel spectrum introduced 
by Shkarofsky [1968] is especially convenient to 
use because its associated analytic expressions exist 
for the three- two- and one-dimensional correlation 

functions and because a range of spatial wavenum- 
ber can be found within which the Bessel spectrum 
reduces to the desired power-law spectrum. These 
expressions are used in section 4 where the mean 
arrival time and mean square pulse width are 
derived. 

In all the above discussion the possible effects 
caused by noise are completely ignored. In practice 
the signal given by (2) must compete against the 
noise. The statistical properties of a deterministic 
sinusoidal signal in a narrow-band gaussian noise 
are well known [Rice, 1944, 1945]. Specifically, 
the resultant envelope has a Ricean distribution and 
the total power is equal to the sum of the signal 
power and the noise power. However, our signal 
is not deterministic because it has propagated 
through the random medium. If we assume that 
the random signal is statistically independent of 
the noise, a slight generalization of these earlier 
results will give 

where R is the envelope of the resultant and A 



is the envelope of the signal. Since the observer 
can measure only R and not A, the nth temporal 
moment is then 

((tn(z)))N = (R2)tndt 

={{t"(z)))+•~f• t"dt (59) 
where subscript N is used to denote the temporal 
moments in the presence of noise as contrasted 
with those in the noiseless environment when no 

subscript is used. In practical signal detection the 
temporal signal is usually gated for the duration 
T centered at some instant t o which is close to 
the actual arrival time. If we assume that the signal 
is of finite duration and is not affected by gating, 
(59) reduces to, for n • 0, 

((t•(z)))N = ((t•(z))) + Ntg {1 

n n(n-1)'"[n-(2p-1)] (2_•o) 2p} p=• (2p + 1)! 
(60) 

Here we have defined N = P• Tas the noise energy. 
The zeroth-order moment is, from (59), 

((tø(z)))• = ((tø(z)))(1 + N/S) (61) 

which will be used to normalize the moment in 

order to interpret the moments physically. The 
quantity S = ((t ø)) f A 2 dt is the signal energy 
which was conveniently taken as unity in earlier 
discussions. The mean arrival time in the presence 
of noise to the first order in N/$ is 

{{t))•/{{tø))• = to+ (t o - t o ) N/S (62) 

where t • = ( ( t ) ) / ( ( t ø) ) is the arrival time in the 
absence of noise. Equation (62)shows that if the 
signal is gated at a time very close to t a, the presence 
of noise will have minimum effect on measuring 
the arrival time. By using (60) it is also possible 
to compute the mean square pulse width in the 
noisy environment as 

((t•)>•_ {((t>>•)• = ((t•>) t • {{to))N •k{(to).)N ({to)> a 

[• ((t•>) r• ]• _ • + •- 2t a(to - ta) + t0 ((tø)) 12 • (63) 

again to the first order in N/S. On the right-hand 
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side of (63) the first two terms give the mean square 
pulse width in the absence of noise and the last 
term arises from noise. Equations (62) and (63) show 
that in practice the noise may affect the determi- 
nation of the mean arrival time and the mean square 
pulse width of the signal. 

In applications fo communication, the lengthening 
of pulse by propagation effects discussed in this 
paper is very undesirable because of its possible 
cause on intersymbol interference. One way to 
overcome this difficulty is to design a pulse so 
that such propagation effects will be minimized. 
This problem is being looked into and will be a 
topic for future communication. 
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